1
|
Agafonova A, Cosentino A, Musso N, Prinzi C, Russo C, Pellitteri R, Anfuso CD, Lupo G. Hypoxia-Induced Inflammation in In Vitro Model of Human Blood-Brain Barrier: Modulatory Effects of the Olfactory Ensheathing Cell-Conditioned Medium. Mol Neurobiol 2024:10.1007/s12035-024-04517-6. [PMID: 39370481 DOI: 10.1007/s12035-024-04517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Hypoxia compromises the integrity of the blood-brain barrier (BBB) and increases its permeability, thereby inducing inflammation. Olfactory ensheathing cells (OECs) garnered considerable interest due to their neuroregenerative and anti-inflammatory properties. Here, we aimed to investigate the potential modulatory effects of OEC-conditioned medium (OEC-CM) on the response of human brain microvascular endothelial cells (HBMECs), constituting the BBB, when exposed to hypoxia. HBMECs were utilized to establish the in vitro BBB model. OECs were isolated from mouse olfactory bulbs, and OEC-CM was collected after 48 h of culture. The effect of OEC-CM treatment on the HBMEC viability was evaluated under both normoxic and hypoxic conditions at 6 h, 24 h, and 30 h. Western blot and immunostaining techniques were employed to assess NF-κB/phospho-NF-κB expression. HIF-1α, VEGF-A, and cPLA2 mRNA expression levels were quantified using digital PCR. ELISA assays were performed to measure PGE2, VEGF-A, IL-8 secretion, and cPLA2 specific activity. The in vitro formation of HBMEC capillary-like structures was examined using a three-dimensional matrix system. OEC-CM attenuated pro-inflammatory responses and mitigated the HIF-1α/VEGFA signaling pathway activation in HBMECs under hypoxic condition. Hypoxia-induced damage of the BBB can be mitigated by novel therapeutic strategies harnessing OEC potential.
Collapse
Affiliation(s)
- Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Chiara Prinzi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Rosalia Pellitteri
- CNR-IRIB: Institute for Biomedical Research and Innovation, National Research Council, 95126, Catania, Italy.
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy.
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| |
Collapse
|
2
|
Lu C, Liu Y, Liu Y, Kou G, Chen Y, Wu X, Lv Y, Cai J, Chen R, Luo J, Yang X. Silver Nanoparticles Cause Neural and Vascular Disruption by Affecting Key Neuroactive Ligand-Receptor Interaction and VEGF Signaling Pathways. Int J Nanomedicine 2023; 18:2693-2706. [PMID: 37228446 PMCID: PMC10204756 DOI: 10.2147/ijn.s406184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Silver nanoparticles (AgNP) are widely used as coating materials. However, the potential risks of AgNP to human health, especially for neural and vascular systems, are still poorly understood. Methods The vascular and neurotoxicity of various concentrations of AgNP in zebrafish were examined using fluorescence microscopy. In addition, Illumina high-throughput global transcriptome analysis was performed to explore the transcriptome profiles of zebrafish embryos after exposure to AgNP. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to elucidate the top 3000 differentially expressed genes (DEGs) between AgNP-exposed and control groups. Results We systematically investigated the neural and vascular developmental toxicities of AgNP exposure in zebrafish. The results demonstrated that AgNP exposure could cause neurodevelopmental anomalies, including a small-eye phenotype, neuronal morphology defects, and inhibition of athletic abilities. In addition, we found that AgNP exposure induces angiogenesis malformation in zebrafish embryos. Further RNA-seq revealed that DEGs were mainly enriched in the neuroactive ligand-receptor interaction and vascular endothelial growth factor (Vegf) signaling pathways in AgNP-treated zebrafish embryos. Specifically, the mRNA levels of the neuroactive ligand-receptor interaction pathway and Vegf signaling pathway-related genes, including si:ch73-55i23.1, nfatc2a, prkcg, si:ch211-132p1.2, lepa, mchr1b, pla2g4aa, rac1b, p2ry6, adrb2, chrnb1, and chrm1b, were significantly regulated in AgNP-treated zebrafish embryos. Conclusion Our findings indicate that AgNP exposure transcriptionally induces developmental toxicity in neural and vascular development by disturbing neuroactive ligand-receptor interactions and the Vegf signaling pathway in zebrafish embryos.
Collapse
Affiliation(s)
- Chunjiao Lu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Yi Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Yao Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Guanhua Kou
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Xuewei Wu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Yuhang Lv
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Jiahao Cai
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Renyuan Chen
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Juanjuan Luo
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| |
Collapse
|
3
|
Bermúdez V, Tenconi PE, Giusto NM, Mateos MV. Canonical phospholipase D isoforms in visual function and ocular response to stress. Exp Eye Res 2022; 217:108976. [DOI: 10.1016/j.exer.2022.108976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
|
4
|
Chang YC, Chang PMH, Li CH, Chan MH, Lee YJ, Chen MH, Hsiao M. Aldolase A and Phospholipase D1 Synergistically Resist Alkylating Agents and Radiation in Lung Cancer. Front Oncol 2022; 11:811635. [PMID: 35127525 PMCID: PMC8813753 DOI: 10.3389/fonc.2021.811635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to alkylating agents and radiation may cause damage and apoptosis in cancer cells. Meanwhile, this exposure involves resistance and leads to metabolic reprogramming to benefit cancer cells. At present, the detailed mechanism is still unclear. Based on the profiles of several transcriptomes, we found that the activity of phospholipase D (PLD) and the production of specific metabolites are related to these events. Comparing several particular inhibitors, we determined that phospholipase D1 (PLD1) plays a dominant role over other PLD members. Using the existing metabolomics platform, we demonstrated that lysophosphatidylethanolamine (LPE) and lysophosphatidylcholine (LPC) are the most critical metabolites, and are highly dependent on aldolase A (ALDOA). We further demonstrated that ALDOA could modulate total PLD enzyme activity and phosphatidic acid products. Particularly after exposure to alkylating agents and radiation, the proliferation of lung cancer cells, autophagy, and DNA repair capabilities are enhanced. The above phenotypes are closely related to the performance of the ALDOA/PLD1 axis. Moreover, we found that ALDOA inhibited PLD2 activity and enzyme function through direct protein–protein interaction (PPI) with PLD2 to enhance PLD1 and additional carcinogenic features. Most importantly, the combination of ALDOA and PLD1 can be used as an independent prognostic factor and is correlated with several clinical parameters in lung cancer. These findings indicate that, based on the PPI status between ALDOA and PLD2, a combination of radiation and/or alkylating agents with regulating ALDOA-PLD1 may be considered as a new lung cancer treatment option.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Huang Chen
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Michael Hsiao,
| |
Collapse
|
5
|
Basang Z, Zhang S, Yang L, Quzong D, Li Y, Ma Y, Hao M, Pu W, Liu X, Xie H, Liang M, Wang J, Danzeng Q. Correlation of DNA methylation patterns to the phenotypic features of Tibetan elite alpinists in extreme hypoxia. J Genet Genomics 2021; 48:928-935. [PMID: 34531147 DOI: 10.1016/j.jgg.2021.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 01/14/2023]
Abstract
High altitude is an extreme environment that imposes hypoxic pressure on physiological processes, and natives living at high altitudes are more adaptive in certain physiological processes. So far, epigenetic modifications under extreme changes in hypoxic pressures are relatively less understood. Here, we recruit 32 Tibetan elite alpinists (TEAs), who have successfully mounted Everest (8848 m) at least five times. Blood samples and physiological phenotypes of TEAs and 32 matched non-alpinist Tibetan volunteers (non-TEAs) are collected for analysis. Genome-wide DNA methylation analysis identifies 23,202 differentially methylated CpGs (Padj < 0.05, |β| > 0.1) between the two groups. Some differentially methylated CpGs are in hypoxia-related genes such as PPP1R13L, MAP3K7CL, SEPTI-9, and CUL2. In addition, Gene ontology enrichment analysis reveals several inflammation-related pathways. Phenotypic analysis indicates that 12 phenotypes are significantly different between the two groups. In particular, TEAs exhibit higher blood oxygen saturation levels and lower neutrophil count, platelet count, and heart rate. For DNA methylation association analysis, we find that two CpGs (cg16687447, cg06947206) upstream of PTEN were associated with platelet count. In conclusion, extreme hypoxia exposure leads to epigenetic modifications and phenotypic alterations of TEA, providing us clues for exploring the molecular mechanism underlying changes under extreme hypoxia conditions.
Collapse
Affiliation(s)
- Zhuoma Basang
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China; Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - Shixuan Zhang
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China; Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - La Yang
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - Deji Quzong
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China; Institute for Six-sector Economy, Fudan University, Shanghai 200433, China
| | - Yanyun Ma
- Institute for Six-sector Economy, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Meng Hao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - WeiLin Pu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Xiaoyu Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Hongjun Xie
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - Meng Liang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China; Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China.
| | - Qiangba Danzeng
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China.
| |
Collapse
|
6
|
Vascular Endothelial Growth Factor: A Translational View in Oral Non-Communicable Diseases. Biomolecules 2021; 11:biom11010085. [PMID: 33445558 PMCID: PMC7826734 DOI: 10.3390/biom11010085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are vital regulators of angiogenesis that are expressed in response to soluble mediators, such as cytokines and growth factors. Their physiologic functions include blood vessel formation, regulation of vascular permeability, stem cell and monocyte/macrophage recruitment and maintenance of bone homeostasis and repair. In addition, angiogenesis plays a pivotal role in chronic pathologic conditions, such as tumorigenesis, inflammatory immune diseases and bone loss. According to their prevalence, morbidity and mortality, inflammatory diseases affecting periodontal tissues and oral cancer are relevant non-communicable diseases. Whereas oral squamous cell carcinoma (OSCC) is considered one of the most common cancers worldwide, destructive inflammatory periodontal diseases, on the other hand, are amongst the most prevalent chronic inflammatory conditions affecting humans and also represent the main cause of tooth loss in adults. In the recent years, while knowledge regarding the role of VEGF signaling in common oral diseases is expanding, new potential translational applications emerge. In the present narrative review we aim to explore the role of VEGF signaling in oral cancer and destructive periodontal inflammatory diseases, with emphasis in its translational applications as potential biomarkers and therapeutic targets.
Collapse
|
7
|
Activation of the VEGF-A/ERK/PLA2 Axis Mediates Early Retinal Endothelial Cell Damage Induced by High Glucose: New Insight from an In Vitro Model of Diabetic Retinopathy. Int J Mol Sci 2020; 21:ijms21207528. [PMID: 33065984 PMCID: PMC7589177 DOI: 10.3390/ijms21207528] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/18/2022] Open
Abstract
Early blood retinal barrier (BRB) dysfunction induced by hyperglycemia was related to increased pro-inflammatory activity of phospholipase A2 (PLA2) and the upregulation of vascular endothelial growth factor A (VEGF-A). Here, we tested the role of VEGF-A in high glucose (HG)-induced damage of human retinal endothelial cells (HRECs) mediated by Ca++-dependent (cPLA2) and Ca++-independent (iPLA2) PLA2s. HRECs were treated with normal glucose (5 mM, NG) or high glucose (25 mM, HG) for 48 h with or without the VEGF-trap Aflibercept (Afl, 40 µg/mL), the cPLA2 inhibitor arachidonoyl trifluoromethyl ketone (AACOCF3; 15 µM), the iPLA2 inhibitor bromoenol lactone (BEL; 5 µM), or VEGF-A (80 ng/mL). Both Afl and AACOCF3 prevented HG-induced damage (MTT and LDH release), impairment of angiogenic potential (tube-formation), and expression of VEGF-A mRNA. Furthermore, Afl counteracted HG-induced increase of phospho-ERK and phospho-cPLA2 (immunoblot). VEGF-A in HG-medium increased glucose toxicity, through upregulation of phospho-ERK, phospho-cPLA2, and iPLA2 (about 55%, 45%, and 50%, respectively); immunocytochemistry confirmed the activation of these proteins. cPLA2 knockdown by siRNA entirely prevented cell damage induced by HG or by HG plus VEGF-A, while iPLA2 knockdown produced a milder protective effect. These data indicate that VEGF-A mediates the early glucose-induced damage in retinal endothelium through the involvement of ERK1/2/PLA2 axis activation.
Collapse
|
8
|
Borges GA, Elias ST, Amorim B, de Lima CL, Coletta RD, Castilho RM, Squarize CH, Guerra ENS. Curcumin downregulates the PI3K-AKT-mTOR pathway and inhibits growth and progression in head and neck cancer cells. Phytother Res 2020; 34:3311-3324. [PMID: 32628350 DOI: 10.1002/ptr.6780] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/05/2020] [Accepted: 05/30/2020] [Indexed: 12/15/2022]
Abstract
Curcumin, a polyphenol isolated from the rhizome of Curcuma longa, has been studied because of its antioxidant, antimicrobial, and antiinflammatory properties. This study aimed to evaluate the effects of curcumin on head and neck cancer (HNC) cell lines and how it modulates the PI3K-AKT-mTOR signaling pathway. Dose-response curves for curcumin were established for hypopharynx carcinoma (FaDu), tongue carcinoma (SCC-9), and keratinocytes (HaCaT) cell lines and IC50 values were calculated. Cell cycle and cell death were investigated through flow cytometry. Cytoskeleton organization was assessed through phalloidin+FITC staining. qPCR array and western blot were performed to analyze gene and protein expression. Curcumin reduced cell viability in a dose-dependent and selective manner, induced cell death on SCC-9 cells (necrosis/late apoptosis: 44% curcumin vs. 16.4% vehicle), and arrested cell cycle at phase G2 /M on SCC-9 and FaDu (G2 : SCC-9-19.1% curcumin vs. 13.4% vehicle; FaDu-37.8% curcumin vs. 12.9% vehicle). Disorganized cytoskeleton and altered cell morphology were observed. Furthermore, curcumin downregulated the PI3K-AKT-mTOR signaling pathway by modifying the expression of key genes and proteins. These findings highlight the promising therapeutic potential of curcumin to inhibit HNC growth and progression and to modulate the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Gabriel Alvares Borges
- Epithelial Biology Laboratory, Department of Periodontics and Oral Medicine, Division of Oral Pathology Oral Radiology and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brazil
| | - Silvia Taveira Elias
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brazil
| | - Bruna Amorim
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brazil
| | | | - Ricardo Della Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - Rogerio Moraes Castilho
- Epithelial Biology Laboratory, Department of Periodontics and Oral Medicine, Division of Oral Pathology Oral Radiology and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Cristiane Helena Squarize
- Epithelial Biology Laboratory, Department of Periodontics and Oral Medicine, Division of Oral Pathology Oral Radiology and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Eliete Neves Silva Guerra
- Epithelial Biology Laboratory, Department of Periodontics and Oral Medicine, Division of Oral Pathology Oral Radiology and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brazil
| |
Collapse
|
9
|
Jhamat N, Niazi A, Guo Y, Chanrot M, Ivanova E, Kelsey G, Bongcam-Rudloff E, Andersson G, Humblot P. LPS-treatment of bovine endometrial epithelial cells causes differential DNA methylation of genes associated with inflammation and endometrial function. BMC Genomics 2020; 21:385. [PMID: 32493210 PMCID: PMC7268755 DOI: 10.1186/s12864-020-06777-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background Lipopolysaccharide (LPS) endotoxin stimulates pro-inflammatory pathways and is a key player in the pathological mechanisms involved in the development of endometritis. This study aimed to investigate LPS-induced DNA methylation changes in bovine endometrial epithelial cells (bEECs), which may affect endometrial function. Following in vitro culture, bEECs from three cows were either untreated (0) or exposed to 2 and 8 μg/mL LPS for 24 h. Results DNA samples extracted at 0 h and 24 h were sequenced using reduced representation bisulfite sequencing (RRBS). When comparing DNA methylation results at 24 h to time 0 h, a larger proportion of hypomethylated regions were identified in the LPS-treated groups, whereas the trend was opposite in controls. When comparing LPS groups to controls at 24 h, a total of 1291 differentially methylated regions (DMRs) were identified (55% hypomethylated and 45% hypermethylated). Integration of DNA methylation data obtained here with our previously published gene expression data obtained from the same samples showed a negative correlation (r = − 0.41 for gene promoter, r = − 0.22 for gene body regions, p < 0.05). Differential methylation analysis revealed that effects of LPS treatment were associated with methylation changes for genes involved in regulation of immune and inflammatory responses, cell adhesion, and external stimuli. Gene ontology and pathway analyses showed that most of the differentially methylated genes (DMGs) were associated with cell proliferation and apoptotic processes; and pathways such as calcium-, oxytocin- and MAPK-signaling pathways with recognized roles in innate immunity. Several DMGs were related to systemic inflammation and tissue re-modelling including HDAC4, IRAK1, AKT1, MAP3K6, Wnt7A and ADAMTS17. Conclusions The present results show that LPS altered the DNA methylation patterns of bovine endometrial epithelial cells. This information, combined with our previously reported changes in gene expression related to endometrial function, confirm that LPS activates pro-inflammatory mechanisms leading to perturbed immune balance and cell adhesion processes in the endometrium.
Collapse
Affiliation(s)
- Naveed Jhamat
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Department of Information Technology, University of the Punjab, Gujranwala Campus, Gujranwala, Pakistan
| | - Adnan Niazi
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden. .,SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.
| | - Yongzhi Guo
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Metasu Chanrot
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, 802 40, Thailand
| | - Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Centre for Reproductive Biology in Uppsala, CRU, P.O. Box 7054, 750 07, Uppsala, Sweden
| | - Patrice Humblot
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| |
Collapse
|
10
|
Liu C, Liu B, Liu L, Zhang EL, Sun BD, Xu G, Chen J, Gao YQ. Arachidonic Acid Metabolism Pathway Is Not Only Dominant in Metabolic Modulation but Associated With Phenotypic Variation After Acute Hypoxia Exposure. Front Physiol 2018; 9:236. [PMID: 29615930 PMCID: PMC5864929 DOI: 10.3389/fphys.2018.00236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Abstract
Background: The modulation of arachidonic acid (AA) metabolism pathway is identified in metabolic alterations after hypoxia exposure, but its biological function is controversial. We aimed at integrating plasma metabolomic and transcriptomic approaches to systematically explore the roles of the AA metabolism pathway in response to acute hypoxia using an acute mountain sickness (AMS) model. Methods: Blood samples were obtained from 53 enrolled subjects before and after exposure to high altitude. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and RNA sequencing were separately performed for metabolomic and transcriptomic profiling, respectively. Influential modules comprising essential metabolites and genes were identified by weighted gene co-expression network analysis (WGCNA) after integrating metabolic information with phenotypic and transcriptomic datasets, respectively. Results: Enrolled subjects exhibited diverse response manners to hypoxia. Combined with obviously altered heart rate, oxygen saturation, hemoglobin, and Lake Louise Score (LLS), metabolomic profiling detected that 36 metabolites were highly related to clinical features in hypoxia responses, out of which 27 were upregulated and nine were downregulated, and could be mapped to AA metabolism pathway significantly. Integrated analysis of metabolomic and transcriptomic data revealed that these dominant molecules showed remarkable association with genes in gas transport incapacitation and disorders of hemoglobin metabolism pathways, such as ALAS2, HEMGN. After detailed description of AA metabolism pathway, we found that the molecules of 15-d-PGJ2, PGA2, PGE2, 12-O-3-OH-LTB4, LTD4, LTE4 were significantly up-regulated after hypoxia stimuli, and increased in those with poor response manner to hypoxia particularly. Further analysis in another cohort showed that genes in AA metabolism pathway such as PTGES, PTGS1, GGT1, TBAS1 et al. were excessively elevated in subjects in maladaptation to hypoxia. Conclusion: This is the first study to construct the map of AA metabolism pathway in response to hypoxia and reveal the crosstalk between phenotypic variation under hypoxia and the AA metabolism pathway. These findings may improve our understanding of the advanced pathophysiological mechanisms in acute hypoxic diseases and provide new insights into critical roles of the AA metabolism pathway in the development and prevention of these diseases.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Bao Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.,The 12th Hospital of Chinese People's Liberation Army, Kashi, China
| | - Lu Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Er-Long Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Bind-da Sun
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Jian Chen
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Yu-Qi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| |
Collapse
|
11
|
Hu X, Cifarelli V, Sun S, Kuda O, Abumrad NA, Su X. Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment. J Lipid Res 2016; 57:663-73. [PMID: 26912395 DOI: 10.1194/jlr.m066530] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2(PGE2) and prostaglandin D2(PGD2), reflecting cytosolic phospholipase A2α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2potently induced macrophage migration while different FFAs and PGD2had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis.
Collapse
Affiliation(s)
- Xiaoqian Hu
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, 215123, China Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110 Department of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Vincenza Cifarelli
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110
| | - Shishuo Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Nada A Abumrad
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, 215123, China Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
12
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2015; 66:1033-79. [PMID: 25244928 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
13
|
Giurdanella G, Anfuso CD, Olivieri M, Lupo G, Caporarello N, Eandi CM, Drago F, Bucolo C, Salomone S. Aflibercept, bevacizumab and ranibizumab prevent glucose-induced damage in human retinal pericytes in vitro, through a PLA2/COX-2/VEGF-A pathway. Biochem Pharmacol 2015; 96:278-87. [PMID: 26056075 DOI: 10.1016/j.bcp.2015.05.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/29/2015] [Indexed: 12/27/2022]
|
14
|
Toutounchian JJ, Steinle JJ, Makena PS, Waters CM, Wilson MW, Haik BG, Miller DD, Yates CR. Modulation of radiation injury response in retinal endothelial cells by quinic acid derivative KZ-41 involves p38 MAPK. PLoS One 2014; 9:e100210. [PMID: 24956278 PMCID: PMC4067294 DOI: 10.1371/journal.pone.0100210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/22/2014] [Indexed: 01/09/2023] Open
Abstract
Radiation-induced damage to the retina triggers leukostasis, retinal endothelial cell (REC) death, and subsequent hypoxia. Resultant ischemia leads to visual loss and compensatory retinal neovascularization (RNV). Using human RECs, we demonstrated that radiation induced leukocyte adhesion through mechanisms involving p38MAPK, p53, and ICAM-1 activation. Additional phenotypic changes included p38MAPK-dependent tyrosine phosphorylation of the focal adhesion scaffolding protein, paxillin (Tyr118). The quinic acid derivative KZ-41 lessened leukocyte adhesion and paxillin-dependent proliferation via inhibition of p38MAPK-p53-ICAM-1 signaling. Using the murine oxygen-induced retinopathy (OIR) model, we examined the effect of KZ-41 on pathologic RNV. Daily ocular application of a KZ-41-loaded nanoemulsion significantly reduced both the avascular and neovascular areas in harvested retinal flat mounts when compared to the contralateral eye receiving vehicle alone. Our data highlight the potential benefit of KZ-41 in reducing both the retinal ischemia and neovascularization provoked by genotoxic insults. Further research into how quinic acid derivatives target and mitigate inflammation is needed to fully appreciate their therapeutic potential for the treatment of inflammatory retinal vasculopathies.
Collapse
Affiliation(s)
- Jordan J. Toutounchian
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jena J. Steinle
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Patrudu S. Makena
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Christopher M. Waters
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Matthew W. Wilson
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Barrett G. Haik
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Charles R. Yates
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lin CC, Hsieh HL, Liu SW, Tseng HC, Hsiao LD, Yang CM. BK Induces cPLA2 Expression via an Autocrine Loop Involving COX-2-Derived PGE2 in Rat Brain Astrocytes. Mol Neurobiol 2014; 51:1103-15. [DOI: 10.1007/s12035-014-8777-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/01/2014] [Indexed: 01/26/2023]
|
16
|
Sun GY, Chuang DY, Zong Y, Jiang J, Lee JCM, Gu Z, Simonyi A. Role of cytosolic phospholipase A2 in oxidative and inflammatory signaling pathways in different cell types in the central nervous system. Mol Neurobiol 2014; 50:6-14. [PMID: 24573693 DOI: 10.1007/s12035-014-8662-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/11/2014] [Indexed: 12/30/2022]
Abstract
Phospholipases A(2) (PLA(2)s) are important enzymes for the metabolism of fatty acids in membrane phospholipids. Among the three major classes of PLA(2)s in the mammalian system, the group IV calcium-dependent cytosolic PLA(2) alpha (cPLA(2)α) has received the most attention because it is widely expressed in nearly all mammalian cells and its active participation in cell metabolism. Besides Ca(2+) binding to its C2 domain, this enzyme can undergo a number of cell-specific post-translational modifications, including phosphorylation by protein kinases, S-nitrosylation through interaction with nitric oxide (NO), as well as interaction with other proteins and lipid molecules. Hydrolysis of phospholipids by cPLA(2) yields two important lipid mediators, arachidonic acid (AA) and lysophospholipids. While AA is known to serve as a substrate for cyclooxygenases and lipoxygenases, which are enzymes for the synthesis of eicosanoids and leukotrienes, lysophospholipids are known to possess detergent-like properties capable of altering microdomains of cell membranes. An important feature of cPLA(2) is its link to cell surface receptors that stimulate signaling pathways associated with activation of protein kinases and production of reactive oxygen species (ROS). In the central nervous system (CNS), cPLA(2) activation has been implicated in neuronal excitation, synaptic secretion, apoptosis, cell-cell interaction, cognitive and behavioral function, oxidative-nitrosative stress, and inflammatory responses that underline the pathogenesis of a number of neurodegenerative diseases. However, the types of extracellular agonists that target intracellular signaling pathways leading to cPLA(2) activation among different cell types and under different physiological and pathological conditions have not been investigated in detail. In this review, special emphasis is given to metabolic events linking cPLA(2) to activation in neurons, astrocytes, microglial cells, and cerebrovascular cells. Understanding the molecular mechanism(s) for regulation of this enzyme is deemed important in the development of new therapeutic targets for the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Grace Y Sun
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA,
| | | | | | | | | | | | | |
Collapse
|
17
|
Lupo G, Motta C, Giurdanella G, Anfuso CD, Alberghina M, Drago F, Salomone S, Bucolo C. Role of phospholipases A2 in diabetic retinopathy: in vitro and in vivo studies. Biochem Pharmacol 2013; 86:1603-13. [PMID: 24076420 DOI: 10.1016/j.bcp.2013.09.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy is one of the leading causes of blindness and the most common complication of diabetes with no cure available. We investigated the role of phospholipases A2 (PLA2) in diabetic retinopathy using an in vitro blood-retinal barrier model (BRB) and an in vivo streptozotocin (STZ)-induced diabetic model. Mono- and co-cultures of endothelial cells (EC) and pericytes (PC), treated with high or fluctuating concentrations of glucose, to mimic the diabetic condition, were used. PLA2 activity, VEGF and PGE2 levels and cell proliferation were measured, with or without PLA2 inhibition. Diabetes was induced in rats by STZ injection and PLA2 activity along with VEGF, TNFα and ICAM-1 levels were measured in retina. High or fluctuating glucose induced BRB breakdown, and increased PLA2 activity, PGE2 and VEGF in EC/PC co-cultures; inhibition of PLA2 in mono- or co-cultures treated with high or fluctuating glucose dampened PGE2 and VEGF production down to the levels of controls. High or fluctuating glucose increased EC number and reduced PC number in co-cultures; these effects were reversed after transfecting EC with small interfering RNA targeted to PLA2. PLA2 and COX-2 protein expressions were significantly increased in microvessels from retina of diabetic rats. Diabetic rats had also high retinal levels of VEGF, ICAM-1 and TNFα that were reduced by treatment with a cPLA2 inhibitor. In conclusion, the present findings indicate that PLA2 upregulation represents an early step in glucose-induced alteration of BRB, possibly upstream of VEGF; thus, PLA2 may be an interesting target in managing diabetic retinopathy.
Collapse
Affiliation(s)
- Gabriella Lupo
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, School of Medicine, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Virtej A, Løes SS, Berggreen E, Bletsa A. Localization and signaling patterns of vascular endothelial growth factors and receptors in human periapical lesions. J Endod 2013; 39:605-11. [PMID: 23611377 DOI: 10.1016/j.joen.2012.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key players in vasculogenesis and are also involved in pathologic conditions with bone destruction. Vasculogenesis is critical for disease progression, and bone resorption is a hallmark of apical periodontitis. However, the localization of VEGFs and VEGFRs and their gene signaling pathways in human apical periodontitis have not been thoroughly investigated. The aim of this study was to localize VEGFs and VEGFRs and analyze their gene expression as well as signaling pathways in human periapical lesions. METHODS Tissue was collected after endodontic surgery from patients diagnosed with chronic apical periodontitis. Periodontal ligament samples from extracted healthy wisdom teeth was also collected and used as control tissue. In lesion cryosections, VEGFs/VEGFRs were identified by immunohistochemistry/double immunofluorescence by using specific antibodies. A human VEGF signaling polymerase chain reaction array system was used for gene expression analysis comparing lesions with periodontal ligament samples. RESULTS The histologic evaluation revealed heterogeneous morphology of the periapical lesions with various degrees of inflammatory infiltrates. In the lesions, all investigated factors and receptors were identified in blood vessels and various immune cells. No lymphatic vessels were detected. Gene expression analysis revealed up-regulation of VEGF-A and VEGFR-3, although not significant. Phosphatidylinositol-3-kinases, protein kinase C, mitogen-activated protein kinases, and phospholipases, all known to be involved in VEGF-mediated angiogenic activity, were significantly up-regulated. CONCLUSIONS The cellular and vascular expressions of VEGFs and VEGFRs in chronic apical periodontitis, along with significant alterations of genes mediating VEGF-induced angiogenic responses, suggest ongoing vascular remodeling in established chronic periapical lesions.
Collapse
Affiliation(s)
- Anca Virtej
- Institute of Biomedicine, Faculty of Medicine-Dentistry, University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
19
|
Both Kdr and Flt1 play a vital role in hypoxia-induced Src-PLD1-PKCγ-cPLA(2) activation and retinal neovascularization. Blood 2013; 121:1911-23. [PMID: 23319572 DOI: 10.1182/blood-2012-03-419234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To understand the mechanisms of Src-PLD1-PKCγ-cPLA2 activation by vascular endothelial growth factor A (VEGFA), we studied the role of Kdr and Flt1. VEGFA, while having no effect on Flt1 phosphorylation, induced Kdr phosphorylation in human retinal microvascular endothelial cells (HRMVECs). Depletion of Kdr attenuated VEGFA-induced Src-PLD1-PKCγ-cPLA2 activation. Regardless of its phosphorylation state, downregulation of Flt1 also inhibited VEGFA-induced Src-PLD1-PKCγ-cPLA2 activation, but only modestly. In line with these findings, depletion of either Kdr or Flt1 suppressed VEGFA-induced DNA synthesis, migration, and tube formation, albeit more robustly with Kdr downregulation. Hypoxia induced tyrosine phosphorylation of Kdr and Flt1 in mouse retina, and depletion of Kdr or Flt1 blocked hypoxia-induced Src-PLD1-PKCγ-cPLA2 activation and retinal neovascularization. VEGFB induced Flt1 tyrosine phosphorylation and Src-PLD1-PKCγ-cPLA2 activation in HRMVECs. Hypoxia induced VEGFA and VEGFB expression in retina, and inhibition of their expression blocked hypoxia-induced Kdr and Flt1 activation, respectively. Furthermore, depletion of VEGFA or VEGFB attenuated hypoxia-induced Src-PLD1-PKCγ-cPLA2 activation and retinal neovascularization. These findings suggest that although VEGFA, through Kdr and Flt1, appears to be the major modulator of Src-PLD1-PKCγ-cPLA2 signaling in HRMVECs, facilitating their angiogenic events in vitro, both VEGFA and VEGFB mediate hypoxia-induced Src-PLD1-PKCγ-cPLA2 activation and retinal neovascularization via activation of Kdr and Flt1, respectively.
Collapse
|
20
|
Chen Q, Hongu T, Sato T, Zhang Y, Ali W, Cavallo JA, van der Velden A, Tian H, Di Paolo G, Nieswandt B, Kanaho Y, Frohman MA. Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Sci Signal 2012; 5:ra79. [PMID: 23131846 DOI: 10.1126/scisignal.2003257] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Angiogenesis inhibitors, which target tumor cells, confer only short-term benefits on tumor growth. We report that ablation of the lipid signaling enzyme phospholipase D1 (PLD1) in the tumor environment compromised the neovascularization and growth of tumors. PLD1 deficiency suppressed the activation of Akt and mitogen-activated protein kinase signaling pathways by vascular endothelial growth factor in vascular endothelial cells, resulting in decreased integrin-dependent cell adhesion to, and migration on, extracellular matrices, as well as reduced tumor angiogenesis in a xenograft model. In addition, mice lacking PLD1 incurred fewer lung metastases than did wild-type mice. Bone marrow transplantation and binding studies identified a platelet-derived mechanism involving decreased tumor cell-platelet interactions, in part because of impaired activation of αIIbβ3 integrin in platelets, which decreased the seeding of tumor cells into the lung parenchyma. Treatment with a small-molecule inhibitor of PLD1 phenocopied PLD1 deficiency, efficiently suppressing both tumor growth and metastasis in mice. These findings reveal that PLD1 in the tumor environment promotes tumor growth and metastasis and, taken together with previous reports on the roles of PLD in tumor cell-intrinsic adaptations to stress, suggest the potential use of PLD inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Qin Chen
- Department of Pharmacological Sciences and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5140, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|