1
|
Nguyen NH, Brodsky JL. The cellular pathways that maintain the quality control and transport of diverse potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194908. [PMID: 36638864 PMCID: PMC9908860 DOI: 10.1016/j.bbagrm.2023.194908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Potassium channels are multi-subunit transmembrane proteins that permit the selective passage of potassium and play fundamental roles in physiological processes, such as action potentials in the nervous system and organismal salt and water homeostasis, which is mediated by the kidney. Like all ion channels, newly translated potassium channels enter the endoplasmic reticulum (ER) and undergo the error-prone process of acquiring post-translational modifications, folding into their native conformations, assembling with other subunits, and trafficking through the secretory pathway to reach their final destinations, most commonly the plasma membrane. Disruptions in these processes can result in detrimental consequences, including various human diseases. Thus, multiple quality control checkpoints evolved to guide potassium channels through the secretory pathway and clear potentially toxic, aggregation-prone misfolded species. We will summarize current knowledge on the mechanisms underlying potassium channel quality control in the secretory pathway, highlight diseases associated with channel misfolding, and suggest potential therapeutic routes.
Collapse
Affiliation(s)
- Nga H Nguyen
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
2
|
Diversification of Potassium Currents in Excitable Cells via Kvβ Proteins. Cells 2022; 11:cells11142230. [PMID: 35883673 PMCID: PMC9317154 DOI: 10.3390/cells11142230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Excitable cells of the nervous and cardiovascular systems depend on an assortment of plasmalemmal potassium channels to control diverse cellular functions. Voltage-gated potassium (Kv) channels are central to the feedback control of membrane excitability in these processes due to their activation by depolarized membrane potentials permitting K+ efflux. Accordingly, Kv currents are differentially controlled not only by numerous cellular signaling paradigms that influence channel abundance and shape voltage sensitivity, but also by heteromeric configurations of channel complexes. In this context, we discuss the current knowledge related to how intracellular Kvβ proteins interacting with pore complexes of Shaker-related Kv1 channels may establish a modifiable link between excitability and metabolic state. Past studies in heterologous systems have indicated roles for Kvβ proteins in regulating channel stability, trafficking, subcellular targeting, and gating. More recent works identifying potential in vivo physiologic roles are considered in light of these earlier studies and key gaps in knowledge to be addressed by future research are described.
Collapse
|
3
|
Roig SR, Cassinelli S, Navarro-Pérez M, Pérez-Verdaguer M, Estadella I, Capera J, Felipe A. S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit. Cell Mol Life Sci 2022; 79:230. [PMID: 35396942 PMCID: PMC8994742 DOI: 10.1007/s00018-022-04269-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/13/2022]
Abstract
The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independent biology is available. The expression of Kvβs is ubiquitous and, similar to Kv channels, is tightly regulated in leukocytes. Although Kvβ subunits exhibit cytosolic distribution, spatial localization, in close contact with plasma membrane Kv channels, is crucial for a proper immune response. Therefore, Kvβ2.1 is located near cell surface Kv1.3 channels within the immunological synapse during lymphocyte activation. The objective of this study was to analyze the structural elements that participate in the cellular distribution of Kvβs. It was demonstrated that Kvβ peptides, in addition to the cytoplasmic pattern, targeted the cell surface in the absence of Kv channels. Furthermore, Kvβ2.1, but not Kvβ1.1, targeted lipid raft microdomains in an S-acylation-dependent manner, which was concomitant with peptide localization within the immunological synapse. A pair of C-terminal cysteines (C301/C311) was mostly responsible for the specific palmitoylation of Kvβ2.1. Several insults altered Kvβ2.1 membrane localization. Therefore, growth factor-dependent proliferation enhanced surface targeting, whereas PKC activation impaired lipid raft expression. However, PSD95 stabilized Kvβ2.1 in these domains. This data shed light on the molecular mechanism by which Kvβ2.1 clusters into immunological synapses during leukocyte activation.
Collapse
Affiliation(s)
- Sara R Roig
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Imaging Core Facility, Biozentrum University of Basel, 4056, Basel, Switzerland
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Mireia Pérez-Verdaguer
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Department of Cell Biology, School of Medicine, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
4
|
Control of Biophysical and Pharmacological Properties of Potassium Channels by Ancillary Subunits. Handb Exp Pharmacol 2021; 267:445-480. [PMID: 34247280 DOI: 10.1007/164_2021_512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Potassium channels facilitate and regulate physiological processes as diverse as electrical signaling, ion, solute and hormone secretion, fluid homeostasis, hearing, pain sensation, muscular contraction, and the heartbeat. Potassium channels are each formed by either a tetramer or dimer of pore-forming α subunits that co-assemble to create a multimer with a K+-selective pore that in most cases is capable of functioning as a discrete unit to pass K+ ions across the cell membrane. The reality in vivo, however, is that the potassium channel α subunit multimers co-assemble with ancillary subunits to serve specific physiological functions. The ancillary subunits impart specific physiological properties that are often required for a particular activity in vivo; in addition, ancillary subunit interaction often alters the pharmacology of the resultant complex. In this chapter the modes of action of ancillary subunits on K+ channel physiology and pharmacology are described and categorized into various mechanistic classes.
Collapse
|
5
|
Metabolic regulation of Kv channels and cardiac repolarization by Kvβ2 subunits. J Mol Cell Cardiol 2019; 137:93-106. [PMID: 31639389 DOI: 10.1016/j.yjmcc.2019.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 11/21/2022]
Abstract
Voltage-gated potassium (Kv) channels control myocardial repolarization. Pore-forming Kvα proteins associate with intracellular Kvβ subunits, which bind pyridine nucleotides with high affinity and differentially regulate channel trafficking, plasmalemmal localization and gating properties. Nevertheless, it is unclear how Kvβ subunits regulate myocardial K+ currents and repolarization. Here, we tested the hypothesis that Kvβ2 subunits regulate the expression of myocardial Kv channels and confer redox sensitivity to Kv current and cardiac repolarization. Co-immunoprecipitation and in situ proximity ligation showed that in cardiac myocytes, Kvβ2 interacts with Kv1.4, Kv1.5, Kv4.2, and Kv4.3. Cardiac myocytes from mice lacking Kcnab2 (Kvβ2-/-) had smaller cross sectional areas, reduced sarcolemmal abundance of Kvα binding partners, reduced Ito, IK,slow1, and IK,slow2 densities, and prolonged action potential duration compared with myocytes from wild type mice. These differences in Kvβ2-/- mice were associated with greater P wave duration and QT interval in electrocardiograms, and lower ejection fraction, fractional shortening, and left ventricular mass in echocardiographic and morphological assessments. Direct intracellular dialysis with a high NAD(P)H:NAD(P)+ accelerated Kv inactivation in wild type, but not Kvβ2-/- myocytes. Furthermore, elevated extracellular levels of lactate increased [NADH]i and prolonged action potential duration in wild type cardiac myocytes and perfused wild type, but not Kvβ2-/-, hearts. Taken together, these results suggest that Kvβ2 regulates myocardial electrical activity by supporting the functional expression of proteins that generate Ito and IK,slow, and imparting redox and metabolic sensitivity to Kv channels, thereby coupling cardiac repolarization to myocyte metabolism.
Collapse
|
6
|
Raph SM, Bhatnagar A, Nystoriak MA. Biochemical and physiological properties of K + channel-associated AKR6A (Kvβ) proteins. Chem Biol Interact 2019; 305:21-27. [PMID: 30926318 DOI: 10.1016/j.cbi.2019.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022]
Abstract
Voltage-gated potassium (Kv) channels play an essential role in the regulation of membrane excitability and thereby control physiological processes such as cardiac excitability, neural communication, muscle contraction, and hormone secretion. Members of the Kv1 and Kv4 families are known to associate with auxiliary intracellular Kvβ subunits, which belong to the aldo-keto reductase superfamily. Electrophysiological studies have shown that these proteins regulate the gating properties of Kv channels. Although the three gene products encoding Kvβ proteins are functional enzymes in that they catalyze the nicotinamide adenine dinucleotide phosphate (NAD[P]H)-dependent reduction of a wide range of aldehyde and ketone substrates, the physiological role for these proteins and how each subtype may perform unique roles in coupling membrane excitability with cellular metabolic processes remains unclear. Here, we discuss current knowledge of the enzymatic properties of Kvβ proteins from biochemical studies with their described and purported physiological and pathophysiological influences.
Collapse
Affiliation(s)
- Sean M Raph
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Aruni Bhatnagar
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY, 40202, USA
| | - Matthew A Nystoriak
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
7
|
Capera J, Serrano-Novillo C, Navarro-Pérez M, Cassinelli S, Felipe A. The Potassium Channel Odyssey: Mechanisms of Traffic and Membrane Arrangement. Int J Mol Sci 2019; 20:ijms20030734. [PMID: 30744118 PMCID: PMC6386995 DOI: 10.3390/ijms20030734] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/29/2022] Open
Abstract
Ion channels are transmembrane proteins that conduct specific ions across biological membranes. Ion channels are present at the onset of many cellular processes, and their malfunction triggers severe pathologies. Potassium channels (KChs) share a highly conserved signature that is necessary to conduct K⁺ through the pore region. To be functional, KChs require an exquisite regulation of their subcellular location and abundance. A wide repertoire of signatures facilitates the proper targeting of the channel, fine-tuning the balance that determines traffic and location. These signature motifs can be part of the secondary or tertiary structure of the protein and are spread throughout the entire sequence. Furthermore, the association of the pore-forming subunits with different ancillary proteins forms functional complexes. These partners can modulate traffic and activity by adding their own signatures as well as by exposing or masking the existing ones. Post-translational modifications (PTMs) add a further dimension to traffic regulation. Therefore, the fate of a KCh is not fully dependent on a gene sequence but on the balance of many other factors regulating traffic. In this review, we assemble recent evidence contributing to our understanding of the spatial expression of KChs in mammalian cells. We compile specific signatures, PTMs, and associations that govern the destination of a functional channel.
Collapse
Affiliation(s)
- Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Clara Serrano-Novillo
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Bai HW, Eom S, Yeom HD, Nguyen KVA, Lee J, Sohn SO, Lee JH. Molecular basis involved in the blocking effect of antidepressant metergoline on C-type inactivation of Kv1.4 channel. Neuropharmacology 2018; 146:65-73. [PMID: 30465811 DOI: 10.1016/j.neuropharm.2018.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/21/2018] [Accepted: 11/15/2018] [Indexed: 11/25/2022]
Abstract
Voltage-gated potassium channels (VGKCs) are transmembrane ion channels specific for potassium. Currently there are nine kinds of VGKCs. Kv1.4 is one of shaker-related potassium channels. It is a representative alpha subunit of potassium channels that can inactivate A type-currents, leading to N pattern inactivation. Inactivation of Kv channels plays an important role in shaping electrical signaling properties of neuronal and muscular cells. The shape of N pattern inactivation can be modified by removing the N-terminal (NT) domain which results in non-inactivated currents and C pattern inactivation. In a previous work, we have reported the regulatory effect of metergoline on Kv1.4 and Nav1.2 channel activity. In the present study, we constructed a mutant of deleted 61 residues from NT of Kv1.4 channels (Kv1.4 Δ2-61) and found that it induced an outward peak and steady-state currents We also studied the modulation effect of metergoline on the activity of this Kv1.4 Δ2-61 mutant channel without having the N-terminal quick inactivation domain. Our results revealed that treatment with metergoline inhibited NT deleted Kv1.4 mutant channel activity in a concentration-dependent manner which was reversible. Interestingly, metergoline treatment induced little effects on the outward peak current in the deleted Kv1.4 mutant channel. However, metergoline treatment conspicuously inhibited steady state currents of Kv1.4 Δ2-61 channels with acceleration current mode. The acceleration of steady-state current of deleted Kv1.4 mutant channel occurred in a concentration-dependent manner. This means that metergoline can accelerate C pattern inactivation of Kv1.4 Δ2-61 channel by acting as an open state dependent channel blocker. We also performed site-directed mutations in V561A and K532Y, also known as C-type inactivation sites. V561A, K532Y, and V561A + K532Y substitution mutants significantly attenuated the acceleration effect of metergoline on C pattern inactivation of hKv1.4 channel currents. In docking modeling study, predicted binding residues for metergoline were analyzed for six amino acids. Among them, the K532 residue known as the C-type inactivation site was analyzed to be a major site of action. Then various mutants were constructed. K532 substitution mutant significantly abolished the effect of metergoline on Kv1.4 currents among various mutants whereas other changes had slight inhibitory effects. Furthermore, we found that metergoline had specificity for Kv1.4, but not for Kv1.5 currents. In addition, the A type current in rat neuronal cell was inhibited and accelerated of inactivation. This result further shows that metergoline might interact with Lys532 residue and then accelerate C pattern inactivation of Kv1.4 channels with channel type specificity. Taken together, these results demonstrate the molecular basis involved in the effect of metergoline, an ergot alkaloid, on human Kv1.4 channel, providing a novel interaction ligand.
Collapse
Affiliation(s)
- Hyoung-Woo Bai
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea.
| | - Sanung Eom
- Department of Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Hye Duck Yeom
- Department of Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Khoa V A Nguyen
- Department of Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Jaeeun Lee
- Department of Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Oh Sohn
- R&D Center, Biokogen Inc., Iksan, Jeonbuk, Republic of Korea
| | - Jun-Ho Lee
- Department of Biotechnology, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
9
|
Duménieu M, Oulé M, Kreutz MR, Lopez-Rojas J. The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms. Front Cell Neurosci 2017; 11:115. [PMID: 28484374 PMCID: PMC5403416 DOI: 10.3389/fncel.2017.00115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Neurons are highly polarized cells with apparent functional and morphological differences between dendrites and axon. A critical determinant for the molecular and functional identity of axonal and dendritic segments is the restricted expression of voltage-gated ion channels (VGCs). Several studies show an uneven distribution of ion channels and their differential regulation within dendrites and axons, which is a prerequisite for an appropriate integration of synaptic inputs and the generation of adequate action potential (AP) firing patterns. This review article will focus on the signaling pathways leading to segmented expression of voltage-gated potassium and sodium ion channels at the neuronal plasma membrane and the regulatory mechanisms ensuring segregated functions. We will also discuss the relevance of proper ion channel targeting for neuronal physiology and how alterations in polarized distribution contribute to neuronal pathology.
Collapse
Affiliation(s)
- Maël Duménieu
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Marie Oulé
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH)Hamburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| |
Collapse
|
10
|
Cornejo VH, Luarte A, Couve A. Global and local mechanisms sustain axonal proteostasis of transmembrane proteins. Traffic 2017; 18:255-266. [PMID: 28220989 DOI: 10.1111/tra.12472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/02/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
Abstract
The control of neuronal protein homeostasis or proteostasis is tightly regulated both spatially and temporally, assuring accurate and integrated responses to external or intrinsic stimuli. Local or autonomous responses in dendritic and axonal compartments are crucial to sustain function during development, physiology and in response to damage or disease. Axons are responsible for generating and propagating electrical impulses in neurons, and the establishment and maintenance of their molecular composition are subject to extreme constraints exerted by length and size. Proteins that require the secretory pathway, such as receptors, transporters, ion channels or cell adhesion molecules, are fundamental for axonal function, but whether axons regulate their abundance autonomously and how they achieve this is not clear. Evidence supports the role of three complementary mechanisms to maintain proteostasis of these axonal proteins, namely vesicular transport, local translation and trafficking and transfer from supporting cells. Here, we review these mechanisms, their molecular machineries and contribution to neuronal function. We also examine the signaling pathways involved in local translation and their role during development and nerve injury. We discuss the relative contributions of a transport-controlled proteome directed by the soma (global regulation) versus a local-controlled proteome based on local translation or cell transfer (local regulation).
Collapse
Affiliation(s)
- Víctor Hugo Cornejo
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Alejandro Luarte
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Andrés Couve
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Heteromeric complexes of aldo-keto reductase auxiliary K Vβ subunits (AKR6A) regulate sarcolemmal localization of K V1.5 in coronary arterial myocytes. Chem Biol Interact 2017; 276:210-217. [PMID: 28342889 DOI: 10.1016/j.cbi.2017.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 01/20/2023]
Abstract
Redox-sensitive potassium channels consisting of the voltage-gated K+ (KV) channel pore subunit KV1.5 regulate resting membrane potential and thereby contractility of vascular smooth muscle cells. Members of the KV1 family associate with cytosolic auxiliary β subunits, which are members of the aldo-keto reductase (AKR) superfamily (AKR6A subfamily). The Kvβ subunits have been proposed to regulate Kv1 gating via pyridine nucleotide cofactor binding. However, the molecular identity of KVβ subunits that associate with native KV1.5 channels in the vasculature is unknown. Here, we examined mRNA and protein expression of KVβ subunits and tested whether KVβ isoforms interact with KV1.5 channels in murine coronary arteries. We detected KVβ1 (AKR6A3), KVβ2 (AKR6A5) and KVβ3 (AKR6A9) transcripts and KVβ1 and KVβ2 protein in left anterior descending coronary arteries by real time quantitative PCR and Western blot, respectively. In situ proximity ligation assays indicated abundant protein-protein interactions between KV1.5/KVβ1, KV1.5/KVβ2 and KVβ1/β2 in coronary arterial myocytes. Confocal microscopy and membrane fractionation analyses suggest that arterial myocytes from KVβ2-null mice have reduced abundance of sarcolemmal KV1.5. Together, data suggest that in coronary arterial myocytes, KV1.5 channels predominantly associate with KVβ1 and KVβ2 proteins and that KVβ2 performs a chaperone function for KV1.5 channels in arterial myocytes, thereby facilitating Kv1α trafficking and membrane localization.
Collapse
|
12
|
Thayer DA, Yang SB, Jan YN, Jan LY. N-linked glycosylation of Kv1.2 voltage-gated potassium channel facilitates cell surface expression and enhances the stability of internalized channels. J Physiol 2016; 594:6701-6713. [PMID: 27377235 DOI: 10.1113/jp272394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/09/2016] [Indexed: 01/20/2023] Open
Abstract
KEY POINTS Kv1.2 and related voltage-gated potassium channels have a highly conserved N-linked glycosylation site in the first extracellular loop, with complex glycosylation in COS-7 cells similar to endogenous Kv1.2 glycosylation in hippocampal neurons. COS-7 cells expressing Kv1.2 show a crucial role of this N-linked glycosylation in the forward trafficking of Kv1.2 to the cell membrane. Although both wild-type and non-glycosylated mutant Kv1.2 channels that have reached the cell membrane are internalized at a comparable rate, mutant channels are degraded at a faster rate. Treatment of wild-type Kv1.2 channels on the cell surface with glycosidase to remove sialic acids also results in the faster degradation of internalized channels. Glycosylation of Kv1.2 is important with respect to facilitating trafficking to the cell membrane and enhancing the stability of channels that have reached the cell membrane. ABSTRACT Studies in cultured hippocampal neurons and the COS-7 cell line demonstrate important roles for N-linked glycosylation of Kv1.2 channels in forward trafficking and protein degradation. Kv1.2 channels can contain complex N-linked glycans, which facilitate cell surface expression of the channels. Additionally, the protein stability of cell surface-expressed Kv1.2 channels is affected by glycosylation via differences in the degradation of internalized channels. The present study reveals the importance of N-linked complex glycosylation in boosting Kv1.2 channel density. Notably, sialic acids at the terminal sugar branches play an important role in dampening the degradation of Kv1.2 internalized from the cell membrane to promote its stability.
Collapse
Affiliation(s)
- Desiree A Thayer
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California-San Francisco, San Francisco, CA, USA.,Amunix, Mountain View, CA, USA
| | - Shi-Bing Yang
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California-San Francisco, San Francisco, CA, USA.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California-San Francisco, San Francisco, CA, USA
| | - Lily Y Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Zhang Y, Kong W, Gao Y, Liu X, Gao K, Xie H, Wu Y, Zhang Y, Wang J, Gao F, Wu X, Jiang Y. Gene Mutation Analysis in 253 Chinese Children with Unexplained Epilepsy and Intellectual/Developmental Disabilities. PLoS One 2015; 10:e0141782. [PMID: 26544041 PMCID: PMC4636363 DOI: 10.1371/journal.pone.0141782] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/13/2015] [Indexed: 12/18/2022] Open
Abstract
Objective Epilepsy and intellectual/developmental disabilities (ID/DD) have a high rate of co-occurrence. Here, we investigated gene mutations in Chinese children with unexplained epilepsy and ID/DD. Methods We used targeted next-generation sequencing to detect mutations within 300 genes related to epilepsy and ID/DD in 253 Chinese children with unexplained epilepsy and ID/DD. A series of filtering criteria was used to find the possible pathogenic variations. Validation and parental origin analyses were performed by Sanger sequencing. We reviewed the phenotypes of patients with each mutated gene. Results We identified 32 novel and 16 reported mutations within 24 genes in 46 patients. The detection rate was 18% (46/253) in the whole group and 26% (17/65) in the early-onset (before three months after birth) epilepsy group. To our knowledge, we are the first to report KCNAB1 is a disease-causing gene of epilepsy by identifying a novel de novo mutation (c.1062dupCA p.Leu355HisfsTer5) within this gene in one patient with early infantile epileptic encephalopathy (EIEE). Patients with an SCN1A mutation accounted for the largest proportion, 17% (8/46). A total of 38% (9/24) of the mutated genes re-occurred at least 2 times and 63% (15/24) occurred only one time. Ion channel genes are the most common (8/24) and genes related to synapse are the next most common to occur (5/24). Significance We have established genetic diagnosis for 46 patients of our cohort. Early-onset epilepsy had the highest detection rate. KCNAB1 mutation was first identified in EIEE patient. We expanded the phenotype and mutation spectrum of the genes we identified. The mutated genes in this cohort are mostly isolated. This suggests that epilepsy and ID/DD phenotypes occur as a consequence of brain dysfunction caused by a highly diverse population of mutated genes. Ion channel genes and genes related to synapse were more common mutated in this patient cohort.
Collapse
Affiliation(s)
- Yujia Zhang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Weijing Kong
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yang Gao
- Department of Neurosurgery, the Second Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyan Liu
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Kai Gao
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Han Xie
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Jingmin Wang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Feng Gao
- The Children’s Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiru Wu
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor. Proc Natl Acad Sci U S A 2015; 112:2245-50. [PMID: 25646452 DOI: 10.1073/pnas.1416586112] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Blue light activation of the photoreceptor CRYPTOCHROME (CRY) evokes rapid depolarization and increased action potential firing in a subset of circadian and arousal neurons in Drosophila melanogaster. Here we show that acute arousal behavioral responses to blue light significantly differ in mutants lacking CRY, as well as mutants with disrupted opsin-based phototransduction. Light-activated CRY couples to membrane depolarization via a well conserved redox sensor of the voltage-gated potassium (K(+)) channel β-subunit (Kvβ) Hyperkinetic (Hk). The neuronal light response is almost completely absent in hk(-/-) mutants, but is functionally rescued by genetically targeted neuronal expression of WT Hk, but not by Hk point mutations that disable Hk redox sensor function. Multiple K(+) channel α-subunits that coassemble with Hk, including Shaker, Ether-a-go-go, and Ether-a-go-go-related gene, are ion conducting channels for CRY/Hk-coupled light response. Light activation of CRY is transduced to membrane depolarization, increased firing rate, and acute behavioral responses by the Kvβ subunit redox sensor.
Collapse
|
15
|
NMDA receptors and L-type voltage-gated Ca²⁺ channels mediate the expression of bidirectional homeostatic intrinsic plasticity in cultured hippocampal neurons. Neuroscience 2014; 277:610-23. [PMID: 25086314 DOI: 10.1016/j.neuroscience.2014.07.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/22/2014] [Indexed: 11/24/2022]
Abstract
Homeostatic plasticity is engaged when neurons need to stabilize their synaptic strength and excitability in response to acute or prolonged destabilizing changes in global activity. Compared to the extensive studies investigating the molecular mechanisms for homeostatic synaptic plasticity, the mechanism underlying homeostatic intrinsic plasticity is largely unknown. Through whole-cell patch-clamp recording in low-density cultures of dissociated hippocampal neurons, we demonstrate here that prolonged activity blockade induced by the sodium channel blocker tetrodotoxin (TTX) leads to increased action potential firing rates. Conversely, prolonged activity enhancement induced by the A-type gamma-aminobutyric acid receptor antagonist bicuculline (BC) results in decreased firing rates. Prolonged activity enhancement also enhanced potassium (K(+)) current through Kv1 channels, suggesting that changes in K(+) current, in part, mediate stabilization of hippocampal neuronal excitability upon prolonged activity elevation. In contrast to the previous reports showing that L-type voltage-gated calcium (Ca(2+)) channels solely mediate homeostatic regulation of excitatory synaptic strength (Ibata et al., 2008; Goold and Nicoll, 2010), inhibition of N-Methyl-d-aspartate (NMDA) receptors alone mimics the elevation in firing frequency driven by prolonged TTX application, while the decrease in firing rates induced by prolonged BC treatment involves the activity of NMDA receptors and L-type voltage-gated Ca(2+) channels. These results collectively provide strong evidence that alterations in Ca(2+) influx through NMDA receptors and L-type voltage-gated Ca(2+) channels mediate homeostatic intrinsic plasticity in hippocampal neurons in response to prolonged activity changes.
Collapse
|
16
|
Xie C, Su H, Guo T, Yan Y, Peng X, Cao R, Wang Y, Chen P, Wang X, Liang S. Synaptotagmin I delays the fast inactivation of Kv1.4 channel through interaction with its N-terminus. Mol Brain 2014; 7:4. [PMID: 24423395 PMCID: PMC3896893 DOI: 10.1186/1756-6606-7-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/11/2014] [Indexed: 12/01/2022] Open
Abstract
Background The voltage-gated potassium channel Kv1.4 is an important A-type potassium channel and modulates the excitability of neurons in central nervous system. Analysis of the interaction between Kv1.4 and its interacting proteins is helpful to elucidate the function and mechanism of the channel. Results In the present research, synaptotagmin I was for the first time demonstrated to be an interacting protein of Kv1.4 and its interaction with Kv1.4 channel did not require the mediation of other synaptic proteins. Using patch-clamp technique, synaptotagmin I was found to delay the inactivation of Kv1.4 in HEK293T cells in a Ca2+-dependent manner, and this interaction was proven to have specificity. Mutagenesis experiments indicated that synaptotagmin I interacted with the N-terminus of Kv1.4 and thus delayed its N-type fast inactivation. Conclusion These data suggest that synaptotagmin I is an interacting protein of Kv1.4 channel and, as a negative modulator, may play an important role in regulating neuronal excitability and synaptic efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P, R, China.
| | | |
Collapse
|
17
|
Proepper C, Putz S, Russell R, Boeckers TM, Liebau S. The Kvβ2 subunit of voltage-gated potassium channels is interacting with ProSAP2/Shank3 in the PSD. Neuroscience 2013; 261:133-43. [PMID: 24211303 DOI: 10.1016/j.neuroscience.2013.10.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 01/18/2023]
Abstract
The postsynaptic density is an electron dense meshwork composed of a variety of molecules facilitating neuronal signal transmission. ProSAP2/Shank3 represents a crucial player at postsynaptic sites, assembling large multimeric platforms and anchoring numerous other molecules, thereby linking the functional synapse with the cytoskeleton. ProSAP2/Shank3 is also implicated in the pathogenesis of numerous diseases, including autism spectrum disorders. KvBeta2 (Kvβ2) on the other hand serves as a regulatory subunit of voltage-gated potassium channels. Kvβ2 is located at various sites in the neuron including the axon (binding to Kv1.2), the dendrites (binding to Kv4.2) and the synapse. Binding of Kvβ2 to either Kv1.2 or Kv4 modulates not only the channel conformation but directs targeting of the channel protein complex to distinct loci within the cell. Thus an interaction between ProSAP2 and Kvβ2 could have important roles at diverse cellular compartments and moreover during maturation stages. We report here on the direct protein-protein interaction of the postsynaptic density anchoring molecule ProSAP2 and the potassium channel subunit Kvβ2, initially identified in a yeast-two-hybrid-screen. Furthermore, we characterize this interaction at synapses using primary hippocampal neurons in vitro.
Collapse
Affiliation(s)
- C Proepper
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - S Putz
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - R Russell
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - T M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - S Liebau
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany; Institute of Neuroanatomy, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
18
|
Bavassano C, Marvaldi L, Langeslag M, Sarg B, Lindner H, Klimaschewski L, Kress M, Ferrer-Montiel A, Knaus HG. Identification of voltage-gated K(+) channel beta 2 (Kvβ2) subunit as a novel interaction partner of the pain transducer Transient Receptor Potential Vanilloid 1 channel (TRPV1). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3166-3175. [PMID: 24036102 DOI: 10.1016/j.bbamcr.2013.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 11/26/2022]
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV1, vanilloid receptor 1) ion channel plays a key role in the perception of thermal and inflammatory pain, however, its molecular environment in dorsal root ganglia (DRG) is largely unexplored. Utilizing a panel of sequence-directed antibodies against TRPV1 protein and mouse DRG membranes, the channel complex from mouse DRG was detergent-solubilized, isolated by immunoprecipitation and subsequently analyzed by mass spectrometry. A number of potential TRPV1 interaction partners were identified, among them cytoskeletal proteins, signal transduction molecules, and established ion channel subunits. Based on stringent specificity criteria, the voltage-gated K(+) channel beta 2 subunit (Kvβ2), an accessory subunit of voltage-gated K(+) channels, was identified of being associated with native TRPV1 channels. Reverse co-immunoprecipitation and antibody co-staining experiments confirmed TRPV1/Kvβ2 association. Biotinylation assays in the presence of Kvβ2 demonstrated increased cell surface expression levels of TRPV1, while patch-clamp experiments resulted in a significant increase of TRPV1 sensitivity to capsaicin. Our work shows, for the first time, the association of a Kvβ subunit with TRPV1 channels, and suggests that such interaction may play a role in TRPV1 channel trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Carlo Bavassano
- Division of Cellular and Molecular Pharmacology, Medical University Innsbruck, Peter-Mayr strasse 1, 6020 Innsbruck, Austria.
| | - Letizia Marvaldi
- Division of Neuroanatomy, Medical University Innsbruck, Müllerstrasse 59, 6020 Innsbruck, Austria.
| | - Michiel Langeslag
- Division of Physiology, Medical University Innsbruck, Fritz-Pregl-Straße 3, 6020 Innsbruck, Austria.
| | - Bettina Sarg
- Division of Clinical Biochemistry, Medical University Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Herbert Lindner
- Division of Clinical Biochemistry, Medical University Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Lars Klimaschewski
- Division of Neuroanatomy, Medical University Innsbruck, Müllerstrasse 59, 6020 Innsbruck, Austria.
| | - Michaela Kress
- Division of Physiology, Medical University Innsbruck, Fritz-Pregl-Straße 3, 6020 Innsbruck, Austria.
| | - Antonio Ferrer-Montiel
- IBMC, Universidad Miguel Hernandez Elche, Av. de la Universidad s/n., Edif. Torregaitán, E-03202, Spain.
| | - Hans-Günther Knaus
- Division of Cellular and Molecular Pharmacology, Medical University Innsbruck, Peter-Mayr strasse 1, 6020 Innsbruck, Austria.
| |
Collapse
|
19
|
Abstract
Recent research suggests that in addition to their role as soluble electron carriers, pyridine nucleotides [NAD(P)(H)] also regulate ion transport mechanisms. This mode of regulation seems to have been conserved through evolution. Several bacterial ion-transporting proteins or their auxiliary subunits possess nucleotide-binding domains. In eukaryotes, the Kv1 and Kv4 channels interact with pyridine nucleotide-binding β-subunits that belong to the aldo-keto reductase superfamily. Binding of NADP(+) to Kvβ removes N-type inactivation of Kv currents, whereas NADPH stabilizes channel inactivation. Pyridine nucleotides also regulate Slo channels by interacting with their cytosolic regulator of potassium conductance domains that show high sequence homology to the bacterial TrkA family of K(+) transporters. These nucleotides also have been shown to modify the activity of the plasma membrane K(ATP) channels, the cystic fibrosis transmembrane conductance regulator, the transient receptor potential M2 channel, and the intracellular ryanodine receptor calcium release channels. In addition, pyridine nucleotides also modulate the voltage-gated sodium channel by supporting the activity of its ancillary subunit-the glycerol-3-phosphate dehydrogenase-like protein. Moreover, the NADP(+) metabolite, NAADP(+), regulates intracellular calcium homeostasis via the 2-pore channel, ryanodine receptor, or transient receptor potential M2 channels. Regulation of ion channels by pyridine nucleotides may be required for integrating cell ion transport to energetics and for sensing oxygen levels or metabolite availability. This mechanism also may be an important component of hypoxic pulmonary vasoconstriction, memory, and circadian rhythms, and disruption of this regulatory axis may be linked to dysregulation of calcium homeostasis and cardiac arrhythmias.
Collapse
Affiliation(s)
- Peter J Kilfoil
- Diabetes Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
20
|
Vacher H, Trimmer JS. Trafficking mechanisms underlying neuronal voltage-gated ion channel localization at the axon initial segment. Epilepsia 2013; 53 Suppl 9:21-31. [PMID: 23216576 DOI: 10.1111/epi.12032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Voltage-gated ion channels are diverse and fundamental determinants of neuronal intrinsic excitability. Voltage-gated K(+) (Kv) and Na(+) (Nav) channels play complex yet fundamentally important roles in determining intrinsic excitability. The Kv and Nav channels located at the axon initial segment (AIS) play a unique and especially important role in generating neuronal output in the form of anterograde axonal and backpropagating action potentials. Aberrant intrinsic excitability in individual neurons within networks contributes to synchronous neuronal activity leading to seizures. Mutations in ion channel genes give rise to a variety of seizure-related "channelopathies," and many of the ion channel subunits associated with epilepsy mutations are localized at the AIS, making this a hotspot for epileptogenesis. Here we review the cellular mechanisms that underlie the trafficking of Kv and Nav channels found at the AIS, and how Kv and Nav channel mutations associated with epilepsy can alter these processes.
Collapse
Affiliation(s)
- Helene Vacher
- CRN2M CNRS UMR7286, Aix-Marseille University, Marseille, France
| | | |
Collapse
|
21
|
Kanda VA, Abbott GW. KCNE Regulation of K(+) Channel Trafficking - a Sisyphean Task? Front Physiol 2012; 3:231. [PMID: 22754540 PMCID: PMC3385356 DOI: 10.3389/fphys.2012.00231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/08/2012] [Indexed: 11/16/2022] Open
Abstract
Voltage-gated potassium (Kv) channels shape the action potentials of excitable cells and regulate membrane potential and ion homeostasis in excitable and non-excitable cells. With 40 known members in the human genome and a variety of homomeric and heteromeric pore-forming α subunit interactions, post-translational modifications, cellular locations, and expression patterns, the functional repertoire of the Kv α subunit family is monumental. This versatility is amplified by a host of interacting proteins, including the single membrane-spanning KCNE ancillary subunits. Here, examining both the secretory and the endocytic pathways, we review recent findings illustrating the surprising virtuosity of the KCNE proteins in orchestrating not just the function, but also the composition, diaspora and retrieval of channels formed by their Kv α subunit partners.
Collapse
Affiliation(s)
- Vikram A Kanda
- Department of Biology, Manhattan College Riverdale, New York, NY, USA
| | | |
Collapse
|
22
|
Yang SB, Mclemore KD, Tasic B, Luo L, Jan YN, Jan LY. Kv1.1-dependent control of hippocampal neuron number as revealed by mosaic analysis with double markers. J Physiol 2012; 590:2645-58. [PMID: 22411008 DOI: 10.1113/jphysiol.2012.228486] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Megencephaly, or mceph, is a spontaneous frame-shift mutation of the mouse Kv1.1 gene. This mceph mutation results in a truncated Kv1.1 channel α-subunit without the channel pore domain or the voltage sensor. Interestingly, mceph/mceph mouse brains are enlarged and – unlike wild-type mouse brains – they keep growing throughout adulthood, especially in the hippocampus and ventral cortex. We used mosaic analysis with double markers (MADM) to identify the underlying mechanism. In mceph-MADM6 mice with only a small fraction of neurons homozygous for the mceph mutation, those homozygous mceph/mceph neurons in the hippocampus are more abundant than wild-type neurons produced by sister neural progenitors. In contrast, neither mceph/mceph astrocytes, nor neurons in the adjacent dorsal cortex (including the entorhinal and parietal cortex) exhibited overgrowth in the adult brain. The sizes of mceph/mceph hippocampal neurons were comparable to mceph/+ or wild-type neurons. Our mosaic analysis reveals that loss of Kv1.1 function causes an overproduction of hippocampal neurons, leading to an enlarged brain phenotype.
Collapse
Affiliation(s)
- Shi-Bing Yang
- Howard Hughes Medical Institute, Department of Physiology, University of California–San Francisco, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
23
|
Prole DL, Marrion NV. Identification of putative potassium channel homologues in pathogenic protozoa. PLoS One 2012; 7:e32264. [PMID: 22363819 PMCID: PMC3283738 DOI: 10.1371/journal.pone.0032264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 01/24/2012] [Indexed: 12/21/2022] Open
Abstract
K+ channels play a vital homeostatic role in cells and abnormal activity of these channels can dramatically alter cell function and survival, suggesting that they might be attractive drug targets in pathogenic organisms. Pathogenic protozoa lead to diseases such as malaria, leishmaniasis, trypanosomiasis and dysentery that are responsible for millions of deaths each year worldwide. The genomes of many protozoan parasites have recently been sequenced, allowing rational design of targeted therapies. We analyzed the genomes of pathogenic protozoa and show the existence within them of genes encoding putative homologues of K+ channels. These protozoan K+ channel homologues represent novel targets for anti-parasitic drugs. Differences in the sequences and diversity of human and parasite proteins may allow pathogen-specific targeting of these K+ channel homologues.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
24
|
Diverse roles for auxiliary subunits in phosphorylation-dependent regulation of mammalian brain voltage-gated potassium channels. Pflugers Arch 2011; 462:631-43. [PMID: 21822597 DOI: 10.1007/s00424-011-1004-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
Abstract
Voltage-gated ion channels are a diverse family of signaling proteins that mediate rapid electrical signaling events. Among these, voltage-gated potassium or Kv channels are the most diverse partly due to the large number of principal (or α) subunits and auxiliary subunits that can assemble in different combinations to generate Kv channel complexes with distinct structures and functions. The diversity of Kv channels underlies much of the variability in the active properties between different mammalian central neurons and the dynamic changes that lead to experience-dependent plasticity in intrinsic excitability. Recent studies have revealed that Kv channel α subunits and auxiliary subunits are extensively phosphorylated, contributing to additional structural and functional diversity. Here, we highlight recent studies that show that auxiliary subunits exert some of their profound effects on dendritic Kv4 and axonal Kv1 channels through phosphorylation-dependent mechanisms, either due to phosphorylation on the auxiliary subunit itself or by influencing the extent and/or impact of α subunit phosphorylation. The complex effects of auxiliary subunits and phosphorylation provide a potent mechanism to generate additional diversity in the structure and function of Kv4 and Kv1 channels, as well as allowing for dynamic reversible regulation of these important ion channels.
Collapse
|
25
|
Jensen CS, Rasmussen HB, Misonou H. Neuronal trafficking of voltage-gated potassium channels. Mol Cell Neurosci 2011; 48:288-97. [PMID: 21627990 DOI: 10.1016/j.mcn.2011.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/01/2011] [Accepted: 05/16/2011] [Indexed: 11/28/2022] Open
Abstract
The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials is regulated by voltage-gated potassium (Kv) channels, such as Kv4.2, which are specifically localized in the dendritic membrane. The synaptic potentials eventually depolarize the membrane of the axon initial segment, thereby activating voltage-gated sodium channels to generate action potentials. Specific Kv channels localized in the axon initial segment, such as Kv1 and Kv7 channels, determine the shape and the rate of action potentials. Kv1 and Kv7 channels present at or near nodes of Ranvier and in presynaptic terminals also influence the propagation of action potentials and neurotransmitter release. The physiological significance of proper Kv channel localization is emphasized by the fact that defects in the trafficking of Kv channels are observed in several neurological disorders including epilepsy. In this review, we will summarize the current understanding of the mechanisms of Kv channel trafficking and discuss how they contribute to the establishment and maintenance of the specific localization of Kv channels in neurons.
Collapse
Affiliation(s)
- Camilla S Jensen
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
26
|
Effect of potassium channel opener pinacidil on the contractions elicited electrically or by noradrenaline in the human radial artery. Eur J Pharmacol 2011; 654:266-73. [DOI: 10.1016/j.ejphar.2010.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 11/25/2010] [Accepted: 12/19/2010] [Indexed: 11/23/2022]
|
27
|
Vacher H, Yang JW, Cerda O, Autillo-Touati A, Dargent B, Trimmer JS. Cdk-mediated phosphorylation of the Kvβ2 auxiliary subunit regulates Kv1 channel axonal targeting. ACTA ACUST UNITED AC 2011; 192:813-24. [PMID: 21357749 PMCID: PMC3051814 DOI: 10.1083/jcb.201007113] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of Kvβ2 releases Kv1 channels from microtubules to control their specific distribution at the axonal membrane. Kv1 channels are concentrated at specific sites in the axonal membrane, where they regulate neuronal excitability. Establishing these distributions requires regulated dissociation of Kv1 channels from the neuronal trafficking machinery and their subsequent insertion into the axonal membrane. We find that the auxiliary Kvβ2 subunit of Kv1 channels purified from brain is phosphorylated on serine residues 9 and 31, and that cyclin-dependent kinase (Cdk)–mediated phosphorylation at these sites negatively regulates the interaction of Kvβ2 with the microtubule plus end–tracking protein EB1. Endogenous Cdks, EB1, and Kvβ2 phosphorylated at serine 31 are colocalized in the axons of cultured hippocampal neurons, with enrichment at the axon initial segment (AIS). Acute inhibition of Cdk activity leads to intracellular accumulation of EB1, Kvβ2, and Kv1 channel subunits within the AIS. These studies reveal a new regulatory mechanism for the targeting of Kv1 complexes to the axonal membrane through the reversible Cdk phosphorylation-dependent binding of Kvβ2 to EB1.
Collapse
Affiliation(s)
- Hélène Vacher
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Mathie A, Rees KA, El Hachmane MF, Veale EL. Trafficking of neuronal two pore domain potassium channels. Curr Neuropharmacol 2010; 8:276-86. [PMID: 21358977 PMCID: PMC3001220 DOI: 10.2174/157015910792246146] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/18/2010] [Accepted: 01/18/2010] [Indexed: 01/05/2023] Open
Abstract
The activity of two pore domain potassium (K2P) channels regulates neuronal excitability and cell firing. Post-translational regulation of K2P channel trafficking to the membrane controls the number of functional channels at the neuronal membrane affecting the functional properties of neurons. In this review, we describe the general features of K channel trafficking from the endoplasmic reticulum (ER) to the plasma membrane via the Golgi apparatus then focus on established regulatory mechanisms for K2P channel trafficking. We describe the regulation of trafficking of TASK channels from the ER or their retention within the ER and consider the competing hypotheses for the roles of the chaperone proteins 14-3-3, COP1 and p11 in these processes and where these proteins bind to TASK channels. We also describe the localisation of TREK channels to particular regions of the neuronal membrane and the involvement of the TREK channel binding partners AKAP150 and Mtap2 in this localisation. We describe the roles of other K2P channel binding partners including Arf6, EFA6 and SUMO for TWIK1 channels and Vpu for TASK1 channels. Finally, we consider the potential importance of K2P channel trafficking in a number of disease states such as neuropathic pain and cancer and the protection of neurons from ischemic damage. We suggest that a better understanding of the mechanisms and regulations that underpin the trafficking of K2P channels to the plasma membrane and to localised regions therein may considerably enhance the probability of future therapeutic advances in these areas.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, Universities of Kent and Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | | | | | | |
Collapse
|
29
|
Radhakrishnan SK, Pritchard S, Viollier PH. Coupling prokaryotic cell fate and division control with a bifunctional and oscillating oxidoreductase homolog. Dev Cell 2010; 18:90-101. [PMID: 20152180 DOI: 10.1016/j.devcel.2009.10.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 08/31/2009] [Accepted: 10/27/2009] [Indexed: 10/19/2022]
Abstract
NAD(H)-binding proteins play important roles in cell-cycle and developmental signaling in eukaryotes. We identified a bifunctional NAD(H)-binding regulator (KidO) that integrates cell-fate signaling with cytokinesis in the bacterium Caulobacter crescentus. KidO stimulates the DivJ kinase and directly acts on the cytokinetic tubulin, FtsZ, to tune cytokinesis with the cell cycle. At the G1-->S transition, DivJ concomitantly signals the ClpXP-dependent degradation of KidO and CtrA, a cell-cycle transcriptional regulator/DNA replication inhibitor. This proteolytic event directs KidO and CtrA into oscillatory cell-cycle abundance patterns that coordinately license replication and cytokinesis. KidO resembles NAD(P)H-dependent oxidoreductases, and conserved residues in the KidO NAD(H)-binding pocket are critical for regulation of FtsZ, but not for DivJ. Since NADPH-dependent regulation by a KidO-like oxidoreductase also occurs in humans, organisms from two domains of life exploit the enzymatic fold of an ancestral oxidoreductase potentially to coordinate cellular or developmental activities with the availability of the metabolic currency, NAD(P)H.
Collapse
Affiliation(s)
- Sunish Kumar Radhakrishnan
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
30
|
Burg ED, Platoshyn O, Tsigelny IF, Lozano-Ruiz B, Rana BK, Yuan JXJ. Tetramerization domain mutations in KCNA5 affect channel kinetics and cause abnormal trafficking patterns. Am J Physiol Cell Physiol 2009; 298:C496-509. [PMID: 20018952 DOI: 10.1152/ajpcell.00464.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The activity of voltage-gated K(+) (K(V)) channels plays an important role in regulating pulmonary artery smooth muscle cell (PASMC) contraction, proliferation, and apoptosis. The highly conserved NH(2)-terminal tetramerization domain (T1) of K(V) channels is important for proper channel assembly, association with regulatory K(V) beta-subunits, and localization of the channel to the plasma membrane. We recently reported two nonsynonymous mutations (G182R and E211D) in the KCNA5 gene of patients with idiopathic pulmonary arterial hypertension, which localize to the T1 domain of KCNA5. To study the electrophysiological properties and expression patterns of the mutants compared with the wild-type (WT) channel in vitro, we transfected HEK-293 cells with WT KCNA5, G182R, E211D, or the double mutant G182R/E211D channel. The mutants form functional channels; however, whole cell current kinetic differences between WT and mutant channels exist. Steady-state inactivation curves of the G182R and G182R/E211D channels reveal accelerated inactivation; the mutant channels inactivated at more hyperpolarized potentials compared with the WT channel. Channel protein expression was also decreased by the mutations. Compared with the WT channel, which was present in its mature glycosylated form, the mutant channels are present in greater proportion in their immature form in HEK-293 cells. Furthermore, G182R protein level is greatly reduced in COS-1 cells compared with WT. Immunostaining data support the hypothesis that, while WT protein localizes to the plasma membrane, mutant protein is mainly retained in intracellular packets. Overall, these data support a role for the T1 domain in channel kinetics as well as in KCNA5 channel subcellular localization.
Collapse
Affiliation(s)
- Elyssa D Burg
- Dept. of Medicine, Univ. of California, San Diego, 9500 Gilman Dr., MC 0725, La Jolla, CA 92093-0725, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ding XQ, Harry CS, Umino Y, Matveev AV, Fliesler SJ, Barlow RB. Impaired cone function and cone degeneration resulting from CNGB3 deficiency: down-regulation of CNGA3 biosynthesis as a potential mechanism. Hum Mol Genet 2009; 18:4770-80. [PMID: 19767295 DOI: 10.1093/hmg/ddp440] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The cone cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. This channel is composed of two structurally related subunits, CNGA3 and CNGB3; CNGA3 is the ion-conducting subunit, whereas CNGB3 is a modulatory subunit. Mutations in both subunits are associated with achromatopsia and progressive cone dystrophy, with mutations in CNGB3 alone accounting for 50% of all known cases of achromatopsia. However, the molecular mechanisms underlying cone diseases that result from CNGB3 deficiency are unknown. This study investigated the role of CNGB3 in cones, using CNGB3(-/-) mice. Cone dysfunction was apparent at the earliest time point examined (post-natal day 30) in CNGB3(-/-) mice. When compared with wild-type (WT) controls: photopic electroretingraphic (ERG) responses were decreased by approximately 75%, whereas scotopic ERG responses were unchanged; visual acuity was decreased by approximately 20%, whereas contrast sensitivity was unchanged; cone density was reduced by approximately 40%; photoreceptor apoptosis was detected; and outer segment disorganization was observed in some cones. Notably, CNGA3 protein and mRNA levels were significantly decreased in CNGB3(-/-) mice; in contrast, mRNA levels of S-opsin, Gnat2 and Pde6c were unchanged, relative to WT mice. Hence, we show that loss of CNGB3 reduces biosynthesis of CNGA3 and impairs cone CNG channel function. We suggest that down-regulation of CNGA3 contributes to the pathogenic mechanism by which CNGB3 mutations lead to human cone disease.
Collapse
Affiliation(s)
- Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
For more than 25 years, it has been widely appreciated that Ca2+ influx is essential to trigger T-lymphocyte activation. Patch clamp analysis, molecular identification, and functional studies using blockers and genetic manipulation have shown that a unique contingent of ion channels orchestrates the initiation, intensity, and duration of the Ca2+ signal. Five distinct types of ion channels--Kv1.3, KCa3.1, Orai1+ stromal interacting molecule 1 (STIM1) [Ca2+-release activating Ca2+ (CRAC) channel], TRPM7, and Cl(swell)--comprise a network that performs functions vital for ongoing cellular homeostasis and for T-cell activation, offering potential targets for immunomodulation. Most recently, the roles of STIM1 and Orai1 have been revealed in triggering and forming the CRAC channel following T-cell receptor engagement. Kv1.3, KCa3.1, STIM1, and Orai1 have been found to cluster at the immunological synapse following contact with an antigen-presenting cell; we discuss how channels at the synapse might function to modulate local signaling. Immuno-imaging approaches are beginning to shed light on ion channel function in vivo. Importantly, the expression pattern of Ca2+ and K+ channels and hence the functional network can adapt depending upon the state of differentiation and activation, and this allows for different stages of an immune response to be targeted specifically.
Collapse
Affiliation(s)
- Michael D Cahalan
- Department of Physiology and Biophysics, and the Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4561, USA.
| | | |
Collapse
|
33
|
Vacher H, Mohapatra DP, Trimmer JS. Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 2008; 88:1407-47. [PMID: 18923186 DOI: 10.1152/physrev.00002.2008] [Citation(s) in RCA: 348] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The intrinsic electrical properties and the synaptic input-output relationships of neurons are governed by the action of voltage-dependent ion channels. The localization of specific populations of ion channels with distinct functional properties at discrete sites in neurons dramatically impacts excitability and synaptic transmission. Molecular cloning studies have revealed a large family of genes encoding voltage-dependent ion channel principal and auxiliary subunits, most of which are expressed in mammalian central neurons. Much recent effort has focused on determining which of these subunits coassemble into native neuronal channel complexes, and the cellular and subcellular distributions of these complexes, as a crucial step in understanding the contribution of these channels to specific aspects of neuronal function. Here we review progress made on recent studies aimed to determine the cellular and subcellular distribution of specific ion channel subunits in mammalian brain neurons using in situ hybridization and immunohistochemistry. We also discuss the repertoire of ion channel subunits in specific neuronal compartments and implications for neuronal physiology. Finally, we discuss the emerging mechanisms for determining the discrete subcellular distributions observed for many neuronal ion channels.
Collapse
Affiliation(s)
- Helene Vacher
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, California 95616-8519, USA
| | | | | |
Collapse
|
34
|
Pineda RH, Knoeckel CS, Taylor AD, Estrada-Bernal A, Ribera AB. Kv1 potassium channel complexes in vivo require Kvbeta2 subunits in dorsal spinal neurons. J Neurophysiol 2008; 100:2125-36. [PMID: 18684900 DOI: 10.1152/jn.90667.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas Kvbeta2 subunits modulate potassium current properties carried by Kv1 channel complexes in heterologous systems, little is known about the contributions of Kvbeta2 subunits to native potassium channel function. Using antisense approaches and in situ recordings from Xenopus embryo spinal cord neurons, we tested the in vivo roles of Kvbeta2 subunits in modulation of voltage-dependent potassium current (IKv). We focused on 1) two different populations of dorsal spinal neurons that express both Kvbeta2 and Kv1 alpha-subunit genes and 2) the 24- and 48-h developmental period, during which IKv undergoes developmental regulation. At both 24 and 48 h, antisense methods produced efficient knock-down of both Kvbeta2 protein and IKv. At both times, dominant negative suppression of Kv1 channels also eliminated IKv, indicating that Kv1 channels require Kvbeta2 subunits to function in dorsal spinal neurons. Even though Kv1 channels determined the IKv values of both dorsal neuron types, comparisons of their IKv properties revealed important differences at both developmental stages. The latter results support the notion that different Kv1 alpha-subunits and/or posttranslational modifications underlie the IKv values of the two dorsal neuron types. Overall, the results demonstrate that Kvbeta2 subunits function in vivo as obligatory subunits of Kv1 channels in at least two neuron types and two different developmental stages.
Collapse
Affiliation(s)
- Ricardo H Pineda
- Department of Physiology and Biophysics MS8307, 12800 East 19th Avenue, University of Colorado Denver at AMC, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
35
|
Schwappach B. An overview of trafficking and assembly of neurotransmitter receptors and ion channels (Review). Mol Membr Biol 2008; 25:270-8. [PMID: 18446613 DOI: 10.1080/09687680801960998] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ionotropic neurotransmitter receptors and voltage-gated ion channels assemble from several homologous and non-homologous subunits. Assembly of these multimeric membrane proteins is a tightly controlled process subject to primary and secondary quality control mechanisms. An assembly pathway involving a dimerization of dimers has been demonstrated for a voltage-gated potassium channel and for different types of glutamate receptors. While many novel C-terminal assembly domains have been identified in various members of the voltage-gated cation channel superfamily, the assembly pathways followed by these proteins remain largely elusive. Recent progress on the recognition of polar residues in the transmembrane segments of membrane proteins by the retrieval factor Rer1 is likely to be relevant for the further investigation of trafficking defects in channelopathies. This mechanism might also contribute to controlling the assembly of ion channels by retrieving unassembled subunits to the endoplasmic reticulum. The endoplasmic reticulum is a metabolic compartment studded with small molecule transporters. This environment provides ligands that have recently been shown to act as pharmacological chaperones in the biogenesis of ligand-gated ion channels. Future progress depends on the improvement of tools, in particular the antibodies used by the field, and the continued exploitation of genetically tractable model organisms in screens and physiological experiments.
Collapse
|
36
|
Interdomain cytoplasmic interactions govern the intracellular trafficking, gating, and modulation of the Kv2.1 channel. J Neurosci 2008; 28:4982-94. [PMID: 18463252 DOI: 10.1523/jneurosci.0186-08.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Voltage-gated potassium (Kv) channels comprise four transmembrane alpha subunits, often associated with cytoplasmic beta subunits that impact channel expression and function. Here, we show that cell surface expression, voltage-dependent activation gating, and phosphorylation-dependent modulation of Kv2.1 are regulated by cytoplasmic N/C interaction within the alpha subunit. Kv2.1 surface expression is greatly reduced by C-terminal truncation. Tailless Kv2.1 channels exhibit altered voltage-dependent gating properties and lack the bulk of the phosphorylation-dependent modulation of channel gating. Remarkably, the soluble C terminus of Kv2.1 associates with tailless channels and rescues their expression, function, and phosphorylation-dependent modulation. Soluble N and C termini of Kv2.1 can also interact directly. We also show that the N/C-terminal interaction in Kv2.1 is governed by a 34 aa motif in the juxtamembrane cytoplasmic C terminus, and a 17 aa motif located in the N terminus at a position equivalent to the beta subunit binding site in other Kv channels. Deletion of either motif disrupts N/C-terminal interaction and surface expression, function, and phosphorylation-dependent modulation of Kv2.1 channels. These findings provide novel insights into intrinsic mechanisms for the regulation of Kv2.1 trafficking, gating, and phosphorylation-dependent modulation through cytoplasmic N/C-terminal interaction, which resembles alpha/beta subunit interaction in other Kv channels.
Collapse
|
37
|
Abstract
Voltage-gated potassium (K(V)) channels can form heteromultimeric complexes with a variety of accessory subunits, including KCNE proteins. Heterologous expression studies have demonstrated diverse functional effects of KCNE subunits on several K(V) channels, including KCNQ1 (K(V)7.1) that, together with KCNE1, generates the slow-delayed rectifier current (I(Ks)) important for cardiac repolarization. In particular, KCNE4 exerts a strong inhibitory effect on KCNQ1 and other K(V) channels, raising the possibility that this accessory subunit is an important potassium current modulator. A polyclonal KCNE4 antibody was developed to determine the human tissue expression pattern and to investigate the biochemical associations of this protein with KCNQ1. We found that KCNE4 is widely and variably expressed in several human tissues, with greatest abundance in brain, liver and testis. In heterologous expression experiments, immunoprecipitation followed by immunoblotting was used to establish that KCNE4 directly associates with KCNQ1, and can co-associate together with KCNE1 in the same KCNQ1 complex to form a 'triple subunit' complex (KCNE1-KCNQ1-KCNE4). We also used cell surface biotinylation to demonstrate that KCNE4 does not impair plasma membrane expression of either KCNQ1 or the triple subunit complex, indicating that biophysical mechanisms probably underlie the inhibitory effects of KCNE4. The observation that multiple KCNE proteins can co-associate with and modulate KCNQ1 channels to produce biochemically diverse channel complexes has important implications for understanding K(V) channel regulation in human physiology.
Collapse
Affiliation(s)
- Lauren J Manderfield
- Department of Pharmacology, Vanderbilt University, 2215 Garland Avenue, Nashville, TN 37232, USA
| | | |
Collapse
|
38
|
Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 2008; 40:553-624. [PMID: 18949601 PMCID: PMC2663408 DOI: 10.1080/03602530802431439] [Citation(s) in RCA: 368] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aldo-keto reductase (AKR) superfamily comprises enzymes that catalyze redox transformations involved in biosynthesis, intermediary metabolism, and detoxification. Substrates of AKRs include glucose, steroids, glycosylation end-products, lipid peroxidation products, and environmental pollutants. These proteins adopt a (beta/alpha)(8) barrel structural motif interrupted by a number of extraneous loops and helixes that vary between proteins and bring structural identity to individual families. The human AKR family differs from the rodent families. Due to their broad substrate specificity, AKRs play an important role in the phase II detoxification of a large number of pharmaceuticals, drugs, and xenobiotics.
Collapse
Affiliation(s)
- Oleg A Barski
- Division of Cardiology, Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | |
Collapse
|
39
|
Trafficking-dependent phosphorylation of Kv1.2 regulates voltage-gated potassium channel cell surface expression. Proc Natl Acad Sci U S A 2007; 104:20055-60. [PMID: 18056633 DOI: 10.1073/pnas.0708574104] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kv1.2 alpha-subunits are components of low-threshold, rapidly activating voltage-gated potassium (Kv) channels in mammalian neurons. Expression and localization of Kv channels is regulated by trafficking signals encoded in their primary structure. Kv1.2 is unique in lacking strong trafficking signals and in exhibiting dramatic cell-specific differences in trafficking, which is suggestive of conditional trafficking signals. Here we show that a cluster of cytoplasmic C-terminal phosphorylation sites regulates Kv1.2 trafficking. Using tandem MS to analyze Kv1.2 purified from rat, human, and mouse brain, we identified in each sample in vivo phosphoserine (pS) phosphorylation sites at pS434, pS440, and pS441, as well as doubly phosphorylated pS440/pS441. We also found these sites, as well as pS449, on recombinant Kv1.2 expressed in heterologous cells. We found that phosphorylation at pS440/pS441 is present only on the post-endoplasmic reticulum (ER)/cell surface pool of Kv1.2 and is not detectable on newly synthesized and ER-localized Kv1.2, on which we did observe pS449 phosphorylation. Elimination of PS440/PS441 phosphorylation by mutation reduces cell-surface expression efficiency and functional expression of homomeric Kv1.2 channels. Interestingly, mutation of S449 reduces phosphorylation at pS440/pS441 and also decreases Kv1.2 cell-surface expression efficiency and functional expression. These mutations also suppress trafficking of Kv1.2/Kv1.4 heteromeric channels, suggesting that incorporation of Kv1.2 into heteromeric complexes confers conditional phosphorylation-dependent trafficking to diverse Kv channel complexes. These data support Kv1.2 phosphorylation at these clustered C-terminal sites as playing an important role in regulating trafficking of Kv1.2-containing Kv channels.
Collapse
|
40
|
Connors EC, Ballif BA, Morielli AD. Homeostatic regulation of Kv1.2 potassium channel trafficking by cyclic AMP. J Biol Chem 2007; 283:3445-3453. [PMID: 18003609 DOI: 10.1074/jbc.m708875200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Shaker family potassium channel, Kv1.2, is a key determinant of membrane excitability in neurons and cardiovascular tissue. Kv1.2 is subject to multiple forms of regulation and therefore integrates cellular signals involved in the homeostasis of excitability. The cyclic AMP/protein kinase A (PKA) pathway enhances Kv1.2 ionic current; however, the mechanisms for this are not fully known. Here we show that cAMP maintains Kv1.2 homeostasis through opposing effects on channel trafficking. We found that Kv1.2 is regulated by two distinct cAMP pathways, one PKA-dependent and the other PKA-independent. PKA inhibitors elevate Kv1.2 surface levels, suggesting that basal levels of cAMP control steady-state turnover of the channel. Elevation of cAMP above basal levels also increases the amount of Kv1.2 at the cell surface. This effect is not blocked by PKA inhibitors, but is blocked by inhibition of Kv1.2 endocytosis. We conclude that Kv1.2 levels at the cell surface are kept in dynamic balance by opposing effects of cAMP.
Collapse
Affiliation(s)
- Emilee C Connors
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, Vermont 05405
| | - Anthony D Morielli
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405.
| |
Collapse
|
41
|
Torres YP, Morera FJ, Carvacho I, Latorre R. A Marriage of Convenience: β-Subunits and Voltage-dependent K+ Channels. J Biol Chem 2007; 282:24485-9. [PMID: 17606609 DOI: 10.1074/jbc.r700022200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The movement of ions across cell membranes is essential for a wide variety of fundamental physiological processes, including secretion, muscle contraction, and neuronal excitation. This movement is possible because of the presence in the cell membrane of a class of integral membrane proteins dubbed ion channels. Ion channels, thanks to the presence of aqueous pores in their structure, catalyze the passage of ions across the otherwise ion-impermeable lipid bilayer. Ion conduction across ion channels is highly regulated, and in the case of voltage-dependent K(+) channels, the molecular foundations of the voltage-dependent conformational changes leading to the their open (conducting) configuration have provided most of the driving force for research in ion channel biophysics since the pioneering work of Hodgkin and Huxley (Hodgkin, A. L., and Huxley, A. F. (1952) J. Physiol. 117, 500-544). The voltage-dependent K(+) channels are the prototypical voltage-gated channels and govern the resting membrane potential. They are responsible for returning the membrane potential to its resting state at the termination of each action potential in excitable membranes. The pore-forming subunits (alpha) of many voltage-dependent K(+) channels and modulatory beta-subunits exist in the membrane as one component of macromolecular complexes, able to integrate a myriad of cellular signals that regulate ion channel behavior. In this review, we have focused on the modulatory effects of beta-subunits on the voltage-dependent K(+) (Kv) channel and on the large conductance Ca(2+)- and voltage-dependent (BK(Ca)) channel.
Collapse
Affiliation(s)
- Yolima P Torres
- Department of Biophysics and Molecular Physiology, Centro de Estudios Cientificos, Valdivia 5110246, Chile
| | | | | | | |
Collapse
|
42
|
Zarei MM, Song M, Wilson RJ, Cox N, Colom LV, Knaus HG, Stefani E, Toro L. Endocytic trafficking signals in KCNMB2 regulate surface expression of a large conductance voltage and Ca2+-activated K+ channel. Neuroscience 2007; 147:80-9. [PMID: 17521822 DOI: 10.1016/j.neuroscience.2007.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 04/05/2007] [Accepted: 04/06/2007] [Indexed: 11/22/2022]
Abstract
Large conductance voltage and calcium-activated K(+) channels play critical roles in neuronal excitability and vascular tone. Previously, we showed that coexpression of the transmembrane beta2 subunit, KCNMB2, with the human pore-forming alpha subunit of the large conductance voltage and Ca(2+)-activated K(+) channel (hSlo) yields inactivating currents similar to those observed in hippocampal neurons [Hicks GA, Marrion NV (1998) Ca(2+)-dependent inactivation of large conductance Ca(2+)-activated K(+) (BK) channels in rat hippocampal neurones produced by pore block from an associated particle. J Physiol (Lond) 508 (Pt 3):721-734; Wallner M, Meera P, Toro L (1999b) Molecular basis of fast inactivation in voltage and Ca(2+)-activated K(+) channels: A transmembrane beta-subunit homolog. Proc Natl Acad Sci U S A 96:4137-4142]. Herein, we report that coexpression of beta2 subunit with hSlo can also modulate hSlo surface expression levels in HEK293T cells. We found that, when expressed alone, beta2 subunit appears to reach the plasma membrane but also displays a distinct intracellular punctuated pattern that resembles endosomal compartments. beta2 Subunit coexpression with hSlo causes two biological effects: i) a shift of hSlo's intracellular expression pattern from a relatively diffuse to a distinct punctated cytoplasmic distribution overlapping beta2 expression; and ii) a decrease of hSlo surface expression that surpassed an observed small decrease in total hSlo expression levels. beta2 Site-directed mutagenesis studies revealed two putative endocytic signals at the C-terminus of beta2 that can control expression levels of hSlo. In contrast, a beta2 N-terminal consensus endocytic signal had no effect on hSlo expression levels. Thus, beta2 subunit not only can influence hSlo currents but also has the ability to limit hSlo surface expression levels via an endocytic mechanism. This new mode of beta2 modulation of hSlo may depend on particular coregulatory mechanisms in different cell types.
Collapse
Affiliation(s)
- M M Zarei
- Department of Anesthesiology, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tipparaju SM, Liu SQ, Barski O, Bhatnagar A. NADPH binding to beta-subunit regulates inactivation of voltage-gated K(+) channels. Biochem Biophys Res Commun 2007; 359:269-76. [PMID: 17540341 PMCID: PMC1948100 DOI: 10.1016/j.bbrc.2007.05.102] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 05/12/2007] [Indexed: 01/09/2023]
Abstract
Ancillary beta-subunits regulate the voltage-dependence and the kinetics of Kv currents. The Kvbeta proteins bind pyridine nucleotides with high affinity but the role of cofactor binding in regulating Kv currents remains unclear. We found that recombinant rat Kvbeta 1.3 binds NADPH (K(d)=1.8+/-0.02 microM) and NADP(+) (K(d)=5.5+/-0.9 microM). Site-specific modifications at Tyr-307 and Arg-316 decreased NADPH binding; whereas, K(d) NADPH was unaffected by the R241L mutation. COS-7 cells transfected with Kv1.5 cDNA displayed non-inactivating currents. Co-transfection with Kvbeta1.3 accelerated Kv activation and inactivation and induced a hyperpolarizing shift in voltage-dependence of activation. Kvbeta-mediated inactivation of Kv currents was prevented by the Y307F and R316E mutations but not by the R241L substitution. Additionally, the R316E mutation weakened Kvalpha-beta interaction. Inactivation of Kv currents by Kvbeta:R316E was restored when excess NADPH was included in the patch pipette. These observations suggest that NADPH binding is essential for optimal interaction between Kvalpha and beta subunits and for Kvbeta-induced inactivation of Kv currents.
Collapse
Affiliation(s)
| | | | | | - Aruni Bhatnagar
- Address for correspondence: Aruni Bhatnagar, Ph.D., Division of Cardiology/Medicine, 421F Delia Baxter Bldg, 580 South Preston St., University of Louisville, Louisville, KY 40202, USA, Ph: 502-852-5966, FAX: 502-852-3663,
| |
Collapse
|
44
|
Vacher H, Mohapatra DP, Misonou H, Trimmer JS. Regulation of Kv1 channel trafficking by the mamba snake neurotoxin dendrotoxin K. FASEB J 2007; 21:906-14. [PMID: 17185748 PMCID: PMC2737685 DOI: 10.1096/fj.06-7229com] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Modulation of voltage-gated potassium (Kv) channel surface expression can profoundly affect neuronal excitability. Some, but not all, mammalian Shaker or Kv1 alpha subunits contain a dominant endoplasmic reticulum (ER) retention signal in their pore region, preventing surface expression of Kv1.1 homotetrameric channels and of heteromeric Kv1 channels containing more than one Kv1.1 subunit. The critical amino acid residues within this ER pore-region retention signal are also critical for high-affinity binding of snake dendrotoxins (DTX). This suggests that ER retention may be mediated by an ER protein with a domain structurally similar to that of DTX. One facet of such a model is that expression of soluble DTX in the ER lumen should compete for binding to the retention protein and allow for surface expression of retained Kv1.1. Here, we show that luminal DTX expression dramatically increased both the level of cell surface Kv1.1 immunofluorescence staining and the proportion of Kv1.1 with processed N-linked oligosaccharides. Electrophysiological analyses showed that luminal DTX expression led to significant increases in Kv1.1 currents. Together, these data showed that luminal DTX expression increases surface expression of functional Kv1.1 homotetrameric channels and support a model whereby a DTX-like ER protein regulates abundance of cell surface Kv1 channels.
Collapse
Affiliation(s)
- Helene Vacher
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616
| | - Durga P. Mohapatra
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616
| | | | - James S. Trimmer
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
45
|
Gu C, Zhou W, Puthenveedu MA, Xu M, Jan YN, Jan LY. The Microtubule Plus-End Tracking Protein EB1 Is Required for Kv1 Voltage-Gated K+ Channel Axonal Targeting. Neuron 2006; 52:803-16. [PMID: 17145502 DOI: 10.1016/j.neuron.2006.10.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 12/29/2005] [Accepted: 10/20/2006] [Indexed: 01/25/2023]
Abstract
Axonal Kv1 channels regulate action potential propagation-an evolutionarily conserved function important for the control of motor behavior as evidenced from the linkage of human Kv1 channel mutations to myokymia/episodic ataxia type 1 (EA1) and the Shaker mutant phenotype in Drosophila. To search for the machinery that mediates axonal targeting of Kv1 channels composed of both alpha and beta subunits, we first demonstrate that Kvbeta2 is responsible for targeting Kv1 channels to the axon. Next, we show that Kvbeta2 axonal targeting depends on its ability to associate with the microtubule (MT) plus-end tracking protein (+TIP) EB1. Not only do Kvbeta2 and EB1 move in unison down the axon, Brefeldin A-sensitive Kv1-containing vesicles can also be found at microtubule ends near the cell membrane. In addition, we found that Kvbeta2 associates with KIF3/kinesin II as well. Indeed, Kv1 channels rely on both KIF3/kinesin II and EB1 for their axonal targeting.
Collapse
Affiliation(s)
- Chen Gu
- Howard Hughes Medical Institute, Departments of Physiology and Biochemistry, University of California, San Francisco, San Francisco, California 94143, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Heinemann SH, Hoshi T. Multifunctional potassium channels: electrical switches and redox enzymes, all in one. ACTA ACUST UNITED AC 2006; 2006:pe33. [PMID: 16940439 DOI: 10.1126/stke.3502006pe33] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Kv1-type K+ channels are protein complexes containing both voltage-sensing, pore-forming alpha subunits and modulatory Kvbeta subunits. Although some Kvbeta subunits include an amino-terminal region that allows them to transform noninactivating Kv1 channels into rapidly inactivating channels, the function of Kvbeta subunits that do not possess these inactivating amino-terminal regions has been less clear. Recent research demonstrates that Kvbeta2 acts as an NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate)-dependent redox enzyme and that its catalytic activity can regulate the speed with which the Kv1.4-Kvbeta2 complex undergoes inactivation, suggesting that Kvbeta2 may link cellular metabolic activity and redox state with electrical signaling.
Collapse
Affiliation(s)
- Stefan H Heinemann
- Center for Molecular Biomedicine, Molecular and Cellular Biophysics, Friedrich Schiller University Jena, D-07747 Jena, Germany.
| | | |
Collapse
|
47
|
Abstract
Voltage-gated potassium channels regulate cell membrane potential and excitability in neurons and other cell types. A precise control of neuronal action potential patterns underlies the basic functioning of the central and peripheral nervous system. This control relies on the adaptability of potassium channel activities. The functional diversity of potassium currents, however, far exceeds the considerable molecular diversity of this class of genes. Potassium current diversity contributes to the specificity of neuronal firing patterns and may be achieved by regulated transcription, RNA splicing, and posttranslational modifications. Another mechanism for regulation of potassium channel activity is through association with interacting proteins and accessory subunits. Here the authors highlight recent work that addresses this growing area of exploration and discuss areas of future investigation.
Collapse
Affiliation(s)
- Yan Li
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
48
|
Abstract
Voltage-gated ion channels have to be at the right place in the right number to endow individual neurons with their specific character. Their biophysical properties together with their spatial distribution define the signalling characteristics of a neuron. Improper channel localization could cause communication defects in a neuronal network. This review covers recent studies of mechanisms for targeting voltage-gated ion channels to axons and dendrites, including trafficking, retention and endocytosis pathways for the preferential localization of particular ion channels. We also discuss how the spatial localization of these channels might contribute to the electrical excitability of neurons, and consider the need for future work in this emerging field.
Collapse
Affiliation(s)
- Helen C Lai
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
49
|
MacDonald PE, Joseph JW, Rorsman P. Glucose-sensing mechanisms in pancreatic beta-cells. Philos Trans R Soc Lond B Biol Sci 2006; 360:2211-25. [PMID: 16321791 PMCID: PMC1569593 DOI: 10.1098/rstb.2005.1762] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The appropriate secretion of insulin from pancreatic beta-cells is critically important to the maintenance of energy homeostasis. The beta-cells must sense and respond suitably to postprandial increases of blood glucose, and perturbation of glucose-sensing in these cells can lead to hypoglycaemia or hyperglycaemias and ultimately diabetes. Here, we review beta-cell glucose-sensing with a particular focus on the regulation of cellular excitability and exocytosis. We examine in turn: (i) the generation of metabolic signalling molecules; (ii) the regulation of beta-cell membrane potential; and (iii) insulin granule dynamics and exocytosis. We further discuss the role of well known and putative candidate metabolic signals as regulators of insulin secretion.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Duke University Medical Center Sarah W. Stedman Nutrition and Metabolism Center Durham, NC 27704, USA.
| | | | | |
Collapse
|
50
|
Schulte U, Thumfart JO, Klöcker N, Sailer CA, Bildl W, Biniossek M, Dehn D, Deller T, Eble S, Abbass K, Wangler T, Knaus HG, Fakler B. The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvbeta1. Neuron 2006; 49:697-706. [PMID: 16504945 DOI: 10.1016/j.neuron.2006.01.033] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 01/25/2006] [Accepted: 01/30/2006] [Indexed: 11/18/2022]
Abstract
The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.
Collapse
Affiliation(s)
- Uwe Schulte
- Logopharm GmbH, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|