1
|
Özçete ÖD, Banerjee A, Kaeser PS. Mechanisms of neuromodulatory volume transmission. Mol Psychiatry 2024; 29:3680-3693. [PMID: 38789677 PMCID: PMC11540752 DOI: 10.1038/s41380-024-02608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
A wealth of neuromodulatory transmitters regulate synaptic circuits in the brain. Their mode of signaling, often called volume transmission, differs from classical synaptic transmission in important ways. In synaptic transmission, vesicles rapidly fuse in response to action potentials and release their transmitter content. The transmitters are then sensed by nearby receptors on select target cells with minimal delay. Signal transmission is restricted to synaptic contacts and typically occurs within ~1 ms. Volume transmission doesn't rely on synaptic contact sites and is the main mode of monoamines and neuropeptides, important neuromodulators in the brain. It is less precise than synaptic transmission, and the underlying molecular mechanisms and spatiotemporal scales are often not well understood. Here, we review literature on mechanisms of volume transmission and raise scientific questions that should be addressed in the years ahead. We define five domains by which volume transmission systems can differ from synaptic transmission and from one another. These domains are (1) innervation patterns and firing properties, (2) transmitter synthesis and loading into different types of vesicles, (3) architecture and distribution of release sites, (4) transmitter diffusion, degradation, and reuptake, and (5) receptor types and their positioning on target cells. We discuss these five domains for dopamine, a well-studied monoamine, and then compare the literature on dopamine with that on norepinephrine and serotonin. We include assessments of neuropeptide signaling and of central acetylcholine transmission. Through this review, we provide a molecular and cellular framework for volume transmission. This mechanistic knowledge is essential to define how neuromodulatory systems control behavior in health and disease and to understand how they are modulated by medical treatments and by drugs of abuse.
Collapse
Affiliation(s)
- Özge D Özçete
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Kim J, Seol S, Kim TE, Lee J, Koo JW, Kang HJ. Synaptotagmin-4 induces anhedonic responses to chronic stress via BDNF signaling in the medial prefrontal cortex. Exp Mol Med 2024; 56:329-343. [PMID: 38297157 PMCID: PMC10907712 DOI: 10.1038/s12276-024-01156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 02/02/2024] Open
Abstract
Stressful circumstances are significant contributors to mental illnesses such as major depressive disorder. Anhedonia, defined as loss of the ability to enjoy pleasure in pleasurable situations, including rewarding activities or social contexts, is considered a key symptom of depression. Although stress-induced depression is associated with anhedonia in humans and animals, the underlying molecular mechanisms of anhedonic responses remain poorly understood. In this study, we demonstrated that synaptotagmin-4 (SYT4), which is involved in the release of neurotransmitters and neurotrophic factors, is implicated in chronic stress-induced anhedonia. Employing chronic unpredictable stress (CUS), we evaluated two subpopulations of mice, susceptible (SUS, anhedonic) and resilient (RES, nonanhedonic), based on sucrose preference, which was strongly correlated with social reward. The FosTRAP (targeted recombination in active populations) system and optogenetic approach revealed that neural activity in the medial prefrontal cortex (mPFC) was significantly associated with CUS-induced anhedonic behavioral phenotypes. By conducting weighted gene coexpression network analysis of RNA sequencing data from the mPFC of SUS and RES mice, we identified Syt4 as a hub gene in a gene network that was unique to anhedonia. We also confirmed that Syt4 overexpression in the mPFC was pro-susceptible, while Syt4 knockdown was pro-resilient; the pro-susceptible effects of SYT4 were mediated through a reduction in brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) signaling in the mPFC. These findings suggest that SYT4-BDNF interactions in the mPFC represent a crucial regulatory mechanism of anhedonic susceptibility to chronic stress.
Collapse
Affiliation(s)
- Jeongseop Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Dong-gu, Daegu, 41062, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Sihwan Seol
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Tae-Eun Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Dong-gu, Daegu, 41062, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Joonhee Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Dong-gu, Daegu, 41062, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu, 42988, Republic of Korea.
| | - Hyo Jung Kang
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
3
|
Delignat-Lavaud B, Kano J, Ducrot C, Massé I, Mukherjee S, Giguère N, Moquin L, Lévesque C, Burke S, Denis R, Bourque MJ, Tchung A, Rosa-Neto P, Lévesque D, De Beaumont L, Trudeau LÉ. Synaptotagmin-1-dependent phasic axonal dopamine release is dispensable for basic motor behaviors in mice. Nat Commun 2023; 14:4120. [PMID: 37433762 PMCID: PMC10336101 DOI: 10.1038/s41467-023-39805-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
In Parkinson's disease (PD), motor dysfunctions only become apparent after extensive loss of DA innervation. This resilience has been hypothesized to be due to the ability of many motor behaviors to be sustained through a diffuse basal tone of DA; but experimental evidence for this is limited. Here we show that conditional deletion of the calcium sensor synaptotagmin-1 (Syt1) in DA neurons (Syt1 cKODA mice) abrogates most activity-dependent axonal DA release in the striatum and mesencephalon, leaving somatodendritic (STD) DA release intact. Strikingly, Syt1 cKODA mice showed intact performance in multiple unconditioned DA-dependent motor tasks and even in a task evaluating conditioned motivation for food. Considering that basal extracellular DA levels in the striatum were unchanged, our findings suggest that activity-dependent DA release is dispensable for such tasks and that they can be sustained by a basal tone of extracellular DA. Taken together, our findings reveal the striking resilience of DA-dependent motor functions in the context of a near-abolition of phasic DA release, shedding new light on why extensive loss of DA innervation is required to reveal motor dysfunctions in PD.
Collapse
Affiliation(s)
- Benoît Delignat-Lavaud
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Jana Kano
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Charles Ducrot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Ian Massé
- Hôpital du Sacré-Cœur-de-Montréal, CIUSSS NIM, Université de Montréal, Montreal, QC, Canada
| | - Sriparna Mukherjee
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Nicolas Giguère
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Luc Moquin
- Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Samuel Burke
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Raphaëlle Denis
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alex Tchung
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Pedro Rosa-Neto
- Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Daniel Lévesque
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Louis De Beaumont
- Hôpital du Sacré-Cœur-de-Montréal, CIUSSS NIM, Université de Montréal, Montreal, QC, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
4
|
Ducrot C, de Carvalho G, Delignat-Lavaud B, Delmas CVL, Halder P, Giguère N, Pacelli C, Mukherjee S, Bourque MJ, Parent M, Chen LY, Trudeau LE. Conditional deletion of neurexins dysregulates neurotransmission from dopamine neurons. eLife 2023; 12:e87902. [PMID: 37409563 PMCID: PMC10409506 DOI: 10.7554/elife.87902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023] Open
Abstract
Midbrain dopamine (DA) neurons are key regulators of basal ganglia functions. The axonal domain of these neurons is highly complex, with a large subset of non-synaptic release sites and a smaller subset of synaptic terminals from which in addition to DA, glutamate or GABA are also released. The molecular mechanisms regulating the connectivity of DA neurons and their neurochemical identity are unknown. An emerging literature suggests that neuroligins, trans-synaptic cell adhesion molecules, regulate both DA neuron connectivity and neurotransmission. However, the contribution of their major interaction partners, neurexins (Nrxns), is unexplored. Here, we tested the hypothesis that Nrxns regulate DA neuron neurotransmission. Mice with conditional deletion of all Nrxns in DA neurons (DAT::NrxnsKO) exhibited normal basic motor functions. However, they showed an impaired locomotor response to the psychostimulant amphetamine. In line with an alteration in DA neurotransmission, decreased levels of the membrane DA transporter (DAT) and increased levels of the vesicular monoamine transporter (VMAT2) were detected in the striatum of DAT::NrxnsKO mice, along with reduced activity-dependent DA release. Strikingly, electrophysiological recordings revealed an increase of GABA co-release from DA neuron axons in the striatum of these mice. Together, these findings suggest that Nrxns act as regulators of the functional connectivity of DA neurons.
Collapse
Affiliation(s)
- Charles Ducrot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Gregory de Carvalho
- Department of Anatomy and Neurobiology, School of Medicine, University of California, IrvineIrvineUnited States
| | - Benoît Delignat-Lavaud
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Constantin VL Delmas
- CERVO Brain Research Centre, Department of Psychiatry and Neurosciences, Faculty of Medicine, Université LavalQuebecCanada
| | - Priyabrata Halder
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Nicolas Giguère
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of FoggiaFoggiaItaly
| | - Sriparna Mukherjee
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Martin Parent
- CERVO Brain Research Centre, Department of Psychiatry and Neurosciences, Faculty of Medicine, Université LavalQuebecCanada
| | - Lulu Y Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, IrvineIrvineUnited States
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| |
Collapse
|
5
|
Mancini M, Natoli S, Gardoni F, Di Luca M, Pisani A. Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19. Int J Mol Sci 2023; 24:ijms24065618. [PMID: 36982693 PMCID: PMC10056044 DOI: 10.3390/ijms24065618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (α-syn) aggregates. Previous studies have hypothesized a link between PD and viral infections. Indeed, different cases of parkinsonism have been reported following COVID-19. However, whether SARS-CoV-2 may trigger a neurodegenerative process is still a matter of debate. Interestingly, evidence of brain inflammation has been described in postmortem samples of patients infected by SARS-CoV-2, which suggests immune-mediated mechanisms triggering the neurological sequelae. In this review, we discuss the role of proinflammatory molecules such as cytokines, chemokines, and oxygen reactive species in modulating DA homeostasis. Moreover, we review the existing literature on the possible mechanistic interplay between SARS-CoV-2-mediated neuroinflammation and nigrostriatal DAergic impairment, and the cross-talk with aberrant α-syn metabolism.
Collapse
Affiliation(s)
- Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Silvia Natoli
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- IRCCS Maugeri Pavia, 27100 Pavia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-380-247
| |
Collapse
|
6
|
Baker EC, San AE, Cilkiz KZ, Littlejohn BP, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Welsh TH, Riley DG. Inter-Individual Variation in DNA Methylation Patterns across Two Tissues and Leukocytes in Mature Brahman Cattle. BIOLOGY 2023; 12:biology12020252. [PMID: 36829529 PMCID: PMC9953534 DOI: 10.3390/biology12020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Quantifying the natural inter-individual variation in DNA methylation patterns is important for identifying its contribution to phenotypic variation, but also for understanding how the environment affects variability, and for incorporation into statistical analyses. The inter-individual variation in DNA methylation patterns in female cattle and the effect that a prenatal stressor has on such variability have yet to be quantified. Thus, the objective of this study was to utilize methylation data from mature Brahman females to quantify the inter-individual variation in DNA methylation. Pregnant Brahman cows were transported for 2 h durations at days 60 ± 5; 80 ± 5; 100 ± 5; 120 ± 5; and 140 ± 5 of gestation. A non-transport group was maintained as a control. Leukocytes, amygdala, and anterior pituitary glands were harvested from eight cows born from the non-transport group (Control) and six from the transport group (PNS) at 5 years of age. The DNA harvested from the anterior pituitary contained the greatest variability in DNA methylation of cytosine-phosphate-guanine (mCpG) sites from both the PNS and Control groups, and the amygdala had the least. Numerous variable mCpG sites were associated with retrotransposable elements and highly repetitive regions of the genome. Some of the genomic features that had high variation in DNA methylation are involved in immune responses, signaling, responses to stimuli, and metabolic processes. The small overlap of highly variable CpG sites and features between tissues and leukocytes supports the role of variable DNA methylation in regulating tissue-specific gene expression. Many of the CpG sites that exhibited high variability in DNA methylation were common between the PNS and Control groups within a tissue, but there was little overlap in genomic features with high variability. The interaction between the prenatal environment and the genome could be responsible for the differences in location of the variable DNA methylation.
Collapse
Affiliation(s)
- Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Audrey E. San
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Brittni P. Littlejohn
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research, College Station, TX 77845, USA
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Correspondence:
| |
Collapse
|
7
|
Lebowitz JJ, Banerjee A, Qiao C, Bunzow JR, Williams JT, Kaeser PS. Synaptotagmin-1 is a Ca 2+ sensor for somatodendritic dopamine release. Cell Rep 2023; 42:111915. [PMID: 36640316 PMCID: PMC9993464 DOI: 10.1016/j.celrep.2022.111915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/07/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Modes of somatodendritic transmission range from rapid synaptic signaling to protracted regulation over distance. Somatodendritic dopamine secretion in the midbrain leads to D2 receptor-induced modulation of dopamine neurons on the timescale of seconds. Temporally imprecise release mechanisms are often presumed to be at play, and previous work indeed suggested roles for slow Ca2+ sensors. We here use mouse genetics and whole-cell electrophysiology to establish that the fast Ca2+ sensor synaptotagmin-1 (Syt-1) is important for somatodendritic dopamine release. Syt-1 ablation from dopamine neurons strongly reduces stimulus-evoked D2 receptor-mediated inhibitory postsynaptic currents (D2-IPSCs) in the midbrain. D2-IPSCs evoked by paired stimuli exhibit less depression, and high-frequency trains restore dopamine release. Spontaneous somatodendritic dopamine secretion is independent of Syt-1, supporting that its exocytotic mechanisms differ from evoked release. We conclude that somatodendritic dopamine transmission relies on the fast Ca2+ sensor Syt-1, leading to synchronous release in response to the initial stimulus.
Collapse
Affiliation(s)
- Joseph J Lebowitz
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Claire Qiao
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - James R Bunzow
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Martinez Damonte V, Pomrenze MB, Manning CE, Casper C, Wolfden AL, Malenka RC, Kauer JA. Somatodendritic Release of Cholecystokinin Potentiates GABAergic Synapses Onto Ventral Tegmental Area Dopamine Cells. Biol Psychiatry 2023; 93:197-208. [PMID: 35961792 PMCID: PMC9976994 DOI: 10.1016/j.biopsych.2022.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Neuropeptides are contained in nearly every neuron in the central nervous system and can be released not only from nerve terminals but also from somatodendritic sites. Cholecystokinin (CCK), among the most abundant neuropeptides in the brain, is expressed in the majority of midbrain dopamine neurons. Despite this high expression, CCK function within the ventral tegmental area (VTA) is not well understood. METHODS We confirmed CCK expression in VTA dopamine neurons through immunohistochemistry and in situ hybridization and detected optogenetically induced CCK release using an enzyme-linked immunosorbent assay. To investigate whether CCK modulates VTA circuit activity, we used whole-cell patch clamp recordings in mouse brain slices. We infused CCK locally in vivo and tested food intake and locomotion in fasted mice. We also used in vivo fiber photometry to measure Ca2+ transients in dopamine neurons during feeding. RESULTS Here we report that VTA dopamine neurons release CCK from somatodendritic regions, where it triggers long-term potentiation of GABAergic (gamma-aminobutyric acidergic) synapses. The somatodendritic release occurs during trains of optogenetic stimuli or prolonged but modest depolarization and is dependent on synaptotagmin-7 and T-type Ca2+ channels. Depolarization-induced long-term potentiation is blocked by a CCK2 receptor antagonist and mimicked by exogenous CCK. Local infusion of CCK in vivo inhibits food consumption and decreases distance traveled in an open field test. Furthermore, intra-VTA-infused CCK reduced dopamine cell Ca2+ signals during food consumption after an overnight fast and was correlated with reduced food intake. CONCLUSIONS Our experiments introduce somatodendritic neuropeptide release as a previously unknown feedback regulator of VTA dopamine cell excitability and dopamine-related behaviors.
Collapse
|
9
|
Le Gratiet KL, Anderson CK, Puente N, Grandes P, Copas C, Nahirney PC, Delaney KR, Nashmi R. Differential Subcellular Distribution and Release Dynamics of Cotransmitted Cholinergic and GABAergic Synaptic Inputs Modify Dopaminergic Neuronal Excitability. J Neurosci 2022; 42:8670-8693. [PMID: 36195440 PMCID: PMC9671585 DOI: 10.1523/jneurosci.2514-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
We identified three types of monosynaptic cholinergic inputs spatially arranged onto medial substantia nigra dopaminergic neurons in male and female mice: cotransmitted acetylcholine (ACh)/GABA, GABA-only, and ACh only. There was a predominant GABA-only conductance along lateral dendrites and soma-centered ACh/GABA cotransmission. In response to repeated stimulation, the GABA conductance found on lateral dendrites decremented less than the proximally located GABA conductance, and was more effective at inhibiting action potentials. While soma-localized ACh/GABA cotransmission showed depression of the GABA component with repeated stimulation, ACh-mediated nicotinic responses were largely maintained. We investigated whether this differential change in inhibitory/excitatory inputs leads to altered neuronal excitability. We found that a depolarizing current or glutamate preceded by cotransmitted ACh/GABA was more effective in eliciting an action potential compared with current, glutamate, or ACh/GABA alone. This enhanced excitability was abolished with nicotinic receptor inhibitors, and modulated by T- and L-type calcium channels, thus establishing that activity of multiple classes of ion channels integrates to shape neuronal excitability.SIGNIFICANCE STATEMENT Our laboratory has previously discovered a population of substantia nigra dopaminegic neurons (DA) that receive cotransmitted ACh and GABA. This study used subcellular optogenetic stimulation of cholinergic presynaptic terminals to map the functional ACh and GABA synaptic inputs across the somatodendritic extent of substantia nigra DA neurons. We determined spatially clustered GABA-only inputs on the lateral dendrites while cotransmitted ACh and GABA clustered close to the soma. We have shown that the action of GABA and ACh in cotransmission spatially clustered near the soma play a critical role in enhancing glutamate-mediated neuronal excitability through the activation of T- and L-type voltage-gated calcium channels.
Collapse
Affiliation(s)
| | | | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country Universidad del Pais Vasco / Euskal Herriko Unibertsitatea, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, E-48940, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country Universidad del Pais Vasco / Euskal Herriko Unibertsitatea, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, E-48940, Leioa, Spain
| | - Charlotte Copas
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Patrick C Nahirney
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Kerry R Delaney
- Department of Biology
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Raad Nashmi
- Department of Biology
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
10
|
Burke S, Trudeau LE. Axonal Domain Structure as a Putative Identifier of Neuron-Specific Vulnerability to Oxidative Stress in Cultured Neurons. eNeuro 2022; 9:ENEURO.0139-22.2022. [PMID: 36192156 PMCID: PMC9595591 DOI: 10.1523/eneuro.0139-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
Several populations of neurons are purported to degenerate in Parkinson's disease (PD). One current hypothesis suggests that vulnerable neurons in PD share common characteristics including projecting to voluminous territories and having extremely long and branched axonal domains with large numbers of neurotransmitter release sites. In this study, we used a mouse in vitro culture system to compare the axonal domain of neuronal populations suspected to be vulnerable in PD to that of neuronal populations considered at a lesser risk. In the first category, we included dopamine (DA) neurons of the substantia nigra, noradrenergic neurons of the locus coeruleus (LC), serotonin neurons of the raphe nuclei (R), and cholinergic neurons of the dorsal motor nucleus of the vagus (DMV). In the second category, we included DA neurons of the ventral tegmental area, cholinergic neurons of the hypoglossal nucleus, and cholinergic interneurons of the dorsal striatum. Validating their differential vulnerability, we find that, when compared with neurons presumed to be resilient in PD, a larger proportion of neurons presumed to be vulnerable in PD degenerate in response to cell stress induced by hydrogen peroxide. We also find that they are endowed with larger axonal domains, that are more complex, have more axonal varicosities with a higher proportion of varicosities that are positive for synaptotagmin 1 (Syt-1). Notwithstanding the obvious limitations related to the dissection of small brain nuclei and to the growth of these neurons in vitro, these findings support the hypothesis that axonal domain structure is a key characteristic of neuronal vulnerability to oxidative stress.
Collapse
Affiliation(s)
- Samuel Burke
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
- Neural Signaling and Circuitry Research Group (SNC), Montréal, Quebec, H3T 1J4, Canada
- Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Montréal, Quebec, H3T 1J4
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
- Neural Signaling and Circuitry Research Group (SNC), Montréal, Quebec, H3T 1J4, Canada
- Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Montréal, Quebec, H3T 1J4
| |
Collapse
|
11
|
Sriram K, Lin GX, Jefferson AM, McKinney W, Jackson MC, Cumpston JL, Cumpston JB, Leonard HD, Kashon ML, Fedan JS. Biological effects of inhaled crude oil vapor V. Altered biogenic amine neurotransmitters and neural protein expression. Toxicol Appl Pharmacol 2022; 449:116137. [PMID: 35750205 PMCID: PMC9936428 DOI: 10.1016/j.taap.2022.116137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 12/19/2022]
Abstract
Workers in the oil and gas industry are at risk for exposure to a number of physical and chemical hazards at the workplace. Chemical hazard risks include inhalation of crude oil or its volatile components. While several studies have investigated the neurotoxic effects of volatile hydrocarbons, in general, there is a paucity of studies assessing the neurotoxicity of crude oil vapor (COV). Consequent to the 2010 Deepwater Horizon (DWH) oil spill, there is growing concern about the short- and long-term health effects of exposure to COV. NIOSH surveys suggested that the DWH oil spill cleanup workers experienced neurological symptoms, including depression and mood disorders, but the health effects apart from oil dispersants were difficult to discern. To investigate the potential neurological risks of COV, male Sprague-Dawley rats were exposed by whole-body inhalation to COV (300 ppm; Macondo surrogate crude oil) following an acute (6 h/d × 1 d) or sub-chronic (6 h/d × 4 d/wk. × 4 wks) exposure regimen. At 1, 28 or 90 d post-exposure, norepinephrine (NE), epinephrine (EPI), dopamine (DA) and serotonin (5-HT) were evaluated as neurotransmitter imbalances are associated with psychosocial-, motor- and cognitive- disorders. Sub-chronic COV exposure caused significant reductions in NE, EPI and DA in the dopaminergic brain regions, striatum (STR) and midbrain (MB), and a large increase in 5-HT in the STR. Further, sub-chronic exposure to COV caused upregulation of synaptic and Parkinson's disease-related proteins in the STR and MB. Whether such effects will lead to neurodegenerative outcomes remain to be investigated.
Collapse
Affiliation(s)
- Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America.
| | - Gary X Lin
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Amy M Jefferson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Mark C Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Jared L Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - James B Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Howard D Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| |
Collapse
|
12
|
Hikima T, Witkovsky P, Khatri L, Chao MV, Rice ME. Synaptotagmins 1 and 7 Play Complementary Roles in Somatodendritic Dopamine Release. J Neurosci 2022; 42:3919-3930. [PMID: 35361702 PMCID: PMC9097777 DOI: 10.1523/jneurosci.2416-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms underlying somatodendritic dopamine (DA) release remain unresolved, despite the passing of decades since its discovery. Our previous work showed robust release of somatodendritic DA in submillimolar extracellular Ca2+ concentration ([Ca2+]o). Here we tested the hypothesis that the high-affinity Ca2+ sensor synaptotagmin 7 (Syt7), is a key determinant of somatodendritic DA release and its Ca2+ dependence. Somatodendritic DA release from SNc DA neurons was assessed using whole-cell recording in midbrain slices from male and female mice to monitor evoked DA-dependent D2 receptor-mediated inhibitory currents (D2ICs). Single-cell application of an antibody to Syt7 (Syt7 Ab) decreased pulse train-evoked D2ICs, revealing a functional role for Syt7. The assessment of the Ca2+ dependence of pulse train-evoked D2ICs confirmed robust DA release in submillimolar [Ca2+]o in wild-type (WT) neurons, but loss of this sensitivity with intracellular Syt7 Ab or in Syt7 knock-out (KO) mice. In millimolar [Ca2+]o, pulse train-evoked D2ICs in Syt7 KOs showed a greater reduction in decreased [Ca2+]o than seen in WT mice; the effect on single pulse-evoked DA release, however, did not differ between genotypes. Single-cell application of a Syt1 Ab had no effect on train-evoked D2ICs in WT SNc DA neurons, but did cause a decrease in D2IC amplitude in Syt7 KOs, indicating a functional substitution of Syt1 for Syt7. In addition, Syt1 Ab decreased single pulse-evoked D2ICs in WT cells, indicating the involvement of Syt1 in tonic DA release. Thus, Syt7 and Syt1 play complementary roles in somatodendritic DA release from SNc DA neurons.SIGNIFICANCE STATEMENT The respective Ca2+ dependence of somatodendritic and axonal dopamine (DA) release differs, resulting in the persistence of somatodendritic DA release in submillimolar Ca2+ concentrations too low to support axonal release. We demonstrate that synaptotagmin7 (Syt7), a high-affinity Ca2+ sensor, underlies phasic somatodendritic DA release and its Ca2+ sensitivity in the substantia nigra pars compacta. In contrast, we found that synaptotagmin 1 (Syt1), the Ca2+ sensor underlying axonal DA release, plays a role in tonic, but not phasic, somatodendritic DA release in wild-type mice. However, Syt1 can facilitate phasic DA release after Syt7 deletion. Thus, we show that both Syt1 and Syt7 act as Ca2+ sensors subserving different aspects of somatodendritic DA release processes.
Collapse
Affiliation(s)
- Takuya Hikima
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
| | - Paul Witkovsky
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
| | - Latika Khatri
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York 10016
| | - Moses V Chao
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York 10016
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, New York 10016
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
13
|
Delignat-Lavaud B, Ducrot C, Kouwenhoven W, Feller N, Trudeau LÉ. Implication of synaptotagmins 4 and 7 in activity-dependent somatodendritic dopamine release in the ventral midbrain. Open Biol 2022; 12:210339. [PMID: 35232250 PMCID: PMC8889187 DOI: 10.1098/rsob.210339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 01/07/2023] Open
Abstract
Dopamine (DA) neurons can release DA not just from axon terminals, but also from their somatodendritic (STD) compartment through a mechanism that is still incompletely understood. Using voltammetry in mouse mesencephalic brain slices, we find that STD DA release has low capacity and shows a calcium sensitivity that is comparable to that of axonal release. We find that the molecular mechanism of STD DA release differs from axonal release with regard to the implication of synaptotagmin (Syt) calcium sensors. While individual constitutive knockout of Syt4 or Syt7 is not sufficient to reduce STD DA release, the removal of both isoforms reduces this release by approximately 50%, leaving axonal release unimpaired. Our work unveils clear differences in the mechanisms of STD and axonal DA release.
Collapse
Affiliation(s)
- Benoît Delignat-Lavaud
- Department of Pharmacology and Physiology, Université de Montréal, QC, Canada H3T 1J4
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada H3T 1J4
- Neural Signaling and Circuitry Research Group (SNC), Montréal, QC, Canada H3C 3J7
| | - Charles Ducrot
- Department of Pharmacology and Physiology, Université de Montréal, QC, Canada H3T 1J4
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada H3T 1J4
- Neural Signaling and Circuitry Research Group (SNC), Montréal, QC, Canada H3C 3J7
| | - Willemieke Kouwenhoven
- Department of Pharmacology and Physiology, Université de Montréal, QC, Canada H3T 1J4
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada H3T 1J4
- Neural Signaling and Circuitry Research Group (SNC), Montréal, QC, Canada H3C 3J7
| | - Nina Feller
- Department of Pharmacology and Physiology, Université de Montréal, QC, Canada H3T 1J4
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada H3T 1J4
- Neural Signaling and Circuitry Research Group (SNC), Montréal, QC, Canada H3C 3J7
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Université de Montréal, QC, Canada H3T 1J4
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada H3T 1J4
- Neural Signaling and Circuitry Research Group (SNC), Montréal, QC, Canada H3C 3J7
| |
Collapse
|
14
|
Hobson BD, Choi SJ, Mosharov EV, Soni RK, Sulzer D, Sims PA. Subcellular proteomics of dopamine neurons in the mouse brain. eLife 2022; 11:e70921. [PMID: 35098924 PMCID: PMC8860448 DOI: 10.7554/elife.70921] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/30/2022] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic neurons modulate neural circuits and behaviors via dopamine (DA) release from expansive, long range axonal projections. The elaborate cytoarchitecture of these neurons is embedded within complex brain tissue, making it difficult to access the neuronal proteome using conventional methods. Here, we demonstrate APEX2 proximity labeling within genetically targeted neurons in the mouse brain, enabling subcellular proteomics with cell-type specificity. By combining APEX2 biotinylation with mass spectrometry, we mapped the somatodendritic and axonal proteomes of midbrain dopaminergic neurons. Our dataset reveals the proteomic architecture underlying proteostasis, axonal metabolism, and neurotransmission in these neurons. We find that most proteins encoded by DA neuron-enriched genes are localized within striatal dopaminergic axons, including ion channels with previously undescribed axonal localization. These proteomic datasets provide a resource for neuronal cell biology, and this approach can be readily adapted for study of other neural cell types.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Medical Scientist Training Program, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Psychiatry, Columbia University Irving Medical CenterNew YorkUnited States
| | - Se Joon Choi
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
| | - Eugene V Mosharov
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
| | - Rajesh K Soni
- Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical CenterNew YorkUnited States
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
- Department of Neurology, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Pharmacology, Columbia University Irving Medical CenterNew YorkUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical CenterNew YorkUnited States
- Sulzberger Columbia Genome Center, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
15
|
De-Miguel FF. The Thermodynamically Expensive Contribution of Three Calcium Sources to Somatic Release of Serotonin. Int J Mol Sci 2022; 23:1495. [PMID: 35163419 PMCID: PMC8836226 DOI: 10.3390/ijms23031495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
The soma, dendrites and axon of neurons may display calcium-dependent release of transmitters and peptides. Such release is named extrasynaptic for occurring in absence of synaptic structures. This review describes the cooperative actions of three calcium sources on somatic exocytosis. Emphasis is given to the somatic release of serotonin by the classical leech Retzius neuron, which has allowed detailed studies on the fine steps from excitation to exocytosis. Trains of action potentials induce transmembrane calcium entry through L-type channels. For action potential frequencies above 5 Hz, summation of calcium transients on individual action potentials activates the second calcium source: ryanodine receptors produce calcium-induced calcium release. The resulting calcium tsunami activates mitochondrial ATP synthesis to fuel transport of vesicles to the plasma membrane. Serotonin that is released maintains a large-scale exocytosis by activating the third calcium source: serotonin autoreceptors coupled to phospholipase C promote IP3 production. Activated IP3 receptors in peripheral endoplasmic reticulum release calcium that promotes vesicle fusion. The Swiss-clock workings of the machinery for somatic exocytosis has a striking disadvantage. The essential calcium-releasing endoplasmic reticulum near the plasma membrane hinders the vesicle transport, drastically reducing the thermodynamic efficiency of the ATP expenses and elevating the energy cost of release.
Collapse
Affiliation(s)
- Francisco F De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
16
|
Hobson BD, Kong L, Angelo MF, Lieberman OJ, Mosharov EV, Herzog E, Sulzer D, Sims PA. Subcellular and regional localization of mRNA translation in midbrain dopamine neurons. Cell Rep 2022; 38:110208. [PMID: 35021090 PMCID: PMC8844886 DOI: 10.1016/j.celrep.2021.110208] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Midbrain dopaminergic (mDA) neurons exhibit extensive dendritic and axonal arborizations, but local protein synthesis is not characterized in these neurons. Here, we investigate messenger RNA (mRNA) localization and translation in mDA neuronal axons and dendrites, both of which release dopamine (DA). Using highly sensitive ribosome-bound RNA sequencing and imaging approaches, we find no evidence for mRNA translation in mDA axons. In contrast, mDA neuronal dendrites in the substantia nigra pars reticulata (SNr) contain ribosomes and mRNAs encoding the major components of DA synthesis, release, and reuptake machinery. Surprisingly, we also observe dendritic localization of mRNAs encoding synaptic vesicle-related proteins, including those involved in exocytic fusion. Our results are consistent with a role for local translation in the regulation of DA release from dendrites, but not from axons. Our translatome data define a molecular signature of sparse mDA neurons in the SNr, including the enrichment of Atp2a3/SERCA3, an atypical ER calcium pump.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Systems Biology, Columbia University Irving Medical Center, New York 10032, NY, USA; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Linghao Kong
- Department of Systems Biology, Columbia University Irving Medical Center, New York 10032, NY, USA
| | - Maria Florencia Angelo
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - Ori J Lieberman
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Etienne Herzog
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France.
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York 10032, NY, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
17
|
Nagayach A, Ghafari M, Zhao Y, Collins GS, Singh A, Geller AI. Connected neurons in multiple neocortical areas, comprising parallel circuits, encode essential information for visual shape learning. J Chem Neuroanat 2021; 118:102024. [PMID: 34492329 DOI: 10.1016/j.jchemneu.2021.102024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022]
Abstract
Neocortical areas comprised of multiple neuronal circuits which are encoded with innumerable advanced cognitive tasks. Studies focused on neuronal network and synaptic plasticity has hypothesized that every specific neuron and the circuit process the explicit essential information for the specific tasks. However, the structure of these circuits and the involved critical neurons remain to be elucidated. Considering our previous studies, showing the specificity of rat postrhinal cortex comprising specific neuronal circuit for encoding both the learning and recall of shape discrimination through a fast neurotransmitter release from the transduced neurons, here we have demonstrated that postsynaptic neurons in two distinct areas, perirhinal cortex and the ventral temporal association areas are required for the specific visual shape discriminations learning. The constitutively active PKC was delivered into neuronal cells in postrhinal cortex, and the animals were allowed to learn the new shape discriminations, and then the silencing siRNA was delivered into postsynaptic neurons in either perirhinal cortex or ventral temporal association areas, using a novel technology for gene transfer into connected neurons. We observed that expression of the siRNA caused the deficits in visual performance, via blocking the activity in the neurons, as displayed by activity-dependent gene imaging, and also subsequently obstructed the activation of specific signaling pathways required for further learning, and dendritic protein synthesis and CREB. Thus, ratifying the conclusion that the two parallel circuits are both required for the visual shape discrimination learning.
Collapse
Affiliation(s)
- Aarti Nagayach
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, United States.
| | - Maryam Ghafari
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, United States
| | - Yinghong Zhao
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, United States
| | - Grant S Collins
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, United States
| | - Anshuman Singh
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, United States
| | - Alfred I Geller
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, United States; Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, United States
| |
Collapse
|
18
|
Patel S, Howard D, French L. A pH-eQTL Interaction at the RIT2- SYT4 Parkinson's Disease Risk Locus in the Substantia Nigra. Front Aging Neurosci 2021; 13:690632. [PMID: 34305570 PMCID: PMC8299340 DOI: 10.3389/fnagi.2021.690632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease causes severe motor and cognitive disabilities that result from the progressive loss of dopamine neurons in the substantia nigra. The rs12456492 variant in the RIT2 gene has been repeatedly associated with increased risk for Parkinson's disease. From a transcriptomic perspective, a meta-analysis found that RIT2 gene expression is correlated with pH in the human brain. To assess these pH associations in relation to Parkinson's disease risk, we examined the two datasets that assayed rs12456492, gene expression, and pH in the postmortem human brain. Using the BrainEAC dataset, we replicate the positive correlation between RIT2 gene expression and pH in the human brain (n = 100). Furthermore, we found that the relationship between expression and pH is influenced by rs12456492. When tested across ten brain regions, this interaction is specifically found in the substantia nigra. A similar association was found for the co-localized SYT4 gene. In addition, SYT4 associations are stronger in a combined model with both genes, and the SYT4 interaction appears to be specific to males. In the Genotype-Tissue Expression (GTEx) dataset, the pH associations involving rs12456492 and expression of either SYT4 and RIT2 were not seen. This null finding may be due to the short postmortem intervals of the GTEx tissue samples. In the BrainEAC data, we tested the effect of postmortem interval and only observed the interactions in samples with the longer intervals. These previously unknown associations suggest novel roles for rs12456492, RIT2, and SYT4 in the regulation and response to pH in the substantia nigra.
Collapse
Affiliation(s)
- Sejal Patel
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Derek Howard
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Leon French
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
De-Miguel FF, Leon-Pinzon C, Torres-Platas SG, Del-Pozo V, Hernández-Mendoza GA, Aguirre-Olivas D, Méndez B, Moore S, Sánchez-Sugía C, García-Aguilera MA, Martínez-Valencia A, Ramírez-Santiago G, Rubí JM. Extrasynaptic Communication. Front Mol Neurosci 2021; 14:638858. [PMID: 33994942 PMCID: PMC8119753 DOI: 10.3389/fnmol.2021.638858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Streams of action potentials or long depolarizations evoke a massive exocytosis of transmitters and peptides from the surface of dendrites, axons and cell bodies of different neuron types. Such mode of exocytosis is known as extrasynaptic for occurring without utilization of synaptic structures. Most transmitters and all peptides can be released extrasynaptically. Neurons may discharge their contents with relative independence from the axon, soma and dendrites. Extrasynaptic exocytosis takes fractions of a second in varicosities or minutes in the soma or dendrites, but its effects last from seconds to hours. Unlike synaptic exocytosis, which is well localized, extrasynaptic exocytosis is diffuse and affects neuronal circuits, glia and blood vessels. Molecules that are liberated may reach extrasynaptic receptors microns away. The coupling between excitation and exocytosis follows a multistep mechanism, different from that at synapses, but similar to that for the release of hormones. The steps from excitation to exocytosis have been studied step by step for the vital transmitter serotonin in leech Retzius neurons. The events leading to serotonin exocytosis occur similarly for the release of other transmitters and peptides in central and peripheral neurons. Extrasynaptic exocytosis occurs commonly onto glial cells, which react by releasing the same or other transmitters. In the last section, we discuss how illumination of the retina evokes extrasynaptic release of dopamine and ATP. Dopamine contributes to light-adaptation; ATP activates glia, which mediates an increase in blood flow and oxygenation. A proper understanding of the workings of the nervous system requires the understanding of extrasynaptic communication.
Collapse
Affiliation(s)
- Francisco F De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City, Mexico
| | - Carolina Leon-Pinzon
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Susana G Torres-Platas
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Vanessa Del-Pozo
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | | | - Dilia Aguirre-Olivas
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Bruno Méndez
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Sharlen Moore
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Celeste Sánchez-Sugía
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | | | | | | | - J Miguel Rubí
- Facultat de Fisica, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Hikima T, Lee CR, Witkovsky P, Chesler J, Ichtchenko K, Rice ME. Activity-dependent somatodendritic dopamine release in the substantia nigra autoinhibits the releasing neuron. Cell Rep 2021; 35:108951. [PMID: 33826884 PMCID: PMC8189326 DOI: 10.1016/j.celrep.2021.108951] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Somatodendritic dopamine (DA) release from midbrain DA neurons activates D2 autoreceptors on these cells to regulate their activity. However, the source of autoregulatory DA remains controversial. Here, we test the hypothesis that D2 autoreceptors on a given DA neuron in the substantia nigra pars compacta (SNc) are activated primarily by DA released from that same cell, rather than from its neighbors. Voltage-clamp recording allows monitoring of evoked D2-receptor-mediated inhibitory currents (D2ICs) in SNc DA neurons as an index of DA release. Single-cell application of antibodies to Na+ channels via the recording pipette decreases spontaneous activity of recorded neurons and attenuates evoked D2ICs; antibodies to SNAP-25, a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, also decrease D2IC amplitude. Evoked D2ICs are nearly abolished by the light chain of botulinum neurotoxin A, which cleaves SNAP-25, whereas synaptically activated GABAB-receptor-mediated currents are unaffected. Thus, somatodendritic DA release in the SNc autoinhibits the neuron that releases it.
Collapse
Affiliation(s)
- Takuya Hikima
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christian R Lee
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul Witkovsky
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Chesler
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Konstantin Ichtchenko
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
21
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
22
|
Che X, Cai J, Liu Y, Xu T, Yang J, Wu C. Oxytocin signaling in the treatment of drug addiction: Therapeutic opportunities and challenges. Pharmacol Ther 2021; 223:107820. [PMID: 33600854 DOI: 10.1016/j.pharmthera.2021.107820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Drug addiction is one of the leading causes of mortality worldwide. Despite great advances were achieved in understanding the neurobiology of drug addiction, the therapeutic options are severely limited, with poor effectiveness and serious side effects. The neuropeptide oxytocin (OXT) is well known for its effects on uterine contraction, sexual/maternal behaviors, social affiliation, stress and learning/memory by interacting with the OXT receptor and other neuromodulators. Emerging evidence suggests that the acute or chronic exposure to drugs can affect the OXT system. Additionally, OXT administration can ameliorate a wide range of abused drug-induced neurobehavioral changes. Overall, OXT not only suppresses drug reward in the binge stage of drug addiction, but also reduces stress responses and social impairments during the withdrawal stage and, finally, prevents drug/cue/stress-induced reinstatement. More importantly, clinical studies have also shown that OXT can exert beneficial effects on reducing substance use disorders of a series of drugs, such as heroin, cocaine, alcohol, cannabis and nicotine. Thus, the present review focuses on the role of OXT in treating drug addiction, including the preclinical and clinical therapeutic potential of OXT and its analogs on the neurobiological perspectives of drugs, to provide a better insight of the efficacy of OXT as a clinical addiction therapeutic agent.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Tianyu Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
23
|
Banerjee A, Lee J, Nemcova P, Liu C, Kaeser PS. Synaptotagmin-1 is the Ca 2+ sensor for fast striatal dopamine release. eLife 2020; 9:58359. [PMID: 32490813 PMCID: PMC7319770 DOI: 10.7554/elife.58359] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
Dopamine powerfully controls neural circuits through neuromodulation. In the vertebrate striatum, dopamine adjusts cellular functions to regulate behaviors across broad time scales, but how the dopamine secretory system is built to support fast and slow neuromodulation is not known. Here, we set out to identify Ca2+-triggering mechanisms for dopamine release. We find that synchronous dopamine secretion is abolished in acute brain slices of conditional knockout mice in which Synaptotagmin-1 is removed from dopamine neurons. This indicates that Synaptotagmin-1 is the Ca2+ sensor for fast dopamine release. Remarkably, dopamine release induced by strong depolarization and asynchronous release during stimulus trains are unaffected by Synaptotagmin-1 knockout. Microdialysis further reveals that these modes and action potential-independent release provide significant amounts of extracellular dopamine in vivo. We propose that the molecular machinery for dopamine secretion has evolved to support fast and slow signaling modes, with fast release requiring the Ca2+ sensor Synaptotagmin-1.
Collapse
Affiliation(s)
- Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Jinoh Lee
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Paulina Nemcova
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Changliang Liu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
24
|
Guan Z, Quiñones-Frías MC, Akbergenova Y, Littleton JT. Drosophila Synaptotagmin 7 negatively regulates synaptic vesicle release and replenishment in a dosage-dependent manner. eLife 2020; 9:e55443. [PMID: 32343229 PMCID: PMC7224696 DOI: 10.7554/elife.55443] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
Synchronous neurotransmitter release is triggered by Ca2+ binding to the synaptic vesicle protein Synaptotagmin 1, while asynchronous fusion and short-term facilitation is hypothesized to be mediated by plasma membrane-localized Synaptotagmin 7 (SYT7). We generated mutations in Drosophila Syt7 to determine if it plays a conserved role as the Ca2+ sensor for these processes. Electrophysiology and quantal imaging revealed evoked release was elevated 2-fold. Syt7 mutants also had a larger pool of readily-releasable vesicles, faster recovery following stimulation, and intact facilitation. Syt1/Syt7 double mutants displayed more release than Syt1 mutants alone, indicating SYT7 does not mediate the residual asynchronous release remaining in the absence of SYT1. SYT7 localizes to an internal membrane tubular network within the peri-active zone, but does not enrich at active zones. These findings indicate the two Ca2+ sensor model of SYT1 and SYT7 mediating all phases of neurotransmitter release and facilitation is not applicable at Drosophila synapses.
Collapse
Affiliation(s)
- Zhuo Guan
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Monica C Quiñones-Frías
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
25
|
An ultra-stable cytoplasmic antibody engineered for in vivo applications. Nat Commun 2020; 11:336. [PMID: 31953402 PMCID: PMC6969036 DOI: 10.1038/s41467-019-13654-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/08/2019] [Indexed: 11/16/2022] Open
Abstract
Targeting cytoplasmic protein–protein interactions with antibodies remains technically challenging, since antibodies expressed in the cytosol frequently form insoluble aggregates. Existing engineering methods are based on the notion that the estimated net charge at pH 7.4 affects stability; as such, they are unable to overcome this problem. Herein, we report a versatile method for engineering an ultra-stable cytoplasmic antibody (STAND), with a strong estimated net negative charge at pH 6.6, by fusing peptide tags with a highly negative charge and a low isoelectric point. Without the need for complicated amino acid substitutions, we convert aggregation-prone antibodies to STANDs that are useful for inhibiting in vivo transmitter release, modulating animal behaviour, and inhibiting in vivo cancer proliferation driven by mutated Kras—long recognised as an “undruggable” oncogenic protein. The STAND method shows promise for targeting endogenous cytoplasmic proteins in basic biology and for developing future disease treatments. Antibodies expressed in the cytosol often form insoluble aggregates, which makes it hard to target intracellular proteins. Here the authors engineer an ultra-stable cytoplasmic antibody (STAND) with a low isoelectric point that can be used in vivo.
Collapse
|
26
|
The landscape of multiscale transcriptomic networks and key regulators in Parkinson's disease. Nat Commun 2019; 10:5234. [PMID: 31748532 PMCID: PMC6868244 DOI: 10.1038/s41467-019-13144-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
Genetic and genomic studies have advanced our knowledge of inherited Parkinson’s disease (PD), however, the etiology and pathophysiology of idiopathic PD remain unclear. Herein, we perform a meta-analysis of 8 PD postmortem brain transcriptome studies by employing a multiscale network biology approach to delineate the gene-gene regulatory structures in the substantia nigra and determine key regulators of the PD transcriptomic networks. We identify STMN2, which encodes a stathmin family protein and is down-regulated in PD brains, as a key regulator functionally connected to known PD risk genes. Our network analysis predicts a function of human STMN2 in synaptic trafficking, which is validated in Stmn2-knockdown mouse dopaminergic neurons. Stmn2 reduction in the mouse midbrain causes dopaminergic neuron degeneration, phosphorylated α-synuclein elevation, and locomotor deficits. Our integrative analysis not only begins to elucidate the global landscape of PD transcriptomic networks but also pinpoints potential key regulators of PD pathogenic pathways. Parkinson’s disease (PD) is characterized by neurodegeneration associated with loss of dopaminergic (DA) neurons and deposition of Lewy bodies. Here, Wang et al. use co-expression network analysis to pinpoint disease pathways and propose reduced expression of STMN2 as a cause of presynaptic function loss in PD.
Collapse
|
27
|
Robinson BG, Cai X, Wang J, Bunzow JR, Williams JT, Kaeser PS. RIM is essential for stimulated but not spontaneous somatodendritic dopamine release in the midbrain. eLife 2019; 8:47972. [PMID: 31486769 PMCID: PMC6754207 DOI: 10.7554/elife.47972] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/04/2019] [Indexed: 01/19/2023] Open
Abstract
Action potentials trigger neurotransmitter release at active zones, specialized release sites in axons. Many neurons also secrete neurotransmitters or neuromodulators from their somata and dendrites. However, it is unclear whether somatodendritic release employs specialized sites for release, and the molecular machinery for somatodendritic release is not understood. Here, we identify an essential role for the active zone protein RIM in stimulated somatodendritic dopamine release in the midbrain. In mice in which RIMs are selectively removed from dopamine neurons, action potentials failed to evoke significant somatodendritic release detected via D2 receptor-mediated currents. Compellingly, spontaneous dopamine release was normal upon RIM knockout. Dopamine neuron morphology, excitability, and dopamine release evoked by amphetamine, which reverses dopamine transporters, were also unaffected. We conclude that somatodendritic release employs molecular scaffolds to establish secretory sites for rapid dopamine signaling during firing. In contrast, basal release that is independent of action potential firing does not require RIM.
Collapse
Affiliation(s)
- Brooks G Robinson
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Xintong Cai
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Jiexin Wang
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - James R Bunzow
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - John T Williams
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
28
|
Liu C, Kaeser PS. Mechanisms and regulation of dopamine release. Curr Opin Neurobiol 2019; 57:46-53. [PMID: 30769276 PMCID: PMC6629510 DOI: 10.1016/j.conb.2019.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 01/17/2023]
Abstract
Dopamine controls motor functions, motivation, and reward-related learning through G-protein coupled receptor signaling. The current working model is that upon release, dopamine diffuses to influence many target cells via wide-spread receptors. Recent studies, however, suggest that dopamine release is fast and generates small signaling hotspots. In this review, we summarize progress on the understanding of the dopamine release apparatus and evaluate how its properties may shape dopamine signaling during firing. We discuss how mechanisms of regulation may act through this machinery and propose that striatal architecture for dopamine signaling may have evolved to support rapid dopamine coding.
Collapse
Affiliation(s)
- Changliang Liu
- Department of Neurobiology, Harvard Medical School, United States
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, United States.
| |
Collapse
|
29
|
Baker K, Gordon SL, Melland H, Bumbak F, Scott DJ, Jiang TJ, Owen D, Turner BJ, Boyd SG, Rossi M, Al-Raqad M, Elpeleg O, Peck D, Mancini GMS, Wilke M, Zollino M, Marangi G, Weigand H, Borggraefe I, Haack T, Stark Z, Sadedin S, Tan TY, Jiang Y, Gibbs RA, Ellingwood S, Amaral M, Kelley W, Kurian MA, Cousin MA, Raymond FL. SYT1-associated neurodevelopmental disorder: a case series. Brain 2019; 141:2576-2591. [PMID: 30107533 PMCID: PMC6113648 DOI: 10.1093/brain/awy209] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/19/2018] [Indexed: 12/25/2022] Open
Abstract
Synaptotagmin 1 (SYT1) is a critical mediator of fast, synchronous, calcium-dependent neurotransmitter release and also modulates synaptic vesicle endocytosis. This paper describes 11 patients with de novo heterozygous missense mutations in SYT1. All mutations alter highly conserved residues, and cluster in two regions of the SYT1 C2B domain at positions Met303 (M303K), Asp304 (D304G), Asp366 (D366E), Ile368 (I368T) and Asn371 (N371K). Phenotypic features include infantile hypotonia, congenital ophthalmic abnormalities, childhood-onset hyperkinetic movement disorders, motor stereotypies, and developmental delay varying in severity from moderate to profound. Behavioural characteristics include sleep disturbance and episodic agitation. Absence of epileptic seizures and normal orbitofrontal head circumference are important negative features. Structural MRI is unremarkable but EEG disturbance is universal, characterized by intermittent low frequency high amplitude oscillations. The functional impact of these five de novo SYT1 mutations has been assessed by expressing rat SYT1 protein containing the equivalent human variants in wild-type mouse primary hippocampal cultures. All mutant forms of SYT1 were expressed at levels approximately equal to endogenous wild-type protein, and correctly localized to nerve terminals at rest, except for SYT1M303K, which was expressed at a lower level and failed to localize at nerve terminals. Following stimulation, SYT1I368T and SYT1N371K relocalized to nerve terminals at least as efficiently as wild-type SYT1. However, SYT1D304G and SYT1D366E failed to relocalize to nerve terminals following stimulation, indicative of impairments in endocytic retrieval and trafficking of SYT1. In addition, the presence of SYT1 variants at nerve terminals induced a slowing of exocytic rate following sustained action potential stimulation. The extent of disturbance to synaptic vesicle kinetics is mirrored by the severity of the affected individuals' phenotypes, suggesting that the efficiency of SYT1-mediated neurotransmitter release is critical to cognitive development. In summary, de novo dominant SYT1 missense mutations are associated with a recognizable neurodevelopmental syndrome, and further cases can now be diagnosed based on clinical features, electrophysiological signature and mutation characteristics. Variation in phenotype severity may reflect mutation-specific impact on the diverse physiological functions of SYT1.
Collapse
Affiliation(s)
- Kate Baker
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust / MRC Building, Hills Road, Cambridge, UK.,MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge, UK
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia
| | - Holly Melland
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia
| | - Fabian Bumbak
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia
| | - Tess J Jiang
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia
| | - David Owen
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Hills Road, Cambridge, UK
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, Australia
| | - Stewart G Boyd
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK
| | - Mari Rossi
- Ambry Genetics, 15 Argonaut, Aliso Viejo, CA, USA
| | - Mohammed Al-Raqad
- Department of Clinical Genetics, Queen Rania Al-Abdullah Children Hospital, King Hussein Medical Centre, Royal Medical Services, Amman, Jordan
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Dawn Peck
- University of Missouri Health Care, Columbia, MO, USA
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Marcella Zollino
- Institute of Genomic Medicine, Catholic University, A. Gemelli Foundation, Roma, Italy
| | - Giuseppe Marangi
- Institute of Genomic Medicine, Catholic University, A. Gemelli Foundation, Roma, Italy
| | - Heike Weigand
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Dr. von Hauner's Children's Hospital, University of Munich, Munich, Germany
| | - Ingo Borggraefe
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Dr. von Hauner's Children's Hospital, University of Munich, Munich, Germany
| | - Tobias Haack
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Parkville VIC, Australia
| | - Simon Sadedin
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Parkville VIC, Australia.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Parkville VIC, Australia
| | - Yunyun Jiang
- Human Genome Sequencing Center, Baylor College of Medicine, Texas, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Texas, USA
| | - Sara Ellingwood
- Maine Medical Partners Pediatric Specialty Care, Congress St, Portland ME, USA
| | - Michelle Amaral
- HudsonAlpha Institute for Biotechnology, 601 Genome Way NW, Huntsville, AL, USA
| | - Whitley Kelley
- HudsonAlpha Institute for Biotechnology, 601 Genome Way NW, Huntsville, AL, USA
| | - Manju A Kurian
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
| | - F Lucy Raymond
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust / MRC Building, Hills Road, Cambridge, UK
| |
Collapse
|
30
|
Zhang GR, Zhao H, Choi EM, Svestka M, Wang X, Nagayach A, Singh A, Cook RG, Geller AI. An identified ensemble within a neocortical circuit encodes essential information for genetically-enhanced visual shape learning. Hippocampus 2019; 29:710-725. [PMID: 30734387 DOI: 10.1002/hipo.23068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022]
Abstract
Advanced cognitive tasks are encoded in distributed neocortical circuits that span multiple forebrain areas. Nonetheless, synaptic plasticity and neural network theories hypothesize that essential information for performing these tasks is encoded in specific ensembles within these circuits. Relatively simpler subcortical areas contain specific ensembles that encode learning, suggesting that neocortical circuits contain such ensembles. Previously, using localized gene transfer of a constitutively active protein kinase C (PKC), we established that a genetically-modified circuit in rat postrhinal cortex, part of the hippocampal formation, can encode some essential information for performing specific visual shape discriminations. However, these studies did not identify any specific neurons that encode learning; the entire circuit might be required. Here, we show that both learning and recall require fast neurotransmitter release from an identified ensemble within this circuit, the transduced neurons; we blocked fast release from these neurons by coexpressing a Synaptotagmin I siRNA with the constitutively active PKC. During learning or recall, specific signaling pathways required for learning are activated in this ensemble; during learning, calcium/calmodulin-dependent protein kinase II, MAP kinase, and CREB are activated; and, during recall, dendritic protein synthesis and CREB are activated. Using activity-dependent gene imaging, we showed that during learning, activity in this ensemble is required to recruit and activate the circuit. Further, after learning, during image presentation, blocking activity in this ensemble reduces accuracy, even though most of the rest of the circuit is activated. Thus, an identified ensemble within a neocortical circuit encodes essential information for performing an advanced cognitive task.
Collapse
Affiliation(s)
- Guo-Rong Zhang
- Department of Neurology, W. Roxbury VA Hospital/Harvard Medical School, W. Roxbury, Massachusetts
| | - Hua Zhao
- Department of Neurology, W. Roxbury VA Hospital/Harvard Medical School, W. Roxbury, Massachusetts
| | - Eui M Choi
- Department of Neurology, W. Roxbury VA Hospital/Harvard Medical School, W. Roxbury, Massachusetts
| | - Michael Svestka
- Department of Neurology, W. Roxbury VA Hospital/Harvard Medical School, W. Roxbury, Massachusetts
| | - Xiaodan Wang
- Department of Neurology, W. Roxbury VA Hospital/Harvard Medical School, W. Roxbury, Massachusetts
| | - Aarti Nagayach
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Anshuman Singh
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Robert G Cook
- Department of Psychology, Tufts University, Medford, Massachusetts
| | - Alfred I Geller
- Department of Neurology, W. Roxbury VA Hospital/Harvard Medical School, W. Roxbury, Massachusetts.,Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
31
|
Singh A, Verma P, Raju A, Mohanakumar KP. Nimodipine attenuates the parkinsonian neurotoxin, MPTP-induced changes in the calcium binding proteins, calpain and calbindin. J Chem Neuroanat 2019; 95:89-94. [PMID: 29427747 DOI: 10.1016/j.jchemneu.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
We have recently demonstrated neuroprotective abilities of nimodipine, an L-type voltage dependent calcium channel (VDCC) blocker in cellular and animal models of Parkinson's disease (PD). To understand the calcium regulatory mechanisms in the disease pathogenesis, the present study examined calcium regulatory proteins calbindin and calpain mRNA and protein levels employing quantitative PCR and western blot in 1-methyl-4-phenyl pyridinium ion (MPP+)-treated SH-SY5Y cell lines and in the striatum of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). mRNA and protein levels of calbindin were lower, while that of calpain were higher in MPP+-treated SH-SY5Y cells and MPTP-treated mouse striatum as compared to their respective controls. Nimodipine pretreatment significantly attenuated these effects in the parkinsonian neurotoxin-treated SH-SY5Y cell line and in the mouse striatum. The activities of the apoptotic mediator, caspase-3 and calpain were increased in the neurotoxin-treated groups as compared to their respective controls, which was ameliorated by nimodipine pretreatment. These results suggest that parkinsonian neurotoxin-mediated dopaminergic neuronal death might involve defects in calcium regulatory proteins that control intracellular calcium homeostasis, and these could be corrected by inhibiting L-type VDCC activity. These findings support the notion that hypertensive patients who are on long-term intake of dihydropyridine have reduced risk for PD.
Collapse
Affiliation(s)
- Alpana Singh
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, 4, Raja Subodh Mullick Road, Jadavpur, 700032, India
| | - Poonam Verma
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, 4, Raja Subodh Mullick Road, Jadavpur, 700032, India
| | - Anu Raju
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, 4, Raja Subodh Mullick Road, Jadavpur, 700032, India
| | - Kochupurackal P Mohanakumar
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, 4, Raja Subodh Mullick Road, Jadavpur, 700032, India; Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala, 686009, India.
| |
Collapse
|
32
|
Yee AG, Forbes B, Cheung PY, Martini A, Burrell MH, Freestone PS, Lipski J. Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta. J Neurochem 2018; 148:462-479. [PMID: 30203851 DOI: 10.1111/jnc.14587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/09/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
Abstract
Despite the importance of somatodendritic dopamine (DA) release in the Substantia Nigra pars compacta (SNc), its mechanism remains poorly understood. Using a novel approach combining fast-scan controlled-adsorption voltammetry (FSCAV) and single-unit electrophysiology, we have investigated the mechanism of somatodendritic release by directly correlating basal (non-stimulated) extracellular DA concentration ([DA]out ), with pharmacologically-induced changes of firing of nigral dopaminergic neurons in rat brain slices. FSCAV measurements indicated that basal [DA]out in the SNc was 40.7 ± 2.0 nM (at 34 ± 0.5°C), which was enhanced by amphetamine, cocaine, and L-DOPA, and reduced by VMAT2 inhibitor, Ro4-1284. Complete inhibition of firing by TTX decreased basal [DA]out , but this reduction was smaller than the effect of D2 receptor agonist, quinpirole. Despite similar effects on neuronal firing, the larger decrease in [DA]out evoked by quinpirole was attributed to cell membrane hyperpolarization and greater reduction in cytosolic free Ca2+ ([Ca2+ ]in ). Decreasing extracellular Ca2+ also reduced basal [DA]out , despite increasing firing frequency. Furthermore, inhibiting L-type Ca2+ channels decreased basal [DA]out , although specific Cav 1.3 channel inhibition did not affect firing rate. Inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) also decreased [DA]out , demonstrating the importance of intracellular Ca2+ stores for somatodendritic release. Finally, in vivo FSCAV measurements showed that basal [DA]out in the SNc was 79.8 ± 10.9 nM in urethane-anesthetized rats, which was enhanced by amphetamine. Overall, our findings indicate that although tonic somatodendritic DA release is largely independent of action potentials, basal [DA]out is strongly regulated by voltage-dependent Ca2+ influx and release of intracellular Ca2+ . OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Andrew G Yee
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Blaze Forbes
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Pang-Ying Cheung
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | - Mark H Burrell
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Peter S Freestone
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Janusz Lipski
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
34
|
Gantz SC, Ford CP, Morikawa H, Williams JT. The Evolving Understanding of Dopamine Neurons in the Substantia Nigra and Ventral Tegmental Area. Annu Rev Physiol 2018; 80:219-241. [PMID: 28938084 DOI: 10.1146/annurev-physiol-021317-121615] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, the population of neurons in the ventral tegmental area (VTA) and substantia nigra (SN) has been examined at multiple levels. The results indicate that the projections, neurochemistry, and receptor and ion channel expression in this cell population vary widely. This review centers on the intrinsic properties and synaptic regulation that control the activity of dopamine neurons. Although all dopamine neurons fire action potentials in a pacemaker pattern in the absence of synaptic input, the intrinsic properties that underlie this activity differ considerably. Likewise, the transition into a burst/pause pattern results from combinations of intrinsic ion conductances, inhibitory and excitatory synaptic inputs that differ among this cell population. Finally, synaptic plasticity is a key regulator of the rate and pattern of activity in different groups of dopamine neurons. Through these fundamental properties, the activity of dopamine neurons is regulated and underlies the wide-ranging functions that have been attributed to dopamine.
Collapse
Affiliation(s)
- Stephanie C Gantz
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Hitoshi Morikawa
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas 78712, USA
| | - John T Williams
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97239, USA;
| |
Collapse
|
35
|
Riley DG, Gill CA, Boldt CR, Funkhouser RR, Herring AD, Riggs PK, Sawyer JE, Lunt DK, Sanders JO. Crossbred steer temperament as yearlings and whole genome association of steer temperament as yearlings and calf temperament post-weaning. J Anim Sci 2017; 94:1408-14. [PMID: 27136000 DOI: 10.2527/jas.2015-0041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
cattle often have the reputation for a poor or dangerous temperament. Identification of genomic regions that associate with temperament of such cattle may be useful for genetic improvement strategies. The objectives of this study were to evaluate subjective temperament scores (1 to 9; higher scores indicated more unfavorable temperament) for aggressiveness, nervousness, flightiness, gregariousness, and overall temperament of one-half steers in feedlot conditions at 1 yr of age and compare those scores of those steers when evaluated approximately 1 mo postweaning, and conduct whole genome association analyses using SNP markers and the temperament traits of those steers at 1 yr of age and for temperament traits of all calves at weaning. Contemporary groups ( < 0.001) were steers born in the same year and season, and fed in the same feedlot pen. Aggressiveness of steers at 1 yr of age was not associated with aggressiveness at weaning (linear regression coefficient did not differ from 0; = 0.96), but regressions of all other yearling scores of steers on the scores at weaning were positive (coefficients ranged from 0.26 ± 0.04 to 0.32 ± 0.04; < 0.001). Estimates of Pearson correlation coefficients (using unadjusted values and residual values) of the different traits measured at 1 yr of age were large ( > 0.63; < 0.008) except for aggressiveness with nervousness, flightiness, or gregariousness, which did not differ from 0 ( > 0.1). Five SNP on BTA 1, 24, and 29 had suggestive associations (0.17 < [adjusted for FDR] < 0.24) with aggressiveness, nervousness, or flightiness at evaluation postweaning and 13 SNP on 11 chromosomes had suggestive associations (0.07 < [adjusted for FDR] < 0.24) with aggressiveness, nervousness, flightiness, or overall temperament score of steers at 1 yr of age. Genes close to these loci with roles in neural systems of various organisms included synaptotagmin 4 (BTA 24), FAT atypical cadhedrin 3 (BTA 29), tubulin tyrosine ligase-like 1 (BTA 5), spermatogenesis associated 17 (BTA 16), stanniocalcin 2 (BTA 20), and GABA receptor γ 3 (BTA 21).
Collapse
|
36
|
Bohmbach K, Schwarz MK, Schoch S, Henneberger C. The structural and functional evidence for vesicular release from astrocytes in situ. Brain Res Bull 2017; 136:65-75. [PMID: 28122264 DOI: 10.1016/j.brainresbull.2017.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
The concept of the tripartite synapse states that bi-directional signalling between perisynaptic astrocyte processes, presynaptic axonal boutons and postsynaptic neuronal structures defines the properties of synaptic information processing. Ca2+-dependent vesicular release from astrocytes, as one of the mechanisms of astrocyte-neuron communication, has attracted particular attention but has also been the subject of intense debate. In neurons, regulated vesicular release is a strongly coordinated process. It requires a complex release machinery comprised of many individual components ranging from vesicular neurotransmitter transporters and soluble NSF attachment protein receptors (SNARE) proteins to Ca2+-sensors and the proteins that spatially and temporally control exocytosis of synaptic vesicles. If astrocytes employ similar mechanisms to release neurotransmitters is less well understood. The aim of this review is therefore to discuss recent experimental evidence that sheds light on the central structural components responsible for vesicular release from astrocytes in situ.
Collapse
Affiliation(s)
- Kirsten Bohmbach
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.
| | - Martin K Schwarz
- Department of Epileptology, University of Bonn Medical School, Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology, University of Bonn Medical School, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
37
|
Ludwig M, Apps D, Menzies J, Patel JC, Rice ME. Dendritic Release of Neurotransmitters. Compr Physiol 2016; 7:235-252. [PMID: 28135005 DOI: 10.1002/cphy.c160007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. © 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.
Collapse
Affiliation(s)
- Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - David Apps
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - John Menzies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, New York, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, New York, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| |
Collapse
|
38
|
Tratnjek L, Živin M, Glavan G. Synaptotagmin 7 and SYNCRIP proteins are ubiquitously expressed in the rat brain and co-localize in Purkinje neurons. J Chem Neuroanat 2016; 79:12-21. [PMID: 27771350 DOI: 10.1016/j.jchemneu.2016.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/03/2016] [Accepted: 10/18/2016] [Indexed: 11/17/2022]
Abstract
Synaptotagmin 7 (SYT7) is ubiquitously expressed calcium sensor, involved in neuronal membrane trafficking. Immunoprecipitation experiments demonstrated that SYT7 interacts with Synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). SYNCRIP is a component of mRNA granules, which are transported to dendrites and are prerequisite for synaptic plasticity. Given the potential significance of SYT7 regulation in processes of neurodegeneration, which are characterized by high level of synaptic vulnerability, we aimed to analyse and compare the distribution of SYT7 and SYNCRIP proteins in the adult rat striatum, hippocampus, cerebral and cerebellar cortex. We investigated the degree of SYT7-SYNCRIP co-localization in order to examine possible functional interaction of these two proteins. We found that SYT7 is abundantly distributed in neuropil of all examined anatomical areas of the brain, most prominently in axons. On the contrary, SYNCRIP had cytoplasmic somatodendritic pattern of expression, which was most prominent in the hippocampus and cerebellum. In the striatum, hippocampus and cerebral cortex SYT7 and SYNCRIP immunofluorescent signals were mutually excluded, thus diminishing the probability for their physiological interaction. In somata of Purkinje neurons in the cerebellar cortex, both SYT7 and SYNCRIP were expressed and partially co-localized suggesting possible functional connection between SYT7 and SYNCRIP proteins in Purkinje neurons.
Collapse
Affiliation(s)
- Larisa Tratnjek
- University of Ljubljana, Medical Faculty, Institute of Pathophysiology, Brain Research Laboratory, Zaloška 4, 1000, Ljubljana, Slovenia.
| | - Marko Živin
- University of Ljubljana, Medical Faculty, Institute of Pathophysiology, Brain Research Laboratory, Zaloška 4, 1000, Ljubljana, Slovenia.
| | - Gordana Glavan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
39
|
Singh A, Verma P, Balaji G, Samantaray S, Mohanakumar KP. Nimodipine, an L-type calcium channel blocker attenuates mitochondrial dysfunctions to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Neurochem Int 2016; 99:221-232. [PMID: 27395789 DOI: 10.1016/j.neuint.2016.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD), the most common progressive neurodegenerative movement disorder, results from loss of dopaminergic neurons of substantia nigra pars compacta. These neurons exhibit Cav1.3 channel-dependent pacemaking activity. Epidemiological studies suggest reduced risk for PD in population under long-term antihypertensive therapy with L-type calcium channel antagonists. These prompted us to investigate nimodipine, an L-type calcium channel blocker for neuroprotective effect in cellular and animal models of PD. Nimodipine (0.1-10 μM) significantly attenuated 1-methyl-4-phenyl pyridinium ion-induced loss in mitochondrial morphology, mitochondrial membrane potential and increases in intracellular calcium levels in SH-SY5Y neuroblastoma cell line as measured respectively employing Mitotracker green staining, TMRM, and Fura-2 fluorescence, but only a feeble neuroprotective effect was observed in MTT assay. Nimodipine dose-dependently reduced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian syndromes (akinesia and catalepsy) and loss in swimming ability in Balb/c mice. It attenuated MPTP-induced loss of dopaminergic tyrosine hydroxylase positive neurons in substantia nigra, improved mitochondrial oxygen consumption and inhibited reactive oxygen species production in the striatal mitochondria measured using dichlorodihydrofluorescein fluorescence, but failed to block striatal dopamine depletion. These results point to an involvement of L-type calcium channels in MPTP-induced dopaminergic neuronal death in experimental parkinsonism and more importantly provide evidences for nimodipine to improve mitochondrial integrity and function.
Collapse
Affiliation(s)
- Alpana Singh
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology Kolkata, 4, Raja Subodh Mullick Road, Jadavpur, 700032, India
| | - Poonam Verma
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology Kolkata, 4, Raja Subodh Mullick Road, Jadavpur, 700032, India
| | - Gillela Balaji
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology Kolkata, 4, Raja Subodh Mullick Road, Jadavpur, 700032, India
| | - Supriti Samantaray
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kochupurackal P Mohanakumar
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology Kolkata, 4, Raja Subodh Mullick Road, Jadavpur, 700032, India; Inter University Centre for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam, 686009, Kerala State, India.
| |
Collapse
|
40
|
Tratnjek L, Glavan G, Višnjar T, Živin M. Upregulation and axonal transport of synaptotagmin-IV in the direct-pathway medium spiny neurons in hemi-parkinsonian rats induced by dopamine D1 receptor stimulation. Eur J Neurosci 2016; 43:885-98. [PMID: 26750488 DOI: 10.1111/ejn.13161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/05/2015] [Accepted: 12/26/2015] [Indexed: 01/06/2023]
Abstract
Synaptotagmin-IV (Syt-IV) may function as a regulator of Ca(2+) -dependent synaptic transmission. In the hemi-parkinsonian rats with unilateral lesions of dopaminergic nigrostriatal neurons Syt-IV and substance-P (SP) mRNAs could be upregulated within the dopaminergically hypersensitive striatum of the lesioned brain hemisphere via the stimulation of striatal dopamine D1 (D1-R), but not D2 receptors. The hypersensitive D1-R-mediated transmission may be the culprit for the undesired expression of levodopa-induced dyskinesia, implying the involvement of Syt-IV and SP in the process. First, striatal cellular phenotypes expressing Syt-IV were determined. It was found to be expressed in all striatal neurons and a small population of astrocytes. Then it was examined, if the D1-R-mediated upregulation of Syt-IV mRNA may result in the upregulation of the translated protein. It was found that, after acute stimulation with a selective D1 agonist, (±)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF-82958), Syt-IV was elevated within the SP-expressing striatal neurons of the lesioned side. This was followed by the upregulation of Syt-IV, but not of its mRNA, within the ipsilateral target nuclei of the direct-pathway medium spiny neurons, indicating axonal transport of de novo synthesized protein to their SP-positive synaptic terminals. However, despite the striatal upregulation of SP and Syt-IV following a similar time-course, their subcellular co-localization within the axonal terminals was not found. It was therefore suggested that Syt-IV may regulate the hypersensitive striatal synaptic transmission, although via a SP-independent mechanism.
Collapse
Affiliation(s)
- Larisa Tratnjek
- Brain Research Laboratory, Medical Faculty, Institute of Pathophysiology, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Gordana Glavan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Višnjar
- Institute of Cell Biology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Živin
- Brain Research Laboratory, Medical Faculty, Institute of Pathophysiology, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| |
Collapse
|
41
|
Ludwig M, Stern J. Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0182. [PMID: 26009761 DOI: 10.1098/rstb.2014.0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mammalian hypothalamic magnocellular neurons of the supraoptic and paraventricular nuclei are among the best understood of all peptidergic neurons. Through their anatomical features, vasopressin- and oxytocin-containing neurons have revealed many important aspects of dendritic functions. Here, we review our understanding of the mechanisms of somato-dendritic peptide release, and the effects of autocrine, paracrine and hormone-like signalling on neuronal networks and behaviour.
Collapse
Affiliation(s)
- Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Javier Stern
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
42
|
Rice ME, Patel JC. Somatodendritic dopamine release: recent mechanistic insights. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0185. [PMID: 26009764 DOI: 10.1098/rstb.2014.0185] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K(+) channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca(2+) dependence of release and the potential role of exocytotic proteins.
Collapse
Affiliation(s)
- Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA Department of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
43
|
Development of Hiccup in Male Patients Hospitalized in a Psychiatric Ward: Is it Specifically Related to the Aripiprazole-Benzodiazepine Combination? Clin Neuropharmacol 2016; 39:67-72. [PMID: 26818041 DOI: 10.1097/wnf.0000000000000129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to identify hiccup cases among patients hospitalized in a psychiatric ward and focus on their treatment, so to establish intervention risk. METHODS We reviewed records of 354 consecutively admitted patients during the year 2013 to identify hiccup cases. RESULTS Hiccup occurred in 7 patients on both aripiprazole and benzodiazepines and in one on delorazepam. No patient on aripiprazole alone developed hiccup. No patient on drugs other than aripiprazole or benzodiazepines developed hiccup. The symptom subsided in 3 cases upon discontinuing aripiprazole and in 5 cases after discontinuing the benzodiazepine (including the case on delorazepam alone); in 2 cases of persistent hiccup, the symptom resolved after adding the calcium channel blocker, pregabalin. All patients developing hiccup were male. There was a 70-fold increase in the risk for developing hiccup in the aripiprazole/benzodiazepine intake condition versus all other conditions, and it further increased if limiting to the male sex. LIMITATIONS The retrospective nature of the study was its limitation. CONCLUSIONS Hospitalized psychiatric patients on both aripiprazole and benzodiazepines may be at significant risk of hiccup. This clinical awareness could lead to antipsychotic and/or benzodiazepine discontinuation or switch or to the addition of calcium channel blocker inhibitors.
Collapse
|
44
|
Hiccup with aripiprazole plus benzodiazepines resolving with pregabalin and/or benzodiazepine switch/discontinuation: four case reports. J Clin Psychopharmacol 2015; 35:195-7. [PMID: 25679128 DOI: 10.1097/jcp.0000000000000292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Trudeau LE, Hnasko TS, Wallén-Mackenzie A, Morales M, Rayport S, Sulzer D. The multilingual nature of dopamine neurons. PROGRESS IN BRAIN RESEARCH 2014; 211:141-64. [PMID: 24968779 DOI: 10.1016/b978-0-444-63425-2.00006-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The ability of dopamine (DA) neurons to release other transmitters in addition to DA itself has been increasingly recognized, hence the concept of their multilingual nature. A subset of DA neurons, mainly found in the ventral tegmental area, express VGLUT2, allowing them to package and release glutamate onto striatal spiny projection neurons and cholinergic interneurons. Some dopaminergic axon terminals release GABA. Glutamate release by DA neurons has a developmental role, facilitating axonal growth and survival, and may determine in part the critical contribution of the ventral striatum to psychostimulant-induced behavior. Vesicular glutamate coentry may have synergistic effects on vesicular DA filling. The multilingual transmission of DA neurons across multiple striatal domains and the increasing insight into the role of glutamate cotransmission in the ventral striatum highlight the importance of analyzing DA neuron transmission at the synaptic level.
Collapse
Affiliation(s)
- Louis-Eric Trudeau
- Department of Pharmacology, Neuroscience Research Group, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada; Department of Neurosciences, Neuroscience Research Group, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Asa Wallén-Mackenzie
- Unit of Functional Neurobiology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Marisela Morales
- National Institute on Drug Abuse, Intramural Research Program, Neuronal Networks Section, Baltimore, MD, USA
| | - Steven Rayport
- Department of Psychiatry, Columbia University, New York, NY, USA; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, NY, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University, New York, NY, USA; Department of Neurology, Columbia University, New York, NY, USA; Department of Pharmacology, Columbia University, New York, NY, USA; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, NY, USA
| |
Collapse
|
46
|
Gonzalez R, Garitaonandia I, Abramihina T, Wambua GK, Ostrowska A, Brock M, Noskov A, Boscolo FS, Craw JS, Laurent LC, Snyder EY, Semechkin RA. Deriving dopaminergic neurons for clinical use. A practical approach. Sci Rep 2013; 3:1463. [PMID: 23492920 PMCID: PMC3597995 DOI: 10.1038/srep01463] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/28/2013] [Indexed: 01/28/2023] Open
Abstract
New small molecules that regulate the step-wise differentiation of human pluripotent stem cells into dopaminergic neurons have been identified. The steroid, guggulsterone, was found to be the most effective inducer of neural stem cells into dopaminergic neurons. These neurons are extensively characterized and shown to be functional. We believe this new approach offers a practical route to creating neurons of sufficient quality to be used to treat Parkinson's disease patients.
Collapse
Affiliation(s)
- Rodolfo Gonzalez
- International Stem Cell Corporation, 5950 Priestly Drive, Carlsbad, CA 92008, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Silymarin- and melatonin-mediated changes in the expression of selected genes in pesticides-induced Parkinsonism. Mol Cell Biochem 2013; 384:47-58. [PMID: 23963992 DOI: 10.1007/s11010-013-1780-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/09/2013] [Indexed: 12/28/2022]
Abstract
Parkinson's disease (PD) is the second most unconcealed neurodegenerative disorder labelled with motor impairments. Two pesticides, manganese ethylene-1,2-bisdithiocarbamate (maneb) and 1,1'-dimethyl-4,4'-bipyridinium dichloride (paraquat), together, are reported to increase the incidence of PD in humans and Parkinsonism in mice. Conversely, silymarin and melatonin, two naturally occurring antioxidants, rescue from maneb- and paraquat-induced Parkinsonism. The study examined silymarin- and melatonin-mediated changes in the expression of selected genes in maneb- and paraquat-induced Parkinsonism employing mouse discover chips microarrays. The mice were treated intraperitoneally (i.p.), daily, with silymarin (40 mg/kg) or melatonin (30 mg/kg) for 9 weeks along with vehicles. Subsets of animals were also treated with maneb (30 mg/kg; i.p.) and paraquat (10 mg/kg; i.p.), twice a week, for 9 weeks. Whilst the expression of genes in the striatum was determined by microarray, the expression of randomly selected transcripts was validated by quantitative real-time polymerase chain reaction (qRT-PCR). Combined maneb- and paraquat-treatment altered the expression of several genes associated with apoptosis, inflammation, cell cycle, cell-signalling, etc. pathways. Silymarin and melatonin significantly resisted the changes in the expression of a few genes related to apoptosis, inflammation, cell cycle, cell-signalling, etc. The expression patterns of seven randomly selected genes were analyzed by qRT-PCR, which were found to follow the similar trends, as observed with microarray. The results obtained from the study thus demonstrate that despite resemblances, silymarin and melatonin differentially offset maneb- and paraquat-induced changes in transcriptome.
Collapse
|
48
|
Gantz SC, Bunzow JR, Williams JT. Spontaneous inhibitory synaptic currents mediated by a G protein-coupled receptor. Neuron 2013; 78:807-12. [PMID: 23764286 DOI: 10.1016/j.neuron.2013.04.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2013] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) affect many physiological processes by modulating both intrinsic membrane conductances and synaptic transmission. This study describes spontaneous miniature inhibitory postsynaptic currents mediated by vesicular dopamine release acting locally on metabotropic D2 receptors leading to the activation of a G protein-coupled inwardly rectifying potassium conductance. Thus, individual exocytotic events result in spontaneous GPCR-mediated transmission, similar to synaptic activation of classical ligand-gated ion channels.
Collapse
Affiliation(s)
- Stephanie C Gantz
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | |
Collapse
|
49
|
Tobin V, Leng G, Ludwig M. The involvement of actin, calcium channels and exocytosis proteins in somato-dendritic oxytocin and vasopressin release. Front Physiol 2012; 3:261. [PMID: 22934017 PMCID: PMC3429037 DOI: 10.3389/fphys.2012.00261] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/22/2012] [Indexed: 11/25/2022] Open
Abstract
Hypothalamic magnocellular neurons release vasopressin and oxytocin not only from their axon terminals into the blood, but also from their somata and dendrites into the extracellular space of the brain, and this can be regulated independently. Differential release of neurotransmitters from different compartments of a single neuron requires subtle regulatory mechanisms. Somato-dendritic, but not axon terminal release can be modulated by changes in intracellular calcium concentration [(Ca2+)] by release of calcium from intracellular stores, resulting in priming of dendritic pools for activity-dependent release. This review focuses on our current understanding of the mechanisms of priming and the roles of actin remodeling, voltage-operated calcium channels (VOCCs) and SNARE proteins in the regulation somato-dendritic and axon terminal peptide release.
Collapse
Affiliation(s)
- Vicky Tobin
- Centre for Integrative Physiology, University of Edinburgh Edinburgh, UK
| | | | | |
Collapse
|
50
|
Navakkode S, Sajikumar S, Korte M, Soong TW. Dopamine induces LTP differentially in apical and basal dendrites through BDNF and voltage-dependent calcium channels. Learn Mem 2012; 19:294-9. [DOI: 10.1101/lm.026203.112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|