1
|
Hoang HG, Tran HT, Nguyen MK, Nguyen NSH, Thuy BTP. Investigating the polyethylene degradation mechanism using docking and molecular dynamics simulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64857-64869. [PMID: 39560866 DOI: 10.1007/s11356-024-35547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Polyethylene (PE), widely utilized in everyday life, is notorious for its protracted degradation period, extending over decades, presenting an environmental hazard. Recently, there has been growing interest in utilizing microorganisms to aid in PE decomposition. Molecular docking and molecular dynamics simulations are valuable tools for understanding specific mechanisms and conducting initial screenings to support experimental research in this context. In this study, various enzymes, including lignin peroxidase, laccase, manganese peroxidase, and cutinase, sourced from Phanerodontia chrysosporium, Melanocarpus albomyces, and Fusarium vanettenii, were investigated. The docking simulations revealed that lignin peroxidase exhibited the most substantial binding interaction with PE, displaying a binding energy of - 4.69162 kcal mol-1 and an RMSD value of 0.93428 Å. Following lignin peroxidase in binding strength were laccase, manganese peroxidase, and cutinase. Furthermore, molecular dynamics simulations provided insights into the binding mechanisms. These simulations demonstrated stability over a 200-ns period, as indicated by RMSD and RMSF values below 0.2 nm. Additionally, the study delved into the interaction mechanisms between microorganisms and plastic molecules, enriching our understanding of this process. While the findings of this study may be considered modest, they contribute to a broader perspective and have the potential to influence more profound and significant research in the field.
Collapse
Affiliation(s)
- Hong-Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Vietnam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 23000, Vietnam
| | - Bui Thi Phuong Thuy
- Faculty of Fundamental Sciences, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
2
|
Sánchez-Ruiz MI, Santillana E, Linde D, Romero A, Martínez AT, Ruiz-Dueñas FJ. Structure-function characterization of two enzymes from novel subfamilies of manganese peroxidases secreted by the lignocellulose-degrading Agaricales fungi Agrocybe pediades and Cyathus striatus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:74. [PMID: 38824538 PMCID: PMC11144326 DOI: 10.1186/s13068-024-02517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Manganese peroxidases (MnPs) are, together with lignin peroxidases and versatile peroxidases, key elements of the enzymatic machineries secreted by white-rot fungi to degrade lignin, thus providing access to cellulose and hemicellulose in plant cell walls. A recent genomic analysis of 52 Agaricomycetes species revealed the existence of novel MnP subfamilies differing in the amino-acid residues that constitute the manganese oxidation site. Following this in silico analysis, a comprehensive structure-function study is needed to understand how these enzymes work and contribute to transform the lignin macromolecule. RESULTS Two MnPs belonging to the subfamilies recently classified as MnP-DGD and MnP-ESD-referred to as Ape-MnP1 and Cst-MnP1, respectively-were identified as the primary peroxidases secreted by the Agaricales species Agrocybe pediades and Cyathus striatus when growing on lignocellulosic substrates. Following heterologous expression and in vitro activation, their biochemical characterization confirmed that these enzymes are active MnPs. However, crystal structure and mutagenesis studies revealed manganese coordination spheres different from those expected after their initial classification. Specifically, a glutamine residue (Gln333) in the C-terminal tail of Ape-MnP1 was found to be involved in manganese binding, along with Asp35 and Asp177, while Cst-MnP1 counts only two amino acids (Glu36 and Asp176), instead of three, to function as a MnP. These findings led to the renaming of these subfamilies as MnP-DDQ and MnP-ED and to re-evaluate their evolutionary origin. Both enzymes were also able to directly oxidize lignin-derived phenolic compounds, as seen for other short MnPs. Importantly, size-exclusion chromatography analyses showed that both enzymes cause changes in polymeric lignin in the presence of manganese, suggesting their relevance in lignocellulose transformation. CONCLUSIONS Understanding the mechanisms used by basidiomycetes to degrade lignin is of particular relevance to comprehend carbon cycle in nature and to design biotechnological tools for the industrial use of plant biomass. Here, we provide the first structure-function characterization of two novel MnP subfamilies present in Agaricales mushrooms, elucidating the main residues involved in catalysis and demonstrating their ability to modify the lignin macromolecule.
Collapse
Affiliation(s)
- María Isabel Sánchez-Ruiz
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Elena Santillana
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Linde
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Antonio Romero
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | |
Collapse
|
3
|
Liu E, Mercado MIV, Segato F, Wilkins MR. A green pathway for lignin valorization: Enzymatic lignin depolymerization in biocompatible ionic liquids and deep eutectic solvents. Enzyme Microb Technol 2024; 174:110392. [PMID: 38171172 DOI: 10.1016/j.enzmictec.2023.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Lignin depolymerization, which enables the breakdown of a complex and heterogeneous aromatic polymer into relatively uniform derivatives, serves as a critical process in valorization of lignin. Enzymatic lignin depolymerization has become a promising biological strategy to overcome the heterogeneity of lignin, due to its mild reaction conditions and high specificity. However, the low solubility of lignin compounds in aqueous environments prevents efficient lignin depolymerization by lignin-degrading enzymes. The employment of biocompatible ionic liquids (ILs) and deep eutectic solvents (DESs) in lignin fractionation has created a promising pathway to enzymatically depolymerize lignin within these green solvents to increase lignin solubility. In this review, recent research progress on enzymatic lignin depolymerization, particularly in a consolidated process involving ILs/DESs is summarized. In addition, the interactions between lignin-degrading enzymes and solvent systems are explored, and potential protein engineering methodology to improve the performance of lignin-degrading enzymes is discussed. Consolidation of enzymatic lignin depolymerization and biocompatible ILs/DESs paves a sustainable, efficient, and synergistic way to convert lignin into value-added products.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Fernando Segato
- Department of Biotechnology, University of São Paulo, Lorena, SP, Brazil
| | - Mark R Wilkins
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
4
|
Jin J, Arciszewski J, Auclair K, Jia Z. Enzymatic polyethylene biorecycling: Confronting challenges and shaping the future. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132449. [PMID: 37690195 DOI: 10.1016/j.jhazmat.2023.132449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Polyethylene (PE) is a widely used plastic known for its resistance to biodegradation, posing a significant environmental challenge. Recent advances have shed light on microorganisms and insects capable of breaking down PE and identified potential PE-degrading enzymes (PEases), hinting at the possibility of PE biorecycling. Research on enzymatic PE degradation is still in its early stages, especially compared to the progress made with polyethylene terephthalate (PET). While PET hydrolases have been extensively studied and engineered for improved performance, even the products of PEases remain mostly undefined. This Perspective analyzes the current state of enzymatic PE degradation research, highlighting obstacles in the search for bona fide PEases and suggesting areas for future exploration. A critical challenge impeding progress in this field stems from the inert nature of the C-C and C-H bonds of PE. Furthermore, breaking down PE into small molecules using only one monofunctional enzyme is theoretically impossible. Overcoming these obstacles requires identifying enzymatic pathways, which can be facilitated using emerging technologies like omics, structure-based design, and computer-assisted engineering of enzymes. Understanding the mechanisms underlying PE enzymatic biodegradation is crucial for research progress and for identifying potential solutions to the global plastic pollution crisis.
Collapse
Affiliation(s)
- Jin Jin
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON KL7 3N6, Canada
| | - Jane Arciszewski
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal QC H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal QC H3A 0B8, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON KL7 3N6, Canada.
| |
Collapse
|
5
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fern'andez-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology-A review. Int J Biol Macromol 2023:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational frameworks, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fern'andez-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanizaci'on El Bosque, 28670 Villaviciosa de Od'on, Spain; Grupo de Investigaci'on en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
6
|
Dhankhar P, Dalal V, Sharma AK, Kumar P. Structural insights at acidic pH of dye-decolorizing peroxidase from Bacillus subtilis. Proteins 2023; 91:508-517. [PMID: 36345957 DOI: 10.1002/prot.26444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Dye-decolorizing peroxidases (DyPs), a type of heme-containing oxidoreductase enzymes, catalyze the peroxide-dependent oxidation of various industrial dyes as well as lignin and lignin model compounds. In our previous work, we have recently reported the crystal structures of class A-type DyP from Bacillus subtilis at pH 7.0 (BsDyP7), exposing the location of three binding sites for small substrates and high redox-potential substrates. The biochemical studies revealed the optimum acidic pH for enzyme activity. In the present study, the crystal structure of BsDyP at acidic pH (BsDyP4) reveals two-monomer units stabilized by intermolecular salt bridges and a hydrogen bond network in a homo-dimeric unit. Based on the monomeric structural comparison of BsDyP4 and BsDyP7, minor differences were observed in the loop regions, that is, LI (Ala64-Gln71), LII (Glu96-Lys108), LIII (Pro117-Leu124), and LIV (Leu295-Asp303). Despite these differences, BsDyP4 adopts similar heme architecture as well as three substrate-binding sites to BsDyP7. In BsDyP4, a shift in Asp187, heme pocket residue discloses the plausible reason for optimal acidic pH for BsDyP activity. This study provides insight into the structural changes in BsDyP at acidic pH, where BsDyP is biologically active.
Collapse
Affiliation(s)
- Poonam Dhankhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Vikram Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
7
|
Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Int J Mol Sci 2023; 24:6368. [PMID: 37047341 PMCID: PMC10094197 DOI: 10.3390/ijms24076368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
8
|
Patil PB, Maity S, Sarkar A. Potential human health risk assessment of microplastic exposure: current scenario and future perspectives. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:898. [PMID: 36251091 DOI: 10.1007/s10661-022-10539-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 06/16/2023]
Abstract
The vast usage of synthetic plastics has led to the global problem of plastic pollution which in turn has positively impacted the concerns regarding microplastic pollution. The major factor responsible for the increased level of pollution is the smaller size of microplastics which helps in its transportation across the globe. It has been found in most remote areas like glaciers and Antarctic regions where it is difficult for other contaminants to reach. This is ensured by the physicochemical cycle of plastic. They can either be produced for different applications or generated through the fragmentation of large plastic particles. Different studies have shown the accumulation of microplastics in different organisms, especially in aquatic animals leading to their entry into the food chain. The ultimate fate of the microplastics is accumulation inside the human body posing the risk of different health conditions like cancer, diabetes, and allergic reactions. The present review summarizes a detailed discussion on the current status of microplastic pollution, their effect on different organisms, and its impact on human health with a case study on the human health risk assessment for analyzing the global rate of microplastic ingestion.
Collapse
Affiliation(s)
- Pritam Bajirao Patil
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Sourav Maity
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
9
|
Yoshikay-Benitez DA, Yokoyama Y, Ohira K, Fujita K, Tomiie A, Kijidani Y, Shigeto J, Tsutsumi Y. Populus alba cationic cell-wall-bound peroxidase (CWPO-C) regulates the plant growth and affects auxin concentration in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1671-1680. [PMID: 36387972 PMCID: PMC9636347 DOI: 10.1007/s12298-022-01241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED The poplar cationic cell-wall-bound peroxidase (CWPO-C) mediates the oxidative polymerization of lignin precursors, especially sinapyl alcohols, and high molecular weight compounds that cannot be oxidized by other plant peroxidases, including horseradish peroxidase C. Therefore, CWPO-C is believed to be a lignification-specific peroxidase, but direct evidence of its function is lacking. Thus, the CWPO-C expression pattern in Arabidopsis thaliana (Arabidopsis) was determined using the β-glucuronidase gene as a reporter. Our data indicated that CWPO-C was expressed in young organs, including the meristem, leaf, root, flower, and young xylem in the upper part of the stem. Compared with the wild-type control, transgenic Arabidopsis plants overexpressing CWPO-C had shorter stems. Approximately 60% of the plants in the transgenic line with the highest CWPO-C content had curled stems. These results indicate that CWPO-C plays a role in cell elongation. When plants were placed horizontally, induced CWPO-C expression was detected in the curved part of the stem during the gravitropic response. The stem curvature associated with gravitropism is controlled by auxin localization. The time needed for Arabidopsis plants overexpressing CWPO-C placed horizontally to bend by 90° was almost double the time required for the similarly treated wild-type controls. Moreover, the auxin content was significantly lower in the CWPO-C-overexpressing plants than in the wild-type plants. These results strongly suggest that CWPO-C has pleiotropic effects on plant growth and indole-3-acetic acid (IAA) accumulation. These effects may be mediated by altered IAA concentration due to oxidation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01241-0.
Collapse
Affiliation(s)
- Diego Alonso Yoshikay-Benitez
- Department of Agro-environmental Sciences, Graduate School of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Yusuke Yokoyama
- Department of Agro-environmental Sciences, Graduate School of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Kaori Ohira
- Department of Agro-environmental Sciences, Graduate School of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Koki Fujita
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Azusa Tomiie
- Division of Forest and Environmental Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki, 889-2192 Japan
| | - Yoshio Kijidani
- Division of Forest and Environmental Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki, 889-2192 Japan
| | - Jun Shigeto
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
- Office of Research and Academia Government Community Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8511 Japan
| | - Yuji Tsutsumi
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| |
Collapse
|
10
|
Lima LMS, Okamoto DN, Passarini MRZ, Gonçalves SS, Goldman GH, Silveira MAV, Ramos PL, Cruz JB, Juliano M, Marcondes MFM, Vasconcellos SP. Enzymatic diversity of filamentous fungi isolated from forest soil incremented by sugar cane solid waste. ENVIRONMENTAL TECHNOLOGY 2022; 43:3037-3046. [PMID: 33826477 DOI: 10.1080/09593330.2021.1914179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Fungi are natural degraders of organic matter which can produce enzymes for many industrial and biotechnological applications. In this context, crude enzymatic extracts of fungal isolates were evaluated regarding their hydrolytic and ligninolytic abilities. The fungal strains were isolated from soil samples from Atlantic Rain Forest Park incremented with sugar cane biomass (filter cake), which allowed the selection of efficient lignocellulolytic enzymes. A total of 190 fungi were isolated and evaluated by endocellulase screenings. Thirteen fungi were selected about their hydrolytic and ligninolytic abilities. Among them, three isolates showed xylanolytic activity. Eleven of the isolates were selected by their cellulolytic abilities. Proteolytic enzymes were also detected for three fungi, allowing the classification as metalloprotease and serine protease. The isolates SPZPF3_47 (Mucor sp.), SPZPF1_129 (Byssochlamys nivea) and SPZPF1_141 (Paecilomyces saturatus) were selected for further investigation on their lignin peroxidase abilities. KM, Vmax and kcat apparent for lignin peroxidases were also determined. The strain of Mucor sp. (SPZPF3_47) was highlighted since this fungal genus was not well described about its isolation in the adopted conditions in our study, and showing ligninolytic abilities.
Collapse
Affiliation(s)
- Lidiane M S Lima
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Debora N Okamoto
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Michel R Z Passarini
- Latin American Institute of Life and Natural Sciences, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - Sarah S Gonçalves
- Health Science Center, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Gustavo H Goldman
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marghuel A V Silveira
- Department of Biophysics, Paulista School of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - João B Cruz
- São Paulo Zoo Park Foundation, São Paulo, Brazil
| | - Maria Juliano
- Department of Biophysics, Paulista School of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo F M Marcondes
- Department of Biophysics, Paulista School of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Suzan P Vasconcellos
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Temporiti MEE, Nicola L, Nielsen E, Tosi S. Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms 2022; 10:1180. [PMID: 35744698 PMCID: PMC9230134 DOI: 10.3390/microorganisms10061180] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Plastic pollution is a growing environmental problem, in part due to the extremely stable and durable nature of this polymer. As recycling does not provide a complete solution, research has been focusing on alternative ways of degrading plastic. Fungi provide a wide array of enzymes specialized in the degradation of recalcitrant substances and are very promising candidates in the field of plastic degradation. This review examines the present literature for different fungal enzymes involved in plastic degradation, describing their characteristics, efficacy and biotechnological applications. Fungal laccases and peroxidases, generally used by fungi to degrade lignin, show good results in degrading polyethylene (PE) and polyvinyl chloride (PVC), while esterases such as cutinases and lipases were successfully used to degrade polyethylene terephthalate (PET) and polyurethane (PUR). Good results were also obtained on PUR by fungal proteases and ureases. All these enzymes were isolated from many different fungi, from both Basidiomycetes and Ascomycetes, and have shown remarkable efficiency in plastic biodegradation under laboratory conditions. Therefore, future research should focus on the interactions between the genes, proteins, metabolites and environmental conditions involved in the processes. Further steps such as the improvement in catalytic efficiency and genetic engineering could lead these enzymes to become biotechnological applications in the field of plastic degradation.
Collapse
Affiliation(s)
- Marta Elisabetta Eleonora Temporiti
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| | - Lidia Nicola
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| | - Erik Nielsen
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Via Ferrata 9, 27100 Pavia, Italy;
| | - Solveig Tosi
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| |
Collapse
|
12
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
13
|
Agaricales Mushroom Lignin Peroxidase: From Structure-Function to Degradative Capabilities. Antioxidants (Basel) 2021; 10:antiox10091446. [PMID: 34573078 PMCID: PMC8472802 DOI: 10.3390/antiox10091446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
Lignin biodegradation has been extensively studied in white-rot fungi, which largely belong to order Polyporales. Among the enzymes that wood-rotting polypores secrete, lignin peroxidases (LiPs) have been labeled as the most efficient. Here, we characterize a similar enzyme (ApeLiP) from a fungus of the order Agaricales (with ~13,000 described species), the soil-inhabiting mushroom Agrocybe pediades. X-ray crystallography revealed that ApeLiP is structurally related to Polyporales LiPs, with a conserved heme-pocket and a solvent-exposed tryptophan. Its biochemical characterization shows that ApeLiP can oxidize both phenolic and non-phenolic lignin model-compounds, as well as different dyes. Moreover, using stopped-flow rapid spectrophotometry and 2D-NMR, we demonstrate that ApeLiP can also act on real lignin. Characterization of a variant lacking the above tryptophan residue shows that this is the oxidation site for lignin and other high redox-potential substrates, and also plays a role in phenolic substrate oxidation. The reduction potentials of the catalytic-cycle intermediates were estimated by stopped-flow in equilibrium reactions, showing similar activation by H2O2, but a lower potential for the rate-limiting step (compound-II reduction) compared to other LiPs. Unexpectedly, ApeLiP was stable from acidic to basic pH, a relevant feature for application considering its different optima for oxidation of phenolic and nonphenolic compounds.
Collapse
|
14
|
Ruiz-Dueñas FJ, Barrasa JM, Sánchez-García M, Camarero S, Miyauchi S, Serrano A, Linde D, Babiker R, Drula E, Ayuso-Fernández I, Pacheco R, Padilla G, Ferreira P, Barriuso J, Kellner H, Castanera R, Alfaro M, Ramírez L, Pisabarro AG, Riley R, Kuo A, Andreopoulos W, LaButti K, Pangilinan J, Tritt A, Lipzen A, He G, Yan M, Ng V, Grigoriev IV, Cullen D, Martin F, Rosso MN, Henrissat B, Hibbett D, Martínez AT. Genomic Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase Diversity. Mol Biol Evol 2021; 38:1428-1446. [PMID: 33211093 PMCID: PMC8480192 DOI: 10.1093/molbev/msaa301] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates—namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose–methanol–choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases—we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.
Collapse
Affiliation(s)
| | - José M Barrasa
- Life Sciences Department, Alcalá University, Alcalá de Henares, Spain
| | | | - Susana Camarero
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | | | - Ana Serrano
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Dolores Linde
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Rashid Babiker
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS/Aix-Marseille University, Marseille, France
| | | | - Remedios Pacheco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Guillermo Padilla
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Patricia Ferreira
- Biochemistry and Molecular and Cellular Biology Department and BIFI, Zaragoza University, Zaragoza, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Harald Kellner
- International Institute Zittau, Technische Universität Dresden, Zittau, Germany
| | - Raúl Castanera
- Institute for Multidisciplinary Research in Applied Biology, IMAB-UPNA, Pamplona, Spain
| | - Manuel Alfaro
- Institute for Multidisciplinary Research in Applied Biology, IMAB-UPNA, Pamplona, Spain
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology, IMAB-UPNA, Pamplona, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology, IMAB-UPNA, Pamplona, Spain
| | - Robert Riley
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Alan Kuo
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - William Andreopoulos
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Kurt LaButti
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Jasmyn Pangilinan
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Andrew Tritt
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Anna Lipzen
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Guifen He
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Mi Yan
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Vivian Ng
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Igor V Grigoriev
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel Cullen
- Forest Products Laboratory, US Department of Agriculture, Madison, WI, USA
| | - Francis Martin
- INRAE, Laboratory of Excellence ARBRE, Champenoux, France
| | - Marie-Noëlle Rosso
- INRAE, Biodiversité et Biotechnologie Fongiques, Aix-Marseille University, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS/Aix-Marseille University, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - David Hibbett
- Biology Department, Clark University, Worcester, MA, USA
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| |
Collapse
|
15
|
Singh AK, Bilal M, Iqbal HMN, Meyer AS, Raj A. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145988. [PMID: 33684751 DOI: 10.1016/j.scitotenv.2021.145988] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Lignin modifying enzymes from fungi and bacteria are potential biocatalysts for sustainable mitigation of different potentially toxic pollutants in wastewater. Notably, the paper and pulp industry generates enormous amounts of wastewater containing high amounts of complex lignin-derived chlorinated phenolics and sulfonated pollutants. The presence of these compounds in wastewater is a critical issue from environmental and toxicological perspectives. Some chloro-phenols are harmful to the environment and human health, as they exert carcinogenic, mutagenic, cytotoxic, and endocrine-disrupting effects. In order to address these most urgent concerns, the use of oxidative lignin modifying enzymes for bioremediation has come into focus. These enzymes catalyze modification of phenolic and non-phenolic lignin-derived substances, and include laccase and a range of peroxidases, specifically lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). In this review, we explore the key pollutant-generating steps in paper and pulp processing, summarize the most recently reported toxicological effects of industrial lignin-derived phenolic compounds, especially chlorinated phenolic pollutants, and outline bioremediation approaches for pollutant mitigation in wastewater from this industry, emphasizing the oxidative catalytic potential of oxidative lignin modifying enzymes in this regard. We highlight other emerging biotechnical approaches, including phytobioremediation, bioaugmentation, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based technology, protein engineering, and degradation pathways prediction, that are currently gathering momentum for the mitigation of wastewater pollutants. Finally, we address current research needs and options for maximizing sustainable biobased and biocatalytic degradation of toxic industrial wastewater pollutants.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Anne S Meyer
- Department for Biotechnology and Biomedicine, Technical University of Denmark, Building 221, DK-2800 Lyngby, Denmark.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Santacruz-Juárez E, Buendia-Corona RE, Ramírez RE, Sánchez C. Fungal enzymes for the degradation of polyethylene: Molecular docking simulation and biodegradation pathway proposal. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125118. [PMID: 33485228 DOI: 10.1016/j.jhazmat.2021.125118] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Polyethylene (PE) is one of the most highly consumed petroleum-based polymers and its accumulation as waste causes environmental pollution. In this sense, the use of microorganisms and their enzymes represents the most ecofriendly and effective decontamination approach. In this work, molecular docking simulation for catalytic enzyme degradation of PE was carried out using individual enzymes: laccase (Lac), manganese peroxidase (MnP), lignin peroxidase (LiP) and unspecific peroxygenase (UnP). PE-binding energy, PE-binding affinity and dimensions of PE-binding sites in the enzyme cavity were calculated in each case. Four hypothetical PE biodegradation pathways were proposed using individual enzymes, and one pathway was proposed using a synergic enzyme combination. These results show that in nature, enzymes act in a synergic manner, using their specific features to undertake an extraordinarily effective sequential catalytic process for organopollutants degradation. In this process, Lac (oxidase) is crucial to provide hydrogen peroxide to the medium to ensure pollutant breakdown. UnP is a versatile enzyme that offers a promising practical application for the degradation of PE and other pollutants due to its cavity features. This is the first in silico report of PE enzymatic degradation, showing the mode of interaction of PE with enzymes as well as the degradation mechanism.
Collapse
Affiliation(s)
- Ericka Santacruz-Juárez
- Universidad Politécnica de Tlaxcala. San Pedro Xalcatzinco, Tepeyanco, Tlaxcala C. P. 90180, Mexico
| | - Ricardo E Buendia-Corona
- Departamento de Fisicomatemáticas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 14 Sur, Col. San Manuel, C.P. 72570, Puebla, Pue., Mexico
| | - Ramsés E Ramírez
- Departamento de Fisicomatemáticas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 14 Sur, Col. San Manuel, C.P. 72570, Puebla, Pue., Mexico
| | - Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala C.P. 90120, Mexico.
| |
Collapse
|
17
|
Ben Ayed A, Saint-Genis G, Vallon L, Linde D, Turbé-Doan A, Haon M, Daou M, Bertrand E, Faulds CB, Sciara G, Adamo M, Marmeisse R, Comtet-Marre S, Peyret P, Abrouk D, Ruiz-Dueñas FJ, Marchand C, Hugoni M, Luis P, Mechichi T, Record E. Exploring the Diversity of Fungal DyPs in Mangrove Soils to Produce and Characterize Novel Biocatalysts. J Fungi (Basel) 2021; 7:jof7050321. [PMID: 33919051 PMCID: PMC8143184 DOI: 10.3390/jof7050321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
The functional diversity of the New Caledonian mangrove sediments was examined, observing the distribution of fungal dye-decolorizing peroxidases (DyPs), together with the complete biochemical characterization of the main DyP. Using a functional metabarcoding approach, the diversity of expressed genes encoding fungal DyPs was investigated in surface and deeper sediments, collected beneath either Avicennia marina or Rhizophora stylosa trees, during either the wet or the dry seasons. The highest DyP diversity was observed in surface sediments beneath the R. stylosa area during the wet season, and one particular operational functional unit (OFU1) was detected as the most abundant DyP isoform. This OFU was found in all sediment samples, representing 51–100% of the total DyP-encoding sequences in 70% of the samples. The complete cDNA sequence corresponding to this abundant DyP (OFU 1) was retrieved by gene capture, cloned, and heterologously expressed in Pichia pastoris. The recombinant enzyme, called DyP1, was purified and characterized, leading to the description of its physical–chemical properties, its ability to oxidize diverse phenolic substrates, and its potential to decolorize textile dyes; DyP1 was more active at low pH, though moderately stable over a wide pH range. The enzyme was very stable at temperatures up to 50 °C, retaining 60% activity after 180 min incubation. Its ability to decolorize industrial dyes was also tested on Reactive Blue 19, Acid Black, Disperse Blue 79, and Reactive Black 5. The effect of hydrogen peroxide and sea salt on DyP1 activity was studied and compared to what is reported for previously characterized enzymes from terrestrial and marine-derived fungi.
Collapse
Affiliation(s)
- Amal Ben Ayed
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
- Laboratoire de Biochimie et de Génie, Enzymatique des Lipases, Université de Sfax, Ecole Nationale d’Ingénieurs de Sfax, 3038 Sfax, Tunisia;
| | - Geoffroy Saint-Genis
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
| | - Laurent Vallon
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
| | - Dolores Linde
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, 28040 Madrid, Spain; (D.L.); (F.J.R.-D.)
| | - Annick Turbé-Doan
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
| | - Mireille Haon
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
| | - Marianne Daou
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Emmanuel Bertrand
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
| | - Craig B. Faulds
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
| | - Giuliano Sciara
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
| | - Martino Adamo
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10125 Torino, Italy
| | - Roland Marmeisse
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10125 Torino, Italy
| | - Sophie Comtet-Marre
- Université Clermont Auvergne, INRAE, MEDiS, 63000 Clermont-Ferrand, France; (S.C.-M.); (P.P.)
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, MEDiS, 63000 Clermont-Ferrand, France; (S.C.-M.); (P.P.)
| | - Danis Abrouk
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
| | - Francisco J. Ruiz-Dueñas
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, 28040 Madrid, Spain; (D.L.); (F.J.R.-D.)
| | - Cyril Marchand
- IMPMC, Institut de Recherche Pour le Développement (IRD), UPMC, CNRS, MNHN, 98851 Noumea, France;
- ISEA, EA, Université de la Nouvelle-Calédonie (UNC), 3325, BP R4, 98851 Noumea, France
| | - Mylène Hugoni
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
| | - Patricia Luis
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622 Villeurbanne, France; (G.S.-G.); (L.V.); (M.A.); (P.L.); (R.M.); (D.A.); (M.H.)
| | - Tahar Mechichi
- Laboratoire de Biochimie et de Génie, Enzymatique des Lipases, Université de Sfax, Ecole Nationale d’Ingénieurs de Sfax, 3038 Sfax, Tunisia;
| | - Eric Record
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (A.B.A.); (A.T.-D.); (M.H.); (M.D.); (E.B.); (C.B.F.); (G.S.)
- Correspondence:
| |
Collapse
|
18
|
Jenkins JMX, Noble CEM, Grayson KJ, Mulholland AJ, Anderson JLR. Substrate promiscuity of a de novo designed peroxidase. J Inorg Biochem 2021; 217:111370. [PMID: 33621939 DOI: 10.1016/j.jinorgbio.2021.111370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 11/20/2022]
Abstract
The design and construction of de novo enzymes offer potentially facile routes to exploiting powerful chemistries in robust, expressible and customisable protein frameworks, while providing insight into natural enzyme function. To this end, we have recently demonstrated extensive catalytic promiscuity in a heme-containing de novo protein, C45. The diverse transformations that C45 catalyses include substrate oxidation, dehalogenation and carbon‑carbon bond formation. Here we explore the substrate promiscuity of C45's peroxidase activity, screening the de novo enzyme against a panel of peroxidase and dehaloperoxidase substrates. Consistent with the function of natural peroxidases, C45 exhibits a broad spectrum of substrate activities with selectivity dictated primarily by the redox potential of the substrate, and by extension, the active oxidising species in peroxidase chemistry, compounds I and II. Though the comparison of these redox potentials provides a threshold for determining activity for a given substrate, substrate:protein interactions are also likely to play a significant role in determining electron transfer rates from substrate to heme, affecting the kinetic parameters of the enzyme. We also used biomolecular simulation to screen substrates against a computational model of C45 to identify potential interactions and binding sites. Several sites of interest in close proximity to the heme cofactor were discovered, providing insight into the catalytic workings of C45.
Collapse
Affiliation(s)
- Jonathan M X Jenkins
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Claire E M Noble
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Katie J Grayson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Adrian J Mulholland
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - J L Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
19
|
Microbial lignin peroxidases: Applications, production challenges and future perspectives. Enzyme Microb Technol 2020; 141:109669. [DOI: 10.1016/j.enzmictec.2020.109669] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
|
20
|
Dhankhar P, Dalal V, Mahto JK, Gurjar BR, Tomar S, Sharma AK, Kumar P. Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Arch Biochem Biophys 2020; 693:108590. [DOI: 10.1016/j.abb.2020.108590] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
|
21
|
Yee EF, Dzikovski B, Crane BR. Tuning Radical Relay Residues by Proton Management Rescues Protein Electron Hopping. J Am Chem Soc 2019; 141:17571-17587. [PMID: 31603693 DOI: 10.1021/jacs.9b05715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transient tyrosine and tryptophan radicals play key roles in the electron transfer (ET) reactions of photosystem (PS) II, ribonucleotide reductase (RNR), photolyase, and many other proteins. However, Tyr and Trp are not functionally interchangeable, and the factors controlling their reactivity are often unclear. Cytochrome c peroxidase (CcP) employs a Trp191•+ radical to oxidize reduced cytochrome c (Cc). Although a Tyr191 replacement also forms a stable radical, it does not support rapid ET from Cc. Here we probe the redox properties of CcP Y191 by non-natural amino acid substitution, altering the ET driving force and manipulating the protic environment of Y191. Higher potential fluorotyrosine residues increase ET rates marginally, but only addition of a hydrogen bond donor to Tyr191• (via Leu232His or Glu) substantially alters activity by increasing the ET rate by nearly 30-fold. ESR and ESEEM spectroscopies, crystallography, and pH-dependent ET kinetics provide strong evidence for hydrogen bond formation to Y191• by His232/Glu232. Rate measurements and rapid freeze quench ESR spectroscopy further reveal differences in radical propagation and Cc oxidation that support an increased Y191• formal potential of ∼200 mV in the presence of E232. Hence, Y191 inactivity results from a potential drop owing to Y191•+ deprotonation. Incorporation of a well-positioned base to accept and donate back a hydrogen bond upshifts the Tyr• potential into a range where it can effectively oxidize Cc. These findings have implications for the YZ/YD radicals of PS II, hole-hopping in RNR and cryptochrome, and engineering proteins for long-range ET reactions.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.,National Biomedical Center for Advanced ESR Technologies (ACERT) , Cornell University , Ithaca , New York 14850 , United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
22
|
Chaplin AK, Chicano TM, Hampshire BV, Wilson MT, Hough MA, Svistunenko DA, Worrall JAR. An Aromatic Dyad Motif in Dye Decolourising Peroxidases Has Implications for Free Radical Formation and Catalysis. Chemistry 2019; 25:6141-6153. [PMID: 30945782 DOI: 10.1002/chem.201806290] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 01/27/2023]
Abstract
Dye decolouring peroxidases (DyPs) are the most recent class of heme peroxidase to be discovered. On reacting with H2 O2 , DyPs form a high-valent iron(IV)-oxo species and a porphyrin radical (Compound I) followed by stepwise oxidation of an organic substrate. In the absence of substrate, the ferryl species decays to form transient protein-bound radicals on redox active amino acids. Identification of radical sites in DyPs has implications for their oxidative mechanism with substrate. Using a DyP from Streptomyces lividans, referred to as DtpA, which displays low reactivity towards synthetic dyes, activation with H2 O2 was explored. A Compound I EPR spectrum was detected, which in the absence of substrate decays to a protein-bound radical EPR signal. Using a newly developed version of the Tyrosyl Radical Spectra Simulation Algorithm, the radical EPR signal was shown to arise from a pristine tyrosyl radical and not a mixed Trp/Tyr radical that has been widely reported in DyP members exhibiting high activity with synthetic dyes. The radical site was identified as Tyr374, with kinetic studies inferring that although Tyr374 is not on the electron-transfer pathway from the dye RB19, its replacement with a Phe does severely compromise activity with other organic substrates. These findings hint at the possibility that alternative electron-transfer pathways for substrate oxidation are operative within the DyP family. In this context, a role for a highly conserved aromatic dyad motif is discussed.
Collapse
Affiliation(s)
- Amanda K Chaplin
- Present address: Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Tadeo Moreno Chicano
- Present address: Department of Molecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Bethany V Hampshire
- Present address: Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Michael A Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
23
|
Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiol Mol Biol Rev 2018; 82:e00029-18. [PMID: 30257993 PMCID: PMC6298611 DOI: 10.1128/mmbr.00029-18] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
24
|
Grayson KJ, Anderson JR. The ascent of man(made oxidoreductases). Curr Opin Struct Biol 2018; 51:149-155. [PMID: 29754103 PMCID: PMC6227378 DOI: 10.1016/j.sbi.2018.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/24/2018] [Indexed: 11/09/2022]
Abstract
Though established 40 years ago, the field of de novo protein design has recently come of age, with new designs exhibiting an unprecedented level of sophistication in structure and function. With respect to catalysis, de novo enzymes promise to revolutionise the industrial production of useful chemicals and materials, while providing new biomolecules as plug-and-play components in the metabolic pathways of living cells. To this end, there are now de novo metalloenzymes that are assembled in vivo, including the recently reported C45 maquette, which can catalyse a variety of substrate oxidations with efficiencies rivalling those of closely related natural enzymes. Here we explore the successful design of this de novo enzyme, which was designed to minimise the undesirable complexity of natural proteins using a minimalistic bottom-up approach.
Collapse
Affiliation(s)
- Katie J Grayson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK
| | - Jl Ross Anderson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK; BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
25
|
Fernández-Fueyo E, Davó-Siguero I, Almendral D, Linde D, Baratto MC, Pogni R, Romero A, Guallar V, Martínez AT. Description of a Non-Canonical Mn(II)-Oxidation Site in Peroxidases. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, Consejo Superior
de Investigaciones Cientı́ficas (CSIC), E-28006 Madrid, Spain
| | - Irene Davó-Siguero
- Centro de Investigaciones Biológicas, Consejo Superior
de Investigaciones Cientı́ficas (CSIC), E-28006 Madrid, Spain
| | - David Almendral
- Centro de Investigaciones Biológicas, Consejo Superior
de Investigaciones Cientı́ficas (CSIC), E-28006 Madrid, Spain
| | - Dolores Linde
- Centro de Investigaciones Biológicas, Consejo Superior
de Investigaciones Cientı́ficas (CSIC), E-28006 Madrid, Spain
| | - Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), 50019 Florence, Italy
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), 50019 Florence, Italy
| | - Antonio Romero
- Centro de Investigaciones Biológicas, Consejo Superior
de Investigaciones Cientı́ficas (CSIC), E-28006 Madrid, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, E-08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avancats (ICREA), E-08010 Barcelona, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas, Consejo Superior
de Investigaciones Cientı́ficas (CSIC), E-28006 Madrid, Spain
| |
Collapse
|
26
|
Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme. Nat Commun 2017; 8:358. [PMID: 28842561 PMCID: PMC5572459 DOI: 10.1038/s41467-017-00541-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/07/2017] [Indexed: 11/08/2022] Open
Abstract
Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.Catalytic mechanisms of enzymes are well understood, but achieving diverse reaction chemistries in re-engineered proteins can be difficult. Here the authors show a highly efficient and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2.
Collapse
|
27
|
Shigeto J, Tsutsumi Y. Diverse functions and reactions of class III peroxidases. THE NEW PHYTOLOGIST 2016; 209:1395-402. [PMID: 26542837 DOI: 10.1111/nph.13738] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/28/2015] [Indexed: 05/22/2023]
Abstract
Higher plants contain plant-specific peroxidases (class III peroxidase; Prxs) that exist as large multigene families. Reverse genetic studies to characterize the function of each Prx have revealed that Prxs are involved in lignification, cell elongation, stress defense and seed germination. However, the underlying mechanisms associated with plant phenotypes following genetic engineering of Prx genes are not fully understood. This is because Prxs can function as catalytic enzymes that oxidize phenolic compounds while consuming hydrogen peroxide and/or as generators of reactive oxygen species. Moreover, biochemical efforts to characterize Prxs responsible for lignin polymerization have revealed specialized activities of Prxs. In conclusion, not only spatiotemporal regulation of gene expression and protein distribution, but also differentiated oxidation properties of each Prx define the function of this class of peroxidases.
Collapse
Affiliation(s)
- Jun Shigeto
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Yuji Tsutsumi
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| |
Collapse
|
28
|
Recabarren R, Fuenzalida-Valdivia I, Alzate-Morales J. Studying the binding mechanisms of veratryl alcohol to P. chrysosporium lignin peroxidase: insights from theoretical approaches. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1828-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Sánchez-Alejandro F, Juarez-Moreno K, Baratto MC, Basosi R, Vazquez-Duhalt R. Tryptophan-surface modification of versatile peroxidase from Bjerkandera adusta enhances its catalytic performance. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Kameshwar AKS, Qin W. Lignin Degrading Fungal Enzymes. PRODUCTION OF BIOFUELS AND CHEMICALS FROM LIGNIN 2016. [DOI: 10.1007/978-981-10-1965-4_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
Uchida T, Sasaki M, Tanaka Y, Ishimori K. A Dye-Decolorizing Peroxidase from Vibrio cholerae. Biochemistry 2015; 54:6610-21. [PMID: 26431465 DOI: 10.1021/acs.biochem.5b00952] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dye-decolorizing peroxidase (DyP) protein from Vibrio cholerae (VcDyP) was expressed in Escherichia coli, and its DyP activity was assayed by monitoring degradation of a typical anthraquinone dye, reactive blue 19 (RB19). Its kinetic activity was obtained by fitting the data to the Michaelis-Menten equation, giving kcat and Km values of 1.3 ± 0.3 s(-1) and 50 ± 20 μM, respectively, which are comparable to those of other DyP enzymes. The enzymatic activity of VcDyP was highest at pH 4. A mutational study showed that two distal residues, Asp144 and Arg230, which are conserved in a DyP family, are essential for the DyP reaction. The crystal structure and resonance Raman spectra of VcDyP indicate the transfer of a radical from heme to the protein surface, which was supported by the formation of the intermolecular covalent bond in the reaction with H2O2. To identify the radical site, each of nine tyrosine or two tryptophan residues was substituted. It was clarified that Tyr129 and Tyr235 are in the active site of the dye degradation reaction at lower pH, while Tyr109 and Tyr133 are the sites of an intermolecular covalent bond at higher pH. VcDyP degrades RB19 at lower pH, while it loses activity under neutral or alkaline conditions because of a change in the radical transfer pathway. This finding suggests the presence of a pH-dependent switch of the radical transfer pathway, probably including His178. Although the physiological function of the DyP reaction is unclear, our findings suggest that VcDyP enhances the DyP activity to survive only when it is placed under a severe condition such as being in gastric acid.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University , Sapporo 060-0810, Japan
| | - Miho Sasaki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University , Sapporo 060-0810, Japan
| | - Yoshikazu Tanaka
- Faculty of Advanced Life Science, Hokkaido University , Sapporo 060-0808, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University , Sapporo 060-0810, Japan
| |
Collapse
|
32
|
Baratto MC, Sinicropi A, Linde D, Sáez-Jiménez V, Sorace L, Ruiz-Duenas FJ, Martinez AT, Basosi R, Pogni R. Redox-Active Sites in Auricularia auricula-judae Dye-Decolorizing Peroxidase and Several Directed Variants: A Multifrequency EPR Study. J Phys Chem B 2015; 119:13583-92. [PMID: 26120933 DOI: 10.1021/acs.jpcb.5b02961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxide-activated Auricularia auricula-judae dye-decolorizing peroxidase (DyP) forms a mixed Trp377 and Tyr337 radical, the former being responsible for oxidation of the typical DyP substrates (Linde et al. Biochem. J., 2015, 466, 253-262); however, a pure tryptophanyl radical EPR signal is detected at pH 7 (where the enzyme is inactive), in contrast with the mixed signal observed at pH for optimum activity, pH 3. On the contrary, the presence of a second tyrosine radical (at Tyr147) is deduced by a multifrequency EPR study of a variety of simple and double-directed variants (including substitution of the above and other tryptophan and tyrosine residues) at different freezing times after their activation by H2O2 (at pH 3). This points out that subsidiary long-range electron-transfer pathways enter into operation when the main pathway(s) is removed by directed mutagenesis, with catalytic efficiencies progressively decreasing. Finally, self-reduction of the Trp377 neutral radical is observed when reaction time (before freezing) is increased in the absence of reducing substrates (from 10 to 60 s). Interestingly, the tryptophanyl radical is stable in the Y147S/Y337S variant, indicating that these two tyrosine residues are involved in the self-reduction reaction.
Collapse
Affiliation(s)
- Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , I-53100 Siena, Italy
| | - Adalgisa Sinicropi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , I-53100 Siena, Italy
| | - Dolores Linde
- Centro de Investigaciones Biológicas, CSIC , Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Verónica Sáez-Jiménez
- Centro de Investigaciones Biológicas, CSIC , Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Lorenzo Sorace
- Department of Chemistry, "Ugo Schiff" and INSTM RU, University of Florence , 50019 Sesto Fiorentino, Florence, Italy
| | | | - Angel T Martinez
- Centro de Investigaciones Biológicas, CSIC , Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Riccardo Basosi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , I-53100 Siena, Italy
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , I-53100 Siena, Italy
| |
Collapse
|
33
|
Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and site-directed mutagenesis study. Biochem J 2015; 466:253-62. [PMID: 25495127 PMCID: PMC4357238 DOI: 10.1042/bj20141211] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H₂O₂-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (k(cat) > 200 s⁻¹) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 k(cat) ~20 s⁻¹) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant.
Collapse
|
34
|
Linde D, Ruiz-Dueñas FJ, Fernández-Fueyo E, Guallar V, Hammel KE, Pogni R, Martínez AT. Basidiomycete DyPs: Genomic diversity, structural-functional aspects, reaction mechanism and environmental significance. Arch Biochem Biophys 2015; 574:66-74. [PMID: 25637654 DOI: 10.1016/j.abb.2015.01.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 11/26/2022]
Abstract
The first enzyme with dye-decolorizing peroxidase (DyP) activity was described in 1999 from an arthroconidial culture of the fungus Bjerkandera adusta. However, the first DyP sequence had been deposited three years before, as a peroxidase gene from a culture of an unidentified fungus of the family Polyporaceae (probably Irpex lacteus). Since the first description, fewer than ten basidiomycete DyPs have been purified and characterized, but a large number of sequences are available from genomes. DyPs share a general fold and heme location with chlorite dismutases and other DyP-type related proteins (such as Escherichia coli EfeB), forming the CDE superfamily. Taking into account the lack of an evolutionary relationship with the catalase-peroxidase superfamily, the observed heme pocket similarities must be considered as a convergent type of evolution to provide similar reactivity to the enzyme cofactor. Studies on the Auricularia auricula-judae DyP showed that high-turnover oxidation of anthraquinone type and other DyP substrates occurs via long-range electron transfer from an exposed tryptophan (Trp377, conserved in most basidiomycete DyPs), whose catalytic radical was identified in the H2O2-activated enzyme. The existence of accessory oxidation sites in DyP is suggested by the residual activity observed after site-directed mutagenesis of the above tryptophan. DyP degradation of substituted anthraquinone dyes (such as Reactive Blue 5) most probably proceeds via typical one-electron peroxidase oxidations and product breakdown without a DyP-catalyzed hydrolase reaction. Although various DyPs are able to break down phenolic lignin model dimers, and basidiomycete DyPs also present marginal activity on nonphenolic dimers, a significant contribution to lignin degradation is unlikely because of the low activity on high redox-potential substrates.
Collapse
Affiliation(s)
- Dolores Linde
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | - Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Victor Guallar
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| | - Kenneth E Hammel
- US Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Rebecca Pogni
- Dept. Biotechnologies, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
35
|
Linke D, Leonhardt R, Eisele N, Petersen LM, Riemer S, Nimtz M, Berger RG. Carotene-degrading activities from Bjerkandera adusta possess an application in detergent industries. Bioprocess Biosyst Eng 2015; 38:1191-9. [PMID: 25614450 DOI: 10.1007/s00449-015-1361-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022]
Abstract
Four extracellular enzymes, a versatile peroxidase, a manganese peroxidase, a dye-decolorizing peroxidase and a lignin peroxidase were discovered in liquid cultures of the basidiomycete Bjerkandera adusta. All of them cleaved β-carotene effectively. Expression was enhanced in the presence of β-carotene or Coomassie Brilliant Blue and peaked after 7-9 days. The monomeric proteins were purified by ion exchange and size exclusion chromatography and exhibited molecular masses of 41, 43, 51 and 43 kDa, respectively. The coding sequences showed homologies from 61 to 89 % to peroxidases from other basidiomycetes. The novel enzymes retained strong activity even in the absence of hydrogen peroxide and at alkaline pH. De-staining of fabrics using detergent-tolerant enzymes may help to save the most important bio-resources, energy and water, in washing processes and led to green processes in textile cleaning.
Collapse
Affiliation(s)
- Diana Linke
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany,
| | | | | | | | | | | | | |
Collapse
|
36
|
The toolbox of Auricularia auricula-judae dye-decolorizing peroxidase - Identification of three new potential substrate-interaction sites. Arch Biochem Biophys 2014; 574:75-85. [PMID: 25542606 DOI: 10.1016/j.abb.2014.12.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 11/21/2022]
Abstract
Dye-decolorizing peroxidases (DyPs) such as AauDyPI from the fungus Auricularia auricula-judae are able to oxidize substrates of different kinds and sizes. A crystal structure of an AauDyPI-imidazole complex gives insight into the binding patterns of organic molecules within the heme cavity of a DyP. Several small N-containing heterocyclic aromatics are shown to bind in the AauDyPI heme cavity, hinting to susceptibility of DyPs to azole-based inhibitors similar to cytochromes P450. Imidazole is confirmed as a competitive inhibitor with regard to peroxide binding. In contrast, bulky substrates such as anthraquinone dyes are converted at the enzyme surface. In the crystal structure a substrate analog, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), binds to a tyrosine-rich hollow harboring Y25, Y147, and Y337. Spin trapping with a nitric oxide donor uncovers Y229 as an additional tyrosine-based radical center in AauDyPI. Multi-frequency EPR spectroscopy further reveals the presence of at least one intermediate tryptophanyl radical center in activated AauDyPI with W377 as the most likely candidate.
Collapse
|
37
|
Shigeto J, Nagano M, Fujita K, Tsutsumi Y. Catalytic profile of Arabidopsis peroxidases, AtPrx-2, 25 and 71, contributing to stem lignification. PLoS One 2014; 9:e105332. [PMID: 25137070 PMCID: PMC4138150 DOI: 10.1371/journal.pone.0105332] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023] Open
Abstract
Lignins are aromatic heteropolymers that arise from oxidative coupling of lignin precursors, including lignin monomers (p-coumaryl, coniferyl, and sinapyl alcohols), oligomers, and polymers. Whereas plant peroxidases have been shown to catalyze oxidative coupling of monolignols, the oxidation activity of well-studied plant peroxidases, such as horseradish peroxidase C (HRP-C) and AtPrx53, are quite low for sinapyl alcohol. This characteristic difference has led to controversy regarding the oxidation mechanism of sinapyl alcohol and lignin oligomers and polymers by plant peroxidases. The present study explored the oxidation activities of three plant peroxidases, AtPrx2, AtPrx25, and AtPrx71, which have been already shown to be involved in lignification in the Arabidopsis stem. Recombinant proteins of these peroxidases (rAtPrxs) were produced in Escherichia coli as inclusion bodies and successfully refolded to yield their active forms. rAtPrx2, rAtPrx25, and rAtPrx71 were found to oxidize two syringyl compounds (2,6-dimethoxyphenol and syringaldazine), which were employed here as model monolignol compounds, with higher specific activities than HRP-C and rAtPrx53. Interestingly, rAtPrx2 and rAtPrx71 oxidized syringyl compounds more efficiently than guaiacol. Moreover, assays with ferrocytochrome c as a substrate showed that AtPrx2, AtPrx25, and AtPrx71 possessed the ability to oxidize large molecules. This characteristic may originate in a protein radical. These results suggest that the plant peroxidases responsible for lignin polymerization are able to directly oxidize all lignin precursors.
Collapse
Affiliation(s)
- Jun Shigeto
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mariko Nagano
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Koki Fujita
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuji Tsutsumi
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
38
|
Zhou LW, Wei YL, Dai YC. Phylogenetic analysis of ligninolytic peroxidases: preliminary insights into the alternation of white-rot and brown-rot fungi in their lineage. Mycology 2014; 5:29-42. [PMID: 24772372 PMCID: PMC3979444 DOI: 10.1080/21501203.2014.895784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/14/2014] [Indexed: 11/04/2022] Open
Abstract
White-rot and brown-rot fungi employ different mechanisms to degrade lignocellulose. These fungi are not monophyletic and even alternate in their common lineage. To explore the reason for this, seventy-six ligninolytic peroxidases (LPs), including 14 sequences newly identified from available basidiomycetous whole-genome and EST databases in this study, were utilized for phylogenetic and selective pressure analyses. We demonstrate that LPs were subjected to the mixed process of concerted and birth-and-death evolution. After the duplication events of original LPs, various LP types may originate from mutation events of several key residues driven by positive selection, which may change LP types and even rot types in a small fraction of wood-decaying fungi. Our findings provide preliminary insights into the cause for the alternation of the two fungal rot types within the same lineage.
Collapse
Affiliation(s)
- Li-Wei Zhou
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, P. R. China
| | - Yu-Lian Wei
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, P. R. China
| | - Yu-Cheng Dai
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, P. R. China
| |
Collapse
|
39
|
Radical formation on a conserved tyrosine residue is crucial for DyP activity. Arch Biochem Biophys 2013; 537:161-7. [PMID: 23876237 DOI: 10.1016/j.abb.2013.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/08/2013] [Accepted: 07/05/2013] [Indexed: 11/23/2022]
Abstract
Dye-decolorizing peroxidases (DyPs) are able to cleave bulky anthraquinone dyes. The recently published crystal structure of AauDyPI reveals that a direct oxidation in the distal heme cavity can be excluded for most DyP substrates. It is shown that a surface-exposed tyrosine residue acts as a substrate interaction site for bulky substrates. This amino acid is conserved in eucaryotic DyPs but is missing in the structurally related chlorite dismutases (Clds). Dye-decolorizing peroxidases of procaryotic origin equally possess a conserved tyrosine in the same region of the polypeptide albeit not at the homologous position.
Collapse
|
40
|
Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism. Biochem J 2013; 452:575-84. [DOI: 10.1042/bj20130251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2 and VA) lacked this lag, and H2O2-LiP (H2O2-treated LiP) was inactive. MS analyses revealed that VA-LiP includes one VA molecule covalently bound to the side chain of Tyr181, whereas H2O2-LiP contains a hydroxylated Tyr181. No adduct is formed in the Y171N variant. Molecular docking showed that VA binding is favoured by sandwich π stacking with Tyr181 and Phe89. EPR spectroscopy after peroxide activation of the pre-treated LiPs showed protein radicals other than the tyrosine radical found in pristine LiP, which were assigned to a tyrosine–VA adduct radical in VA-LiP and a dihydroxyphenyalanine radical in H2O2-LiP. Both radicals are able to oxidize large low-redox-potential substrates, but H2O2-LiP is unable to oxidize high-redox-potential substrates. Transient-state kinetics showed that the tyrosine–VA adduct strongly promotes (>100-fold) substrate oxidation by compound II, the rate-limiting step in catalysis. The novel activation mechanism is involved in ligninolysis, as demonstrated using lignin model substrates. The present paper is the first report on autocatalytic modification, resulting in functional alteration, among class II peroxidases.
Collapse
|
41
|
Shigeto J, Kiyonaga Y, Fujita K, Kondo R, Tsutsumi Y. Putative cationic cell-wall-bound peroxidase homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3781-8. [PMID: 23551275 DOI: 10.1021/jf400426g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The final step of lignin biosynthesis, which is catalyzed by a plant peroxidase, is the oxidative coupling of the monolignols to growing lignin polymers. Cationic cell-wall-bound peroxidase (CWPO-C) from poplar callus is a unique enzyme that has oxidative activity for both monolignols and synthetic lignin polymers. This study shows that putative CWPO-C homologues in Arabidopsis , AtPrx2, AtPrx25, and AtPrx71, are involved in lignin biosynthesis. Analysis of stem tissue using the acetyl bromide method and derivatization followed by the reductive cleavage method revealed a significant decrease in the total lignin content of ATPRX2 and ATPRX25 deficient mutants and altered lignin structures in ATPRX2, ATPRX25, and ATPRX71 deficient mutants. Among Arabidopsis peroxidases, AtPrx2 and AtPrx25 conserve a tyrosine residue on the protein surface, and this tyrosine may act as a substrate oxidation site as in the case of CWPO-C. AtPrx71 has the highest amino acid identity with CWPO-C. The results suggest a role for CWPO-C and CWPO-C-like peroxidases in the lignification of vascular plant cell walls.
Collapse
Affiliation(s)
- Jun Shigeto
- Department of Forest and Forest Products Sciences, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| | | | | | | | | |
Collapse
|
42
|
Strittmatter E, Liers C, Ullrich R, Wachter S, Hofrichter M, Plattner DA, Piontek K. First crystal structure of a fungal high-redox potential dye-decolorizing peroxidase: substrate interaction sites and long-range electron transfer. J Biol Chem 2012; 288:4095-102. [PMID: 23235158 DOI: 10.1074/jbc.m112.400176] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dye-decolorizing peroxidases (DyPs) belong to the large group of heme peroxidases. They utilize hydrogen peroxide to catalyze oxidations of various organic compounds. AauDyPI from Auricularia auricula-judae (fungi) was crystallized, and its crystal structure was determined at 2.1 Å resolution. The mostly helical structure also shows a β-sheet motif typical for DyPs and Cld (chlorite dismutase)-related structures and includes the complete polypeptide chain. At the distal side of the heme molecule, a flexible aspartate residue (Asp-168) plays a key role in catalysis. It guides incoming hydrogen peroxide toward the heme iron and mediates proton rearrangement in the process of Compound I formation. Afterward, its side chain changes its conformation, now pointing toward the protein backbone. We propose an extended functionality of Asp-168, which acts like a gatekeeper by altering the width of the heme cavity access channel. Chemical modifications of potentially redox-active amino acids show that a tyrosine is involved in substrate interaction. Using spin-trapping experiments, a transient radical on the surface-exposed Tyr-337 was identified as the oxidation site for bulky substrates. A possible long-range electron transfer pathway from the surface of the enzyme to the redox cofactor (heme) is discussed.
Collapse
Affiliation(s)
- Eric Strittmatter
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Xu JZ, Zhang JL, Hu KH, Zhang WG. The relationship between lignin peroxidase and manganese peroxidase production capacities and cultivation periods of mushrooms. Microb Biotechnol 2012; 6:241-7. [PMID: 22966760 PMCID: PMC3815919 DOI: 10.1111/j.1751-7915.2012.00365.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/14/2012] [Indexed: 11/29/2022] Open
Abstract
Mushrooms are able to secrete lignin peroxidase (LiP) and manganese peroxidase (MnP), and able to use the cellulose as sources of carbon. This article focuses on the relation between peroxidase-secreting capacity and cultivation period of mushrooms with non-laccase activity. Methylene blue and methyl catechol qualitative assay and spectrophotometry quantitative assay show LiP secreting unvaryingly accompanies the MnP secreting in mushroom strains. The growth rates of hyphae are detected by detecting the dry hyphal mass. We link the peroxidase activities to growth rate of mushrooms and then probe into the relationship between them. The results show that there are close relationships between LiP- and/or MnP-secretory capacities and the cultivation periods of mushrooms. The strains with high LiP and MnP activities have short cultivation periods. However, those strains have long cultivation periods because of the low levels of secreted LiP and/or MnP, even no detectable LiP and/or MnP activity. This study provides the first evidence on the imitate relation between the level of secreted LiP and MnP activities and cultivation periods of mushrooms with non-laccase activity. Our study has significantly increased the understanding of the role of LiP and MnP in the growth and development of mushrooms with non-laccase activity.
Collapse
Affiliation(s)
- Jian Z Xu
- School of Life Sciences, Fujian Agriculture and Forestry University, FuZhou 350002, China
| | | | | | | |
Collapse
|
44
|
Fernández-Fueyo E, Ruiz-Dueñas FJ, Miki Y, Martínez MJ, Hammel KE, Martínez AT. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora. J Biol Chem 2012; 287:16903-16. [PMID: 22437835 DOI: 10.1074/jbc.m112.356378] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The white-rot fungus Ceriporiopsis subvermispora delignifies lignocellulose with high selectivity, but until now it has appeared to lack the specialized peroxidases, termed lignin peroxidases (LiPs) and versatile peroxidases (VPs), that are generally thought important for ligninolysis. We screened the recently sequenced C. subvermispora genome for genes that encode peroxidases with a potential ligninolytic role. A total of 26 peroxidase genes was apparent after a structural-functional classification based on homology modeling and a search for diagnostic catalytic amino acid residues. In addition to revealing the presence of nine heme-thiolate peroxidase superfamily members and the unexpected absence of the dye-decolorizing peroxidase superfamily, the search showed that the C. subvermispora genome encodes 16 class II enzymes in the plant-fungal-bacterial peroxidase superfamily, where LiPs and VPs are classified. The 16 encoded enzymes include 13 putative manganese peroxidases and one generic peroxidase but most notably two peroxidases containing the catalytic tryptophan characteristic of LiPs and VPs. We expressed these two enzymes in Escherichia coli and determined their substrate specificities on typical LiP/VP substrates, including nonphenolic lignin model monomers and dimers, as well as synthetic lignin. The results show that the two newly discovered C. subvermispora peroxidases are functionally competent LiPs and also suggest that they are phylogenetically and catalytically intermediate between classical LiPs and VPs. These results offer new insight into selective lignin degradation by C. subvermispora.
Collapse
Affiliation(s)
- Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Shigeto J, Itoh Y, Tsutsumi Y, Kondo R. Identification of Tyr74 and Tyr177 as substrate oxidation sites in cationic cell wall-bound peroxidase from Populus alba L. FEBS J 2011; 279:348-57. [DOI: 10.1111/j.1742-4658.2011.08429.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|