1
|
Xu X, Wu G. Protocol to visualize and quantify the COPII concentration and anterograde transport of nascent G protein-coupled receptors. STAR Protoc 2024; 5:102955. [PMID: 38489271 PMCID: PMC10951583 DOI: 10.1016/j.xpro.2024.102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Here, we present a protocol for visualization and quantification of the recruitment of newly synthesized G protein-coupled receptors (GPCRs) to coat protein complex II vesicles and GPCR transport from the endoplasmic reticulum through the Golgi to the cell surface in the retention using the selective hooks assay. We describe steps for plasmid construction, cell transfection, transport synchronization, confocal microscope imaging, and quantification. This protocol is also applicable for studying the transport of non-GPCR cargoes. For complete details on the use and execution of this protocol, please refer to Xu et al.1,2.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
2
|
Xu X, Qiu L, Zhang M, Wu G. Segregation of nascent GPCRs in the ER-to-Golgi transport by CCHCR1 via direct interaction. J Cell Sci 2024; 137:jcs261685. [PMID: 38230433 PMCID: PMC10912811 DOI: 10.1242/jcs.261685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of cell surface signaling proteins that share a common structural topology. When compared with agonist-induced internalization, how GPCRs are sorted and delivered to functional destinations after synthesis in the endoplasmic reticulum (ER) is much less well understood. Here, we demonstrate that depletion of coiled-coil α-helical rod protein 1 (CCHCR1) by siRNA and CRISPR-Cas9 significantly inhibits surface expression and signaling of α2A-adrenergic receptor (α2A-AR; also known as ADRA2A), without affecting α2B-AR. Further studies show that CCHCR1 depletion specifically impedes α2A-AR export from the ER to the Golgi, but not from the Golgi to the surface. We also demonstrate that CCHCR1 selectively interacts with α2A-AR. The interaction is mediated through multiple domains of both proteins and is ionic in nature. Moreover, mutating CCHCR1-binding motifs significantly attenuates ER-to-Golgi export, surface expression and signaling of α2A-AR. Collectively, these data reveal a novel function for CCHCR1 in intracellular protein trafficking, indicate that closely related GPCRs can be sorted into distinct ER-to-Golgi transport routes by CCHCR1 via direct interaction, and provide important insights into segregation and anterograde delivery of nascent GPCR members.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lifen Qiu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Maoxiang Zhang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Xu X, Lambert NA, Wu G. Sequence-directed concentration of G protein-coupled receptors in COPII vesicles. iScience 2023; 26:107969. [PMID: 37810244 PMCID: PMC10551652 DOI: 10.1016/j.isci.2023.107969] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of plasma membrane signaling proteins. However, virtually nothing is known about their recruitment to COPII vesicles for forward delivery after synthesis in the endoplasmic reticulum (ER). Here, we demonstrate that some GPCRs are highly concentrated at ER exit sites (ERES) before COPII budding. Angiotensin II type 2 receptor (AT2R) and CXCR4 concentration are directed by a di-acidic motif and a 9-residue domain, respectively, and these motifs also control receptor ER-Golgi traffic. We further show that AT2R interacts with Sar1 GTPase and that distinct GPCRs have different ER-Golgi transport rates via COPII which is independent of their concentration at ERES. Collectively, these data demonstrate that GPCRs can be actively captured by COPII via specific motifs and direct interaction with COPII components that in turn affects their export dynamics, and provide important insights into COPII targeting and forward trafficking of nascent GPCRs.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
4
|
Martínez-Morales JC, Solís KH, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Cell Trafficking and Function of G Protein-coupled Receptors. Arch Med Res 2022; 53:451-460. [PMID: 35835604 DOI: 10.1016/j.arcmed.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
The G protein-coupled receptors (GPCRs) are plasma membrane proteins that function as sensors of changes in the internal and external milieux and play essential roles in health and disease. They are targets of hormones, neurotransmitters, local hormones (autacoids), and a large proportion of the drugs currently used as therapeutics and for "recreational" purposes. Understanding how these receptors signal and are regulated is fundamental for progress in areas such as physiology and pharmacology. This review will focus on what is currently known about their structure, the molecular events that trigger their signaling, and their trafficking to endosomal compartments. GPCR phosphorylation and its role in desensitization (signaling switching) are also discussed. It should be mentioned that the volume of information available is enormous given the large number and variety of GPCRs. However, knowledge is fragmentary even for the most studied receptors, such as the adrenergic receptors. Therefore, we attempt to present a panoramic view of the field, conscious of the risks and limitations (such as oversimplifications and incorrect generalizations). We hope this will provoke further research in the area. It is currently accepted that GPCR internalization plays a role signaling events. Therefore, the processes that allow them to internalize and recycle back to the plasma membrane are briefly reviewed. The functions of cytoskeletal elements (mainly actin filaments and microtubules), the molecular motors implicated in receptor trafficking (myosin, kinesin, and dynein), and the GTPases involved in GPCR internalization (dynamin) and endosomal sorting (Rab proteins), are discussed. The critical role phosphoinositide metabolism plays in regulating these events is also depicted.
Collapse
Affiliation(s)
- Juan Carlos Martínez-Morales
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - K Helivier Solís
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
5
|
Degrandmaison J, Grisé O, Parent JL, Gendron L. Differential barcoding of opioid receptors trafficking. J Neurosci Res 2021; 100:99-128. [PMID: 34559903 DOI: 10.1002/jnr.24949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Over the past several years, studies have highlighted the δ-opioid receptor (DOPr) as a promising therapeutic target for chronic pain management. While exhibiting milder undesired effects than most currently prescribed opioids, its specific agonists elicit effective analgesic responses in numerous animal models of chronic pain, including inflammatory, neuropathic, diabetic, and cancer-related pain. However, as compared with the extensively studied μ-opioid receptor, the molecular mechanisms governing its trafficking remain elusive. Recent advances have denoted several significant particularities in the regulation of DOPr intracellular routing, setting it apart from the other members of the opioid receptor family. Although they share high homology, each opioid receptor subtype displays specific amino acid patterns potentially involved in the regulation of its trafficking. These precise motifs or "barcodes" are selectively recognized by regulatory proteins and therefore dictate several aspects of the itinerary of a receptor, including its anterograde transport, internalization, recycling, and degradation. With a specific focus on the regulation of DOPr trafficking, this review will discuss previously reported, as well as potential novel trafficking barcodes within the opioid and nociceptin/orphanin FQ opioid peptide receptors, and their impact in determining distinct interactomes and physiological responses.
Collapse
Affiliation(s)
- Jade Degrandmaison
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Quebec Network of Junior Pain Investigators, QC, Canada
| | - Olivier Grisé
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Quebec Pain Research Network, QC, Canada
| |
Collapse
|
6
|
Chhatar S, Lal G. Role of adrenergic receptor signalling in neuroimmune communication. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:202-217. [PMID: 35492402 PMCID: PMC9040148 DOI: 10.1016/j.crimmu.2021.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroimmune communication plays a crucial role in maintaining homeostasis and promptly responding to any foreign insults. Sympathetic nerve fibres are innervated into all the lymphoid organs (bone marrow, thymus, spleen, and lymph nodes) and provide a communication link between the central nervous system (CNS) and ongoing immune response in the tissue microenvironment. Neurotransmitters such as catecholamines (epinephrine and norepinephrine) bind to adrenergic receptors present on most immune and non-immune cells, establish a local neuroimmune-communication system, and help regulate the ongoing immune response. The activation of these receptors varies with the type of receptor-activated, target cell, the activation status of the cells, and timing of activation. Activating adrenergic receptors, specifically β-adrenergic signalling in immune cells leads to activation of the cAMP-PKA pathway or other non-canonical pathways. It predominantly leads to immune suppression such as inhibition of IL-2 secretion and a decrease in macrophages phagocytosis. This review discusses the expression of different adrenergic receptors in various immune cells, signalling, and how it modulates immune cell function and contributes to health and diseases. Understanding the neuroimmune communication through adrenergic receptor signalling in immune cells could help to design better strategies to control inflammation and autoimmunity. Primary and secondary lymphoid organs are innervated with sympathetic nerve fibres. Adrenergic receptor expression on immune and non-immune cells establishes a local neuroimmune communication system. Adrenergic receptor signalling in immune cells controls the differentiation and function of various immune cells. Modulating adrenergic receptor signalling with a specific agonist or antagonist also affect the immune response.
Collapse
Affiliation(s)
| | - Girdhari Lal
- Corresponding author. National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
7
|
Wei Z, Zhang M, Li C, Huang W, Fan Y, Guo J, Khater M, Fukuda M, Dong Z, Hu G, Wu G. Specific TBC Domain-Containing Proteins Control the ER-Golgi-Plasma Membrane Trafficking of GPCRs. Cell Rep 2020; 28:554-566.e4. [PMID: 31291588 PMCID: PMC6639060 DOI: 10.1016/j.celrep.2019.05.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/14/2018] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute the largest superfamily of cell surface signaling proteins. However, the molecular mechanisms underlying their cell surface delivery after synthesis remain poorly understood. Here, we screen the TBC domain-containing proteins, putative Rab GTPase-activating proteins (GAPs), in the intracellular trafficking of GPCRs and identify several TBC proteins that activity-dependently regulate the anterograde transport, en route from the endoplasmic reticulum to the Golgi or from the Golgi to the cell surface, of several prototypic GPCR members without affecting other plasma membrane proteins. We also show that TBC1D6 functions as a GAP for Rab26, physically associates with Rab26, and attenuates Rab26 interaction with GPCRs. Furthermore, both overexpression and depletion of TBC1D6 inhibit the post-Golgi traffic of GPCRs. These data demonstrate important roles of the TBC proteins in forward trafficking of nascent GPCRs and reveal regulatory mechanisms of GPCR targeting to the functional destination. Wei et al. report that several TBC proteins specifically and activity-dependently regulate ER-Golgi-plasma membrane transport of nascent GPCRs. They also show that TBC1D6 is a GAP for Rab26 and controls GPCR post-Golgi traffic. Their results reveal crucial roles of TBC proteins in and provide regulatory mechanisms of GPCR trafficking.
Collapse
Affiliation(s)
- Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Maoxiang Zhang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Chunman Li
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Wei Huang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yi Fan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jianhui Guo
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mostafa Khater
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Zheng Dong
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
8
|
Xu X, Wu G. Quantification of The Surface Expression of G Protein-coupled Receptors Using Intact Live-cell Radioligand Binding Assays. Bio Protoc 2020; 10:e3761. [PMID: 33628863 DOI: 10.21769/bioprotoc.3761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most structurally diverse family of signaling proteins and regulate a variety of cell function. For most GPCRs, the cell surface is their functional destination where they are able to respond a wide range of extracellular stimuli, leading to the activation of intracellular signal transduction cascades. Thus, the quantity of receptor expression at the cell surface is a crucial factor regulating the functionality of the receptors. Over the past decades, many methods have been developed to measure the cell surface expression of GPCRs. Here, we describe an intact live-cell radioligand binding assay to quantify the surface expression of GPCRs at the endogenous levels or after overexpression. In this assay, cell cultures will be incubated with specific cell-nonpermeable radioligands which selectively and stoichiometrically bind to individual GPCRs and the receptor numbers at the cell surface are quantified by the radioactivity of receptor-bound ligands. This method is highly specific for measuring the functional GPCRs at the surface of intact live cells and is particularly useful for endogenous, low-abundant GPCRs.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
9
|
The Actin Bundling Protein Fascin-1 as an ACE2-Accessory Protein. Cell Mol Neurobiol 2020; 42:255-263. [PMID: 32865675 PMCID: PMC7456754 DOI: 10.1007/s10571-020-00951-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 01/02/2023]
Abstract
We have previously shown that angiotensin-converting enzyme 2 (ACE2), an enzyme counterbalancing the deleterious effects of angiotensin type 1 receptor activation by production of vasodilatory peptides Angiotensin (Ang)-(1-9) and Ang-(1-7), is internalized and degraded in lysosomes following chronic Ang-II treatment. However, the molecular mechanisms involved in this effect remain unknown. In an attempt to identify the accessory proteins involved in this effect, we conducted a proteomic analysis in ACE2-transfected HEK293T cells. A single protein, fascin-1, was found to differentially interact with ACE2 after Ang-II treatment for 4 h. The interactions between fascin-1 and ACE2 were confirmed by confocal microscopy and co-immunoprecipitation. Overexpression of fascin-1 attenuates the effects of Ang-II on ACE2 activity. In contrast, downregulation of fascin-1 severely decreased ACE2 enzymatic activity. Interestingly, in brain homogenates from hypertensive mice, we observed a significant reduction of fascin-1, suggesting that the levels of this protein may change in cardiovascular diseases. In conclusion, we identified fascin-1 as an ACE2-accessory protein, interacting with the enzyme in an Ang-II dependent manner and contributing to the regulation of enzyme activity.
Collapse
|
10
|
Sharaf A, Mensching L, Keller C, Rading S, Scheffold M, Palkowitsch L, Djogo N, Rezgaoui M, Kestler HA, Moepps B, Failla AV, Karsak M. Systematic Affinity Purification Coupled to Mass Spectrometry Identified p62 as Part of the Cannabinoid Receptor CB2 Interactome. Front Mol Neurosci 2019; 12:224. [PMID: 31616248 PMCID: PMC6763791 DOI: 10.3389/fnmol.2019.00224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/03/2019] [Indexed: 01/29/2023] Open
Abstract
The endocannabinoid system (ECS) consists particularly of cannabinoid receptors 1 and 2 (CB1 and CB2), their endogenous ligands, and enzymes that synthesize and degrade their ligands. It acts in a variety of organs and disease states ranging from cancer progression over neuropathic pain to neurodegeneration. Protein components engaged in the signaling, trafficking, and homeostasis machinery of the G-protein coupled CB2, are however largely unknown. It is therefore important to identify further interaction partners to better understand CB2 receptor functions in physiology and pathophysiology. For this purpose, we used an affinity purification and mass spectrometry-based proteomics approach of Strep-HA-CB2 receptor in HEK293 cells. After subtraction of background interactions and protein frequency library assessment we could identify 83 proteins that were classified by the identification of minimally 2 unique peptides as highly probable interactors. A functional protein association network analysis obtained an interaction network with a significant enrichment of proteins functionally involved in protein metabolic process, in endoplasmic reticulum, response to stress but also in lipid metabolism and membrane organization. The network especially contains proteins involved in biosynthesis and trafficking like calnexin, Sec61A, tubulin chains TUBA1C and TUBB2B, TMED2, and TMED10. Six proteins that were only expressed in stable CB2 expressing cells were DHC24, DHRS7, GGT7, HECD3, KIAA2013, and PLS1. To exemplify the validity of our approach, we chose a candidate having a relatively low number of edges in the network to increase the likelihood of a direct protein interaction with CB2 and focused on the scaffold/phagosomal protein p62/SQSTM1. Indeed, we independently confirmed the interaction by co-immunoprecipitation and immunocytochemical colocalization studies. 3D reconstruction of confocal images furthermore showed CB2 localization in close proximity to p62 positive vesicles at the cell membrane. In summary, we provide a comprehensive repository of the CB2 interactome in HEK293 cells identified by a systematic unbiased approach, which can be used in future experiments to decipher the signaling and trafficking complex of this cannabinoid receptor. Future studies will have to analyze the exact mechanism of the p62-CB2 interaction as well as its putative role in disease pathophysiology.
Collapse
Affiliation(s)
- Ahmed Sharaf
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonore Mensching
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Keller
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Rading
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Scheffold
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pharmacology and Toxicology, Ulm University, Ulm, Germany
| | | | - Nevena Djogo
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meriem Rezgaoui
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Barbara Moepps
- Institute of Pharmacology and Toxicology, Ulm University, Ulm, Germany
| | | | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Sex-dependent impaired locomotion and motor coordination in the HdhQ200/200 mouse model of Huntington's Disease. Neurobiol Dis 2019; 132:104607. [PMID: 31499139 DOI: 10.1016/j.nbd.2019.104607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/02/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Huntington's Disease (HD) is a fatal neurodegenerative disease characterized by severe loss of medium spiny neuron (MSN) function and striatal-dependent behaviors. We report that female HdhQ200/200 mice display an earlier onset and more robust deterioration in spontaneous locomotion and motor coordination measured at 8 months of age compared to male HdhQ200/200 mice. Remarkably, HdhQ200/200 mice of both sexes exhibit comparable impaired spontaneous locomotion and motor coordination at 10 months of age and reach moribund stage by 12 months of age, demonstrating reduced life span in this model system. Histopathological analysis revealed enhanced mutant huntingtin protein aggregation in male HdhQ200/200 striatal tissue at 8 months of age compared to female HdhQ200/200. Functional analysis of calcium dynamics in MSNs of female HdhQ200/200 mice using GCaMP6m imaging revealed elevated responses to excitatory cortical-striatal stimulation suggesting increased MSN excitability. Although there was no down-regulation of the expression of common HD biomarkers (DARPP-32, enkephalin and CB1R), we measured a sex-dependent reduction of the astrocytic glutamate transporter, GLT-1, in female HdhQ200/200 mice that was not detected in male HdhQ200/200 mice when compared to respective wild-type littermates. Our study outlines a sex-dependent rapid deterioration of striatal-dependent behaviors occurring in the HdhQ200/200 mouse line that does not involve alterations in the expression of common HD biomarkers and yet includes impaired MSN function.
Collapse
|
12
|
A Naturally Occurring Splice Variant of GGA1 Inhibits the Anterograde Post-Golgi Traffic of α 2B-Adrenergic Receptor. Sci Rep 2019; 9:10378. [PMID: 31316103 PMCID: PMC6637153 DOI: 10.1038/s41598-019-46547-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/29/2019] [Indexed: 11/08/2022] Open
Abstract
The regulatory mechanisms of cell surface targeting of nascent G protein-coupled receptors (GPCRs) en route from the endoplasmic reticulum through the Golgi remain poorly understood. We have recently demonstrated that three Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding proteins (GGAs) mediate the post-Golgi export of α2B-adrenergic receptor (α2B-AR), a prototypic GPCR, and directly interact with the receptor. In particular, GGA1 interaction with α2B-AR is mediated via its hinge domain. Here we determined the role of a naturally occurring truncated form of GGA1 (GGA1t) which lacks the N-terminal portion of the hinge domain in α2B-AR trafficking and elucidated the underlying mechanisms. We demonstrated that both GGA1 and GGA1t were colocalized and mainly expressed at the Golgi. In marked contrast to GGA1, the expression of GGA1t significantly attenuated the cell surface export of newly synthesized α2B-AR from the Golgi and in parallel receptor-mediated signaling. Furthermore, we found that GGA1t formed homodimers and heterodimers with GGA1. More interestingly, GGA1t was unable to bind the cargo α2B-AR and to recruit clathrin onto the trans-Golgi network. These data provide evidence implicating that the truncated form of GGA1 behaviors as a dominant-negative regulator for the cell surface export of α2B-AR and this function of GGA1t is attributed to its abilities to dimerize with its wide type counterpart and to inhibit cargo interaction and clathrin recruitment to form specialized transport vesicles.
Collapse
|
13
|
Zhang M, Wu G. Mechanisms of the anterograde trafficking of GPCRs: Regulation of AT1R transport by interacting proteins and motifs. Traffic 2018; 20:110-120. [PMID: 30426616 DOI: 10.1111/tra.12624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
Anterograde cell surface transport of nascent G protein-coupled receptors (GPCRs) en route from the endoplasmic reticulum (ER) through the Golgi apparatus represents a crucial checkpoint to control the amount of the receptors at the functional destination and the strength of receptor activation-elicited cellular responses. However, as compared with extensively studied internalization and recycling processes, the molecular mechanisms of cell surface trafficking of GPCRs are relatively less defined. Here, we will review the current advances in understanding the ER-Golgi-cell surface transport of GPCRs and use angiotensin II type 1 receptor as a representative GPCR to discuss emerging roles of receptor-interacting proteins and specific motifs embedded within the receptors in controlling the forward traffic of GPCRs along the biosynthetic pathway.
Collapse
Affiliation(s)
- Maoxiang Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
14
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Dias JA. Intracellular Trafficking of Gonadotropin Receptors in Health and Disease. Handb Exp Pharmacol 2018; 245:1-39. [PMID: 29063275 DOI: 10.1007/164_2017_49] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gonadotropin receptors belong to the highly conserved subfamily of the G protein-coupled receptor (GPCR) superfamily, the so-called Rhodopsin-like family (class A), which is the largest class of GPCRs and currently a major drug target. Both the follicle-stimulating hormone receptor (FSHR) and the luteinizing hormone/chorionic gonadotropin hormone receptor (LHCGR) are mainly located in the gonads where they play key functions associated to essential reproductive functions. As any other protein, gonadotropin receptors must be properly folded into a mature tertiary conformation compatible with quaternary assembly and endoplasmic reticulum export to the cell surface plasma membrane. Several primary and secondary structural features, including presence of particular amino acid residues and short motifs and in addition, posttranslational modifications, regulate intracellular trafficking of gonadotropin receptors to the plasma membrane as well as internalization and recycling of the receptor back to the cell surface after activation by agonist. Inactivating mutations of gonadotropin receptors may derive from receptor misfolding and lead to absent or reduced plasma membrane expression of the altered receptor, thereby manifesting an array of phenotypical abnormalities mostly characterized by reproductive failure and/or abnormal or absence of development of secondary sex characteristics. In this chapter we review the structural requirements necessary for intracellular trafficking of the gonadotropin receptors, and describe how mutations in these receptors may lead to receptor misfolding and disease in humans.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico.
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico
| | - James A Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| |
Collapse
|
15
|
Ferrão FM, Cardoso LHD, Drummond HA, Li XC, Zhuo JL, Gomes DS, Lara LS, Vieyra A, Lowe J. Luminal ANG II is internalized as a complex with AT 1R/AT 2R heterodimers to target endoplasmic reticulum in LLC-PK 1 cells. Am J Physiol Renal Physiol 2017; 313:F440-F449. [PMID: 28468964 DOI: 10.1152/ajprenal.00261.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 12/28/2022] Open
Abstract
ANG II has many biological effects in renal physiology, particularly in Ca2+ handling in the regulation of fluid and solute reabsorption. It involves the systemic endocrine renin-angiotensin system (RAS), but tissue and intracrine ANG II are also known. We have shown that ANG II induces heterodimerization of its AT1 and AT2 receptors (AT1R and AT2R) to stimulate sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity. Thus, we investigated whether ANG II-AT1R/AT2R complex is formed and internalized, and also examined the intracellular localization of this complex to determine how its effect might be exerted on renal intracrine RAS. Living cell imaging of LLC-PK1 cells, quantification of extracellular ANG II, and use of the receptor antagonists, losartan and PD123319, showed that ANG II is internalized with AT1R/AT2R heterodimers as a complex in a microtubule-dependent and clathrin-independent manner, since colchicine-but not Pitstop2-blocked this process. This result was confirmed by an increase of β-arrestin phosphorylation after ANG II treatment, clathrin-mediated endocytosis being dependent on dephosphorylation of β-arrestin. Internalized ANG II colocalized with an endoplasmic reticulum (ER) marker and increased levels of AT1R, AT2R, and PKCα in ER-enriched membrane fractions. This novel evidence suggests the internalization of an ANG II-AT1/AT2 complex to target ER, where it might trigger intracellular Ca2+ responses.
Collapse
Affiliation(s)
- Fernanda M Ferrão
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch, Instituto de Biofísica Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza H D Cardoso
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch, Instituto de Biofísica Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heather A Drummond
- Department of Physiology and Biophysics and the Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xiao C Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jia L Zhuo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Dayene S Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucienne S Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch, Instituto de Biofísica Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Jennifer Lowe
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch, Instituto de Biofísica Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; .,Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
| |
Collapse
|
16
|
Furness S, Hare DL, Kourakis A, Turnley AM, Wookey PJ. A novel ligand of calcitonin receptor reveals a potential new sensor that modulates programmed cell death. Cell Death Discov 2016; 2:16062. [PMID: 27777788 PMCID: PMC5056446 DOI: 10.1038/cddiscovery.2016.62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/14/2016] [Accepted: 07/14/2016] [Indexed: 11/24/2022] Open
Abstract
We have discovered that the accumulation of an anti-calcitonin receptor (anti-CTR) antibody conjugated to a fluorophore (mAb2C4:AF568) provides a robust signal for cells undergoing apoptotic programmed cell death (PCD). PCD is an absolute requirement for normal development of metazoan organisms. PCD is a hallmark of common diseases such as cardiovascular disease and tissue rejection in graft versus host pathologies, and chemotherapeutics work by increasing PCD. This robust signal or high fluorescent events were verified by confocal microscopy and flow cytometry in several cell lines and a primary culture in which PCD had been induced. In Jurkat cells, GBM-L2 and MG63 cells, the percentage undergoing PCD that were positive for both mAb2C4:AF568 and annexin V ranged between 70 and >90%. In MG63 cells induced for the preapoptotic cell stress response (PACSR), the normal expression of α-tubulin, a key structural component of the cytoskeleton, and accumulation of mAb2C4:AF568 were mutually exclusive. Our data support a model in which CTR is upregulated during PACSR and recycles to the plasma membrane with apoptosis. In cells committed to apoptosis (α-tubulin negative), there is accumulation of the CTR-ligand mAb2C4:AF568 generating a high fluorescent event. The reagent mAb2C4:AF568 effectively identifies a novel event linked to apoptosis.
Collapse
Affiliation(s)
- Sgb Furness
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Science, 381 Royal Parade, Parkville, Victoria 3052, Australia; Department of Pharmacology, Monash University, Wellington Road, Clayton, Parkville, Victoria 3800, Australia
| | - D L Hare
- Department of Medicine, University of Melbourne, Austin Health , Level 7, Lance Townsend Building, Studley Road, Heidelberg, Victoria 3084, Australia
| | - A Kourakis
- Department of Medicine, University of Melbourne, Austin Health , Level 7, Lance Townsend Building, Studley Road, Heidelberg, Victoria 3084, Australia
| | - A M Turnley
- Department of Anatomy and Neuroscience, Melbourne Brain Centre, University of Melbourne , Royal Parade, Parkville, Victoria 3010, Australia
| | - P J Wookey
- Department of Medicine, University of Melbourne, Austin Health , Level 7, Lance Townsend Building, Studley Road, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
17
|
Zhu S, Zhang M, Davis JE, Wu WH, Surrao K, Wang H, Wu G. A single mutation in helix 8 enhances the angiotensin II type 1a receptor transport and signaling. Cell Signal 2015; 27:2371-9. [PMID: 26342563 DOI: 10.1016/j.cellsig.2015.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/30/2015] [Indexed: 01/01/2023]
Abstract
The amphipathic helix 8 in the membrane-proximal C-terminus is a structurally conserved feature of class A seven transmembrane-spanning G protein-coupled receptors (GPCRs). Mutations of this helical motif often cause receptor misfolding, defective cell surface transport and dysfunction. Surprisingly, we demonstrated here that a single point mutation at Lys308 in helix 8 markedly enhanced the steady-state surface density of the angiotensin II type 1a receptor (AT1aR). Consistent with the enhanced cell surface expression, Lys308 mutation significantly augmented AT1aR-mediated mitogen-activated protein kinase ERK1/2 activation, inositol phosphate production, and vascular smooth muscle cell migration. This mutation also increased the overall expression of AT1aR without altering receptor degradation. More interestingly, Lys308 mutation abolished AT1aR interaction with β-COP, a component of COPI transport vesicles, and impaired AT1aR responsiveness to the inhibition of Rab6 GTPase involved in the Golgi-to-ER retrograde pathway. Furthermore, these functions of Lys308 were largely dependent on its positively charged property. These data reveal previously unappreciated functions of helix 8 and novel mechanisms governing the cell surface transport and function of AT1aR.
Collapse
Affiliation(s)
- Shu Zhu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - Maoxiang Zhang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - Jason E Davis
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - William H Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - Kristen Surrao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - Hong Wang
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, China
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States.
| |
Collapse
|
18
|
Zhou F, Dong C, Davis JE, Wu WH, Surrao K, Wu G. The mechanism and function of mitogen-activated protein kinase activation by ARF1. Cell Signal 2015; 27:2035-2044. [PMID: 26169956 DOI: 10.1016/j.cellsig.2015.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 01/25/2023]
Abstract
Mitogen-activated protein kinases (MAPK) can be activated by a number of biochemical pathways through distinct signaling molecules. We have recently revealed a novel function for the Ras-like small GTPase ADP-ribosylation factor 1 (ARF1) in mediating the activation of Raf1-MEK-ERK1/2 pathway by G protein-coupled receptors [Dong C, Li C and Wu G (2011) J Biol Chem 286, 43,361-43,369]. Here, we have further defined the underlying mechanism and the possible function of ARF1-mediated MAPK pathway. We demonstrated that the blockage of ARF1 activation and the disruption of ARF1 localization to the Golgi by mutating Thr48, a highly conserved residue involved in the exchange of GDP for GTP, and the myristoylation site Gly2 abolished ARF1's ability to activate ERK1/2. In addition, treatment with Golgi structure disrupting agents markedly attenuated ARF1-mediated ERK1/2 activation. Furthermore, ARF1 significantly promoted cell proliferation. More interestingly, ARF1 activated 90kDa ribosomal S6 kinase 1 (RSK1) without influencing Elk-1 activation and ERK2 translocation to the nuclei. These data demonstrate that, once activated, ARF1 activates the MAPK pathway likely using the Golgi as a main platform, which in turn activates the cytoplasmic RSK1, leading to cell proliferation.
Collapse
Affiliation(s)
- Fuguo Zhou
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112, United States
| | - Chunmin Dong
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112, United States
| | - Jason E Davis
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA 30912, United States
| | - William H Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA 30912, United States
| | - Kristen Surrao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA 30912, United States
| | - Guangyu Wu
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA 30912, United States
| |
Collapse
|
19
|
Castillo-Badillo JA, Sánchez-Reyes OB, Alfonzo-Méndez MA, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. α1B-adrenergic receptors differentially associate with Rab proteins during homologous and heterologous desensitization. PLoS One 2015; 10:e0121165. [PMID: 25799564 PMCID: PMC4370394 DOI: 10.1371/journal.pone.0121165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/28/2015] [Indexed: 11/24/2022] Open
Abstract
Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs. heterologous).
Collapse
Affiliation(s)
- Jean A. Castillo-Badillo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Omar B. Sánchez-Reyes
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Marco A. Alfonzo-Méndez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - M. Teresa Romero-Ávila
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, CP 07360, México, D.F., Mexico
| | - J. Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
- * E-mail:
| |
Collapse
|
20
|
Wu G, Davis JE, Zhang M. Regulation of α2B-Adrenerigc Receptor Export Trafficking by Specific Motifs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:227-44. [PMID: 26055061 PMCID: PMC4827153 DOI: 10.1016/bs.pmbts.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intracellular trafficking and precise targeting to specific locations of G protein-coupled receptors (GPCRs) control the physiological functions of the receptors. Compared to the extensive efforts dedicated to understanding the events involved in the endocytic and recycling pathways, the molecular mechanisms underlying the transport of the GPCR superfamily from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane are relatively less well defined. Over the past years, we have used α(2B)-adrenergic receptor (α(2B)-AR) as a model to define the factors that control GPCR export trafficking. In this chapter, we will review specific motifs identified to mediate the export of nascent α(2B)-AR from the ER and the Golgi and discuss the possible underlying mechanisms. As these motifs are highly conserved among GPCRs, they may provide common mechanisms for export trafficking of these receptors.
Collapse
Affiliation(s)
- Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA.
| | - Jason E Davis
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| | - Maoxiang Zhang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| |
Collapse
|
21
|
Filipeanu CM. Temperature-Sensitive Intracellular Traffic of α2C-Adrenergic Receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:245-65. [DOI: 10.1016/bs.pmbts.2015.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Parmar HB, Barry C, Kai F, Duncan R. Golgi complex-plasma membrane trafficking directed by an autonomous, tribasic Golgi export signal. Mol Biol Cell 2014; 25:866-78. [PMID: 24451258 PMCID: PMC3952855 DOI: 10.1091/mbc.e13-07-0364] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The first example of a cytosolic, membrane-proximal, tribasic motif required for Golgi export to the plasma membrane is identified and characterized. This novel Golgi export signal can also mediate trafficking of a heterologous Golgi-resident protein, indicating that it functions as an autonomous Golgi export signal. Although numerous linear motifs that direct protein trafficking within cells have been identified, there are few examples of linear sorting signals mediating directed export of membrane proteins from the Golgi complex to the plasma membrane. The reovirus fusion-associated small transmembrane proteins are simple, single-pass transmembrane proteins that traffic through the endoplasmic reticulum–Golgi pathway to the plasma membrane, where they induce cell–cell membrane fusion. Here we show that a membrane-proximal, polybasic motif (PBM) in the cytosolic tail of p14 is essential for efficient export of p14 from the Golgi complex to the plasma membrane. Extensive mutagenic analysis reveals that the number, but not the identity or position, of basic residues present in the PBM dictates p14 export from the Golgi complex, with a minimum of three basic residues required for efficient Golgi export. Results further indicate that the tribasic motif does not affect plasma membrane retention of p14. Furthermore, introduction of the tribasic motif into a Golgi-localized, chimeric ERGIC-53 protein directs export from the Golgi complex to the plasma membrane. The p14 PBM is the first example of an autonomous, tribasic signal required for Golgi export to the plasma membrane.
Collapse
Affiliation(s)
- Hirendrasinh B Parmar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | | | | |
Collapse
|
23
|
Avidor-Reiss T, Gopalakrishnan J. Cell Cycle Regulation of the Centrosome and Cilium. ACTA ACUST UNITED AC 2013; 10:e119-e124. [PMID: 24982683 DOI: 10.1016/j.ddmec.2013.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Centrosomes and cilia are conserved microtubule-based organelles whose structure and function depend on cell cycle stages. In dividing cells, centrosomes organize mitotic spindle poles, while in differentiating cells, centrosomes template ciliogenesis. Classically, this functional dichotomy has been attributed to regulation by cell cycle-dependent post-translational modifications, and recently PLK1, Nek2, Aurora A, and tubulin deacetylase were implicated in regulating the transition from cilia to centrosome. However, other recent studies suggest that tubulin dimers, the core structural components of centrosomes and cilia, also have a regulatory role. These regulatory mechanisms can be a target for chemotherapeutic intervention.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Jayachandran Gopalakrishnan
- Center for Molecular Medicine, University of Cologne, Germany ; Institute of Biochemistry I, University of Cologne, Germany
| |
Collapse
|
24
|
Wu YC, Lai HL, Chang WC, Lin JT, Liu YJ, Chern Y. A novel Gαs-binding protein, Gas-2 like 2, facilitates the signaling of the A2A adenosine receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3145-3154. [PMID: 23994616 DOI: 10.1016/j.bbamcr.2013.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022]
Abstract
The A2A adenosine receptor (A2AR) is a G-protein-coupled receptor that contains a long cytoplasmic carboxyl terminus (A2AR-C). We report here that Gas-2 like 2 (G2L2) is a new interacting partner of A2AR-C. The interaction between A2AR and G2L2 was verified by GST pull-down, co-immunoprecipitation, immunocytochemical staining, and fluorescence resonance energy transfer. Expression of G2L2 increased the intracellular cAMP content evoked by A2AR in an A2AR-C-dependent manner. Immunoprecipitation and pull-down assays demonstrated that G2L2 selectively bound to A2AR-C and the inactive form of Gαs to facilitate the recruitment of the trimeric G protein complex to the proximal position of A2AR for efficient activation. Collectively, G2L2 is a new effector that controls the action of A2AR by modulating its ability to regulate the Gαs-mediated cAMP contents.
Collapse
Affiliation(s)
- Yi-Chih Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsing-Lin Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Cheng Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jiun-Tsai Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Liu
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yijuang Chern
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
25
|
Li D, Liu Y, Yang Y, Chen JH, Yang J, Zou LY, Tian ZQ, Lv J, Xia PY. Looped host defense peptide CLP-19 binds to microtubules and inhibits surface expression of TLR4 on mouse macrophages. THE JOURNAL OF IMMUNOLOGY 2013; 190:6083-92. [PMID: 23667111 DOI: 10.4049/jimmunol.1203167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The looped host defense peptide CLP-19 is derived from a highly functional core region of the Limulus anti-LPS factor and exerts robust anti-LPS activity by directly interacting with LPS in the extracellular space. We previously showed that prophylactic administration of CLP-19 even 20 h prior to LPS challenge might significantly increase the survival rate in a lethal endotoxin shock mouse model. Such an effect may be associated with immune regulation of CLP-19. To investigate the underlying mechanisms, peptide affinity chromatography, immunofluorescence, and Western blotting procedures were used to identify α- and β-tubulin as direct and specific binding partners of CLP-19 in the mouse macrophage cell line RAW 264.7. Bioinformatic analysis using the AutoDock Vina molecular docking and PyMOL molecular graphics system predicted that CLP-19 would bind to the functional residues of both α- and β-tubulin and would be located within the groove of microtubules. Tubulin polymerization assay revealed that CLP-19 might induce polymerization of microtubules and prevent depolymerization. The immunoregulatory effect of CLP-19 involving microtubules was investigated by flow cytometry, immunofluorescence, and Western blotting, which showed that CLP-19 prophylactic treatment of RAW 264.7 cells significantly inhibited LPS-induced surface expression of TLR4. Taken together, these results suggest that CLP-19 binding to microtubules disrupts the dynamic equilibrium of microtubules, reducing the efficacy of microtubule-dependent vesicular transport that would otherwise translocate TLR4 from the endoplasmic reticulum to the cell surface.
Collapse
Affiliation(s)
- Di Li
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cutrona MB, Beznoussenko GV, Fusella A, Martella O, Moral P, Mironov AA. Silencing of mammalian Sar1 isoforms reveals COPII-independent protein sorting and transport. Traffic 2013; 14:691-708. [PMID: 23433038 DOI: 10.1111/tra.12060] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 01/01/2023]
Abstract
The Sar1 GTPase coordinates the assembly of coat protein complex-II (COPII) at specific sites of the endoplasmic reticulum (ER). COPII is required for ER-to-Golgi transport, as it provides a structural and functional framework to ship out protein cargoes produced in the ER. To investigate the requirement of COPII-mediated transport in mammalian cells, we used small interfering RNA (siRNA)-mediated depletion of Sar1A and Sar1B. We report that depletion of these two mammalian forms of Sar1 disrupts COPII assembly and the cells fail to organize transitional elements that coordinate classical ER-to-Golgi protein transfer. Under these conditions, minimal Golgi stacks are seen in proximity to juxtanuclear ER membranes that contain elements of the intermediate compartment, and from which these stacks coordinate biosynthetic transport of protein cargo, such as the vesicular stomatitis virus G protein and albumin. Here, transport of procollagen-I is inhibited. These data provide proof-of-principle for the contribution of alternative mechanisms that support biosynthetic trafficking in mammalian cells, providing evidence of a functional boundary associated with a bypass of COPII.
Collapse
Affiliation(s)
- Meritxell B Cutrona
- Department of Cellular and Translational Pharmacology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Zhang X, Wang H, Duvernay MT, Zhu S, Wu G. The angiotensin II type 1 receptor C-terminal Lys residues interact with tubulin and modulate receptor export trafficking. PLoS One 2013; 8:e57805. [PMID: 23451270 PMCID: PMC3581488 DOI: 10.1371/journal.pone.0057805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/25/2013] [Indexed: 12/15/2022] Open
Abstract
The physiological and pathological functions of angiotensin II are largely mediated through activating the cell surface angiotensin II type 1 receptor (AT1R). However, the molecular mechanisms underlying the transport of newly synthesized AT1R from the endoplasmic reticulum (ER) to the cell surface remain poorly defined. Here we demonstrated that the C-terminus (CT) of AT1R directly and strongly bound to tubulin and the binding domains were mapped to two consecutive Lys residues at positions 310 and 311 in the CT membrane-proximal region of AT1R and the acidic CT of tubulin, suggestive of essentially ionic interactions between AT1R and tubulin. Furthermore, mutation to disrupt tubulin binding dramatically inhibited the cell surface expression of AT1R, arrested AT1R in the ER, and attenuated AT1R-mediated signaling measured as ERK1/2 activation. These data demonstrate for the first time that specific Lys residues in the CT juxtamembrane region regulate the processing of AT1R through interacting with tubulin. These data also suggest an important role of the microtubule network in the cell surface transport of AT1R.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Hong Wang
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Matthew T. Duvernay
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Shu Zhu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Guangyu Wu
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Chung KY, Day PW, Vélez-Ruiz G, Sunahara RK, Kobilka BK. Identification of GPCR-interacting cytosolic proteins using HDL particles and mass spectrometry-based proteomic approach. PLoS One 2013; 8:e54942. [PMID: 23372797 PMCID: PMC3556083 DOI: 10.1371/journal.pone.0054942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have critical roles in various physiological and pathophysiological processes, and more than 40% of marketed drugs target GPCRs. Although the canonical downstream target of an agonist-activated GPCR is a G protein heterotrimer; there is a growing body of evidence suggesting that other signaling molecules interact, directly or indirectly, with GPCRs. However, due to the low abundance in the intact cell system and poor solubility of GPCRs, identification of these GPCR-interacting molecules remains challenging. Here, we establish a strategy to overcome these difficulties by using high-density lipoprotein (HDL) particles. We used the β2-adrenergic receptor (β2AR), a GPCR involved in regulating cardiovascular physiology, as a model system. We reconstituted purified β2AR in HDL particles, to mimic the plasma membrane environment, and used the reconstituted receptor as bait to pull-down binding partners from rat heart cytosol. A total of 293 proteins were identified in the full agonist-activated β2AR pull-down, 242 proteins in the inverse agonist-activated β2AR pull-down, and 210 proteins were commonly identified in both pull-downs. A small subset of the β2AR-interacting proteins isolated was confirmed by Western blot; three known β2AR-interacting proteins (Gsα, NHERF-2, and Grb2) and 3 newly identified known β2AR-interacting proteins (AMPKα, acetyl-CoA carboxylase, and UBC-13). Profiling of the identified proteins showed a clear bias toward intracellular signal transduction pathways, which is consistent with the role of β2AR as a cell signaling molecule. This study suggests that HDL particle-reconstituted GPCRs can provide an effective platform method for the identification of GPCR binding partners coupled with a mass spectrometry-based proteomic analysis.
Collapse
Affiliation(s)
- Ka Young Chung
- Department of Molecular and Cellular Physiology, Stanford University, Medical School, Beckman Center, Stanford, California, United States of America
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
- * E-mail: (BKK); (KYC)
| | - Peter W. Day
- Department of Molecular and Cellular Physiology, Stanford University, Medical School, Beckman Center, Stanford, California, United States of America
- Biological Technologies, Genentech, Roche Group, South San Francisco, California, United States of America
| | - Gisselle Vélez-Ruiz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Roger K. Sunahara
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Medical School, Beckman Center, Stanford, California, United States of America
- * E-mail: (BKK); (KYC)
| |
Collapse
|
29
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Abstract
In addition to heterotrimeric G-proteins, Ras-like small GTPases are also involved in regulating physiological functions of the G-protein-coupled receptor (GPCR) superfamily. In particular, Rab and ARF GTPases function either as "traffic cops" to coordinate receptor targeting to specific locations or as "signal transducers" to directly mediate receptor signal propagation. As revealed in protein-protein interaction assays, GPCRs may use specific motifs to physically interact with small GTPases, providing important insights into the underlying molecular mechanisms. In this chapter, we describe coimmunoprecipitation and GST fusion protein pull-down approaches to study the GPCR-small GTPase interaction, by focusing on the interaction of α(2B)- and β(2)-adrenegic receptors with the small GTPases Rab8 and ARF1.
Collapse
Affiliation(s)
- Chunmin Dong
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, Georgia, USA
| | | |
Collapse
|
31
|
Fan Y, Li C, Guo J, Hu G, Wu G. A single lys residue on the first intracellular loop modulates the endoplasmic reticulum export and cell-surface expression of α2A-adrenergic receptor. PLoS One 2012; 7:e50416. [PMID: 23227171 PMCID: PMC3515576 DOI: 10.1371/journal.pone.0050416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/19/2012] [Indexed: 12/03/2022] Open
Abstract
Export from the endoplasmic reticulum (ER) represents an initial step in intracellular trafficking of G protein-coupled receptors (GPCRs). However, the underlying molecular mechanisms remain poorly understood. We have previously demonstrated that a highly conserved Leu residue on the first intracellular loop (ICL1) is required for exit of several GPCRs from the ER. Here we found that, in addition to Leu64 residue in the ICL1, the neighboring positively charged residue Lys65also modulates the cell-surface transport of α2A-adrenergic receptor (α2A-AR). Mutation of Lys65 to Ala, Glu and Gln significantly attenuated, whereas mutation of Lys65 to Arg strongly augmented α2A-AR expression at the cell surface. Consistent with the effects on the cell-surface expression of α2A-AR, mutation of Lys65 to Ala and Arg produced opposing effects on α2A-AR-mediated ERK1/2 activation. Furthermore, confocal microscopy revealed that the α2A-AR mutant K65A displayed a strong intracellular expression pattern and was extensively co-localized with the ER marker DsRed2-ER, suggestive of ER accumulation. These data provide the first evidence indicating an important function for a single Lys residue on the ICL1 in the ER export and cell-surface expression of α2A-AR. These data also suggest that the ICL1 may possess multiple signals that control the cell-surface targeting of GPCRs via distinct mechanisms.
Collapse
Affiliation(s)
- Yi Fan
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Chunman Li
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Jianhui Guo
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Lim WK, Kanelakis KC, Neubig RR. Regulation of G protein signaling by the 70kDa heat shock protein. Cell Signal 2012; 25:389-96. [PMID: 23153586 DOI: 10.1016/j.cellsig.2012.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/05/2012] [Indexed: 11/27/2022]
Abstract
G protein-coupled receptors (GPCRs) transduce extracellular signals to the interior of the cell by activating membrane-bound guanine nucleotide-binding regulatory proteins (G proteins). An increasing number of proteins have been reported to bind to and regulate GPCRs. We report a novel regulation of the alpha(2A) adrenergic receptor (α(2A)-R) by the ubiquitous stress-inducible 70kDa heat shock protein, hsp70. Hsp70, but not hsp90, attenuated G protein-dependent high affinity agonist binding to the α(2A)-R in Sf9 membranes. Antagonist binding was unchanged, suggesting that hsp70 uncouples G proteins from the receptor. As hsp70 did not bind G proteins but complexed with the α(2A)-R in intact cells, a direct interaction with the receptor seems likely. In the presence of hsp70, α(2A)-R-catalyzed [(35)S]GTPγS binding was reduced by approximately 70%. In contrast, approximately 50-fold higher concentrations of hsp70 were required to reduce agonist binding to the stress-inducible 5-hydroxytryptamine(1A) receptor (5-HT(1A)-R). In heat-stressed CHO cells, the α(2A)-R was significantly uncoupled from G proteins, coincident with an increased localization of hsp70 at the membrane. The contrasting effect of hsp70 on the α(2A)-R compared to the 5-HT(1A)-R suggests that during stress, upregulation of hsp70 may attenuate signaling from specific GPCRs as part of the stress response to foster survival.
Collapse
Affiliation(s)
- William K Lim
- Universiti Malaysia Sarawak, 93150 Kuching, Sarawak, Malaysia.
| | | | | |
Collapse
|
33
|
Li JG, Chen C, Huang P, Wang Y, Liu-Chen LY. 14-3-3ζ Protein regulates anterograde transport of the human κ-opioid receptor (hKOPR). J Biol Chem 2012; 287:37778-92. [PMID: 22989890 DOI: 10.1074/jbc.m112.359679] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
By proteomic analysis, we found that 14-3-3ζ was one of the proteins co-immunoprecipitated with human κ-opioid receptor (hKOPR) from extracts of solubilized Neuro2A cells stably expressing FLAG-hKOPR (N2A-FLAG-hKOPR cells). 14-3-3 proteins are a family of conserved regulatory molecules in eukaryotic cells, where they participate in signal transduction, metabolism, and membrane protein transport. 14-3-3ζ co-localized with the hKOPR in N2A cells. The hKOPR C-tail interacted with 14-3-3ζ in rat brain extracts and bound directly to purified 14-3-3ζ as demonstrated by pulldown techniques. 14-3-3ζ siRNA decreased expression of the hKOPR in N2A-FLAG-hKOPR cells and cultured primary cortical neurons of E19 rats by ~25% as determined by immunoblotting, ligand binding, and flow cytometry. The effect of 14-3-3ζ siRNA was reversed by overexpression of 14-3-3ζ. Expression of the 14-3-3 scavenger protein pGpLI-R18 also decreased hKOPR expression. 14-3-3ζ siRNA did not change expressions of the hDOPR and rMOPR in N2A cells. Pulse-chase study showed that 14-3-3ζ siRNA decreased the amount of mature hKOPR but did not change the rate of maturation or stability of hKOPR protein. Mutations of R354A/S358A in the putative 14-3-3 interaction motif (354)RQSTS(358) in the hKOPR C-tail reduced interaction of the hKOPR with 14-3-3ζ and abolished the effect of 14-3-3ζ knockdown on hKOPR expression. Mutation of the endoplasmic reticulum retention motif (359)RVR adjacent to the 14-3-3 interaction motif in the hKOPR C-tail decreased interaction of coatomer protein I (COPI) with the hKOPR and abolished 14-3-3ζ-mediated regulation of hKOPR expression. 14-3-3ζ knockdown increased association of COPI with the hKOPR. These results suggest that 14-3-3ζ promotes expression of the hKOPR by inhibiting COPI and RVR motif-mediated endoplasmic reticulum localization machinery.
Collapse
Affiliation(s)
- Jian-Guo Li
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
35
|
Castillo-Badillo JA, Molina-Muñoz T, Romero-Ávila MT, Vázquez-Macías A, Rivera R, Chun J, García-Sáinz JA. Sphingosine 1-phosphate-mediated α1B-adrenoceptor desensitization and phosphorylation. Direct and paracrine/autocrine actions. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:245-54. [PMID: 22019450 PMCID: PMC3273635 DOI: 10.1016/j.bbamcr.2011.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 09/20/2011] [Accepted: 10/06/2011] [Indexed: 12/26/2022]
Abstract
Sphingosine-1-phosphate-induced α1B-adrenergic receptor desensitization and phosphorylation were studied in rat-1 fibroblasts stably expressing enhanced green fluorescent protein-tagged adrenoceptors. Sphingosine-1-phosphate induced adrenoceptor desensitization and phosphorylation through a signaling cascade that involved phosphoinositide 3-kinase and protein kinase C activities. The autocrine/paracrine role of sphingosine-1-phosphate was also studied. It was observed that activation of receptor tyrosine kinases, such as insulin growth factor-1 (IGF-I) and epidermal growth factor (EGF) receptors increased sphingosine kinase activity. Such activation and consequent production of sphingosine-1-phosphate appear to be functionally relevant in IGF-I- and EGF-induced α1B-adrenoceptor phosphorylation and desensitization as evidenced by the following facts: a) expression of a catalytically inactive (dominant-negative) mutant of sphingosine kinase 1 or b) S1P1 receptor knockdown markedly reduced this growth factor action. This action of sphingosine-1-phosphate involves EGF receptor transactivation. In addition, taking advantage of the presence of the eGFP tag in the receptor construction, we showed that S1P was capable of inducing α1B-adrenergic receptor internalization and that its autocrine/paracrine generation was relevant for internalization induced by IGF-I. Four distinct hormone receptors and two autocrine/paracrine mediators participate in IGF-I receptor-α1B-adrenergic receptor crosstalk.
Collapse
Affiliation(s)
- Jean A. Castillo-Badillo
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| | - Tzindilú Molina-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| | - M. Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| | - Aleida Vázquez-Macías
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| | - Richard Rivera
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jerold Chun
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - J. Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| |
Collapse
|
36
|
Abstract
Anterograde trafficking of newly synthesized G protein-coupled -receptors (GPCRs) from the endoplasmic reticulum to the cell surface represents a crucial checkpoint in controlling the amount of the functional receptors at the cell surface and the strength of signaling initiated by the receptors. In contrast to the extensively studied, well-understood endocytic and recycling pathways, the molecular mechanisms underlying the cell-surface targeting of the receptors remain poorly defined. In this chapter, I will discuss current advances in understanding post-Golgi transport of GPCRs by focusing on specific motifs or sequences that may function as sorting signals regulating export from the Golgi and subsequent transport to the plasma membrane of GPCRs.
Collapse
|
37
|
Dong C, Li C, Wu G. Regulation of α(2B)-adrenergic receptor-mediated extracellular signal-regulated kinase 1/2 (ERK1/2) activation by ADP-ribosylation factor 1. J Biol Chem 2011; 286:43361-9. [PMID: 22025613 DOI: 10.1074/jbc.m111.267286] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A number of signaling molecules are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway by G protein-coupled receptors. In this study, we have demonstrated that α(2B)-adrenergic receptor (α(2B)-AR) interacts with ADP-ribosylation factor 1 (ARF1), a small GTPase involved in vesicle-mediated trafficking, in an agonist activation-dependent manner and that the interaction is mediated through a unique double Trp motif in the third intracellular loop of the receptor. Interestingly, mutation of the double Trp motif and siRNA-mediated depletion of ARF1 attenuate α(2B)-AR-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) without altering receptor intracellular trafficking, whereas expression of the constitutively active mutant ARF1Q71L and ARNO, a GDP-GTP exchange factor of ARF1, markedly enhances the activation of Raf1, MEK1, and ERK1/2. These data strongly demonstrate that the small GTPase ARF1 modulates ERK1/2 activation by α(2B)-AR and provide the first evidence indicating a novel function for ARF1 in regulating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Chunmin Dong
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
38
|
Wang G, Wu G. Small GTPase regulation of GPCR anterograde trafficking. Trends Pharmacol Sci 2011; 33:28-34. [PMID: 22015208 DOI: 10.1016/j.tips.2011.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 01/14/2023]
Abstract
The physiological functions of heterotrimeric G protein-coupled receptors (GPCRs) are dictated by their intracellular trafficking and precise targeting to the functional destinations. Over the past decades, most studies on the trafficking of GPCRs have focused on the events involved in endocytosis and recycling. By contrast, the molecular mechanisms underlying anterograde transport of newly synthesized GPCRs from the endoplasmic reticulum (ER) to the cell surface have only now begun to be revealed. In this review we discuss current advances in understanding the role of Ras-like GTPases, specifically the Rab and Sar1/ARF subfamilies, in regulating cell-surface transport of GPCRs en route from the ER and the Golgi.
Collapse
Affiliation(s)
- Guansong Wang
- Institute of Respiratory Diseases, Second Affiliated Hospital of the Third Military Medical University, Chongqing 400037, China
| | | |
Collapse
|