1
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025. [PMID: 39746035 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
2
|
Malovic E, Ealy A, Miller C, Jang A, Hsu PJ, Sarkar S, Rokad D, Goeser C, Hartman AK, Zhu A, Palanisamy B, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, He C, Kanthasamy AG. Epitranscriptomic reader YTHDF2 regulates SEK1( MAP2K4)-JNK-cJUN inflammatory signaling in astrocytes during neurotoxic stress. iScience 2024; 27:110619. [PMID: 39252959 PMCID: PMC11382029 DOI: 10.1016/j.isci.2024.110619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
As the most abundant glial cells in the central nervous system (CNS), astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress are many and complex. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stressor, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, the neurotoxic stress-induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechanistically, YTHDF2 RIP-sequencing identified MAP2K4 (MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed that Mn-exposed astrocytes mediate proinflammatory responses by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves as a key upstream 'molecular switch' controlling SEK1(MAP2K4)-JNK-cJUN proinflammatory signaling in astrocytes.
Collapse
Affiliation(s)
- Emir Malovic
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Alyssa Ealy
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Cameron Miller
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Ahyoung Jang
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Phillip J Hsu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Souvarish Sarkar
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Dharmin Rokad
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Cody Goeser
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Aleah Kristen Hartman
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Allen Zhu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Bharathi Palanisamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Sikora J, Dovero S, Kinet R, Arotcarena ML, Bohic S, Bezard E, Fernagut PO, Dehay B. Nigral ATP13A2 depletion induces Parkinson's disease-related neurodegeneration in a pilot study in non-human primates. NPJ Parkinsons Dis 2024; 10:141. [PMID: 39090150 PMCID: PMC11294619 DOI: 10.1038/s41531-024-00757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Lysosomal impairment is strongly implicated in Parkinson's disease (PD). Among the several PD-linked genes, the ATP13A2 gene, associated with the PARK9 locus, encodes a transmembrane lysosomal P5-type ATPase. Mutations in the ATP13A2 gene were primarily identified as the cause of Kufor-Rakeb syndrome (KRS), a juvenile-onset form of PD. Subsequently, an increasing list of several mutations has been described. These mutations result in truncation of the ATP13A2 protein, leading to a loss of function but surprisingly causing heterogeneity and variability in the clinical symptoms associated with different brain pathologies. In vitro studies show that its loss compromises lysosomal function, contributing to cell death. To understand the role of ATP13A2 dysfunction in disease, we disrupted its expression through a viral vector-based approach in nonhuman primates. Here, in this pilot study, we injected bilaterally into the substantia nigra of macaques, a lentiviral vector expressing an ATP13A2 small hairpin RNA. Animals were terminated five months later, and brains were harvested and compared with historical non-injected control brains to evaluate cerebral pathological markers known to be affected in KRS and PD. We characterised the pattern of dopaminergic loss in the striatum and the substantia nigra, the regional distribution of α-synuclein immunoreactivity in several brain structures, and its pathological status (i.e., S129 phosphorylation), the accumulation of heavy metals in nigral sections and occurrence of lysosomal dysfunction. This proof-of-concept experiment highlights the potential value of lentivirus-mediated ATP13A2 silencing to induce significant and ongoing degeneration in the nigrostriatal pathway, α-synuclein pathology, and iron accumulation in nonhuman primates.
Collapse
Affiliation(s)
- Joanna Sikora
- Univ. Bordeaux, CNRS, IMN, Bordeaux, France
- Univ. De Poitiers, INSERM, LNEC, Poitiers, France
| | | | - Rémi Kinet
- Univ. Bordeaux, CNRS, IMN, Bordeaux, France
| | | | - Sylvain Bohic
- Univ. Grenoble Alpes, Synchrotron Radiation for Biomedicine (STROBE), Grenoble, France
| | | | | | | |
Collapse
|
4
|
Yasin M, Licchetta L, Khan N, Ullah I, Jan Z, Dawood M, Ahmed AN, Azeem A, Minardi R, Carelli V, Saleha S. Genetic heterogeneity in epilepsy and comorbidities: insights from Pakistani families. BMC Neurol 2024; 24:172. [PMID: 38783254 PMCID: PMC11112905 DOI: 10.1186/s12883-024-03671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Epilepsy, a challenging neurological condition, is often present with comorbidities that significantly impact diagnosis and management. In the Pakistani population, where financial limitations and geographical challenges hinder access to advanced diagnostic methods, understanding the genetic underpinnings of epilepsy and its associated conditions becomes crucial. METHODS This study investigated four distinct Pakistani families, each presenting with epilepsy and a spectrum of comorbidities, using a combination of whole exome sequencing (WES) and Sanger sequencing. The epileptic patients were prescribed multiple antiseizure medications (ASMs), yet their seizures persist, indicating the challenging nature of ASM-resistant epilepsy. RESULTS Identified genetic variants contributed to a diverse range of clinical phenotypes. In the family 1, which presented with epilepsy, developmental delay (DD), sleep disturbance, and aggressive behavior, a homozygous splice site variant, c.1339-6 C > T, in the COL18A1 gene was detected. The family 2 exhibited epilepsy, intellectual disability (ID), DD, and anxiety phenotypes, a homozygous missense variant, c.344T > A (p. Val115Glu), in the UFSP2 gene was identified. In family 3, which displayed epilepsy, ataxia, ID, DD, and speech impediment, a novel homozygous frameshift variant, c.1926_1941del (p. Tyr643MetfsX2), in the ZFYVE26 gene was found. Lastly, family 4 was presented with epilepsy, ID, DD, deafness, drooling, speech impediment, hypotonia, and a weak cry. A homozygous missense variant, c.1208 C > A (p. Ala403Glu), in the ATP13A2 gene was identified. CONCLUSION This study highlights the genetic heterogeneity in ASM-resistant epilepsy and comorbidities among Pakistani families, emphasizing the importance of genotype-phenotype correlation and the necessity for expanded genetic testing in complex clinical cases.
Collapse
Affiliation(s)
- Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Laura Licchetta
- RCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Irfan Ullah
- Department of Neurology, Khyber Teaching Hospital, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Zakir Jan
- Department of Neurology, Pakistan Institute of Medical Science, Islamabad, 44000, Pakistan
| | - Muhammad Dawood
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Raffaella Minardi
- RCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valerio Carelli
- RCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
| |
Collapse
|
5
|
Malovic E, Ealy A, Hsu PJ, Sarkar S, Miller C, Rokad D, Goeser C, Hartman AK, Zhu A, Palanisamy B, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, He C, Kanthasamy AG. Epitranscriptomic Reader YTHDF2 Regulates SEK1( MAP2K4 )-JNK-cJUN Inflammatory Signaling in Astrocytes during Neurotoxic Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577106. [PMID: 38328119 PMCID: PMC10849634 DOI: 10.1101/2024.01.26.577106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
As the most abundant glial cells in the CNS, astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress have remained elusive. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stresser, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, neurotoxic stress induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechnistically, YTHDF2 RIP-sequencing identified MAP2K4 ( MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed Mn-exposed astrocytes mediates proinflammatory response by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves a key upstream 'molecular switch' controlling SEK1( MAP2K4 )-JNK-cJUN proinflammatory signaling in astrocytes.
Collapse
|
6
|
Croucher KM, Fleming SM. ATP13A2 (PARK9) and basal ganglia function. Front Neurol 2024; 14:1252400. [PMID: 38249738 PMCID: PMC10796451 DOI: 10.3389/fneur.2023.1252400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
ATP13A2 is a lysosomal protein involved in polyamine transport with loss of function mutations associated with multiple neurodegenerative conditions. These include early onset Parkinson's disease, Kufor-Rakeb Syndrome, neuronal ceroid lipofuscinosis, hereditary spastic paraplegia, and amyotrophic lateral sclerosis. While ATP13A2 mutations may result in clinical heterogeneity, the basal ganglia appear to be impacted in the majority of cases. The basal ganglia is particularly vulnerable to environmental exposures such as heavy metals, pesticides, and industrial agents which are also established risk factors for many neurodegenerative conditions. Not surprisingly then, impaired function of ATP13A2 has been linked to heavy metal toxicity including manganese, iron, and zinc. This review discusses the role of ATP13A2 in basal ganglia function and dysfunction, potential common pathological mechanisms in ATP13A2-related disorders, and how gene x environment interactions may contribute to basal ganglia dysfunction.
Collapse
Affiliation(s)
- Kristina M. Croucher
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
- Biomedical Sciences Graduate Program, Kent State University, Kent, OH, United States
| | - Sheila M. Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
7
|
Wu W, Lin L, Zhao Y, Li H, Zhang R. Protein modification regulated autophagy in Bombyx mori and Drosophila melanogaster. Front Physiol 2023; 14:1281555. [PMID: 38028759 PMCID: PMC10665574 DOI: 10.3389/fphys.2023.1281555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Post-translational modifications refer to the chemical alterations of proteins following their biosynthesis, leading to changes in protein properties. These modifications, which encompass acetylation, phosphorylation, methylation, SUMOylation, ubiquitination, and others, are pivotal in a myriad of cellular functions. Macroautophagy, also known as autophagy, is a major degradation of intracellular components to cope with stress conditions and strictly regulated by nutrient depletion, insulin signaling, and energy production in mammals. Intriguingly, in insects, 20-hydroxyecdysone signaling predominantly stimulates the expression of most autophagy-related genes while concurrently inhibiting mTOR activity, thereby initiating autophagy. In this review, we will outline post-translational modification-regulated autophagy in insects, including Bombyx mori and Drosophila melanogaster, in brief. A more profound understanding of the biological significance of post-translational modifications in autophagy machinery not only unveils novel opportunities for autophagy intervention strategies but also illuminates their potential roles in development, cell differentiation, and the process of learning and memory processes in both insects and mammals.
Collapse
Affiliation(s)
- Wenmei Wu
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Luobin Lin
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuntao Zhao
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Huaqin Li
- Guangzhou Xinhua University, Guangzhou, Guangdong, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Alizadeh P, Terroba-Chambi C, Achen B, Bruno V. Pain in monogenic Parkinson's disease: a comprehensive review. Front Neurol 2023; 14:1248828. [PMID: 38020640 PMCID: PMC10643218 DOI: 10.3389/fneur.2023.1248828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Pain, a challenging symptom experienced by individuals diagnosed with Parkinson's disease (PD), still lacks a comprehensive understanding of its underlying pathophysiological mechanisms. A systematic investigation of its prevalence and impact on the quality of life in patients affected by monogenic forms of PD has yet to be undertaken. This comprehensive review aims to provide an overview of the association between pain and monogenic forms of PD, specifically focusing on pathogenic variants in SNCA, PRKN, PINK1, PARK7, LRRK2, GBA1, VPS35, ATP13A2, DNAJC6, FBXO7, and SYNJ1. Sixty-three articles discussing pain associated with monogenic PD were identified and analyzed. The included studies exhibited significant heterogeneity in design, sample size, and pain outcome measures. Nonetheless, the findings of this review suggest that patients with monogenic PD may experience specific types of pain depending on the pathogenic variant present, distinguishing them from non-carriers. For instance, individuals with SNCA pathogenic variants have reported painful dystonia, lower extremity pain, dorsal pain, and upper back pain. However, these observations are primarily based on case reports with unclear prevalence. Painful lower limb dystonia and lower back pain are prominent symptoms in PRKN carriers. A continual correlation has been noted between LRRK2 mutations and the emergence of pain, though the conflicting research outcomes pose challenges in reaching definitive conclusions. Individuals with PINK1 mutation carriers also frequently report experiencing pain. Pain has been frequently reported as an initial symptom and the most troublesome one in GBA1-PD patients compared to those with idiopathic PD. The evidence regarding pain in ATP13A2, PARK7, VPS35, DNAJC6, FBXO7, and SYNJ1pathogenic variants is limited and insufficient. The potential linkage between genetic profiles and pain outcomes holds promising clinical implications, allowing for the potential stratification of patients in clinical trials and the development of personalized treatments for pain in monogenic PD. In conclusion, this review underscores the need for further research to unravel the intricate relationship between pain and monogenic forms of PD. Standardized methodologies, larger sample sizes, and longitudinal studies are essential to elucidate the underlying mechanisms and develop targeted therapeutic interventions for pain management in individuals with monogenic PD.
Collapse
Affiliation(s)
- Parisa Alizadeh
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| | | | - Beatrice Achen
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Veronica Bruno
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| |
Collapse
|
9
|
Baj J, Flieger W, Barbachowska A, Kowalska B, Flieger M, Forma A, Teresiński G, Portincasa P, Buszewicz G, Radzikowska-Büchner E, Flieger J. Consequences of Disturbing Manganese Homeostasis. Int J Mol Sci 2023; 24:14959. [PMID: 37834407 PMCID: PMC10573482 DOI: 10.3390/ijms241914959] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Manganese (Mn) is an essential trace element with unique functions in the body; it acts as a cofactor for many enzymes involved in energy metabolism, the endogenous antioxidant enzyme systems, neurotransmitter production, and the regulation of reproductive hormones. However, overexposure to Mn is toxic, particularly to the central nervous system (CNS) due to it causing the progressive destruction of nerve cells. Exposure to manganese is widespread and occurs by inhalation, ingestion, or dermal contact. Associations have been observed between Mn accumulation and neurodegenerative diseases such as manganism, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. People with genetic diseases associated with a mutation in the gene associated with impaired Mn excretion, kidney disease, iron deficiency, or a vegetarian diet are at particular risk of excessive exposure to Mn. This review has collected data on the current knowledge of the source of Mn exposure, the experimental data supporting the dispersive accumulation of Mn in the brain, the controversies surrounding the reference values of biomarkers related to Mn status in different matrices, and the competitiveness of Mn with other metals, such as iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu), lead (Pb), calcium (Ca). The disturbed homeostasis of Mn in the body has been connected with susceptibility to neurodegenerative diseases, fertility, and infectious diseases. The current evidence on the involvement of Mn in metabolic diseases, such as type 2 diabetes mellitus/insulin resistance, osteoporosis, obesity, atherosclerosis, and non-alcoholic fatty liver disease, was collected and discussed.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Aleksandra Barbachowska
- Department of Plastic, Reconstructive and Burn Surgery, Medical University of Lublin, 21-010 Łęczna, Poland;
| | - Beata Kowalska
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Michał Flieger
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Grzegorz Teresiński
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Piero Portincasa
- Clinica Medica A. Murri, Department of Biomedical Sciences & Human Oncology, Medical School, University of Bari, 70124 Bari, Italy;
| | - Grzegorz Buszewicz
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Gomes G, Oliveira JL, Costa ML, Mermelstein C, Feitosa NM. Manganese Exposure Induces Cellular Aggregates and the Accumulation of β-Catenin in Skin of Zebrafish Embryos. Zebrafish 2023; 20:160-168. [PMID: 37406179 DOI: 10.1089/zeb.2022.0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
The effects of manganese (Mn) toxicity in different organs and tissues in humans and other vertebrates have been studied since the beginning of the past century, but most of its cellular effects remain largely unknown. In this study, we studied the effects of Mn in zebrafish, at the cellular level, due to the transparent nature of zebrafish larvae that enables a powerful analysis under the light microscope. The collection of our results shows that environmental concentrations of 0.5 mg/L affect swim bladder inflation; at concentration of 50 and 100 mg/L Mn (1) induces alterations in viability, swim bladder, heart, and size of zebrafish larvae, (2) induces an increase in melanocyte area and the formation of cellular aggregates in the skin, and (3) induces an accumulation of β-Catenin in mesenchymal cells in the caudal fin of zebrafish larvae. Our data suggest that increased levels of Mn induce cell aggregate formation in the skin and the presence of more melanocytes in the zebrafish caudal fin. Interestingly, the adhesion protein β-Catenin was activated in mesenchymal cells near the cell aggregates. These results open important new questions on the role of Mn toxicity on cellular organization and β-Catenin responses in fishes.
Collapse
Affiliation(s)
- Geyse Gomes
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - José Leonardo Oliveira
- Laboratório Integrado de Biociências Translacionais (LIBT), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de janeiro, Macaé, Brazil
| | - Manoel Luis Costa
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Natália Martins Feitosa
- Laboratório Integrado de Biociências Translacionais (LIBT), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de janeiro, Macaé, Brazil
| |
Collapse
|
11
|
Fujii T, Nagamori S, Wiriyasermkul P, Zheng S, Yago A, Shimizu T, Tabuchi Y, Okumura T, Fujii T, Takeshima H, Sakai H. Parkinson's disease-associated ATP13A2/PARK9 functions as a lysosomal H +,K +-ATPase. Nat Commun 2023; 14:2174. [PMID: 37080960 PMCID: PMC10119128 DOI: 10.1038/s41467-023-37815-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Mutations in the human ATP13A2 (PARK9), a lysosomal ATPase, cause Kufor-Rakeb Syndrome, an early-onset form of Parkinson's disease (PD). Here, we demonstrate that ATP13A2 functions as a lysosomal H+,K+-ATPase. The K+-dependent ATPase activity and the lysosomal K+-transport activity of ATP13A2 are inhibited by an inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase, thapsigargin, and K+-competitive inhibitors of gastric H+,K+-ATPase, such as vonoprazan and SCH28080. Interestingly, these H+,K+-ATPase inhibitors cause lysosomal alkalinization and α-synuclein accumulation, which are pathological hallmarks of PD. Furthermore, PD-associated mutants of ATP13A2 show abnormal expression and function. Our results suggest that the H+/K+-transporting function of ATP13A2 contributes to acidification and α-synuclein degradation in lysosomes.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Shushi Nagamori
- Center for SI Medical Research and Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Pattama Wiriyasermkul
- Center for SI Medical Research and Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Shizhou Zheng
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Asaka Yago
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
12
|
Zajac M, Modi S, Krishnan Y. The evolution of organellar calcium mapping technologies. Cell Calcium 2022; 108:102658. [PMID: 36274564 PMCID: PMC10224794 DOI: 10.1016/j.ceca.2022.102658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023]
Abstract
Intracellular Ca2+ fluxes are dynamically controlled by the co-involvement of multiple organellar pools of stored Ca2+. Endolysosomes are emerging as physiologically critical, yet underexplored, sources and sinks of intracellular Ca2+. Delineating the role of organelles in Ca2+ signaling has relied on chemical fluorescent probes and electrophysiological strategies. However, the acidic endolysosomal environment presents unique issues, which preclude the use of traditional chemical reporter strategies to map lumenal Ca2+. Here, we broadly address the current state of knowledge about organellar Ca2+ pools. We then outline the application of traditional probes, and their sensing paradigms. We then discuss how a new generation of probes overcomes the limitations of traditional Ca2+probes, emphasizing their ability to offer critical insights into endolysosomal Ca2+, and its feedback with other organellar pools.
Collapse
Affiliation(s)
- Matthew Zajac
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, USA; Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Souvik Modi
- Esya Labs, Translation and Innovation Hub, Imperial College White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, USA; Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, 60637, USA.
| |
Collapse
|
13
|
Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Impact of Environmental Risk Factors on Mitochondrial Dysfunction, Neuroinflammation, Protein Misfolding, and Oxidative Stress in the Etiopathogenesis of Parkinson's Disease. Int J Mol Sci 2022; 23:10808. [PMID: 36142718 PMCID: PMC9505762 DOI: 10.3390/ijms231810808] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.
Collapse
Affiliation(s)
- Minhong Huang
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Alejandra Bargues-Carot
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Zainab Riaz
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Hannah Wickham
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Gary Zenitsky
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Huajun Jin
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Vellareddy Anantharam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Arthi Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
14
|
Franken GAC, Huynen MA, Martínez-Cruz LA, Bindels RJM, de Baaij JHF. Structural and functional comparison of magnesium transporters throughout evolution. Cell Mol Life Sci 2022; 79:418. [PMID: 35819535 PMCID: PMC9276622 DOI: 10.1007/s00018-022-04442-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022]
Abstract
Magnesium (Mg2+) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions, Mg2+ is essential for protein synthesis, energy production, and DNA stability. Disturbances in intracellular Mg2+ concentrations, therefore, unequivocally result in delayed cell growth and metabolic defects. To maintain physiological Mg2+ levels, all organisms rely on balanced Mg2+ influx and efflux via Mg2+ channels and transporters. This review compares the structure and the function of prokaryotic Mg2+ transporters and their eukaryotic counterparts. In prokaryotes, cellular Mg2+ homeostasis is orchestrated via the CorA, MgtA/B, MgtE, and CorB/C Mg2+ transporters. For CorA, MgtE, and CorB/C, the motifs that form the selectivity pore are conserved during evolution. These findings suggest that CNNM proteins, the vertebrate orthologues of CorB/C, also have Mg2+ transport capacity. Whereas CorA and CorB/C proteins share the gross quaternary structure and functional properties with their respective orthologues, the MgtE channel only shares the selectivity pore with SLC41 Na+/Mg2+ transporters. In eukaryotes, TRPM6 and TRPM7 Mg2+ channels provide an additional Mg2+ transport mechanism, consisting of a fusion of channel with a kinase. The unique features these TRP channels allow the integration of hormonal, cellular, and transcriptional regulatory pathways that determine their Mg2+ transport capacity. Our review demonstrates that understanding the structure and function of prokaryotic magnesiotropic proteins aids in our basic understanding of Mg2+ transport.
Collapse
Affiliation(s)
- G A C Franken
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - M A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L A Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - R J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - J H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Zhang F, Wu Z, Long F, Tan J, Gong N, Li X, Lin C. The Roles of ATP13A2 Gene Mutations Leading to Abnormal Aggregation of α-Synuclein in Parkinson’s Disease. Front Cell Neurosci 2022; 16:927682. [PMID: 35875356 PMCID: PMC9296842 DOI: 10.3389/fncel.2022.927682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. PARK9 (also known as ATP13A2) is recognized as one of the key genes that cause PD, and a mutation in this gene was first discovered in a rare case of PD in an adolescent. Lewy bodies (LBs) formed by abnormal aggregation of α-synuclein, which is encoded by the SNCA gene, are one of the pathological diagnostic criteria for PD. LBs are also recognized as one of the most important features of PD pathogenesis. In this article, we first summarize the types of mutations in the ATP13A2 gene and their effects on ATP13A2 mRNA and protein structure; then, we discuss lysosomal autophagy inhibition and the molecular mechanism of abnormal α-synuclein accumulation caused by decreased levels and dysfunction of the ATP13A2 protein in lysosomes. Finally, this article provides a new direction for future research on the pathogenesis and therapeutic targets for ATP13A2 gene-related PD from the perspective of ATP13A2 gene mutations and abnormal aggregation of α-synuclein.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwei Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jieqiong Tan
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Molecular Precision Medicine of Hunan Province, Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Ni Gong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Changwei Lin, orcid.org/0000-0003-1676-0912
| |
Collapse
|
16
|
Gao XY, Yang T, Gu Y, Sun XH. Mitochondrial Dysfunction in Parkinson’s Disease: From Mechanistic Insights to Therapy. Front Aging Neurosci 2022; 14:885500. [PMID: 35795234 PMCID: PMC9250984 DOI: 10.3389/fnagi.2022.885500] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative movement disorders worldwide. There are currently no cures or preventative treatments for PD. Emerging evidence indicates that mitochondrial dysfunction is closely associated with pathogenesis of sporadic and familial PD. Because dopaminergic neurons have high energy demand, cells affected by PD exhibit mitochondrial dysfunction that promotes the disease-defining the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The mitochondrion has a particularly important role as the cellular “powerhouse” of dopaminergic neurons. Therefore, mitochondria have become a promising therapeutic target for PD treatments. This review aims to describe mitochondrial dysfunction in the pathology of PD, outline the genes associated with familial PD and the factors related to sporadic PD, summarize current knowledge on mitochondrial quality control in PD, and give an overview of therapeutic strategies for targeting mitochondria in neuroprotective interventions in PD.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Science Experiment Center, China Medical University, Shenyang, China
| | - Tuo Yang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Gu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Hong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Science Experiment Center, China Medical University, Shenyang, China
- *Correspondence: Xiao-Hong Sun,
| |
Collapse
|
17
|
Kapoor D, Garg D, Sharma S, Goyal V. Inherited Manganese Disorders and the Brain: What Neurologists Need to Know. Ann Indian Acad Neurol 2021; 24:15-21. [PMID: 33911374 PMCID: PMC8061520 DOI: 10.4103/aian.aian_789_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/04/2022] Open
Abstract
Although acquired manganese neurotoxicity has been widely reported since its first description in 1837 and is popularly referred to as "manganism," inherited disorders of manganese homeostasis have received the first genetic signature as recently as 2012. These disorders, predominantly described in children and adolescents, involve mutations in three manganese transporter genes, i.e., SLC30A10 and SLC39A14 which lead to manganese overload, and SLC39A8, which leads to manganese deficiency. Both disorders of inherited hypermanganesemia typically exhibit dystonia and parkinsonism with relatively preserved cognition and are differentiated by the occurrence of polycythemia and liver involvement in the SLC30A10-associated condition. Mutations in SLC39A8 lead to a congenital disorder of glycosylation which presents with developmental delay, failure to thrive, intellectual impairment, and seizures due to manganese deficiency. Chelation with iron supplementation is the treatment of choice in inherited hypermanganesemia. In this review, we highlight the pathognomonic clinical, laboratory, imaging features and treatment modalities for these rare disorders.
Collapse
Affiliation(s)
- Dipti Kapoor
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Divyani Garg
- Department of Neurology, Lady Hardinge Medical College and Smt. Sucheta Kriplani Hospital, New Delhi, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Vinay Goyal
- Institute of Neurosciences, Medanta Medicity, Gurgaon, Haryana, India
| |
Collapse
|
18
|
Manganese Accumulation in the Brain via Various Transporters and Its Neurotoxicity Mechanisms. Molecules 2020; 25:molecules25245880. [PMID: 33322668 PMCID: PMC7763224 DOI: 10.3390/molecules25245880] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Manganese (Mn) is an essential trace element, serving as a cofactor for several key enzymes, such as glutamine synthetase, arginase, pyruvate decarboxylase, and mitochondrial superoxide dismutase. However, its chronic overexposure can result in a neurological disorder referred to as manganism, presenting symptoms similar to those inherent to Parkinson’s disease. The pathological symptoms of Mn-induced toxicity are well-known, but the underlying mechanisms of Mn transport to the brain and cellular toxicity leading to Mn’s neurotoxicity are not completely understood. Mn’s levels in the brain are regulated by multiple transporters responsible for its uptake and efflux, and thus, dysregulation of these transporters may result in Mn accumulation in the brain, causing neurotoxicity. Its distribution and subcellular localization in the brain and associated subcellular toxicity mechanisms have also been extensively studied. This review highlights the presently known Mn transporters and their roles in Mn-induced neurotoxicity, as well as subsequent molecular and cellular dysregulation upon its intracellular uptakes, such as oxidative stress, neuroinflammation, disruption of neurotransmission, α-synuclein aggregation, and amyloidogenesis.
Collapse
|
19
|
Fearing BV, Speer JE, Jing L, Kalathil A, P. Kelly M, M. Buchowski J, P. Zebala L, Luhmann S, C. Gupta M, A. Setton L. Verteporfin treatment controls morphology, phenotype, and global gene expression for cells of the human nucleus pulposus. JOR Spine 2020; 3:e1111. [PMID: 33392449 PMCID: PMC7770208 DOI: 10.1002/jsp2.1111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cells of the nucleus pulposus (NP) are essential contributors to extracellular matrix synthesis and function of the intervertebral disc. With age and degeneration, the NP becomes stiffer and more dehydrated, which is associated with a loss of phenotype and biosynthetic function for its resident NP cells. Also, with aging, the NP cell undergoes substantial morphological changes from a rounded shape with pronounced vacuoles in the neonate and juvenile, to one that is more flattened and spread with a loss of vacuoles. Here, we make use of the clinically relevant pharmacological treatment verteporfin (VP), previously identified as a disruptor of yes-associated protein-TEA domain family member-binding domain (TEAD) signaling, to promote morphological changes in adult human NP cells in order to study variations in gene expression related to differences in cell shape. Treatment of adult, degenerative human NP cells with VP caused a shift in morphology from a spread, fibroblastic-like shape to a rounded, clustered morphology with decreased transcriptional activity of TEAD and serum-response factor. These changes were accompanied by an increased expression of vacuoles, NP-specific gene markers, and biosynthetic activity. The contemporaneous observation of VP-induced changes in cell shape and prominent, time-dependent changes within the transcriptome of NP cells occurred over all timepoints in culture. Enriched gene sets with the transition to VP-induced cell rounding suggest a major role for cell adhesion, cytoskeletal remodeling, vacuolar lumen, and MAPK activity in the NP phenotypic and functional response to changes in cell shape.
Collapse
Affiliation(s)
- Bailey V. Fearing
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | - Julie E. Speer
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Liufang Jing
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Aravind Kalathil
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Michael P. Kelly
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Jacob M. Buchowski
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Lukas P. Zebala
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Scott Luhmann
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Munish C. Gupta
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Lori A. Setton
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
20
|
Martins AC, Krum BN, Queirós L, Tinkov AA, Skalny AV, Bowman AB, Aschner M. Manganese in the Diet: Bioaccessibility, Adequate Intake, and Neurotoxicological Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12893-12903. [PMID: 32298096 DOI: 10.1021/acs.jafc.0c00641] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Manganese (Mn) is an essential element that participates in several biological processes. Mn serves as a cofactor for several enzymes, such as glutamine synthetase and oxidoreductases, that have an important role in the defense of the organisms against oxidative stress. The diet is the main source of Mn intake for humans, and adequate daily intake levels for this metal change with age. Moreover, in higher amounts, Mn may be toxic, mainly to the brain. Here, we provide an overview of Mn occurrence in food, addressing its bioaccessibility and discussing the dietary standard and recommended intake of Mn consumption. In addition, we review some mechanisms underlying Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Bárbara Nunes Krum
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Post-Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Libânia Queirós
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Molecular of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexey A Tinkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Yaroslavl State University Yaroslavl, 150003, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg 460000, Russia
| | - Anatoly V Skalny
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Yaroslavl State University Yaroslavl, 150003, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| |
Collapse
|
21
|
Roberts CS, Muralidharan S, Ni F, Mitra B. Structural Role of the First Four Transmembrane Helices in ZntA, a P 1B-Type ATPase from Escherichia coli. Biochemistry 2020; 59:4488-4498. [PMID: 33190490 DOI: 10.1021/acs.biochem.0c00770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ZntA from Escherichia coli confers resistance to toxic concentrations of Pb2+, Zn2+, and Cd2+. It is a member of the P1B-ATPase transporter superfamily, which includes the human Cu+-transporting proteins ATP7A and ATP7B. P1B-type ATPases typically have a hydrophilic N-terminal metal-binding domain and eight transmembrane helices. A splice variant of ATP7B was reported, which has 100-fold higher night-specific expression in the pineal gland; it lacks the entire N-terminal domain and the first four transmembrane helices. Here, we report our findings with Δ231-ZntA, a similar truncation we created in ZntA. Δ231-ZntA has no in vivo and greatly reduced in vitro activity. It binds one metal ion per dimer at the transmembrane site, with a 15-19000-fold higher binding affinity, indicating highly significant changes in the dimer structure of Δ231-ZntA relative to that of ZntA. Cd2+ has the highest affinity for Δ231-ZntA, in contrast to ZntA, which has the highest affinity for Pb2+. Site-specific mutagenesis of the metal-binding residues, 392Cys, 394Cys, and 714Asp, showed that there is considerable flexibility at the metal-binding site, with any two of these three residues able to bind Zn2+ and Pb2+ unlike in ZntA. However, Cd2+ binds to only 392Cys and 714Asp, with 394Cys not involved in Cd2+ binding. Three-dimensional homology models show that there is a dramatic difference between the ZntA and Δ231-ZntA dimer structures, which help to explain these observations. Therefore, the first four transmembrane helices in ZntA and P1B-type ATPases play an important role in maintaining the correct dimer structure.
Collapse
Affiliation(s)
- Cameron S Roberts
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University Detroit, Michigan 48201, United States
| | - Sandhya Muralidharan
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University Detroit, Michigan 48201, United States
| | - Fei Ni
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University Detroit, Michigan 48201, United States
| | - Bharati Mitra
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University Detroit, Michigan 48201, United States
| |
Collapse
|
22
|
Novel mutations in ATP13A2 associated with mixed neurological presentations and iron toxicity due to nonsense-mediated decay. Brain Res 2020; 1750:147167. [PMID: 33091395 DOI: 10.1016/j.brainres.2020.147167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Kufor-Rakeb Syndrome (KRS) is an autosomal recessive disease characterized by Parkinsonism, pyramidal signs, dementia, and supranuclear gaze palsy. KRS is caused by mutations in ATP13A2producing a transmembrane protein responsible for the regulation of intracellular inorganic cations. OBJECTIVE Two siblings born to a Turkish family of consanguineous marriage had mixed neurological presentations with the presence of hypointense images on T2-weighted MRI and were pre-diagnosed as having autosomal recessive spastic paraparesis or ataxia.We aimed to identify the disease-causing mutation by whole-exome sequencing and elucidate the underlying molecular mechanism of the causative mutation. METHODS Prussian blue staining was conducted for the detection of cellular iron accumulation. Disease-causing mutation inATP13A2was detected by whole-exome sequencing. Expression levels of ATP13A2 mRNA and protein were assessed by qRT-PCR and Western Blot. RESULTS Iron deposits in the patients' fibroblasts were detected by Prussian blue staining. Novel homozygous mutation c.1422_1423del:p.P474fs was detected intheATP13A2. As this mutation caused a premature termination codon (PTC), the expression of mutant ATP13A2 mRNA through qRT-PCR analysis was found to be degraded by nonsense-mediated decay and this prevented the expression of ATP13A2 protein in the patients' fibroblasts. CONCLUSIONS Novel frameshift mutation causing a PTC in ATP13A2 lead to degradation of ATP13A2 mRNA by NMD. Iron accumulation due to the absence of ATP13A2 protein in the patient's fibroblasts and hypointense areas on T2-weighted images may expand the spectrum of KRS to consider it as neurodegeneration with brain iron accumulation disorders.
Collapse
|
23
|
Butz ES, Chandrachud U, Mole SE, Cotman SL. Moving towards a new era of genomics in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165571. [DOI: 10.1016/j.bbadis.2019.165571] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
|
24
|
Nyuzuki H, Ito S, Nagasaki K, Nitta Y, Matsui N, Saitoh A, Matsui H. Degeneration of dopaminergic neurons and impaired intracellular trafficking in Atp13a2 deficient zebrafish. IBRO Rep 2020; 9:1-8. [PMID: 32529115 PMCID: PMC7283103 DOI: 10.1016/j.ibror.2020.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022] Open
Abstract
ATP13A2 is the autosomal recessive causative gene for juvenile-onset Parkinson’s disease (PARK9, Parkinson’s disease 9), also known as Kufor-Rakeb syndrome. The disease is characterized by levodopa-responsive Parkinsonism, supranuclear gaze palsy, spasticity, and dementia. Previously, we have reported that Atp13a2 deficient medaka fish showed dopaminergic neurodegeneration and lysosomal dysfunction, indicating that lysosome-autophagy impairment might be one of the key pathogeneses of Parkinson’s disease. Here, we established Atp13a2 deficient zebrafish using CRISPR/Cas9 gene editing. We found that the number of TH + neurons in the posterior tuberculum and the locus coeruleus significantly reduced (dopaminergic neurons, 64 % at 4 months and 37 % at 12 months, p < 0.001 and p < 0.05, respectively; norepinephrine neurons, 52 % at 4 months and 40 % at 12 months, p < 0.001 and p < 0.05, respectively) in Atp13a2 deficient zebrafish, proving the degeneration of dopaminergic neurons. In addition, we found the reduction (60 %, p < 0.05) of cathepsin D protein expression in Atp13a2 deficient zebrafish using immunoblot. Transmission electron microscopy analysis using middle diencephalon samples from Atp13a2 deficient zebrafish showed lysosome-like bodies with vesicle accumulation and fingerprint-like structures, suggesting lysosomal dysfunction. Furthermore, a significant reduction (p < 0.001) in protein expression annotated with vesicle fusion with Golgi apparatus in Atp13a2 deficient zebrafish by liquid-chromatography tandem mass spectrometry suggested intracellular trafficking impairment. Therefore, we concluded that Atp13a2 deficient zebrafish exhibited degeneration of dopaminergic neurons, lysosomal dysfunction and the possibility of intracellular trafficking impairment, which would be the key pathogenic mechanism underlying Parkinson’s disease.
Collapse
Affiliation(s)
- Hiromi Nyuzuki
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan.,Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shinji Ito
- Medical Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Nagasaki
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yohei Nitta
- Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Noriko Matsui
- Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan.,Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan.,Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
25
|
Smolders S, Van Broeckhoven C. Genetic perspective on the synergistic connection between vesicular transport, lysosomal and mitochondrial pathways associated with Parkinson's disease pathogenesis. Acta Neuropathol Commun 2020; 8:63. [PMID: 32375870 PMCID: PMC7201634 DOI: 10.1186/s40478-020-00935-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) are symptomatically characterized by parkinsonism, with the latter presenting additionally a distinctive range of atypical features. Although the majority of patients with PD and APS appear to be sporadic, genetic causes of several rare monogenic disease variants were identified. The knowledge acquired from these genetic factors indicated that defects in vesicular transport pathways, endo-lysosomal dysfunction, impaired autophagy-lysosomal protein and organelle degradation pathways, α-synuclein aggregation and mitochondrial dysfunction play key roles in PD pathogenesis. Moreover, membrane dynamics are increasingly recognized as a key player in the disease pathogenesis due lipid homeostasis alterations, associated with lysosomal dysfunction, caused by mutations in several PD and APS genes. The importance of lysosomal dysfunction and lipid homeostasis is strengthened by both genetic discoveries and clinical epidemiology of the association between parkinsonism and lysosomal storage disorders (LSDs), caused by the disruption of lysosomal biogenesis or function. A synergistic coordination between vesicular trafficking, lysosomal and mitochondria defects exist whereby mutations in PD and APS genes encoding proteins primarily involved one PD pathway are frequently associated with defects in other PD pathways as a secondary effect. Moreover, accumulating clinical and genetic observations suggest more complex inheritance patters of familial PD exist, including oligogenic and polygenic inheritance of genes in the same or interconnected PD pathways, further strengthening their synergistic connection.Here, we provide a comprehensive overview of PD and APS genes with functions in vesicular transport, lysosomal and mitochondrial pathways, and highlight functional and genetic evidence of the synergistic connection between these PD associated pathways.
Collapse
Affiliation(s)
- Stefanie Smolders
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium.
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.
| |
Collapse
|
26
|
Casterton RL, Hunt RJ, Fanto M. Pathomechanism Heterogeneity in the Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Disease Spectrum: Providing Focus Through the Lens of Autophagy. J Mol Biol 2020; 432:2692-2713. [PMID: 32119873 DOI: 10.1016/j.jmb.2020.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) constitute aggressive neurodegenerative pathologies that lead to the progressive degeneration of upper and lower motor neurons and of neocortical areas, respectively. In the past decade, the identification of several genes that cause these disorders indicated that the two diseases overlap in a multifaceted spectrum of conditions. The autophagy-lysosome system has been identified as a main intersection for the onset and progression of neurodegeneration in ALS/FTD. Genetic evidence has revealed that several genes with a mechanistic role at different stages of the autophagy process are mutated in patients with ALS/FTD. Moreover, the three main proteins aggregating in ALS/FTD, including in sporadic cases, are also targeted by autophagy and affect this process. Here, we examine the varied dysfunctions and degrees of involvement of the autophagy-lysosome system that have been discovered in ALS/FTD. We argue that these findings shed light on the pathological mechanisms in the ALS/FTD spectrum and conclude that they have important consequences both for treatment options and for the basic biomolecular understanding of how this process intersects with RNA metabolism, the other major cellular process reported to be dysfunctional in part of the ALS/FTD spectrum.
Collapse
Affiliation(s)
- Rebecca L Casterton
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU London, United Kingdom
| | - Rachel J Hunt
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU London, United Kingdom
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU London, United Kingdom; Institut du Cerveau et de la Moelle épinière (ICM), 47, bd de l'hôpital, F-75013 Paris, France.
| |
Collapse
|
27
|
Sironi L, Restelli LM, Tolnay M, Neutzner A, Frank S. Dysregulated Interorganellar Crosstalk of Mitochondria in the Pathogenesis of Parkinson's Disease. Cells 2020; 9:cells9010233. [PMID: 31963435 PMCID: PMC7016713 DOI: 10.3390/cells9010233] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of Parkinson’s disease (PD), the second most common neurodegenerative disorder, is complex and involves the impairment of crucial intracellular physiological processes. Importantly, in addition to abnormal α-synuclein aggregation, the dysfunction of various mitochondria-dependent processes has been prominently implicated in PD pathogenesis. Besides the long-known loss of the organelles’ bioenergetics function resulting in diminished ATP synthesis, more recent studies in the field have increasingly focused on compromised mitochondrial quality control as well as impaired biochemical processes specifically localized to ER–mitochondria interfaces (such as lipid biosynthesis and calcium homeostasis). In this review, we will discuss how dysregulated mitochondrial crosstalk with other organelles contributes to PD pathogenesis.
Collapse
Affiliation(s)
- Lara Sironi
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; (L.M.R.); (M.T.)
- Correspondence: (L.S.); (S.F.); Tel.: +41-61-265-2776 (L.S. & S.F.)
| | - Lisa Michelle Restelli
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; (L.M.R.); (M.T.)
| | - Markus Tolnay
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; (L.M.R.); (M.T.)
| | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland;
- Department of Ophthalmology University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; (L.M.R.); (M.T.)
- Correspondence: (L.S.); (S.F.); Tel.: +41-61-265-2776 (L.S. & S.F.)
| |
Collapse
|
28
|
Bakulski KM, Seo YA, Hickman RC, Brandt D, Vadari HS, Hu H, KyunPark S. Heavy Metals Exposure and Alzheimer's Disease and Related Dementias. J Alzheimers Dis 2020; 76:1215-1242. [PMID: 32651318 PMCID: PMC7454042 DOI: 10.3233/jad-200282] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease and related dementias lack effective treatment or cures and are major public health challenges. Risk for Alzheimer's disease and related dementias is partially attributable to environmental factors. The heavy metals lead, cadmium, and manganese are widespread and persistent in our environments. Once persons are exposed to these metals, they are adept at entering cells and reaching the brain. Lead and cadmium are associated with numerous health outcomes even at low levels of exposure. Although manganese is an essential metal, deficiency or environmental exposure or high levels of the metal can be toxic. In cell and animal model systems, lead, cadmium, and manganese are well documented neurotoxicants that contribute to canonical Alzheimer's disease pathologies. Adult human epidemiologic studies have consistently shown lead, cadmium, and manganese are associated with impaired cognitive function and cognitive decline. No longitudinal human epidemiology study has assessed lead or manganese exposure on Alzheimer's disease specifically though two studies have reported a link between cadmium and Alzheimer's disease mortality. More longitudinal epidemiologic studies with high-quality time course exposure data and incident cases of Alzheimer's disease and related dementias are warranted to confirm and estimate the proportion of risk attributable to these exposures. Given the widespread and global exposure to lead, cadmium, and manganese, even small increases in the risks of Alzheimer's disease and related dementias would have a major population impact on the burden on disease. This article reviews the experimental and epidemiologic literature of the associations between lead, cadmium, and manganese on Alzheimer's disease and related dementias and makes recommendations of critical areas of future investment.
Collapse
Affiliation(s)
- Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ruby C. Hickman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Brandt
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Harita S. Vadari
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Howard Hu
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Sung KyunPark
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
29
|
Abstract
Metals are essential components in all forms of life required for the function of nearly half of all enzymes and are critically involved in virtually all fundamental biological processes. Especially, the transition metals iron (Fe), zinc (Zn), manganese (Mn), nickel (Ni), copper (Cu) and cobalt (Co) are crucial micronutrients known to play vital roles in metabolism as well due to their unique redox properties. Metals carry out three major functions within metalloproteins: to provide structural support, to serve as enzymatic cofactors, and to mediate electron transportation. Metal ions are also involved in the immune system from metal allergies to nutritional immunity. Within the past decade, much attention has been drawn to the roles of metal ions in the immune system, since increasing evidence has mounted to suggest that metals are critically implicated in regulating both the innate immune sensing of and the host defense against invading pathogens. The importance of ions in immunity is also evidenced by the identification of various immunodeficiencies in patients with mutations in ion channels and transporters. In addition, cancer immunotherapy has recently been conclusively demonstrated to be effective and important for future tumor treatment, although only a small percentage of cancer patients respond to immunotherapy because of inadequate immune activation. Importantly, metal ion-activated immunotherapy is becoming an effective and potential way in tumor therapy for better clinical application. Nevertheless, we are still in a primary stage of discovering the diverse immunological functions of ions and mechanistically understanding the roles of these ions in immune regulation. This review summarizes recent advances in the understanding of metal-controlled immunity. Particular emphasis is put on the mechanisms of innate immune stimulation and T cell activation by the essential metal ions like calcium (Ca2+), zinc (Zn2+), manganese (Mn2+), iron (Fe2+/Fe3+), and potassium (K+), followed by a few unessential metals, in order to draw a general diagram of metalloimmunology.
Collapse
Affiliation(s)
- Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoming Wei
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
30
|
Niemann N, Jankovic J. Juvenile parkinsonism: Differential diagnosis, genetics, and treatment. Parkinsonism Relat Disord 2019; 67:74-89. [DOI: 10.1016/j.parkreldis.2019.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
|
31
|
Heins-Marroquin U, Jung PP, Cordero-Maldonado ML, Crawford AD, Linster CL. Phenotypic assays in yeast and zebrafish reveal drugs that rescue ATP13A2 deficiency. Brain Commun 2019; 1:fcz019. [PMID: 32954262 PMCID: PMC7425419 DOI: 10.1093/braincomms/fcz019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/27/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations in ATP13A2 (PARK9) are causally linked to the rare neurodegenerative disorders Kufor-Rakeb syndrome, hereditary spastic paraplegia and neuronal ceroid lipofuscinosis. This suggests that ATP13A2, a lysosomal cation-transporting ATPase, plays a crucial role in neuronal cells. The heterogeneity of the clinical spectrum of ATP13A2-associated disorders is not yet well understood and currently, these diseases remain without effective treatment. Interestingly, ATP13A2 is widely conserved among eukaryotes, and the yeast model for ATP13A2 deficiency was the first to indicate a role in heavy metal homeostasis, which was later confirmed in human cells. In this study, we show that the deletion of YPK9 (the yeast orthologue of ATP13A2) in Saccharomyces cerevisiae leads to growth impairment in the presence of Zn2+, Mn2+, Co2+ and Ni2+, with the strongest phenotype being observed in the presence of zinc. Using the ypk9Δ mutant, we developed a high-throughput growth rescue screen based on the Zn2+ sensitivity phenotype. Screening of two libraries of Food and Drug Administration-approved drugs identified 11 compounds that rescued growth. Subsequently, we generated a zebrafish model for ATP13A2 deficiency and found that both partial and complete loss of atp13a2 function led to increased sensitivity to Mn2+. Based on this phenotype, we confirmed two of the drugs found in the yeast screen to also exert a rescue effect in zebrafish-N-acetylcysteine, a potent antioxidant, and furaltadone, a nitrofuran antibiotic. This study further supports that combining the high-throughput screening capacity of yeast with rapid in vivo drug testing in zebrafish can represent an efficient drug repurposing strategy in the context of rare inherited disorders involving conserved genes. This work also deepens the understanding of the role of ATP13A2 in heavy metal detoxification and provides a new in vivo model for investigating ATP13A2 deficiency.
Collapse
Affiliation(s)
- Ursula Heins-Marroquin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Paul P Jung
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | | | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
- Institute for Orphan Drug Discovery, Bremer Innovations- und Technologiezentrum, 28359 Bremen, Germany
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
32
|
Baesler J, Kopp JF, Pohl G, Aschner M, Haase H, Schwerdtle T, Bornhorst J. Zn homeostasis in genetic models of Parkinson's disease in Caenorhabditis elegans. J Trace Elem Med Biol 2019; 55:44-49. [PMID: 31345364 PMCID: PMC6676891 DOI: 10.1016/j.jtemb.2019.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 01/13/2023]
Abstract
While the underlying mechanisms of Parkinson's disease (PD) are still insufficiently studied, a complex interaction between genetic and environmental factors is emphasized. Nevertheless, the role of the essential trace element zinc (Zn) in this regard remains controversial. In this study we altered Zn balance within PD models of the versatile model organism Caenorhabditis elegans (C. elegans) in order to examine whether a genetic predisposition in selected genes with relevance for PD affects Zn homeostasis. Protein-bound and labile Zn species act in various areas, such as enzymatic catalysis, protein stabilization pathways and cell signaling. Therefore, total Zn and labile Zn were quantitatively determined in living nematodes as individual biomarkers of Zn uptake and bioavailability with inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) or a multi-well method using the fluorescent probe ZinPyr-1. Young and middle-aged deletion mutants of catp-6 and pdr-1, which are orthologues of mammalian ATP13A2 (PARK9) and parkin (PARK2), showed altered Zn homeostasis following Zn exposure compared to wildtype worms. Furthermore, age-specific differences in Zn uptake were observed in wildtype worms for total as well as labile Zn species. These data emphasize the importance of differentiation between Zn species as meaningful biomarkers of Zn uptake as well as the need for further studies investigating the role of dysregulated Zn homeostasis in the etiology of PD.
Collapse
Affiliation(s)
- Jessica Baesler
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Johannes F Kopp
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Gabriele Pohl
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA
| | - Hajo Haase
- TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany; Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany.
| |
Collapse
|
33
|
Ugolino J, Dziki KM, Kim A, Wu JJ, Vogel BE, Monteiro MJ. Overexpression of human Atp13a2Isoform-1 protein protects cells against manganese and starvation-induced toxicity. PLoS One 2019; 14:e0220849. [PMID: 31393918 PMCID: PMC6687281 DOI: 10.1371/journal.pone.0220849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Mutations in ATP13A2 cause Kufor-Rakeb syndrome (KRS), a juvenile form of Parkinson's disease (PD) with dementia. However, the mechanisms by which mutations in ATP13A2 cause KRS is not understood. The mutations lead to misfolding of the translated Atp13a2 protein and its premature degradation in the endoplasmic reticulum, never reaching the lysosome where the protein is thought to function. Atp13a2 is a P-type ATPase, a class of proteins that function in ion transport. Indeed, studies of human, mouse, and yeast Atp13a2 proteins suggest a possible involvement in regulation of heavy metal toxicity. Here we report on the cytoprotective function of Atp13a2 on HeLa cells and dopamine neurons of Caenorhabditis elegans (C. elegans). HeLa cells stably overexpressing V5- tagged Atp13a2Isoform-1 protein were more resistant to elevated manganese exposure and to starvation-induced cell death compared to cells not overexpressing the protein. Because PD is characterized by loss of dopamine neurons, we generated transgenic C. elegans expressing GFP-tagged human Atp13a2 protein in dopamine neurons. The transgenic animals exhibited higher resistance to dopamine neuron degeneration after acute exposure to manganese compared to nematodes that expressed GFP alone. The results suggest Atp13a2 Isoform-1 protein confers cytoprotection against toxic insults, including those that cause PD syndromes.
Collapse
Affiliation(s)
- Janet Ugolino
- Biochemistry and Molecular Biology Graduate Program, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kristina M. Dziki
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Annette Kim
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Josephine J. Wu
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Bruce E. Vogel
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mervyn J. Monteiro
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
34
|
Yeast as a Tool for Deeper Understanding of Human Manganese-Related Diseases. Genes (Basel) 2019; 10:genes10070545. [PMID: 31319631 PMCID: PMC6678438 DOI: 10.3390/genes10070545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022] Open
Abstract
The biological importance of manganese lies in its function as a key cofactor for numerous metalloenzymes and as non-enzymatic antioxidant. Due to these two essential roles, it appears evident that disturbed manganese homeostasis may trigger the development of pathologies in humans. In this context, yeast has been extensively used over the last decades to gain insight into how cells regulate intra-organellar manganese concentrations and how human pathologies may be related to disturbed cellular manganese homeostasis. This review first summarizes how manganese homeostasis is controlled in yeast cells and how this knowledge can be extrapolated to human cells. Several manganese-related pathologies whose molecular mechanisms have been studied in yeast are then presented in the light of the function of this cation as a non-enzymatic antioxidant or as a key cofactor of metalloenzymes. In this line, we first describe the Transmembrane protein 165-Congenital Disorder of Glycosylation (TMEM165-CDG) and Friedreich ataxia pathologies. Then, due to the established connection between manganese cations and neurodegeneration, the Kufor–Rakeb syndrome and prion-related diseases are finally presented.
Collapse
|
35
|
Harischandra DS, Ghaisas S, Zenitsky G, Jin H, Kanthasamy A, Anantharam V, Kanthasamy AG. Manganese-Induced Neurotoxicity: New Insights Into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation. Front Neurosci 2019; 13:654. [PMID: 31293375 PMCID: PMC6606738 DOI: 10.3389/fnins.2019.00654] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Occupational or environmental exposure to manganese (Mn) can lead to the development of "Manganism," a neurological condition showing certain motor symptoms similar to Parkinson's disease (PD). Like PD, Mn toxicity is seen in the central nervous system mainly affecting nigrostriatal neuronal circuitry and subsequent behavioral and motor impairments. Since the first report of Mn-induced toxicity in 1837, various experimental and epidemiological studies have been conducted to understand this disorder. While early investigations focused on the impact of high concentrations of Mn on the mitochondria and subsequent oxidative stress, current studies have attempted to elucidate the cellular and molecular pathways involved in Mn toxicity. In fact, recent reports suggest the involvement of Mn in the misfolding of proteins such as α-synuclein and amyloid, thus providing credence to the theory that environmental exposure to toxicants can either initiate or propagate neurodegenerative processes by interfering with disease-specific proteins. Besides manganism and PD, Mn has also been implicated in other neurological diseases such as Huntington's and prion diseases. While many reviews have focused on Mn homeostasis, the aim of this review is to concisely synthesize what we know about its effect primarily on the nervous system with respect to its role in protein misfolding, mitochondrial dysfunction, and consequently, neuroinflammation and neurodegeneration. Based on the current evidence, we propose a 'Mn Mechanistic Neurotoxic Triad' comprising (1) mitochondrial dysfunction and oxidative stress, (2) protein trafficking and misfolding, and (3) neuroinflammation.
Collapse
Affiliation(s)
- Dilshan S Harischandra
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Shivani Ghaisas
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Gary Zenitsky
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Huajun Jin
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| |
Collapse
|
36
|
Marcos AL, Corradi GR, Mazzitelli LR, Casali CI, Fernández Tome MDC, Adamo HP, de Tezanos Pinto F. The Parkinson-associated human P5B-ATPase ATP13A2 modifies lipid homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182993. [PMID: 31132336 DOI: 10.1016/j.bbamem.2019.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Mutations in the ATP13A2 gene (PARK9, CLN12, OMIM 610513) were initially associated with a form of Parkinson's Disease (PD) known as Kufor Rakeb Syndrome (KRS). However, the genetic spectrum of ATP13A2-associated disorders was expanded in the last years, because it has been found to underlay variants of neuronal ceroid-lipofuscinoses (NCLs) and hereditary spastic paraplegia. As ATP13A2 seems to be a key component of the endo-lysosome pathway, the fact that these pathologies are commonly characterized by endo-lysosomal dysfunction is not surprising. Here we report that increasing the level of functional ATP13A2 in a stable SH-SY5Y cell line disrupts lipid homeostasis. ATP13A2 overexpression increases the fluorescence intensity of the fluorescent analog phosphatidylethanolamine (NBD-PE) and the formation of multilamellar bodies, resembling the so-called "drug-induced phospholipidosis". We also found that expression of ATP13A2 reduces the ceramide-fluorescence intensity and the content of bis(monoacylglyceryl)phosphate (BMP). BMP is required for lipid degradation and exosome biogenesis inside acidic compartments, so this result suggests that ATP13A2 may be modifying the lipid digestion capacity and/or the redistribution of lipids in these subcellular organelles. In addition, ATP13A2-overexpression decreased the total content of triglycerides (TGs), cholesterol and lipid droplets. As TGs are necessary for the synthesis of new membranes, this observation suggests that increasing the function of ATP13A2 switches the endo-lysosomal system towards vesicle secretion.
Collapse
Affiliation(s)
- Alejandra Lucía Marcos
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Gerardo Raul Corradi
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Luciana Romina Mazzitelli
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Cecilia Irene Casali
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - María Del Carmen Fernández Tome
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Hugo Pedro Adamo
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Felicitas de Tezanos Pinto
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina.
| |
Collapse
|
37
|
Abstract
Purpose of Review This article provides an overview of the pathogenesis, clinical presentation and treatment of inherited manganese transporter defects. Recent Findings Identification of a new group of manganese transportopathies has greatly advanced our understanding of how manganese homeostasis is regulated in vivo. While the manganese efflux transporter SLC30A10 and the uptake transporter SLC39A14 work synergistically to reduce the manganese load, SLC39A8 has an opposing function facilitating manganese uptake into the organism. Bi-allelic mutations in any of these transporter proteins disrupt the manganese equilibrium and lead to neurological disease: Hypermanganesaemia with dystonia 1 (SLC30A10 deficiency) and hypermanganesaemia with dystonia 2 (SLC39A14 deficiency) are characterised by manganese neurotoxicity while SLC39A8 mutations cause a congenital disorder of glycosylation type IIn due to Mn deficiency. Summary Inherited manganese transporter defects are an important differential diagnosis of paediatric movement disorders. Manganese blood levels and MRI brain are diagnostic and allow early diagnosis to avoid treatment delay.
Collapse
Affiliation(s)
- S Anagianni
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, UK
| | - K Tuschl
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, UK. .,Department of Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK. .,UCL GOS Institute of Child Health, 30 Guilford Street, London,, WC1N 1EH, UK.
| |
Collapse
|
38
|
Ysselstein D, Shulman JM, Krainc D. Emerging links between pediatric lysosomal storage diseases and adult parkinsonism. Mov Disord 2019; 34:614-624. [PMID: 30726573 PMCID: PMC6520126 DOI: 10.1002/mds.27631] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Lysosomal storage disorders comprise a clinically heterogeneous group of autosomal-recessive or X-linked genetic syndromes caused by disruption of lysosomal biogenesis or function resulting in accumulation of nondegraded substrates. Although lysosomal storage disorders are diagnosed predominantly in children, many show variable expressivity with clinical presentations possible later in life. Given the important role of lysosomes in neuronal homeostasis, neurological manifestations, including movement disorders, can accompany many lysosomal storage disorders. Over the last decade, evidence from genetics, clinical epidemiology, cell biology, and biochemistry have converged to implicate links between lysosomal storage disorders and adult-onset movement disorders. The strongest evidence comes from mutations in Glucocerebrosidase, which cause Gaucher's disease and are among the most common and potent risk factors for PD. However, recently, many additional lysosomal storage disorder genes have been similarly implicated, including SMPD1, ATP13A2, GALC, and others. Examination of these links can offer insight into pathogenesis of PD and guide development of new therapeutic strategies. We systematically review the emerging genetic links between lysosomal storage disorders and PD. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Daniel Ysselstein
- Department of Neurology, Ken and Ruth Davee Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Joshua M. Shulman
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Jan and Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX
| | - Dimitri Krainc
- Department of Neurology, Ken and Ruth Davee Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
39
|
Chen P, Totten M, Zhang Z, Bucinca H, Erikson K, Santamaría A, Bowma AB, Aschner M. Iron and manganese-related CNS toxicity: mechanisms, diagnosis and treatment. Expert Rev Neurother 2019; 19:243-260. [PMID: 30759034 PMCID: PMC6422746 DOI: 10.1080/14737175.2019.1581608] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Iron (Fe) and manganese (Mn) are essential nutrients for humans. They act as cofactors for a variety of enzymes. In the central nervous system (CNS), these two metals are involved in diverse neurological activities. Dyshomeostasis may interfere with the critical enzymatic activities, hence altering the neurophysiological status and resulting in neurological diseases. Areas covered: In this review, the authors cover the molecular mechanisms of Fe/Mn-induced toxicity and neurological diseases, as well as the diagnosis and potential treatment. Given that both Fe and Mn are abundant in the earth crust, nutritional deficiency is rare. In this review the authors focus on the neurological disorders associated with Mn and Fe overload. Expert commentary: Oxidative stress and mitochondrial dysfunction are the primary molecular mechanism that mediates Fe/Mn-induced neurotoxicity. Although increased Fe or Mn concentrations have been found in brain of patients, it remains controversial whether the elevated metal amounts are the primary cause or secondary consequence of neurological diseases. Currently, treatments are far from satisfactory, although chelation therapy can significantly decrease brain Fe and Mn levels. Studies to determine the primary cause and establish the molecular mechanism of toxicity may help to adapt more comprehensive and satisfactory treatments in the future.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Melissa Totten
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hana Bucinca
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keith Erikson
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Abel Santamaría
- Laboratory of Excitatory Amino Acids, National Institute of Neurology and Neurosurgery, Mexico, Mexico City, Mexico
| | - Aaron B. Bowma
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
40
|
Wang R, Tan J, Chen T, Han H, Tian R, Tan Y, Wu Y, Cui J, Chen F, Li J, Lv L, Guan X, Shang S, Lu J, Zhang Z. ATP13A2 facilitates HDAC6 recruitment to lysosome to promote autophagosome-lysosome fusion. J Cell Biol 2019; 218:267-284. [PMID: 30538141 PMCID: PMC6314552 DOI: 10.1083/jcb.201804165] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/28/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Mutations in ATP13A2 cause Kufor-Rakeb syndrome, an autosomal recessive form of juvenile-onset atypical Parkinson's disease (PD). Recent work tied ATP13A2 to autophagy and other cellular features of neurodegeneration, but how ATP13A2 governs numerous cellular functions in PD pathogenesis is not understood. In this study, the ATP13A2-deficient mouse developed into aging-dependent phenotypes resembling those of autophagy impairment. ATP13A2 deficiency impaired autophagosome-lysosome fusion in cultured cells and in in vitro reconstitution assays. In ATP13A2-deficient cells or Drosophila melanogaster or mouse tissues, lysosomal localization and activity of HDAC6 were reduced, with increased acetylation of tubulin and cortactin. Wild-type HDAC6, but not a deacetylase-inactive mutant, restored autophagosome-lysosome fusion, antagonized cortactin hyperacetylation, and promoted lysosomal localization of cortactin in ATP13A2-deficient cells. Mechanistically, ATP13A2 facilitated recruitment of HDAC6 and cortactin to lysosomes. Cortactin overexpression in cultured cells reversed ATP13A2 deficiency-associated impairment of autophagosome-lysosome fusion. PD-causing ATP13A2 mutants failed to rescue autophagosome-lysosome fusion or to promote degradation of protein aggregates and damaged mitochondria. These results suggest that ATP13A2 recruits HDAC6 to lysosomes to deacetylate cortactin and promotes autophagosome-lysosome fusion and autophagy. This study identifies ATP13A2 as an essential molecular component for normal autophagy flux in vivo and implies potential treatments targeting HDAC6-mediated autophagy for PD.
Collapse
Affiliation(s)
- Ruoxi Wang
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Tingting Chen
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Hailong Han
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Runyi Tian
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Ya Tan
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Yiming Wu
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jingyi Cui
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Fang Chen
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jie Li
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Lu Lv
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Xinjie Guan
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Shuai Shang
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
- Department of Neurosciences, School of Medicine, University of South China, Hengyang, Hunan, China
| |
Collapse
|
41
|
Jin L, Frazer DM, Lu Y, Wilkins SJ, Ayton S, Bush A, Anderson GJ. Mice overexpressing hepcidin suggest ferroportin does not play a major role in Mn homeostasis. Metallomics 2019; 11:959-967. [DOI: 10.1039/c8mt00370j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Knockout mice with constitutively low ferroportin show that ferroportin does not make a major contribution to manganese homeostasis in vivo.
Collapse
Affiliation(s)
- Lian Jin
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
- Faculty of Medicine
| | - David M. Frazer
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
| | - Yan Lu
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
| | - Sarah J. Wilkins
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre
- Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Melbourne
- Australia
| | - Ashley Bush
- Melbourne Dementia Research Centre
- Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Melbourne
- Australia
| | - Gregory J. Anderson
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
- Faculty of Medicine
| |
Collapse
|
42
|
Venkataramani V, Doeppner TR, Willkommen D, Cahill CM, Xin Y, Ye G, Liu Y, Southon A, Aron A, Au-Yeung HY, Huang X, Lahiri DK, Wang F, Bush AI, Wulf GG, Ströbel P, Michalke B, Rogers JT. Manganese causes neurotoxic iron accumulation via translational repression of amyloid precursor protein and H-Ferritin. J Neurochem 2018; 147:831-848. [PMID: 30152072 PMCID: PMC6310653 DOI: 10.1111/jnc.14580] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/24/2022]
Abstract
For more than 150 years, it is known that occupational overexposure of manganese (Mn) causes movement disorders resembling Parkinson's disease (PD) and PD-like syndromes. However, the mechanisms of Mn toxicity are still poorly understood. Here, we demonstrate that Mn dose- and time-dependently blocks the protein translation of amyloid precursor protein (APP) and heavy-chain Ferritin (H-Ferritin), both iron homeostatic proteins with neuroprotective features. APP and H-Ferritin are post-transcriptionally regulated by iron responsive proteins, which bind to homologous iron responsive elements (IREs) located in the 5'-untranslated regions (5'-UTRs) within their mRNA transcripts. Using reporter assays, we demonstrate that Mn exposure repressed the 5'-UTR-activity of APP and H-Ferritin, presumably via increased iron responsive proteins-iron responsive elements binding, ultimately blocking their protein translation. Using two specific Fe2+ -specific probes (RhoNox-1 and IP-1) and ion chromatography inductively coupled plasma mass spectrometry (IC-ICP-MS), we show that loss of the protective axis of APP and H-Ferritin resulted in unchecked accumulation of redox-active ferrous iron (Fe2+ ) fueling neurotoxic oxidative stress. Enforced APP expression partially attenuated Mn-induced generation of cellular and lipid reactive oxygen species and neurotoxicity. Lastly, we could validate the Mn-mediated suppression of APP and H-Ferritin in two rodent in vivo models (C57BL6/N mice and RjHan:SD rats) mimicking acute and chronic Mn exposure. Together, these results suggest that Mn-induced neurotoxicity is partly attributable to the translational inhibition of APP and H-Ferritin resulting in impaired iron metabolism and exacerbated neurotoxic oxidative stress. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Vivek Venkataramani
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Institute of Pathology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Thorsten R. Doeppner
- Department of Neurology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Desiree Willkommen
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764 Neuherberg
| | - Catherine M. Cahill
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Yongjuan Xin
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guilin Ye
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanyan Liu
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Adam Southon
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville Vic, Australia 3052
| | - Allegra Aron
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana Alzheimer Disease Center, Stark Neurosciences Research Institute, Indiana University School of Medicine
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ashley I. Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville Vic, Australia 3052
| | - Gerald G. Wulf
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Bernhard Michalke
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764 Neuherberg
| | - Jack T. Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
43
|
Karimi-Moghadam A, Charsouei S, Bell B, Jabalameli MR. Parkinson Disease from Mendelian Forms to Genetic Susceptibility: New Molecular Insights into the Neurodegeneration Process. Cell Mol Neurobiol 2018; 38:1153-1178. [PMID: 29700661 PMCID: PMC6061130 DOI: 10.1007/s10571-018-0587-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Parkinson disease (PD) is known as a common progressive neurodegenerative disease which is clinically diagnosed by the manifestation of numerous motor and nonmotor symptoms. PD is a genetically heterogeneous disorder with both familial and sporadic forms. To date, researches in the field of Parkinsonism have identified 23 genes or loci linked to rare monogenic familial forms of PD with Mendelian inheritance. Biochemical studies revealed that the products of these genes usually play key roles in the proper protein and mitochondrial quality control processes, as well as synaptic transmission and vesicular recycling pathways within neurons. Despite this, large number of patients affected with PD typically tends to show sporadic forms of disease with lack of a clear family history. Recent genome-wide association studies (GWAS) meta-analyses on the large sporadic PD case-control samples from European populations have identified over 12 genetic risk factors. However, the genetic etiology that underlies pathogenesis of PD is also discussed, since it remains unidentified in 40% of all PD-affected cases. Nowadays, with the emergence of new genetic techniques, international PD genomics consortiums and public online resources such as PDGene, there are many hopes that future large-scale genetics projects provide further insights into the genetic etiology of PD and improve diagnostic accuracy and therapeutic clinical trial designs.
Collapse
Affiliation(s)
- Amin Karimi-Moghadam
- Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Saeid Charsouei
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Benjamin Bell
- Human Genetics & Genomic Medicine, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Mohammad Reza Jabalameli
- Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran.
- Human Genetics & Genomic Medicine, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK.
| |
Collapse
|
44
|
Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxid Redox Signal 2018; 28:1669-1703. [PMID: 29402131 PMCID: PMC5962337 DOI: 10.1089/ars.2017.7272] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations. Recent Advances: The redox activity of essential metals is key for neuronal homeostasis and brain function. Alterations in redox homeostasis and signaling are central to the pathological consequences of dysfunctional metal ion homeostasis and increased exposure to xenobiotic metals. Both redox-active and redox-inactive metals trigger oxidative stress and damage in the central nervous system, and the exact mechanisms involved are starting to become delineated. CRITICAL ISSUES In this review, we aim to appraise the role of essential metals in determining the redox balance in the brain and the mechanisms by which alterations in the homeostasis of essential metals and exposure to xenobiotic metals disturb the cellular redox balance and signaling. We focus on recent literature regarding their transport, metabolism, and mechanisms of toxicity in neural systems. FUTURE DIRECTIONS Delineating the specific mechanisms by which metals alter redox homeostasis is key to understand the pathological processes that convey chronic neuronal dysfunction in neurodegenerative and neurodevelopmental disorders. Antioxid. Redox Signal. 28, 1669-1703.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska.,2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Yanahi Posadas
- 3 Departamentos de Farmacología y de, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México .,4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - Liliana Quintanar
- 4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - María E Gonsebatt
- 2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Rodrigo Franco
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska
| |
Collapse
|
45
|
Sørensen DM, Holemans T, van Veen S, Martin S, Arslan T, Haagendahl IW, Holen HW, Hamouda NN, Eggermont J, Palmgren M, Vangheluwe P. Parkinson disease related ATP13A2 evolved early in animal evolution. PLoS One 2018; 13:e0193228. [PMID: 29505581 PMCID: PMC5837089 DOI: 10.1371/journal.pone.0193228] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/07/2018] [Indexed: 12/30/2022] Open
Abstract
Several human P5-type transport ATPases are implicated in neurological disorders, but little is known about their physiological function and properties. Here, we investigated the relationship between the five mammalian P5 isoforms ATP13A1-5 in a comparative study. We demonstrated that ATP13A1-4 isoforms undergo autophosphorylation, which is a hallmark P-type ATPase property that is required for substrate transport. A phylogenetic analysis of P5 sequences revealed that ATP13A1 represents clade P5A, which is highly conserved between fungi and animals with one member in each investigated species. The ATP13A2-5 isoforms belong to clade P5B and diversified from one isoform in fungi and primitive animals to a maximum of four in mammals by successive gene duplication events in vertebrate evolution. We revealed that ATP13A1 localizes in the endoplasmic reticulum (ER) and experimentally demonstrate that ATP13A1 likely contains 12 transmembrane helices. Conversely, ATP13A2-5 isoforms reside in overlapping compartments of the endosomal system and likely contain 10 transmembrane helices, similar to what was demonstrated earlier for ATP13A2. ATP13A1 complemented a deletion of the yeast P5A ATPase SPF1, while none of ATP13A2-5 could complement either the loss of SPF1 or that of the single P5B ATPase YPK9 in yeast. Thus, ATP13A1 carries out a basic ER function similar to its yeast counterpart Spf1p that plays a role in ER related processes like protein folding and processing. ATP13A2-5 isoforms diversified in mammals and are expressed in the endosomal system where they may have evolved novel complementary or partially redundant functions. While most P5-type ATPases are widely expressed, some P5B-type ATPases (ATP13A4 and ATP13A5) display a more limited tissue distribution in the brain and epithelial glandular cells, where they may exert specialized functions. At least some P5B isoforms are of vital importance for the nervous system, since ATP13A2 and ATP13A4 are linked to respectively Parkinson disease and autism spectrum disorders.
Collapse
Affiliation(s)
- Danny Mollerup Sørensen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; Leuven, Belgium
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Tine Holemans
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; Leuven, Belgium
| | - Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; Leuven, Belgium
| | - Shaun Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; Leuven, Belgium
| | - Tugce Arslan
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; Leuven, Belgium
| | - Ida Winther Haagendahl
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Henrik Waldal Holen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Norin Nabil Hamouda
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; Leuven, Belgium
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; Leuven, Belgium
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; Leuven, Belgium
- * E-mail:
| |
Collapse
|
46
|
Nikoletopoulou V, Tavernarakis N. The PMR1 pump in alpha-synuclein toxicity and neurodegeneration. Neurosci Lett 2018; 663:66-71. [DOI: 10.1016/j.neulet.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
|
47
|
Langley MR, Ghaisas S, Ay M, Luo J, Palanisamy BN, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Manganese exposure exacerbates progressive motor deficits and neurodegeneration in the MitoPark mouse model of Parkinson's disease: Relevance to gene and environment interactions in metal neurotoxicity. Neurotoxicology 2018; 64:240-255. [PMID: 28595911 PMCID: PMC5736468 DOI: 10.1016/j.neuro.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is now recognized as a neurodegenerative condition caused by a complex interplay of genetic and environmental influences. Chronic manganese (Mn) exposure has been implicated in the development of PD. Since mitochondrial dysfunction is associated with PD pathology as well as Mn neurotoxicity, we investigated whether Mn exposure augments mitochondrial dysfunction and neurodegeneration in the nigrostriatal dopaminergic system using a newly available mitochondrially defective transgenic mouse model of PD, the MitoPark mouse. This unique PD model recapitulates key features of the disease including progressive neurobehavioral changes and neuronal degeneration. We exposed MitoPark mice to a low dose of Mn (10mg/kg, p.o.) daily for 4 weeks starting at age 8 wks and then determined the behavioral, neurochemical and histological changes. Mn exposure accelerated the rate of progression of motor deficits in MitoPark mice when compared to the untreated MitoPark group. Mn also worsened olfactory function in this model. Most importantly, Mn exposure intensified the depletion of striatal dopamine and nigral TH neuronal loss in MitoPark mice. The neurodegenerative changes were accompanied by enhanced oxidative damage in the striatum and substantia nigra (SN) of MitoPark mice treated with Mn. Furthermore, Mn-treated MitoPark mice had significantly more oligomeric protein and IBA-1-immunoreactive microglia cells, suggesting Mn augments neuroinflammatory processes in the nigrostriatal pathway. To further confirm the direct effect of Mn on impaired mitochondrial function, we also generated a mitochondrially defective dopaminergic cell model by knocking out the TFAM transcription factor by using a CRISPR-Cas9 gene-editing method. Seahorse mitochondrial bioenergetic analysis revealed that Mn decreases mitochondrial basal and ATP-linked respiration in the TFAM KO cells. Collectively, our results reveal that Mn can augment mitochondrial dysfunction to exacerbate nigrostriatal neurodegeneration and PD-related behavioral symptoms. Our study also demonstrates that the MitoPark mouse is an excellent model to study the gene-environment interactions associated with mitochondrial defects in the nigral dopaminergic system as well as to evaluate the contribution of potential environmental toxicant interactions in a slowly progressive model of Parkinsonism.
Collapse
Affiliation(s)
- Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Muhammet Ay
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Jie Luo
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
48
|
de Tezanos Pinto F, Adamo HP. The strategic function of the P5-ATPase ATP13A2 in toxic waste disposal. Neurochem Int 2018; 112:108-113. [DOI: 10.1016/j.neuint.2017.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/28/2022]
|
49
|
Ye Q, Park JE, Gugnani K, Betharia S, Pino-Figueroa A, Kim J. Influence of iron metabolism on manganese transport and toxicity. Metallomics 2017; 9:1028-1046. [PMID: 28620665 DOI: 10.1039/c7mt00079k] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although manganese (Mn) is critical for the proper functioning of various metabolic enzymes and cofactors, excess Mn in the brain causes neurotoxicity. While the exact transport mechanism of Mn has not been fully understood, several importers and exporters for Mn have been identified over the past decade. In addition to Mn-specific transporters, it has been demonstrated that iron transporters can mediate Mn transport in the brain and peripheral tissues. However, while the expression of iron transporters is regulated by body iron stores, whether or not disorders of iron metabolism modify Mn homeostasis has not been systematically discussed. The present review will provide an update on the role of altered iron status in the transport and toxicity of Mn.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue 148TF, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Chen T, Tan J, Wan Z, Zou Y, Afewerky HK, Zhang Z, Zhang T. Effects of Commonly Used Pesticides in China on the Mitochondria and Ubiquitin-Proteasome System in Parkinson's Disease. Int J Mol Sci 2017; 18:ijms18122507. [PMID: 29168786 PMCID: PMC5751110 DOI: 10.3390/ijms18122507] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/12/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
Evidence continues to accumulate that pesticides are the leading candidates of environmental toxins that may contribute to the pathogenesis of Parkinson’s disease. The mechanisms, however, remain largely unclear. According to epidemiological studies, we selected nine representative pesticides (paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate, tebufenpyrad, trichlorphon and carbaryl) which are commonly used in China and detected the effects of the pesticides on mitochondria and ubiquitin-proteasome system (UPS) function. Our results reveal that all the nine studied pesticides induce morphological changes of mitochondria at low concentrations. Paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate and tebufenpyrad induced mitochondria fragmentation. Furthermore, some of them (paraquat, rotenone, chlorpyrifos, fenpyroximate and tebufenpyrad) caused a significant dose-dependent decrease of intracellular ATP. Interestingly, these pesticides which induce mitochondria dysfunction also inhibit 26S and 20S proteasome activity. However, two out of the nine pesticides, namely trichlorphon and carbaryl, were found not to cause mitochondrial fragmentation or functional damage, nor inhibit the activity of the proteasome, which provides significant guidance for selection of pesticides in China. Moreover, our results demonstrate a potential link between inhibition of mitochondria and the UPS, and pesticide-induced Parkinsonism.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Jieqiong Tan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Zhengqing Wan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Yongyi Zou
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Henok Kessete Afewerky
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhuohua Zhang
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Tongmei Zhang
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|