1
|
Inhibition of angiotensin II type 1 receptor partially prevents acute elevation of pulmonary arterial pressure induced by endovascular ethanol injection. Hypertens Res 2022; 46:972-983. [PMID: 36539462 DOI: 10.1038/s41440-022-01132-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/05/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to examine whether the administration of losartan can prevent acute elevation of pulmonary arterial pressure (AEPAP) induced by endovascular ethanol injection and to assess its related mechanisms. Male swine were selected and performed with absolute ethanol endovascular injection. Saline was used as the negative control. Losartan was administered preoperatively. Pulmonary arterial pressure (PAP), femoral arterial pressure (FAP) and heart rate (HR) were monitored during operations. Venous plasma and pulmonary artery (PA) tissue were harvested for analyses. Protein level was detected by Western blotting and ELISA, whereas qRT-PCR was used in mRNA detection. H & E staining and immunohistochemistry were conducted to evaluate histopathology. Ethanol injection elevated PAP in swine. The concentration of RAS ligands was elevated in plasma (all P < 0.0001) but not in PA. The level of oxidative stress increased in both plasma and PA. MRNA level of AT1R (P < 0.01, 95% CI: 0.251-1.006), not AT2R increased in PA. Losartan failed to inhibit AEPAP after all sessions of ethanol injection, and partially reversed the ethanol-induced PA remodeling. The P38 MAPK was activated after ethanol injection and could be inhibited by losartan (P < 0.01, 95% CI: -0.391 to -0.164). Ethanol also promoted the translocation of the P40-PHOX/P47-PHOX/P67-PHOX complex and the activation of NOX, which was independent from RAS. Endovascular ethanol injection can induce AEPAP mainly by activating RAS and P38 MAPK signaling. Losartan can partially prevent AEPAP and vascular remodeling owing to the promotion of NOX activity by ethanol. Mechanism diagram of endovascular ethanol injection-induced acute elevation of pulmonary arterial pressure (AEPAP) partially prevented by losartan. RAS: Renin-angiotensin system; AGT: angiotensinogen; Ang I: angiotensin I; ACE: angiotensin I converting enzyme; Ang II: angiotensin II. AT1R: angiotensin II type 1 receptor. NOX2: NADPH oxidase 2. PA: pulmonary artery.
Collapse
|
2
|
Paclet MH, Laurans S, Dupré-Crochet S. Regulation of Neutrophil NADPH Oxidase, NOX2: A Crucial Effector in Neutrophil Phenotype and Function. Front Cell Dev Biol 2022; 10:945749. [PMID: 35912108 PMCID: PMC9329797 DOI: 10.3389/fcell.2022.945749] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS), produced by the phagocyte NADPH oxidase, NOX2, are involved in many leukocyte functions. An excessive or inappropriate ROS production can lead to oxidative stress and tissue damage. On the other hand, an absence of ROS production due to a lack of a functional NADPH oxidase is associated with recurrent infections as well as inflammation disorders. Thus, it is clear that the enzyme NADPH oxidase must be tightly regulated. The NOX2 complex bears both membrane and cytosolic subunits. The membrane subunits constitute the flavocytochrome b558, consisting of gp91phox (Nox2) and p22phox subunits. The cytosolic subunits form a complex in resting cells and are made of three subunits (p47phox, p40phox, p67phox). Upon leukocyte stimulation, the cytosolic subunits and the small GTPase Rac assemble with the flavocytochrome b558 in order to make a functional complex. Depending on the stimulus, the NADPH oxidase can assemble either at the phagosomal membrane or at the plasma membrane. Many studies have explored NOX2 activation; however, how this activation is sustained and regulated is still not completely clear. Here we review the multiple roles of NOX2 in neutrophil functions, with a focus on description of its components and their assembly mechanisms. We then explain the role of energy metabolism and phosphoinositides in regulating NADPH oxidase activity. In particular, we discuss: 1) the link between metabolic pathways and NOX2 activity regulation through neutrophil activation and the level of released ROS, and 2) the role of membrane phosphoinositides in controlling the duration of NOX2 activity.
Collapse
Affiliation(s)
- Marie-Hélène Paclet
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, T-RAIG, Grenoble, France
| | - Salomé Laurans
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, Orsay, France
| | - Sophie Dupré-Crochet
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, Orsay, France
- *Correspondence: Sophie Dupré-Crochet,
| |
Collapse
|
3
|
Chen Y, He Y, Wu X, Xu X, Gong J, Chen Y, Gong J. Rubicon promotes the M2 polarization of Kupffer cells via LC3-associated phagocytosis-mediated clearance to improve liver transplantation. Cell Immunol 2022; 378:104556. [DOI: 10.1016/j.cellimm.2022.104556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/03/2022]
|
4
|
Villegas L, Nørremølle A, Freude K, Vilhardt F. Nicotinamide Adenine Dinucleotide Phosphate Oxidases Are Everywhere in Brain Disease, but Not in Huntington's Disease? Front Aging Neurosci 2021; 13:736734. [PMID: 34803655 PMCID: PMC8602359 DOI: 10.3389/fnagi.2021.736734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by neuronal loss and tissue atrophy mainly in the striatum and cortex. In the early stages of the disease, impairment of neuronal function, synaptic dysfunction and white matter loss precedes neuronal death itself. Relative to other neurodegenerative diseases such as Alzheimer's and Parkinson's disease and Amyotrophic Lateral Sclerosis, where the effects of either microglia or NADPH oxidases (NOXs) are recognized as important contributors to disease pathogenesis and progression, there is a pronounced lack of information in HD. This information void contrasts with evidence from human HD patients where blood monocytes and microglia are activated well before HD clinical symptoms (PET scans), and the clear signs of oxidative stress and inflammation in post mortem HD brain. Habitually, NOX activity and oxidative stress in the central nervous system (CNS) are equated with microglia, but research of the last two decades has carved out important roles for NOX enzyme function in neurons. Here, we will convey recent information about the function of NOX enzymes in neurons, and contemplate on putative roles of neuronal NOX in HD. We will focus on NOX-produced reactive oxygen species (ROS) as redox signaling molecules in/among neurons, and the specific roles of NOXs in important processes such as neurogenesis and lineage specification, neurite outgrowth and growth cone dynamics, and synaptic plasticity where NMDAR-dependent signaling, and long-term depression/potentiation are redox-regulated phenomena. HD animal models and induced pluripotent stem cell (iPSC) studies have made it clear that the very same physiological processes are also affected in HD, and we will speculate on possible roles for NOX in the pathogenesis and development of disease. Finally, we also take into account the limited information on microglia in HD and relate this to any contribution of NOX enzymes.
Collapse
Affiliation(s)
- Luisana Villegas
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Martinez J, Cook DN. What's the deal with efferocytosis and asthma? Trends Immunol 2021; 42:904-919. [PMID: 34503911 PMCID: PMC9843639 DOI: 10.1016/j.it.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023]
Abstract
Mucosal sites, such as the lung, serve as crucial, yet vulnerable barriers to environmental insults such as pathogens, allergens, and toxins. Often, these exposures induce massive infiltration and death of short-lived immune cells in the lung, and efficient clearance of these cells is important for preventing hyperinflammation and resolving immunopathology. Herein, we review recent advances in our understanding of efferocytosis, a process whereby phagocytes clear dead cells in a noninflammatory manner. We further discuss how efferocytosis impacts the onset and severity of asthma in humans and mammalian animal models of disease. Finally, we explore how recently identified genetic perturbations or biological pathway modulations affect pathogenesis and shed light on novel therapies aimed at treating or preventing asthma.
Collapse
Affiliation(s)
- Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Donald N Cook
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
6
|
Enriched conditioning expands the regenerative ability of sensory neurons after spinal cord injury via neuronal intrinsic redox signaling. Nat Commun 2020; 11:6425. [PMID: 33349630 PMCID: PMC7752916 DOI: 10.1038/s41467-020-20179-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Overcoming the restricted axonal regenerative ability that limits functional repair following a central nervous system injury remains a challenge. Here we report a regenerative paradigm that we call enriched conditioning, which combines environmental enrichment (EE) followed by a conditioning sciatic nerve axotomy that precedes a spinal cord injury (SCI). Enriched conditioning significantly increases the regenerative ability of dorsal root ganglia (DRG) sensory neurons compared to EE or a conditioning injury alone, propelling axon growth well beyond the spinal injury site. Mechanistically, we established that enriched conditioning relies on the unique neuronal intrinsic signaling axis PKC-STAT3-NADPH oxidase 2 (NOX2), enhancing redox signaling as shown by redox proteomics in DRG. Finally, NOX2 conditional deletion or overexpression respectively blocked or phenocopied enriched conditioning-dependent axon regeneration after SCI leading to improved functional recovery. These studies provide a paradigm that drives the regenerative ability of sensory neurons offering a potential redox-dependent regenerative model for mechanistic and therapeutic discoveries. Pre conditioning injury or environmental enrichment have been shown to promote axon regeneration. Here the authors show that environmental enrichment, combined with preconditioning injury promotes regeneration via a redox signalling dependent mechanism.
Collapse
|
7
|
Wu M, Cudjoe O, Shen J, Chen Y, Du J. The Host Autophagy During Toxoplasma Infection. Front Microbiol 2020; 11:589604. [PMID: 33193253 PMCID: PMC7642512 DOI: 10.3389/fmicb.2020.589604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an important homeostatic mechanism, in which lysosomes degrade and recycle cytosolic components. As a key defense mechanism against infections, autophagy is involved in the capture and elimination of intracellular parasites. However, intracellular parasites, such as Toxoplasma gondii, have developed several evasion mechanisms to manipulate the host cell autophagy for their growth and establish a chronic infection. This review provides an insight into the autophagy mechanism used by the host cells in the control of T. gondii and the host exploitation by the parasite. First, we summarize the mechanism of autophagy, xenophagy, and LC3-associated phagocytosis. Then, we illustrate the process of autophagy proteins-mediated T. gondii clearance. Furthermore, we discuss how the parasite blocks and exploits this process for its survival.
Collapse
Affiliation(s)
- Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, China
| | - Obed Cudjoe
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ying Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, China.,School of Nursing, Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Terzi A, Suter DM. The role of NADPH oxidases in neuronal development. Free Radic Biol Med 2020; 154:33-47. [PMID: 32370993 DOI: 10.1016/j.freeradbiomed.2020.04.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are critical for maintaining cellular homeostasis and function when produced in physiological ranges. Important sources of cellular ROS include NADPH oxidases (Nox), which are evolutionary conserved multi-subunit transmembrane proteins. Nox-mediated ROS regulate variety of biological processes including hormone synthesis, calcium signaling, cell migration, and immunity. ROS participate in intracellular signaling by introducing post-translational modifications to proteins and thereby altering their functions. The central nervous system (CNS) expresses different Nox isoforms during both development and adulthood. Here, we review the role of Nox-mediated ROS during CNS development. Specifically, we focus on how individual Nox isoforms contribute to signaling in neural stem cell maintenance and neuronal differentiation, as well as neurite outgrowth and guidance. We also discuss how ROS regulates the organization and dynamics of the actin cytoskeleton in the neuronal growth cone. Finally, we review recent evidence that Nox-derived ROS modulate axonal regeneration upon nervous system injury.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
9
|
The NADPH Oxidase and the Phagosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:153-177. [DOI: 10.1007/978-3-030-40406-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Ueyama T. Rho-Family Small GTPases: From Highly Polarized Sensory Neurons to Cancer Cells. Cells 2019; 8:cells8020092. [PMID: 30696065 PMCID: PMC6406560 DOI: 10.3390/cells8020092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases of the Rho-family (Rho-family GTPases) have various physiological functions, including cytoskeletal regulation, cell polarity establishment, cell proliferation and motility, transcription, reactive oxygen species (ROS) production, and tumorigenesis. A relatively large number of downstream targets of Rho-family GTPases have been reported for in vitro studies. However, only a small number of signal pathways have been established at the in vivo level. Cumulative evidence for the functions of Rho-family GTPases has been reported for in vivo studies using genetically engineered mouse models. It was based on different cell- and tissue-specific conditional genes targeting mice. In this review, we introduce recent advances in in vivo studies, including human patient trials on Rho-family GTPases, focusing on highly polarized sensory organs, such as the cochlea, which is the primary hearing organ, host defenses involving reactive oxygen species (ROS) production, and tumorigenesis (especially associated with RAC, novel RAC1-GSPT1 signaling, RHOA, and RHOBTB2).
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
11
|
Parascandolo A, Laukkanen MO. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1-3 Signal Transduction Pathways. Antioxid Redox Signal 2019; 30:443-486. [PMID: 29478325 PMCID: PMC6393772 DOI: 10.1089/ars.2017.7268] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Reduction/oxidation (redox) balance could be defined as an even distribution of reduction and oxidation complementary processes and their reaction end products. There is a consensus that aberrant levels of reactive oxygen species (ROS), commonly observed in cancer, stimulate primary cell immortalization and progression of carcinogenesis. However, the mechanism how different ROS regulate redox balance is not completely understood. Recent Advances: In the current review, we have summarized the main signaling cascades inducing NADPH oxidase NOX1-5 and superoxide dismutase (SOD) 1-3 expression and their connection to cell proliferation, immortalization, transformation, and CD34+ cell differentiation in thyroid, colon, lung, breast, and hematological cancers. CRITICAL ISSUES Interestingly, many of the signaling pathways activating redox enzymes or mediating the effect of ROS are common, such as pathways initiated from G protein-coupled receptors and tyrosine kinase receptors involving protein kinase A, phospholipase C, calcium, and small GTPase signaling molecules. FUTURE DIRECTIONS The clarification of interaction of signal transduction pathways could explain how cells regulate redox balance and may even provide means to inhibit the accumulation of harmful levels of ROS in human pathologies.
Collapse
|
12
|
Sumimoto H, Minakami R, Miyano K. Soluble Regulatory Proteins for Activation of NOX Family NADPH Oxidases. Methods Mol Biol 2019; 1982:121-137. [PMID: 31172470 DOI: 10.1007/978-1-4939-9424-3_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
NOX family NADPH oxidases deliberately produce reactive oxygen species and thus contribute to a variety of biological functions. Of seven members in the human family, the three oxidases NOX2, NOX1, and NOX3 form a heterodimer with p22phox and are regulated by soluble regulatory proteins: p47phox, its related organizer NOXO1; p67phox, its related activator NOXA1; p40phox; and the small GTPase Rac. Activation of the phagocyte oxidase NOX2 requires p47phox, p67phox, and GTP-bound Rac. In addition to these regulators, p40phox plays a crucial role when NOX2 is activated during phagocytosis. On the other hand, NOX1 activation prefers NOXO1 and NOXA1, although Rac is also involved. NOX3 constitutively produces superoxide, which is enhanced by regulatory proteins such as p47phox, NOXO1, and p67phox. Here we describe mechanisms for NOX activation with special attention to the soluble regulatory proteins.
Collapse
Affiliation(s)
- Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Reiko Minakami
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kei Miyano
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
13
|
Ye X, Zhou XJ, Zhang H. Exploring the Role of Autophagy-Related Gene 5 ( ATG5) Yields Important Insights Into Autophagy in Autoimmune/Autoinflammatory Diseases. Front Immunol 2018; 9:2334. [PMID: 30386331 PMCID: PMC6199349 DOI: 10.3389/fimmu.2018.02334] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a highly conserved process that degrades certain intracellular contents in both physiological and pathological conditions. Autophagy-related proteins (ATG) are key players in this pathway, among which ATG5 is indispensable in both canonical and non-canonical autophagy. Recent studies demonstrate that ATG5 modulates the immune system and crosstalks with apoptosis. However, our knowledge of the pathogenesis and regulatory mechanisms of autophagy in various immune related diseases is lacking. Thus, a deeper understanding of ATG5's role in the autophagy mechanism may shed light on the link between autophagy and the immune response, and lead to the development of new therapies for autoimmune diseases and autoinflammatory diseases. In this focused review, we discuss the latest insights into the role of ATG5 in autoimmunity. Although these studies are at a relatively early stage, ATG5 may eventually come to be regarded as a “guardian of immune integrity.” Notably, accumulating evidence indicates that other ATG genes may have similar functions.
Collapse
Affiliation(s)
- Xin Ye
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
14
|
Zhong J, Olsson LM, Urbonaviciute V, Yang M, Bäckdahl L, Holmdahl R. Association of NOX2 subunits genetic variants with autoimmune diseases. Free Radic Biol Med 2018. [PMID: 29526808 DOI: 10.1016/j.freeradbiomed.2018.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A single nucleotide polymorphism in Ncf1 has been found with a major effect on chronic inflammatory autoimmune diseases in the rat with the surprising observation that a lower reactive oxygen response led to more severe diseases. This finding was subsequently reproduced in the mouse and the effect operates in many different murine diseases through different pathogenic pathways; like models for rheumatoid arthritis, encephalomyelitis, lupus, gout, psoriasis and psoriatic arthritis. The human gene is located in an unstable region with many variable sequence repetitions, which means it has not been included in any genome wide associated screens so far. However, identification of copy number variations and single nucleotide polymorphisms has now clearly shown that major autoimmune diseases are strongly associated with the Ncf1 locus. In systemic lupus erythematosus the associated Ncf1 polymorphism (leading to an amino acid substitution at position 90) is the strongest locus and is associated with a lower reactive oxidative burst response. In addition, more precise mapping analysis of polymorphism of other NOX2 genes reveals that these are also associated with autoimmunity. The identified genetic association shows the importance of redox control and that ROS regulate chronic inflammation instead of promoting it. The genetic identification of Ncf1 polymorphisms now opens for relevant studies of the regulatory mechanisms involved, effects that will have severe consequences in many different pathogenic pathways and understanding of the origin of autoimmune diseases.
Collapse
Affiliation(s)
- Jianghong Zhong
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Lina M Olsson
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Vilma Urbonaviciute
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Min Yang
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Liselotte Bäckdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
15
|
Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol 2018; 20:307-319. [PMID: 29434374 DOI: 10.1038/s41556-018-0039-x] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) contribute to tissue damage and remodelling mediated by the inflammatory response after injury. Here we show that ROS, which promote axonal dieback and degeneration after injury, are also required for axonal regeneration and functional recovery after spinal injury. We find that ROS production in the injured sciatic nerve and dorsal root ganglia requires CX3CR1-dependent recruitment of inflammatory cells. Next, exosomes containing functional NADPH oxidase 2 complexes are released from macrophages and incorporated into injured axons via endocytosis. Once in axonal endosomes, active NOX2 is retrogradely transported to the cell body through an importin-β1-dynein-dependent mechanism. Endosomal NOX2 oxidizes PTEN, which leads to its inactivation, thus stimulating PI3K-phosporylated (p-)Akt signalling and regenerative outgrowth. Challenging the view that ROS are exclusively involved in nerve degeneration, we propose a previously unrecognized role of ROS in mammalian axonal regeneration through a NOX2-PI3K-p-Akt signalling pathway.
Collapse
|
16
|
Wong SW, Sil P, Martinez J. Rubicon: LC3-associated phagocytosis and beyond. FEBS J 2017; 285:1379-1388. [PMID: 29215797 DOI: 10.1111/febs.14354] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Rubicon (Rubcn) was initially identified as a component of the Class III PI3K complex and a negative regulator of canonical autophagy and endosomal trafficking. However, Rubicon has attracted the most notoriety because of its critical role in LC3-associated phagocytosis (LAP), a form of noncanonical autophagy that utilizes some components of the autophagy machinery to process extracellular cargo. Additionally, Rubicon has been identified as a key modulator of the inflammatory response and viral replication. In this review, we discuss the known functions of Rubicon in LAP and other signaling pathways and examine the disease pathologies associated with Rubicon dysfunction in animal models and humans.
Collapse
Affiliation(s)
- Sing-Wai Wong
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA.,Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - Payel Sil
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
17
|
Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate. Antioxidants (Basel) 2017; 6:antiox6040090. [PMID: 29135921 PMCID: PMC5745500 DOI: 10.3390/antiox6040090] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/21/2017] [Accepted: 11/07/2017] [Indexed: 01/09/2023] Open
Abstract
The generation of reactive oxygen species (ROS) and an imbalance of antioxidant defence mechanisms can result in oxidative stress. Several pro-atherogenic stimuli that promote intimal-medial thickening (IMT) and early arteriosclerotic disease progression share oxidative stress as a common regulatory pathway dictating vascular cell fate. The major source of ROS generated within the vascular system is the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes (Nox), of which seven members have been characterized. The Nox family are critical determinants of the redox state within the vessel wall that dictate, in part the pathophysiology of several vascular phenotypes. This review highlights the putative role of ROS in controlling vascular fate by promoting endothelial dysfunction, altering vascular smooth muscle phenotype and dictating resident vascular stem cell fate, all of which contribute to intimal medial thickening and vascular disease progression.
Collapse
|
18
|
Sil P, Muse G, Martinez J. A ravenous defense: canonical and non-canonical autophagy in immunity. Curr Opin Immunol 2017; 50:21-31. [PMID: 29125936 DOI: 10.1016/j.coi.2017.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/04/2017] [Indexed: 12/29/2022]
Abstract
While classically considered a survival mechanism employed during nutrient scarcity, the autophagy pathway operates in multiple scenarios wherein a return to homeostasis or degradative removal of an invader is required. Now recognized as a pathway with vast immunoregulatory power, autophagy can no longer serve as a 'one size fits all' term, as its machinery can be recruited to different pathogens, at different times, with different outcomes. Both canonical autophagy and the molecularly related, yet divergent pathways non-canonical autophagy are key players in proper host defense and allow us an opportunity to tailor infectious disease intervention and treatment to its specific pathway.
Collapse
Affiliation(s)
- Payel Sil
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ginger Muse
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
19
|
Abstract
In this issue of Immunity, Warnatsch et al. (2017) describe how neutrophils measure their microbial opponents by differential shuttling of reactive oxygen species (ROS), a process that determines their recruitment and distribution and ultimately the strength of anti-microbial responses.
Collapse
Affiliation(s)
- Carlos Del Fresno
- Department of Myocardial Pathophysiology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid 28029, Spain.
| | - Andrés Hidalgo
- Department of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid 28029, Spain.
| |
Collapse
|
20
|
Keller CW, Lünemann JD. Autophagy and Autophagy-Related Proteins in CNS Autoimmunity. Front Immunol 2017; 8:165. [PMID: 28289410 PMCID: PMC5326760 DOI: 10.3389/fimmu.2017.00165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy comprises a heterogeneous group of cellular pathways that enables eukaryotic cells to deliver cytoplasmic constituents for lysosomal degradation, to recycle nutrients, and to survive during starvation. In addition to these primordial functions, autophagy has emerged as a key mechanism in orchestrating innate and adaptive immune responses and to shape CD4+ T cell immunity through delivery of peptides to major histocompatibility complex (MHC) class II-containing compartments (MIICs). Individual autophagy proteins additionally modulate expression of MHC class I molecules for CD8+ T cell activation. The emergence and expansion of autoreactive CD4+ and CD8+ T cells are considered to play a key role in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis. Expression of the essential autophagy-related protein 5 (Atg5), which supports T lymphocyte survival and proliferation, is increased in T cells isolated from blood or brain tissues from patients with relapsing-remitting MS. Whether Atgs contribute to the activation of autoreactive T cells through autophagy-mediated antigen presentation is incompletely understood. Here, we discuss the complex functions of autophagy proteins and pathways in regulating T cell immunity and its potential role in the development and progression of MS.
Collapse
Affiliation(s)
- Christian W Keller
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich , Zürich , Switzerland
| | - Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Zürich, Switzerland; Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
21
|
Trostchansky A, Rubbo H. Anti-inflammatory signaling actions of electrophilic nitro-arachidonic acid in vascular cells and astrocytes. Arch Biochem Biophys 2016; 617:155-161. [PMID: 27720684 DOI: 10.1016/j.abb.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
Nitrated derivatives of unsaturated fatty acids (nitro-fatty acids) are being formed and detected in human plasma, cell membranes and tissue, triggering signaling cascades via covalent and reversible post-translational modifications of nucleophilic amino acids in transcriptional regulatory proteins. Arachidonic acid (AA) represents a precursor of potent signaling molecules, i.e., prostaglandins and thromboxanes through enzymatic and non-enzymatic oxidative pathways. Arachidonic acid can be nitrated by reactive nitrogen species leading to the formation of nitro-arachidonic acid (NO2-AA). A critical issue is the influence of NO2-AA on prostaglandin endoperoxide H synthases, modulating inflammatory processes through redirection of AA metabolism and signaling. In this prospective article, we describe the key chemical and biochemical actions of NO2-AA in vascular and astrocytes. This includes the ability of NO2-AA to mediate unique redox signaling anti-inflammatory actions along with its therapeutic potential.
Collapse
Affiliation(s)
- Andrés Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Avda. General Flores 2125, Universidad de la República, Montevideo 11800, Uruguay
| | - Homero Rubbo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Avda. General Flores 2125, Universidad de la República, Montevideo 11800, Uruguay.
| |
Collapse
|
22
|
Sprenkeler EGG, Gresnigt MS, van de Veerdonk FL. LC3-associated phagocytosis: a crucial mechanism for antifungal host defence against Aspergillus fumigatus. Cell Microbiol 2016; 18:1208-16. [PMID: 27185357 DOI: 10.1111/cmi.12616] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 02/06/2023]
Abstract
LC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway involved in the maturation of single-membrane phagosomes and subsequent killing of ingested pathogens by phagocytes. This pathway is initiated following recognition of pathogens by pattern recognition receptors and leads to the recruitment of LC3 into the phagosomal membrane. This form of phagocytosis is utilized for the antifungal host defence and is required for an efficient fungal killing. Here, we provide an overview of the LAP pathway and review the role of LAP in anti-Aspergillus host defence, as well as mechanisms induced by Aspergillus that modulate LAP to promote its survival in the host.
Collapse
Affiliation(s)
- Evelien G G Sprenkeler
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Mark S Gresnigt
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
23
|
The clearance of dying cells: table for two. Cell Death Differ 2016; 23:915-26. [PMID: 26990661 PMCID: PMC4987729 DOI: 10.1038/cdd.2015.172] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022] Open
Abstract
Phagocytic cells of the immune system must constantly survey for, recognize, and efficiently clear the billions of cellular corpses that arise as a result of development, stress, infection, or normal homeostasis. This process, termed efferocytosis, is critical for the prevention of autoimmune and inflammatory disorders, and persistence of dead cells in tissue is characteristic of many human autoimmune diseases, notably systemic lupus erythematosus. The most notable characteristic of the efferocytosis of apoptotic cells is its ‘immunologically silent' response. Although the mechanisms by which phagocytes facilitate engulfment of dead cells has been a well-studied area, the pathways that coordinate to process the ingested corpse and direct the subsequent immune response is an area of growing interest. The recently described pathway of LC3 (microtubule-associated protein 1A/1B-light chain 3)-associated phagocytosis (LAP) has shed some light on this issue. LAP is triggered when an extracellular particle, such as a dead cell, engages an extracellular receptor during phagocytosis, induces the translocation of autophagy machinery, and ultimately LC3 to the cargo-containing phagosome, termed the LAPosome. In this review, we will examine efferocytosis and the impact of LAP on efferocytosis, allowing us to reimagine the impact of the autophagy machinery on innate host defense mechanisms.
Collapse
|
24
|
Martinez J, Malireddi RKS, Lu Q, Cunha LD, Pelletier S, Gingras S, Orchard R, Guan JL, Tan H, Peng J, Kanneganti TD, Virgin HW, Green DR. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 2015; 17:893-906. [PMID: 26098576 PMCID: PMC4612372 DOI: 10.1038/ncb3192] [Citation(s) in RCA: 627] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 05/19/2015] [Indexed: 12/15/2022]
Abstract
LC3-associated phagocytosis (LAP) is a process wherein elements of autophagy conjugate LC3 to phagosomal membranes. We characterize the molecular requirements for LAP, and identify Rubicon as being required for LAP but not autophagy. Rubicon is recruited to LAPosomes and is required for the activity of a Class III PI(3)K complex containing UVRAG but lacking ATG14 and Ambra1. This allows for the sustained localization of PtdIns(3)P, which is critical for recruitment of downstream autophagic proteins and stabilization of the NOX2 complex to produce reactive oxygen species. Both PtdIns(3)P and reactive oxygen species are required for conjugation of LC3 to LAPosomes and subsequent association with LAMP1(+) lysosomes. LAP is induced by engulfment of Aspergillus fumigatus, a fungal pathogen that commonly afflicts immunocompromised hosts, and is required for its optimal clearance in vivo. Therefore, we have identified molecules that distinguish LAP from canonical autophagy, thereby elucidating the importance of LAP in response to A. fumigatus infection.
Collapse
Affiliation(s)
- Jennifer Martinez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - RK Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Qun Lu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Larissa Dias Cunha
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Stephane Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Embryonic Stem Cell Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Sebastien Gingras
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Embryonic Stem Cell Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Robert Orchard
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Haiyan Tan
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Junmin Peng
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | - Herbert W. Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Douglas R. Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
25
|
Abo M, Minakami R, Miyano K, Kamiya M, Nagano T, Urano Y, Sumimoto H. Visualization of phagosomal hydrogen peroxide production by a novel fluorescent probe that is localized via SNAP-tag labeling. Anal Chem 2014; 86:5983-90. [PMID: 24862209 DOI: 10.1021/ac501041w] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hydrogen peroxide (H2O2), a member of reactive oxygen species (ROS), plays diverse physiological roles including host defense and cellular signal transduction. During ingestion of invading microorganisms, professional phagocytes such as macrophages release H2O2 specifically into the phagosome to direct toxic ROS toward engulfed microbes. Although H2O2 is considered to exert discrete effects in living systems depending on location of its production, accumulation, and consumption, there have been limitations of techniques for probing this oxygen metabolite with high molecular specificity at the subcellular resolution. Here we describe the development of an O(6)-benzylguanine derivative of 5-(4-nitrobenzoyl)carbonylfluorescein (NBzF-BG), a novel H2O2-specific fluorescent probe; NBzF-BG is covalently and selectively conjugated with the SNAP-tag protein, leading to formation of the fluorophore-protein conjugate (SNAP-NBzF). SNAP-NBzF rapidly reacts with H2O2 and thereby shows a 9-fold enhancement in fluorescence. When SNAP-tag is expressed in HEK293T cells and RAW264.7 macrophages as a protein C-terminally fused to the transmembrane domain of platelet-derived growth factor receptor (PDGFR), the tag is presented on the outside of the plasma membrane; conjugation of NBzF-BG with the cell surface SNAP-tag enables detection of H2O2 added exogenously. We also demonstrate molecular imaging of H2O2 that is endogenously produced in phagosomes of macrophages ingesting IgG-coated latex beads. Thus, NBzF-BG, combined with the SNAP-tag technology, should be useful as a tool to measure local production of H2O2 in living cells.
Collapse
Affiliation(s)
- Masahiro Abo
- Departments of Biochemistry and ‡Health Sciences, Kyushu University Graduate School of Medical Sciences , Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Ueyama T, Son J, Kobayashi T, Hamada T, Nakamura T, Sakaguchi H, Shirafuji T, Saito N. Negative charges in the flexible N-terminal domain of Rho GDP-dissociation inhibitors (RhoGDIs) regulate the targeting of the RhoGDI-Rac1 complex to membranes. THE JOURNAL OF IMMUNOLOGY 2013; 191:2560-9. [PMID: 23918979 DOI: 10.4049/jimmunol.1300209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In its resting state, Rho GDP-dissociation inhibitor (RhoGDI) α forms a soluble cytoplasmic heterodimer with the GDP-bound form of Rac. Upon stimulation, the dissociation of RhoGDIα from the RhoGDIα-Rac complex is a mandatory step for Rac activation; however, this mechanism is poorly understood. In this study, we examined how the cytoplasm/membrane cycles of the RhoGDI-Rac complex are regulated, as well as where RhoGDI dissociates from the RhoGDI-Rac complex, during FcγR-mediated phagocytosis. The negatively charged and flexible N terminus (25 residues) of RhoGDIα, particularly its second negative amino acid cluster possessing five negatively charged amino acids, was a pivotal regulator in the cytoplasm/membrane cycles of the RhoGDI-Rac complex. We also found that RhoGDIα translocated to the phagosomes as a RhoGDIα-Rac1 complex, and this translocation was mediated by an interaction between the polybasic motif in the C terminus of Rac1 and anionic phospholipids produced on phagosomes, such as phosphatidic acid, that is, by a phagosome-targeting mechanism of Rac1. Thus, we demonstrated that the targeting/accumulation of the RhoGDIα-Rac1 complex to phagosomes is regulated by a balance between three factors: 1) the negatively charged and flexible N-terminal of RhoGDIα, 2) the binding affinity of RhoGDIα for Rac1, and 3) anionic phospholipids produced on phagosomes. Moreover, we demonstrated that the mechanism of targeting/accumulation of the RhoGDIα-Rac1 complex is also applicable for the RhoGDIβ-Rac1 complex.
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
González-Perilli L, Álvarez MN, Prolo C, Radi R, Rubbo H, Trostchansky A. Nitroarachidonic acid prevents NADPH oxidase assembly and superoxide radical production in activated macrophages. Free Radic Biol Med 2013; 58:126-33. [PMID: 23318789 PMCID: PMC3622795 DOI: 10.1016/j.freeradbiomed.2012.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 12/03/2012] [Accepted: 12/21/2012] [Indexed: 11/29/2022]
Abstract
Nitration of arachidonic acid (AA) to nitroarachidonic acid (AANO2) leads to anti-inflammatory intracellular activities during macrophage activation. However, less is known about the capacity of AANO2 to regulate the production of reactive oxygen species under proinflammatory conditions. One of the immediate responses upon macrophage activation involves the production of superoxide radical (O2(•-)) due to the NADPH-dependent univalent reduction of oxygen to O2(•-) by the phagocytic NADPH oxidase isoform (NOX2), the activity of NOX2 being the main source of O2(•-) in monocytes/macrophages. Because the NOX2 and AA pathways are connected, we propose that AANO2 can modulate macrophage activation by inhibiting O2(•-) formation by NOX2. When macrophages were activated in the presence of AANO2, a significant inhibition of NOX2 activity was observed as evaluated by cytochrome c reduction, luminol chemiluminescence, Amplex red fluorescence, and flow cytometry; this process also occurs under physiological mimic conditions within the phagosomes. AANO2 decreased O2(•-) production in a dose- (IC50=4.1±1.8 μM AANO2) and time-dependent manner. The observed inhibition was not due to a decreased phosphorylation of the cytosolic subunits (e.g., p40(phox) and p47(phox)), as analyzed by immunoprecipitation and Western blot. However, a reduction in the migration to the membrane of p47(phox) was obtained, suggesting that the protective actions involve the prevention of the correct assembly of the active enzyme in the membrane. Finally, the observed in vitro effects were confirmed in an in vivo inflammatory model, in which subcutaneous injection of AANO2 was able to decrease NOX2 activity in macrophages from thioglycolate-treated mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrés Trostchansky
- Address correspondence to: Andrés Trostchansky, Ph.D., Departamento de Bioquímica, Facultad de Medicina, Avda. Gral. Flores 2125, C.P. 11800, Montevideo, Uruguay; Phone: (598)-2924 9562; Fax: (598)-2924 9563;
| |
Collapse
|
28
|
Yamashita K, Miyoshi T, Arai Y, Mizugishi K, Takaori-Kondo A, Ueyama T. Enhanced generation of reactive oxygen species by interferon-γ may have contributed to successful treatment of invasive pulmonary aspergillosis in a patient with chronic granulomatous disease. Int J Hematol 2013; 97:505-10. [PMID: 23526099 DOI: 10.1007/s12185-013-1315-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/21/2022]
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening complication of chronic granulomatous disease (CGD), a rare inherited disorder of phagocytes that is characterized by a defect in the production of reactive oxygen species (ROS) caused by mutations in NADPH oxidase 2. Here, we report a case of successful treatment of IPA complicated with CGD by the administration of interferon-γ (IFN-γ) in combination with voriconazole. The patient carried a splice site mutation in the CYBB gene, and the neutrophils could produce a certain amount of ROS. In this case, augmentation of ROS generation in the patient's neutrophils was observed after in vivo IFN-γ treatment, which may be attributable to the induction of a normal CYBB gene in the myeloid progenitor cells. This treatment, in combination with voriconazole, may have contributed to the reversal of IPA in this patient. These results suggest that the in vivo use of IFN-γ may augment ROS generation in CGD neutrophils, thus leading to the successful treatment of severe IPA.
Collapse
Affiliation(s)
- Kouhei Yamashita
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Bréchard S, Plançon S, Tschirhart EJ. New insights into the regulation of neutrophil NADPH oxidase activity in the phagosome: a focus on the role of lipid and Ca(2+) signaling. Antioxid Redox Signal 2013; 18:661-76. [PMID: 22867131 PMCID: PMC3549206 DOI: 10.1089/ars.2012.4773] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
SIGNIFICANCE Reactive oxygen species, produced by the phagosomal NADPH oxidase of neutrophils, play a significant physiological role during normal defense. Their role is not only to kill invading pathogens, but also to act as modulators of global physiological functions of phagosomes. Given the importance of NADPH oxidase in the immune system, its activity has to be decisively controlled by distinctive mechanisms to ensure appropriate regulation at the phagosome. RECENT ADVANCES Here, we describe the signal transduction pathways that regulate phagosomal NADPH oxidase in neutrophils, with an emphasis on the role of lipid metabolism and intracellular Ca(2+) mobilization. CRITICAL ISSUES The potential involvement of Ca(2+)-binding S100A8 and S100A9 proteins, known to interact with the plasma membrane NADPH oxidase, is also considered. FUTURE DIRECTIONS Recent technical progress in advanced live imaging microscopy will permit to focus more accurately on phagosomal rather than plasma membrane NADPH oxidase regulation during neutrophil phagocytosis.
Collapse
Affiliation(s)
- Sabrina Bréchard
- Calcium Signaling and Inflammation Group, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | | | | |
Collapse
|
30
|
Rada B, Jendrysik MA, Pang L, Hayes CP, Yoo DG, Park JJ, Moskowitz SM, Malech HL, Leto TL. Pyocyanin-enhanced neutrophil extracellular trap formation requires the NADPH oxidase. PLoS One 2013; 8:e54205. [PMID: 23342104 PMCID: PMC3544820 DOI: 10.1371/journal.pone.0054205] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/26/2012] [Indexed: 11/26/2022] Open
Abstract
Beyond intracellular killing, a novel neutrophil-based antimicrobial mechanism has been recently discovered: entrapment and killing by neutrophil extracellular traps (NETs). NETs consist of extruded nuclear DNA webs decorated with granule proteins. Although NET formation is an important innate immune mechanism, uncontrolled NET release damages host tissues and has been linked to several diseases including cystic fibrosis (CF). The major CF airway pathogen Pseudomonas aeruginosa establishes chronic infection. Pseudomonas imbedded within biofilms is protected against the immune system, but maintains chronic inflammation that worsens disease symptoms. Aberrant NET release from recruited neutrophils was found in CF, but the underlying mechanisms remain unclear. One of the most important Pseudomonas virulence factors is pyocyanin, a redox-active pigment that has been associated with diminished lung function in CF. Here we show that pyocyanin promotes NET formation in a time- and dose-dependent manner. Most CF Pseudomonas clinical isolates tested produce pyocyanin in vitro. Pyocyanin-derived reactive oxygen species are required for its NET release. Inhibitor experiments demonstrated involvement of Jun N-terminal Kinase (JNK) and phosphatidylinositol 3-Kinase (PI3K) in pyocyanin-induced NET formation. Pyocyanin-induced NETs also require the NADPH oxidase because NET release in chronic granulomatous disease neutrophils was greatly reduced. Comparison of neutrophils from gp91phox- and p47phox-deficient patients revealed that pyocyanin-triggered NET formation is proportional to their residual superoxide production. Our studies identify pyocyanin as the first secreted bacterial toxin that enhances NET formation. The involvement of NADPH oxidase in pyocyanin-induced NET formation represents a novel mechanism of pyocyanin toxicity.
Collapse
Affiliation(s)
- Balázs Rada
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (TLL); (BR)
| | - Meghan A. Jendrysik
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Lan Pang
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Craig P. Hayes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Dae-goon Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Jonathan J. Park
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Samuel M. Moskowitz
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Harry L. Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas L. Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (TLL); (BR)
| |
Collapse
|
31
|
Abstract
Peroxiredoxins (Prdxs) are a family of proteins which catalyze the reduction of H2O2 through the interaction of active site cysteine residues. Conserved within all plant and animal kingdoms, the function of these proteins is related to protection from oxidation or participation of signaling through degradation of H2O2. Peroxiredoxin 6 (Prdx6), a protein belonging to the class of 1-cys Prdxs, was identified in polymorphonuclear leukocytes or neutrophils, defined by amino acid sequence and activity, and found associated with a component of the NADPH oxidase (Nox2), p67(phox). Prdx6 plays an important role in neutrophil function and supports the optimal activity of Nox2. In this chapter, methods are described for determining the Prdx activity of Prdx6. In addition, the approach for assessing the effect of Prdx6 on Nox2 in the SDS-activated, cell-free system of NADPH oxidase activity is presented. Finally, the techniques for suppressing Prdx6 expression in phox-competent K562 cells and cultured myeloid cells with siRNA and shRNA methods are described. With these approaches, the role of Prdx6 in Nox2 activity can be explored with intact cells. The biochemical mechanisms of the Prdx6 effect on the NADPH oxidase can be investigated with the experimental strategies described.
Collapse
|
32
|
Bourdonnay E, Serezani CH, Aronoff DM, Peters-Golden M. Regulation of alveolar macrophage p40phox: hierarchy of activating kinases and their inhibition by PGE2. J Leukoc Biol 2012; 92:219-31. [PMID: 22544939 PMCID: PMC3382311 DOI: 10.1189/jlb.1211590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/26/2012] [Accepted: 04/10/2012] [Indexed: 11/24/2022] Open
Abstract
PGE(2), produced in the lung during infection with microbes such as Klebsiella pneumoniae, inhibits alveolar macrophage (AM) antimicrobial functions by preventing H(2)O(2) production by NADPH oxidase (NADPHox). Activation of the NADPHox complex is poorly understood in AMs, although in neutrophils it is known to be mediated by kinases including PI3K/Akt, protein kinase C (PKC) δ, p21-activated protein kinase (PAK), casein kinase 2 (CK2), and MAPKs. The p40phox cytosolic subunit of NADPHox has been recently recognized to function as a carrier protein for other subunits and a positive regulator of oxidase activation, a role previously considered unique to another subunit, p47phox. The regulation of p40phox remains poorly understood, and the effect of PGE(2) on its activation is completely undefined. We addressed these issues in rat AMs activated with IgG-opsonized K. pneumoniae. The kinetics of kinase activation and the consequences of kinase inhibition and silencing revealed a critical role for a PKCδ-PAK-class I PI3K/Akt1 cascade in the regulation of p40phox activation upon bacterial challenge in AMs; PKCα, ERK, and CK2 were not involved. PGE(2) inhibited the activation of p40phox, and its effects were mediated by protein kinase A type II, were independent of interactions with anchoring proteins, and were directed at the distal class I PI3K/Akt1 activation step. Defining the kinases that control AM p40phox activation and that are the targets for inhibition by PGE(2) provides new insights into immunoregulation in the infected lung.
Collapse
Affiliation(s)
| | | | - David M. Aronoff
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan Health Systems, Ann Arbor, Michigan, USA
| | | |
Collapse
|
33
|
Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 2012; 110:1364-90. [PMID: 22581922 PMCID: PMC3365576 DOI: 10.1161/circresaha.111.243972] [Citation(s) in RCA: 610] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/09/2012] [Indexed: 02/07/2023]
Abstract
The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels, and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke, and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4, and 5), their roles in cardiovascular cell biology, and their contributions to disease development.
Collapse
Affiliation(s)
- Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|