1
|
Sen B, Benoit B, Brand MD. Hypoxia decreases mitochondrial ROS production in cells. Free Radic Biol Med 2024; 224:1-8. [PMID: 39147069 DOI: 10.1016/j.freeradbiomed.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
We re-examined the reported increase in mitochondrial ROS production during acute hypoxia in cells. Using the Amplex Ultrared/horseradish peroxidase assay we found a decrease, not increase, in hydrogen peroxide release from HEK293 cells under acute hypoxia, at times ranging from 1 min to 3 h. The rates of superoxide/hydrogen peroxide production from each of the three major sites (site IQ in complex I and site IIIQo in complex III in mitochondria, and NADH oxidases (NOX) in the cytosol) were decreased to the same extent by acute hypoxia, with no change in the cells' ability to degrade added hydrogen peroxide. A similar decrease in ROS production under acute hypoxia was found using the diacetyldichlorofluorescein assay. Using a HIF1α reporter cell line we confirmed earlier observations that suppression of superoxide production by site IIIQo decreases HIF1α expression, and found similar effects of suppressing site IQ or NOX. We conclude that increased mitochondrial ROS do not drive the response of HIF1α to acute hypoxia, but suggest that cytosolic H2O2 derived from site IQ, site IIIQo and NOX in cells is necessary to permit HIF1α stabilization by other signals.
Collapse
Affiliation(s)
- Bijoya Sen
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| | - Bérengère Benoit
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| |
Collapse
|
2
|
Eisermann J, Liang Y, Wright JJ, Clifford E, Wilton-Ely JDET, Kuimova MK, Roessler MM. The Effect of Reactive Oxygen Species on Respiratory Complex I Activity in Liposomes. Chemistry 2024; 30:e202402035. [PMID: 39058376 DOI: 10.1002/chem.202402035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
Respiratory complex I (R-CI) is an essential enzyme in the mitochondrial electron transport chain but also a major source of reactive oxygen species (ROS), which are implicated in neurodegenerative diseases and ageing. While the mechanism of ROS production by R-CI is well-established, the feedback of ROS on R-CI activity is poorly understood. Here, we perform EPR spectroscopy on R-CI incorporated in artificial membrane vesicles to reveal that ROS (particularly hydroxyl radicals) reduce R-CI activity by making the membrane more polar and by increasing its hydrogen bonding capability. Moreover, the mechanism that we have uncovered reveals that the feedback of ROS on R-CI activity via the membrane is transient and not permanent; lipid peroxidation is negligible for the levels of ROS generated under these conditions. Our successful use of modular proteoliposome systems in conjunction with EPR spectroscopy and other biophysical techniques is a powerful approach for investigating ROS effects on other membrane proteins.
Collapse
Affiliation(s)
- Jana Eisermann
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
- Department of Chemistry, University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Yuxin Liang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - John J Wright
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Eleanor Clifford
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Maxie M Roessler
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| |
Collapse
|
3
|
Connes P, Stauffer E, Liem RI, Nader E. Exercise and training in sickle cell disease: Safety, potential benefits, and recommendations. Am J Hematol 2024; 99:1988-2001. [PMID: 39132839 DOI: 10.1002/ajh.27454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
Sickle cell disease (SCD) is a genetic disorder characterized by complex pathophysiological mechanisms leading to vaso-occlusive crisis, chronic pain, chronic hemolytic anemia, and vascular complications, which require considerations for exercise and physical activity. This review aims to elucidate the safety, potential benefits, and recommendations regarding exercise and training in individuals with SCD. SCD patients are characterized by decreased exercise capacity and tolerance. Acute intense exercise may be accompanied by biological changes (acidosis, increased oxidative stress, and dehydration) that could increase the risk of red blood cell sickling and acute clinical complications. However, recent findings suggest that controlled exercise training is safe and well tolerated by SCD patients and could confer benefits in disease management. Regular endurance exercises of submaximal intensity or exercise interventions incorporating resistance training have been shown to improve cardiorespiratory and muscle function in SCD, which may improve quality of life. Recommendations for exercise prescription in SCD should be based on accurate clinical and functional evaluations, taking into account disease phenotype and cardiorespiratory status at rest and in response to exercise. Exercise programs should include gradual progression, incorporating adequate warm-up, cool-down, and hydration strategies. Exercise training represents promising therapeutic strategy in the management of SCD. It is now time to move through the investigation of long-term biological, physiological, and clinical effects of regular physical activity in SCD patients.
Collapse
Affiliation(s)
- Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team «Vascular Biology and Red Blood Cell», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team «Vascular Biology and Red Blood Cell», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Explorations Fonctionnelles Respiratoires, Médecine du sport et de l'Activité Physique, Hospices Civils de Lyon, Hôpital Croix Rousse, Lyon, France
| | - Robert I Liem
- Division of Hematology, Oncology and Stem Cell Transplant, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team «Vascular Biology and Red Blood Cell», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
4
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Som R, Fink BD, Yu L, Sivitz WI. Effect of the mitochondrial transaminase (GOT2) on membrane potential-sensitive respiration in mitochondria of differentiated C2C12 muscle cells. Am J Physiol Cell Physiol 2024; 326:C1669-C1682. [PMID: 38646781 PMCID: PMC11371315 DOI: 10.1152/ajpcell.00576.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
We previously showed that the transaminase inhibitor, aminooxyacetic acid, reduced respiration energized at complex II (succinate dehydrogenase, SDH) in mitochondria isolated from mouse hindlimb muscle. The effect required a reduction in membrane potential with resultant accumulation of oxaloacetate (OAA), a potent inhibitor of SDH. To specifically assess the effect of the mitochondrial transaminase, glutamic oxaloacetic transaminase (GOT2) on complex II respiration, and to determine the effect in intact cells as well as isolated mitochondria, we performed respiratory and metabolic studies in wildtype (WT) and CRISPR-generated GOT2 knockdown (KD) C2C12 myocytes. Intact cell respiration by GOT2KD cells versus WT was reduced by adding carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) to lower potential. In mitochondria of C2C12 KD cells, respiration at low potential generated by 1 µM FCCP and energized at complex II by 10 mM succinate + 0.5 mM glutamate (but not by complex I substrates) was reduced versus WT mitochondria. Although we could not detect OAA, metabolite data suggested that OAA inhibition of SDH may have contributed to the FCCP effect. C2C12 mitochondria differed from skeletal muscle mitochondria in that the effect of FCCP on complex II respiration was not evident with ADP addition. We also observed that C2C12 cells, unlike skeletal muscle, expressed glutamate dehydrogenase, which competes with GOT2 for glutamate metabolism. In summary, GOT2 KD reduced C2C12 respiration in intact cells at low potential. From differential substrate effects, this occurred largely at complex II. Moreover, C2C12 versus muscle mitochondria differ in complex II sensitivity to ADP and differ markedly in expression of glutamate dehydrogenase.NEW & NOTEWORTHY Impairment of the mitochondrial transaminase, GOT2, reduces complex II (succinate dehydrogenase, SDH)-energized respiration in C2C12 myocytes. This occurs only at low inner membrane potential and is consistent with inhibition of SDH. Incidentally, we observed that C2C12 mitochondria compared with muscle tissue mitochondria differ in sensitivity of complex II respiration to ADP and in the expression of glutamate dehydrogenase.
Collapse
Affiliation(s)
- Ritu Som
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | - Brian D Fink
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | - Liping Yu
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, United States
- NMR Core Facility, University of Iowa , Iowa City, Iowa, United States
| | - William I Sivitz
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, United States
| |
Collapse
|
6
|
Okoye CN, Koren SA, Wojtovich AP. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol 2023; 67:102926. [PMID: 37871533 PMCID: PMC10598411 DOI: 10.1016/j.redox.2023.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondria are a main source of cellular energy. Oxidative phosphorylation (OXPHOS) is the major process of aerobic respiration. Enzyme complexes of the electron transport chain (ETC) pump protons to generate a protonmotive force (Δp) that drives OXPHOS. Complex I is an electron entry point into the ETC. Complex I oxidizes nicotinamide adenine dinucleotide (NADH) and transfers electrons to ubiquinone in a reaction coupled with proton pumping. Complex I also produces reactive oxygen species (ROS) under various conditions. The enzymatic activities of complex I can be regulated by metabolic conditions and serves as a regulatory node of the ETC. Complex I ROS plays diverse roles in cell metabolism ranging from physiologic to pathologic conditions. Progress in our understanding indicates that ROS release from complex I serves important signaling functions. Increasing evidence suggests that complex I ROS is important in signaling a mismatch in energy production and demand. In this article, we review the role of ROS from complex I in sensing acute hypoxia.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shon A Koren
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
7
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
8
|
Yu J, Qiu J, Zhang Z, Cui X, Guo W, Sheng M, Gao M, Wang D, Xu L, Ma X. Redox Biology in Adipose Tissue Physiology and Obesity. Adv Biol (Weinh) 2023; 7:e2200234. [PMID: 36658733 DOI: 10.1002/adbi.202200234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS), a by-product of mitochondrial oxidative phosphorylation and cellular metabolism, is vital for cellular survival, proliferation, damage, and senescence. In recent years, studies have shown that ROS levels and redox status in adipose tissue are strongly associated with obesity and metabolic diseases. Although it was previously considered that excessive production of ROS and impairment of antioxidant capability leads to oxidative stress and potentially contributes to increased adiposity, it has become increasingly evident that an adequate amount of ROS is vital for adipocyte differentiation and thermogenesis. In this review, by providing a systematic overview of the recent understanding of the key factors of redox systems, endogenous mechanisms for redox homeostasis, advanced techniques for dynamic redox monitoring, as well as exogenous stimuli for redox production in adipose tissues and obesity, the importance of redox biology in metabolic health is emphasized.
Collapse
Affiliation(s)
- Jian Yu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiangdi Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xinran Ma
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, P. R. China
| |
Collapse
|
9
|
Pharaoh G, Ostrom EL, Stuppard R, Campbell M, Borghardt JM, Franti M, Filareto A, Marcinek DJ. A novel mitochondrial complex I ROS inhibitor partially improves muscle regeneration in adult but not old mice. Redox Biol 2023; 64:102770. [PMID: 37295159 PMCID: PMC10267642 DOI: 10.1016/j.redox.2023.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
It is unclear whether mitochondrial dysfunction and redox stress contribute to impaired age-related muscle regenerative capacity. Here we characterized a novel compound, BI4500, that inhibits the release of reactive oxygen species (ROS) from the quinone site in mitochondrial complex I (site IQ). We tested the hypothesis that ROS release from site IQ contributes to impaired regenerative capacity in aging muscle. Electron transfer system site-specific ROS production was measured in adult and aged mouse isolated muscle mitochondria and permeabilized gastrocnemius fibers. BI4500 inhibited ROS production from site IQ in a concentration-dependent manner (IC50 = ∼985 nM) by inhibiting ROS release without impairing complex I-linked respiration. In vivo BI4500 treatment decreased ROS production from site IQ. Muscle injury and sham injury were induced using barium chloride or vehicle injection to the tibialis anterior (TA) muscle in adult and aged male mice. On the same day as injury, mice began a daily gavage of 30 mg/kg BI4500 (BI) or placebo (PLA). Muscle regeneration (H&E, Sirius Red, Pax7) was measured at 5 and 35 days after injury. Muscle injury increased centrally nucleated fibers (CNFs) and fibrosis with no treatment or age effect. There was a significant age by treatment interaction for CNFs at 5- and 35-days post injury with significantly more CNFs in BI adults compared to PLA adults. Muscle fiber cross-sectional area (CSA) recovered significantly more in adult BI mice (-89 ± 365 μm2) compared to old PLA (-599 ± 153 μm2) and old BI (-535 ± 222 μm2, mean ± SD). In situ TA force recovery was measured 35 days after injury and was not significantly different by age or treatment. Inhibition of site IQ ROS partially improves muscle regeneration in adult but not old muscle demonstrating a role for CI ROS in the response to muscle injury. Site IQ ROS does not contribute to impaired regenerative capacity in aging.
Collapse
Affiliation(s)
- Gavin Pharaoh
- Department of Radiology, University of Washington School of Medicine, USA
| | - Ethan L Ostrom
- Department of Radiology, University of Washington School of Medicine, USA
| | - Rudy Stuppard
- Department of Radiology, University of Washington School of Medicine, USA
| | - Matthew Campbell
- Department of Radiology, University of Washington School of Medicine, USA
| | - Jens Markus Borghardt
- Research DMPK, Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Michael Franti
- Research Beyond Borders, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Antonio Filareto
- Research Beyond Borders, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - David J Marcinek
- Department of Radiology, University of Washington School of Medicine, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, USA.
| |
Collapse
|
10
|
Masschelin PM, Saha P, Ochsner SA, Cox AR, Kim KH, Felix JB, Sharp R, Li X, Tan L, Park JH, Wang L, Putluri V, Lorenzi PL, Nuotio-Antar AM, Sun Z, Kaipparettu BA, Putluri N, Moore DD, Summers SA, McKenna NJ, Hartig SM. Vitamin B2 enables regulation of fasting glucose availability. eLife 2023; 12:e84077. [PMID: 37417957 PMCID: PMC10328530 DOI: 10.7554/elife.84077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs.
Collapse
Affiliation(s)
- Peter M Masschelin
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Pradip Saha
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Aaron R Cox
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Kang Ho Kim
- Department of Anesthesiology, University of Texas Health Sciences CenterHoustonUnited States
| | - Jessica B Felix
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Robert Sharp
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Xin Li
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Liping Wang
- Department of Nutrition and Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | | | - Zheng Sun
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Department of Nutritional Sciences and Toxicology, University of California, BerkeleyBerkeleyUnited States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Sean M Hartig
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
11
|
Gibbs ET, Lerner CA, Watson MA, Wong HS, Gerencser AA, Brand MD. Site IQ in mitochondrial complex I generates S1QEL-sensitive superoxide/hydrogen peroxide in both the reverse and forward reactions. Biochem J 2023; 480:363-384. [PMID: 36862427 DOI: 10.1042/bcj20220611] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/03/2023]
Abstract
Superoxide/hydrogen peroxide production by site IQ in complex I of the electron transport chain is conventionally assayed during reverse electron transport (RET) from ubiquinol to NAD. However, S1QELs (specific suppressors of superoxide/hydrogen peroxide production by site IQ) have potent effects in cells and in vivo during presumed forward electron transport (FET). Therefore, we tested whether site IQ generates S1QEL-sensitive superoxide/hydrogen peroxide during FET (site IQf), or alternatively, whether RET and associated S1QEL-sensitive superoxide/hydrogen peroxide production (site IQr) occurs in cells under normal conditions. We introduce an assay to determine if electron flow through complex I is thermodynamically forward or reverse: on blocking electron flow through complex I, the endogenous matrix NAD pool will become more reduced if flow before the challenge was forward, but more oxidised if flow was reverse. Using this assay we show in the model system of isolated rat skeletal muscle mitochondria that superoxide/hydrogen peroxide production by site IQ can be equally great whether RET or FET is running. We show that sites IQr and IQf are equally sensitive to S1QELs, and to rotenone and piericidin A, inhibitors that block the Q-site of complex I. We exclude the possibility that some sub-fraction of the mitochondrial population running site IQr during FET is responsible for S1QEL-sensitive superoxide/hydrogen peroxide production by site IQ. Finally, we show that superoxide/hydrogen peroxide production by site IQ in cells occurs during FET, and is S1QEL-sensitive.
Collapse
Affiliation(s)
- Edwin T Gibbs
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, U.S.A
| | - Chad A Lerner
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, U.S.A
| | - Mark A Watson
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, U.S.A
| | - Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, U.S.A
| | - Akos A Gerencser
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, U.S.A
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, U.S.A
| |
Collapse
|
12
|
Goncalves RLS, Wang ZB, Inouye KE, Lee GY, Fu X, Saksi J, Rosique C, Parlakgul G, Arruda AP, Hui ST, Loperena MC, Burgess SC, Graupera I, Hotamisligil GS. Ubiquinone deficiency drives reverse electron transport to disrupt hepatic metabolic homeostasis in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.528863. [PMID: 36865319 PMCID: PMC9980148 DOI: 10.1101/2023.02.21.528863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Mitochondrial reactive oxygen species (mROS) are central to physiology. While excess mROS production has been associated with several disease states, its precise sources, regulation, and mechanism of generation in vivo remain unknown, limiting translational efforts. Here we show that in obesity, hepatic ubiquinone (Q) synthesis is impaired, which raises the QH 2 /Q ratio, driving excessive mROS production via reverse electron transport (RET) from site I Q in complex I. Using multiple complementary genetic and pharmacological models in vivo we demonstrated that RET is critical for metabolic health. In patients with steatosis, the hepatic Q biosynthetic program is also suppressed, and the QH 2 /Q ratio positively correlates with disease severity. Our data identify a highly selective mechanism for pathological mROS production in obesity, which can be targeted to protect metabolic homeostasis.
Collapse
|
13
|
Romesberg A, Van Houten B. Targeting Mitochondrial Function with Chemoptogenetics. Biomedicines 2022; 10:2459. [PMID: 36289721 PMCID: PMC9599259 DOI: 10.3390/biomedicines10102459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondria are ATP-generating organelles in eukaryotic cells that produce reactive oxygen species (ROS) during oxidative phosphorylation (OXPHOS). Mitochondrial DNA (mtDNA) is packaged within nucleoids and, due to its close proximity to ROS production, endures oxidative base damage. This damage can be repaired by base excision repair (BER) within the mitochondria, or it can be degraded via exonucleases or mitophagy. Persistent mtDNA damage may drive the production of dysfunctional OXPHOS components that generate increased ROS, or OXPHOS components may be directly damaged by ROS, which then can cause more mtDNA damage and create a vicious cycle of ROS production and mitochondrial dysfunction. If mtDNA damage is left unrepaired, mtDNA mutations including deletions can result. The accumulation of mtDNA mutations has been associated with conditions ranging from the aging process to cancer and neurodegenerative conditions, but the sequence of events leading to mtDNA mutations and deletions is yet unknown. Researchers have utilized many systems and agents for generating ROS in mitochondria to observe the downstream effects on mtDNA, ROS, and mitochondrial function; yet, there are various drawbacks to these methodologies that limit their precision. Here, we describe a novel chemoptogenetic approach to target oxidative damage to mitochondria and mtDNA with a high spatial and temporal resolution so that the downstream effects of ROS-induced damage can be measured with a high precision in order to better understand the mechanism of mitochondrial dysfunction in aging, cancer, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Amy Romesberg
- Department of Biological Sciences, College of Arts and Sciences, Carlow University, 3333 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Effect of metformin on intact mitochondria from liver and brain: Concept revisited. Eur J Pharmacol 2022; 931:175177. [DOI: 10.1016/j.ejphar.2022.175177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
|
15
|
Gao L, Ortega-Sáenz P, Moreno-Domínguez A, López-Barneo J. Mitochondrial Redox Signaling in O 2-Sensing Chemoreceptor Cells. Antioxid Redox Signal 2022; 37:274-289. [PMID: 35044243 DOI: 10.1089/ars.2021.0255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Acute responses to hypoxia are essential for the survival of mammals. The carotid body (CB), the main arterial chemoreceptor, contains glomus cells with oxygen (O2)-sensitive K+ channels, which are inhibited during hypoxia to trigger adaptive cardiorespiratory reflexes. Recent Advances: In this review, recent advances in molecular mechanisms of acute O2 sensing in CB glomus cells are discussed, with a special focus on the signaling role of mitochondria through regulating cellular redox status. These advances have been achieved thanks to the use of genetically engineered redox-sensitive green fluorescent protein (roGFP) probes, which allowed us to monitor rapid changes in ROS production in real time in different subcellular compartments during hypoxia. This methodology was used in combination with conditional knockout mice models, pharmacological approaches, and transcriptomic studies. We have proposed a mitochondria-to-membrane signaling model of acute O2 sensing in which H2O2 released in the mitochondrial intermembrane space serves as a signaling molecule to inhibit K+ channels on the plasma membrane. Critical Issues: Changes in mitochondrial reactive oxygen species (ROS) production during acute hypoxia are highly compartmentalized in the submitochondrial regions. The use of redox-sensitive probes targeted to specific compartments is essential to fully understand the role of mitochondrial ROS in acute O2 sensing. Future Directions: Further studies are needed to specify the ROS and to characterize the target(s) of ROS in chemoreceptor cells during acute hypoxia. These data may also contribute to a more complete understanding of the implication of ROS in acute responses to hypoxia in O2-sensing cells in other organs. Antioxid. Redox Signal. 37, 274-289.
Collapse
Affiliation(s)
- Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
16
|
Fang J, Zhang Y, Gerencser AA, Brand MD. Effects of sugars, fatty acids and amino acids on cytosolic and mitochondrial hydrogen peroxide release from liver cells. Free Radic Biol Med 2022; 188:92-102. [PMID: 35716827 PMCID: PMC9363135 DOI: 10.1016/j.freeradbiomed.2022.06.225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Accepted: 06/12/2022] [Indexed: 11/24/2022]
Abstract
The rates of formation of superoxide and hydrogen peroxide at different electron-donating sites in isolated mitochondria are critically dependent on the substrates that are added, through their effects on the reduction level of each site and the components of the protonmotive force. However, in intact cells the acute effects of added substrates on different sites of cytosolic and mitochondrial hydrogen peroxide production are unclear. Here we tested the effects of substrate addition on cytosolic and mitochondrial hydrogen peroxide release from intact AML12 liver cells. In 30-min starved cells replete with endogenous substrates, addition of glucose, fructose, palmitate, alanine, leucine or glutamine had no effect on the rate or origin of cellular hydrogen peroxide release. However, following 150-min starvation of the cells to deplete endogenous glycogen (and other substrates), cellular hydrogen peroxide production, particularly from NADPH oxidases (NOXs), was decreased, GSH/GSSH ratio increased, and antioxidant gene expression was unchanged. Addition of glucose or glutamine (but not the other substrates) increased hydrogen peroxide release. There were similar relative increases from each of the three major sites of production: mitochondrial sites IQ and IIIQo, and cytosolic NOXs. Glucose supplementation also restored ATP production and mitochondrial NAD reduction level, suggesting that the increased rates of hydrogen peroxide release from the mitochondrial sites were driven by increases in the protonmotive force and the degree of reduction of the electron transport chain. Long-term (24 h) glucose or glutamine deprivation also diminished hydrogen peroxide release rate, ATP production rate and (for glucose deprivation) NAD reduction level. We conclude that the rates of superoxide and hydrogen peroxide production from mitochondrial sites in liver cells are insensitive to extra added substrates when endogenous substrates are not depleted, but these rates are decreased when endogenous substrates are lowered by 150 min of starvation, and can be enhanced by restoring glucose or glutamine supply through improvements in mitochondrial energetic state.
Collapse
Affiliation(s)
- Jingqi Fang
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| | - Yini Zhang
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| | - Akos A Gerencser
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| |
Collapse
|
17
|
Picca A, Ferri E, Calvani R, Coelho-Júnior HJ, Marzetti E, Arosio B. Age-Associated Glia Remodeling and Mitochondrial Dysfunction in Neurodegeneration: Antioxidant Supplementation as a Possible Intervention. Nutrients 2022; 14:2406. [PMID: 35745134 PMCID: PMC9230668 DOI: 10.3390/nu14122406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
Aging induces substantial remodeling of glia, including density, morphology, cytokine expression, and phagocytic capacity. Alterations of glial cells, such as hypertrophy of lysosomes, endosomes and peroxisomes, and the progressive accumulation of lipofuscin, lipid droplets, and other debris have also been reported. These abnormalities have been associated with significant declines of microglial processes and reduced ability to survey the surrounding tissue, maintain synapses, and recover from injury. Similarly, aged astrocytes show reduced capacity to support metabolite transportation to neurons. In the setting of reduced glial activity, stressors and/or injury signals can trigger a coordinated action of microglia and astrocytes that may amplify neuroinflammation and contribute to the release of neurotoxic factors. Oxidative stress and proteotoxic aggregates may burst astrocyte-mediated secretion of pro-inflammatory cytokines, thus activating microglia, favoring microgliosis, and ultimately making the brain more susceptible to injury and/or neurodegeneration. Here, we discuss the contribution of microglia and astrocyte oxidative stress to neuroinflammation and neurodegeneration, highlight the pathways that may help gain insights into their molecular mechanisms, and describe the benefits of antioxidant supplementation-based strategies.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (E.M.)
| | - Evelyn Ferri
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (E.M.)
| | - Hélio J. Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (E.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
18
|
Okoye CN, Chinnappareddy N, Stevens D, Kamunde C. Factors affecting liver mitochondrial hydrogen peroxide emission. Comp Biochem Physiol B Biochem Mol Biol 2022; 259:110713. [PMID: 35026417 DOI: 10.1016/j.cbpb.2022.110713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/19/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Mitochondria are key cellular sources of reactive oxygen species (ROS) and contain at least 12 known sites on multiple enzymes that convert molecular oxygen to superoxide and hydrogen peroxide (H2O2). Quantitation of site-specific ROS emission is critical to understand the relative contribution of different sites and the pathophysiologic importance of mitochondrial ROS. However, factors that affect mitochondrial ROS emission are not well understood. We characterized and optimized conditions for maximal total and site-specific H2O2 emission during oxidation of standard substrates and probed the source of the high H2O2 emission in unenergized rainbow trout liver mitochondria. We found that mitochondrial H2O2 emission capacity depended on the substrate being oxidized, mitochondrial protein concentration, and composition of the ROS detection system. Contrary to our expectation, addition of exogenous superoxide dismutase reduced H2O2 emission. Titration of conventional mitochondrial electron transfer system (ETS) inhibitors over a range of conditions revealed that one size does not fit all; inhibitor concentrations evoking maximal responses varied with substrate and were moderated by the presence of other inhibitors. Moreover, the efficacy of suppressors of electron leak (S1QEL1.1 and S3QEL2) was low and depended on the substrate being oxidized. We found that H2O2 emission in unenergized rainbow trout liver mitochondria was suppressed by GKT136901 suggesting that it is associated with NADPH oxidase activity. We conclude that optimization of assay conditions is critical for quantitation of maximal H2O2 emission and would facilitate more valid comparisons of mitochondrial total and site-specific H2O2 emission capacities between studies, tissues, and species.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Nirmala Chinnappareddy
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
19
|
Stevic N, Maalouf J, Argaud L, Gallo-Bona N, Lo Grasso M, Gouriou Y, Gomez L, Crola Da Silva C, Ferrera R, Ovize M, Cour M, Bidaux G. Cooling Uncouples Differentially ROS Production from Respiration and Ca 2+ Homeostasis Dynamic in Brain and Heart Mitochondria. Cells 2022; 11:cells11060989. [PMID: 35326440 PMCID: PMC8947173 DOI: 10.3390/cells11060989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Hypothermia provides an effective neuro and cardio-protection in clinical settings implying ischemia/reperfusion injury (I/R). At the onset of reperfusion, succinate-induced reactive oxygen species (ROS) production, impaired oxidative phosphorylation (OXPHOS), and decreased Ca2+ retention capacity (CRC) concur to mitochondrial damages. We explored the effects of temperature from 6 to 37 °C on OXPHOS, ROS production, and CRC, using isolated mitochondria from mouse brain and heart. Oxygen consumption and ROS production was gradually inhibited when cooling from 37 to 6 °C in brain mitochondria (BM) and heart mitochondria (HM). The decrease in ROS production was gradual in BM but steeper between 31 and 20 °C in HM. In respiring mitochondria, the gradual activation of complex II, in addition of complex I, dramatically enhanced ROS production at all temperatures without modifying respiration, likely because of ubiquinone over-reduction. Finally, CRC values were linearly increased by cooling in both BM and HM. In BM, the Ca2+ uptake rate by the mitochondrial calcium uniporter (MCU) decreased by 2.7-fold between 25 and 37 °C, but decreased by 5.7-fold between 25 and 37 °C in HM. In conclusion, mild cold (25-37 °C) exerts differential inhibitory effects by preventing ROS production, by reverse electron transfer (RET) in BM, and by reducing MCU-mediated Ca2+ uptake rate in BM and HM.
Collapse
Affiliation(s)
- Neven Stevic
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, F-69437 Lyon, France
| | - Jennifer Maalouf
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
| | - Laurent Argaud
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, F-69437 Lyon, France
| | - Noëlle Gallo-Bona
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Mégane Lo Grasso
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Yves Gouriou
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Ludovic Gomez
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Claire Crola Da Silva
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - René Ferrera
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Michel Ovize
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Martin Cour
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, F-69437 Lyon, France
| | - Gabriel Bidaux
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
- Correspondence:
| |
Collapse
|
20
|
Gu J, Liu T, Guo R, Zhang L, Yang M. The coupling mechanism of mammalian mitochondrial complex I. Nat Struct Mol Biol 2022; 29:172-182. [PMID: 35145322 DOI: 10.1038/s41594-022-00722-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 01/03/2023]
Abstract
Mammalian respiratory complex I (CI) is a 45-subunit, redox-driven proton pump that generates an electrochemical gradient across the mitochondrial inner membrane to power ATP synthesis in mitochondria. In the present study, we report cryo-electron microscopy structures of CI from Sus scrofa in six treatment conditions at a resolution of 2.4-3.5 Å, in which CI structures of each condition can be classified into two biochemical classes (active or deactive), with a notably higher proportion of active CI particles. These structures illuminate how hydrophobic ubiquinone-10 (Q10) with its long isoprenoid tail is bound and reduced in a narrow Q chamber comprising four different Q10-binding sites. Structural comparisons of active CI structures from our decylubiquinone-NADH and rotenone-NADH datasets reveal that Q10 reduction at site 1 is not coupled to proton pumping in the membrane arm, which might instead be coupled to Q10 oxidation at site 2. Our data overturn the widely accepted previous proposal about the coupling mechanism of CI.
Collapse
Affiliation(s)
- Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Laixing Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China. .,SUSTech Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, China.
| |
Collapse
|
21
|
Ahmad AA, Draves SO, Rosca M. Mitochondria in Diabetic Kidney Disease. Cells 2021; 10:cells10112945. [PMID: 34831168 PMCID: PMC8616075 DOI: 10.3390/cells10112945] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end stage renal disease (ESRD) in the USA. The pathogenesis of DKD is multifactorial and involves activation of multiple signaling pathways with merging outcomes including thickening of the basement membrane, podocyte loss, mesangial expansion, tubular atrophy, and interstitial inflammation and fibrosis. The glomerulo-tubular balance and tubule-glomerular feedback support an increased glomerular filtration and tubular reabsorption, with the latter relying heavily on ATP and increasing the energy demand. There is evidence that alterations in mitochondrial bioenergetics in kidney cells lead to these pathologic changes and contribute to the progression of DKD towards ESRD. This review will focus on the dialogue between alterations in bioenergetics in glomerular and tubular cells and its role in the development of DKD. Alterations in energy substrate selection, electron transport chain, ATP generation, oxidative stress, redox status, protein posttranslational modifications, mitochondrial dynamics, and quality control will be discussed. Understanding the role of bioenergetics in the progression of diabetic DKD may provide novel therapeutic approaches to delay its progression to ESRD.
Collapse
|
22
|
Hadrava Vanova K, Kraus M, Neuzil J, Rohlena J. Mitochondrial complex II and reactive oxygen species in disease and therapy. Redox Rep 2021; 25:26-32. [PMID: 32290794 PMCID: PMC7178880 DOI: 10.1080/13510002.2020.1752002] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence points to the respiratory Complex II (CII) as a source and modulator of reactive oxygen species (ROS). Both functional loss of CII as well as its pharmacological inhibition can lead to ROS generation in cells, with a relevant impact on the development of pathophysiological conditions, i.e. cancer and neurodegenerative diseases. While the basic framework of CII involvement in ROS production has been defined, the fine details still await clarification. It is important to resolve these aspects to fully understand the role of CII in pathology and to explore its therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
| | - Michal Kraus
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic.,School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic
| |
Collapse
|
23
|
Treberg JR. Review: Using isolated mitochondria to investigate mitochondrial hydrogen peroxide metabolism. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110614. [PMID: 33965616 DOI: 10.1016/j.cbpb.2021.110614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are recognized as centrally important to cellular reactive oxygen species (ROS), both as a potential source and due to their substantial antioxidant capacity. While much of the initial ROS formed by mitochondria is superoxide, this is rapidly converted to hydrogen peroxide (H2O2) which more readily crosses membranes making H2O2 important in both redox signalling mechanisms and conditions of oxidative stress. Here I outline our studies on mitochondrial H2O2 metabolism with a focus on some of the challenges and strategies involved with developing an integrated model of mitochondria being intrinsic regulators of H2O2. This view of mitochondria as regulators of H2O2 goes beyond the simpler contention of them being net producers or consumers. Moreover, the integration of both consumption and production can then be tied to a putative mechanism linking energy sensing at the level of the mitochondrial protonmotive force. This mechanism would provide a means of mitochondria communicating their energetic status the extramitochondrial compartment via local H2O2 concentrations. I conclude by explaining how these concepts developed using rodent muscle as a model have high relevance and applicability to comparative studies.
Collapse
Affiliation(s)
- Jason R Treberg
- Department of Biological Sciences, University of Manitoba Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
24
|
Jász DK, Szilágyi ÁL, Tuboly E, Baráth B, Márton AR, Varga P, Varga G, Érces D, Mohácsi Á, Szabó A, Bozó R, Gömöri K, Görbe A, Boros M, Hartmann P. Reduction in hypoxia-reoxygenation-induced myocardial mitochondrial damage with exogenous methane. J Cell Mol Med 2021; 25:5113-5123. [PMID: 33942485 PMCID: PMC8178286 DOI: 10.1111/jcmm.16498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Albeit previous experiments suggest potential anti‐inflammatory effect of exogenous methane (CH4) in various organs, the mechanism of its bioactivity is not entirely understood. We aimed to investigate the potential mitochondrial effects and the underlying mechanisms of CH4 in rat cardiomyocytes and mitochondria under simulated ischaemia/reperfusion (sI/R) conditions. Three‐day‐old cultured cardiomyocytes were treated with 2.2% CH4‐artificial air mixture during 2‐hour‐long reoxygenation following 4‐hour‐long anoxia (sI/R and sI/R + CH4, n = 6‐6), with normoxic groups serving as controls (SH and SH + CH4; n = 6‐6). Mitochondrial functions were investigated with high‐resolution respirometry, and mitochondrial membrane injury was detected by cytochrome c release and apoptotic characteristics by using TUNEL staining. CH4 admixture had no effect on complex II (CII)‐linked respiration under normoxia but significantly decreased the complex I (CI)‐linked oxygen consumption. Nevertheless, addition of CH4 in the sI/R + CH4 group significantly reduced the respiratory activity of CII in contrast to CI and the CH4 treatment diminished mitochondrial H2O2 production. Substrate‐induced changes to membrane potential were partially preserved by CH4, and additionally, cytochrome c release and apoptosis of cardiomyocytes were reduced in the CH4‐treated group. In conclusion, the addition of CH4 decreases mitochondrial ROS generation via blockade of electron transport at CI and reduces anoxia‐reoxygenation‐induced mitochondrial dysfunction and cardiomyocyte injury in vitro.
Collapse
Affiliation(s)
| | | | - Eszter Tuboly
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Bálint Baráth
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | | | - Petra Varga
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Gabriella Varga
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Dániel Érces
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Árpád Mohácsi
- MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
| | - Anna Szabó
- MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
| | - Renáta Bozó
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Kamilla Gömöri
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Anikó Görbe
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Petra Hartmann
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Vasam G, Nadeau R, Cadete VJJ, Lavallée-Adam M, Menzies KJ, Burelle Y. Proteomics characterization of mitochondrial-derived vesicles under oxidative stress. FASEB J 2021; 35:e21278. [PMID: 33769614 PMCID: PMC8252493 DOI: 10.1096/fj.202002151r] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Mitochondria share attributes of vesicular transport with their bacterial ancestors given their ability to form mitochondrial‐derived vesicles (MDVs). MDVs are involved in mitochondrial quality control and their formation is enhanced with stress and may, therefore, play a potential role in mitochondrial‐cellular communication. However, MDV proteomic cargo has remained mostly undefined. In this study, we strategically used an in vitro MDV budding/reconstitution assay on cardiac mitochondria, followed by graded oxidative stress, to identify and characterize the MDV proteome. Our results confirmed previously identified cardiac MDV markers, while also revealing a complete map of the MDV proteome, paving the way to a better understanding of the role of MDVs. The oxidative stress vulnerability of proteins directed the cargo loading of MDVs, which was enhanced by antimycin A (Ant‐A). Among OXPHOS complexes, complexes III and V were found to be Ant‐A‐sensitive. Proteins from metabolic pathways such as the TCA cycle and fatty acid metabolism, along with Fe‐S cluster, antioxidant response proteins, and autophagy were also found to be Ant‐A sensitive. Intriguingly, proteins containing hyper‐reactive cysteine residues, metabolic redox switches, including professional redox enzymes and those that mediate iron metabolism, were found to be components of MDV cargo with Ant‐A sensitivity. Last, we revealed a possible contribution of MDVs to the formation of extracellular vesicles, which may indicate mitochondrial stress. In conclusion, our study provides an MDV proteomics signature that delineates MDV cargo selectivity and hints at the potential for MDVs and their novel protein cargo to serve as vital biomarkers during mitochondrial stress and related pathologies.
Collapse
Affiliation(s)
- Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Rachel Nadeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Virgilio J J Cadete
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Yan Burelle
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
26
|
Dadali T, Diers AR, Kazerounian S, Muthuswamy SK, Awate P, Ng R, Mogre S, Spencer C, Krumova K, Rockwell HE, McDaniel J, Chen EY, Gao F, Diedrich KT, Vemulapalli V, Rodrigues LO, Akmaev VR, Thapa K, Hidalgo M, Bose A, Vishnudas VK, Moser AJ, Granger E, Kiebish MA, Gesta S, Narain NR, Sarangarajan R. Elevated levels of mitochondrial CoQ 10 induce ROS-mediated apoptosis in pancreatic cancer. Sci Rep 2021; 11:5749. [PMID: 33707480 PMCID: PMC7952582 DOI: 10.1038/s41598-021-84852-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) are implicated in triggering cell signalling events and pathways to promote and maintain tumorigenicity. Chemotherapy and radiation can induce ROS to elicit cell death allows for targeting ROS pathways for effective anti-cancer therapeutics. Coenzyme Q10 is a critical cofactor in the electron transport chain with complex biological functions that extend beyond mitochondrial respiration. This study demonstrates that delivery of oxidized Coenzyme Q10 (ubidecarenone) to increase mitochondrial Q-pool is associated with an increase in ROS generation, effectuating anti-cancer effects in a pancreatic cancer model. Consequent activation of cell death was observed in vitro in pancreatic cancer cells, and both human patient-derived organoids and tumour xenografts. The study is a first to demonstrate the effectiveness of oxidized ubidecarenone in targeting mitochondrial function resulting in an anti-cancer effect. Furthermore, these findings support the clinical development of proprietary formulation, BPM31510, for treatment of cancers with high ROS burden with potential sensitivity to ubidecarenone.
Collapse
Affiliation(s)
- Tulin Dadali
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Anne R Diers
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Shiva Kazerounian
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Senthil K Muthuswamy
- Department of Medicine, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Pallavi Awate
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Ryan Ng
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Saie Mogre
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Carrie Spencer
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Katerina Krumova
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Hannah E Rockwell
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Justice McDaniel
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Emily Y Chen
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Fei Gao
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Karl T Diedrich
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Vijetha Vemulapalli
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Leonardo O Rodrigues
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Viatcheslav R Akmaev
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Khampaseuth Thapa
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Manuel Hidalgo
- Department of Medicine, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Arindam Bose
- Department of Medicine, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Vivek K Vishnudas
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - A James Moser
- Department of Medicine, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Elder Granger
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Michael A Kiebish
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Stephane Gesta
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | - Niven R Narain
- BERG LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA, 01710, USA
| | | |
Collapse
|
27
|
Wong HS, Mezera V, Dighe P, Melov S, Gerencser AA, Sweis RF, Pliushchev M, Wang Z, Esbenshade T, McKibben B, Riedmaier S, Brand MD. Superoxide produced by mitochondrial site I Q inactivates cardiac succinate dehydrogenase and induces hepatic steatosis in Sod2 knockout mice. Free Radic Biol Med 2021; 164:223-232. [PMID: 33421588 DOI: 10.1016/j.freeradbiomed.2020.12.447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Superoxide produced by mitochondria has been implicated in numerous physiologies and pathologies. Eleven different mitochondrial sites that can produce superoxide and/or hydrogen peroxide (O2.-/H2O2) have been identified in vitro, but little is known about their contributions in vivo. We introduce novel variants of S1QELs and S3QELs (small molecules that suppress O2.-/H2O2 production specifically from mitochondrial sites IQ and IIIQo, respectively, without compromising bioenergetics), that are suitable for use in vivo. When administered by intraperitoneal injection, they achieve total tissue concentrations exceeding those that are effective in vitro. We use them to study the engagement of sites IQ and IIIQo in mice lacking functional manganese-superoxide dismutase (SOD2). Lack of SOD2 is expected to elevate superoxide levels in the mitochondrial matrix, and leads to severe pathologies and death about 8 days after birth. Compared to littermate wild-type mice, 6-day-old Sod2-/- mice had significantly lower body weight, lower heart succinate dehydrogenase activity, and greater hepatic lipid accumulation. These pathologies were ameliorated by treatment with a SOD/catalase mimetic, EUK189, confirming previous observations. A 3-day treatment with S1QEL352 decreased the inactivation of cardiac succinate dehydrogenase and hepatic steatosis in Sod2-/- mice. S1QEL712, which has a distinct chemical structure, also decreased hepatic steatosis, confirming that O2.- derived specifically from mitochondrial site IQ is a significant driver of hepatic steatosis in Sod2-/- mice. These findings also demonstrate the ability of these new S1QELs to suppress O2.- production in the mitochondrial matrix in vivo. In contrast, suppressing site IIIQo using S3QEL941 did not protect, suggesting that site IIIQo does not contribute significantly to mitochondrial O2.- production in the hearts or livers of Sod2-/- mice. We conclude that the novel S1QELs are effective in vivo, and that site IQ runs in vivo and is a significant driver of pathology in Sod2-/- mice.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Vojtech Mezera
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Pratiksha Dighe
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Simon Melov
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Akos A Gerencser
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Ramzi F Sweis
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | | | - Zhi Wang
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Tim Esbenshade
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Bryan McKibben
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | | | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
28
|
Okoye CN, Stevens D, Kamunde C. Modulation of mitochondrial site-specific hydrogen peroxide efflux by exogenous stressors. Free Radic Biol Med 2021; 164:439-456. [PMID: 33383085 DOI: 10.1016/j.freeradbiomed.2020.12.234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Oxygen (O2) deprivation and metals are common environmental stressors and their exposure to aquatic organisms can induce oxidative stress by disrupting cellular reactive oxygen species (ROS) homeostasis. Mitochondria are a major source of ROS in the cell wherein a dozen sites located on enzymes of the electron transport system (ETS) and substrate oxidation produce superoxide anion radicals (O2˙‾) or hydrogen peroxide (H2O2). Sites located on ETS enzymes can generate ROS by forward electron transfer (FET) and reverse electron transfer (RET) reactions; however, knowledge of how exogenous stressors modulate site-specific ROS production is limited. We investigated the effects of anoxia-reoxygenation and cadmium (Cd) on H2O2 emission in fish liver mitochondria oxidizing glutamate-malate, succinate or palmitoylcarnitine-malate. We find that anoxia-reoxygenation attenuates H2O2 emission while the effect of Cd depends on the substrate, with monotonic responses for glutamate-malate and palmitoylcarnitine-malate, and a biphasic response for succinate. Anoxia-reoxygenation exerts a substrate-dependent inhibition of mitochondrial respiration which is more severe with palmitoylcarnitine-malate compared with succinate or glutamate-malate. Additionally, specific mitochondrial ROS-emitting sites were sequestered using blockers of electron transfer and the effects of anoxia-reoxygenation and Cd on H2O2 emission were evaluated. Here, we find that site-specific H2O2 emission capacities depend on the substrate and the direction of electron flow. Moreover, anoxia-reoxygenation alters site-specific H2O2 emission rates during succinate and glutamate-malate oxidation whereas Cd imposes monotonic or biphasic H2O2 emission responses depending on the substrate and site. Contrary to our expectation, anoxia-reoxygenation blunts the effect of Cd. These results suggest that the effect of exogenous stressors on mitochondrial oxidant production is governed by their impact on energy conversion reactions and mitochondrial redox poise. Moreover, direct increased ROS production seemingly does not explain the increased adverse effects associated with combined exposure of aquatic organisms to Cd and low dissolved oxygen levels.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada; Department of Veterinary Obstetrics and Reproductive Diseases. Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
29
|
Fock EM, Parnova RG. Protective Effect of Mitochondria-Targeted Antioxidants against Inflammatory Response to Lipopolysaccharide Challenge: A Review. Pharmaceutics 2021; 13:pharmaceutics13020144. [PMID: 33499252 PMCID: PMC7910823 DOI: 10.3390/pharmaceutics13020144] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is the most abundant proinflammatory agent. Considerable evidence indicates that LPS challenge inescapably causes oxidative stress and mitochondrial dysfunction, leading to cell and tissue damage. Increased mitochondrial reactive oxygen species (mtROS) generation triggered by LPS is known to play a key role in the progression of the inflammatory response. mtROS at excessive levels impair electron transport chain functioning, reduce the mitochondrial membrane potential, and initiate lipid peroxidation and oxidative damage of mitochondrial proteins and mtDNA. Over the past 20 years, a large number of mitochondria-targeted antioxidants (mito-AOX) of different structures that can accumulate inside mitochondria and scavenge free radicals have been synthesized. Their protective role based on the prevention of oxidative stress and the restoration of mitochondrial function has been demonstrated in a variety of common diseases and pathological states. This paper reviews the current data on the beneficial application of different mito-AOX in animal endotoxemia models, in either in vivo or in vitro experiments. The results presented in our review demonstrate the promising potential of approaches based on mito-AOX in the development of new treatment strategies against Gram-negative infections and LPS per se.
Collapse
|
30
|
Dlasková A, Clarke KJ, Rooney MF, Porter RK. The Use of Reactive Oxygen Species Production by Succinate-Driven Reverse Electron Flow as an Index of Complex 1 Activity in Isolated Brown Adipose Tissue Mitochondria. Methods Mol Biol 2021; 2310:247-258. [PMID: 34096006 DOI: 10.1007/978-1-0716-1433-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We compared the activity of complex 1, complex 2, and the expression of the complex 1 subunit, NDUFA9, in isolated brown adipose tissue mitochondria from wild type and mitochondrial uncoupling protein 1 (UCP1) knockout mice. Direct spectrophotometric measurement revealed that complex 2 activity was similar, but complex 1 activity was greater (~2.7 fold) in isolated mitochondria from wild-type mice compared to UCP1 knockout mice, an observation endorsed by greater complex 1 subunit expression (NDUFA9) in mitochondria of wild-type mice. We also measured reactive oxygen species (ROS) production by isolated brown adipose mitochondria respiring on succinate, without rotenone, thus facilitating reverse electron flow through complex 1. We observed that reverse electron flow in isolated mitochondria from wild-type mice, with UCP1 inhibited, produced significantly greater (~1.6 fold) ROS when compared with isolated brown adipose mitochondria from UCP1 knockout mice. In summary, we demonstrate that ROS production by succinate-driven reverse electron flow can occur in brown adipose tissue mitochondria and is a good index of complex 1 activity.
Collapse
Affiliation(s)
- Andrea Dlasková
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kieran J Clarke
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mary F Rooney
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Richard K Porter
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
31
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
32
|
Plecitá-Hlavatá L, Engstová H, Holendová B, Tauber J, Špaček T, Petrásková L, Křen V, Špačková J, Gotvaldová K, Ježek J, Dlasková A, Smolková K, Ježek P. Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD + Ratio. Antioxid Redox Signal 2020; 33:789-815. [PMID: 32517485 PMCID: PMC7482716 DOI: 10.1089/ars.2019.7800] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
Aims: Glucose-stimulated insulin secretion (GSIS) in pancreatic β cells was expected to enhance mitochondrial superoxide formation. Hence, we elucidated relevant redox equilibria. Results: Unexpectedly, INS-1E cells at transitions from 3 (11 mM; pancreatic islets from 5 mM) to 25 mM glucose decreased matrix superoxide release rates (MitoSOX Red monitoring validated by MitoB) and H2O2 (mitoHyPer, subtracting mitoSypHer emission). Novel double-channel fluorescence lifetime imaging, approximating free mitochondrial matrix NADHF, indicated its ∼20% decrease. Matrix NAD+F increased on GSIS, indicated by the FAD-emission lifetime decrease, reflecting higher quenching of FAD by NAD+F. The participation of pyruvate/malate and pyruvate/citrate redox shuttles, elevating cytosolic NADPHF (iNAP1 fluorescence monitoring) at the expense of matrix NADHF, was indicated, using citrate (2-oxoglutarate) carrier inhibitors and cytosolic malic enzyme silencing: All changes vanished on these manipulations. 13C-incorporation from 13C-L-glutamine into 13C-citrate reflected the pyruvate/isocitrate shuttle. Matrix NADPHF (iNAP3 monitored) decreased. With decreasing glucose, the suppressor of Complex III site Q electron leak (S3QEL) suppressor caused a higher Complex I IF site contribution, but a lower superoxide fraction ascribed to the Complex III site IIIQo. Thus, the diminished matrix NADHF/NAD+F decreased Complex I flavin site IF superoxide formation on GSIS. Innovation: Mutually validated methods showed decreasing superoxide release into the mitochondrial matrix in pancreatic β cells on GSIS, due to the decreasing matrix NADHF/NAD+F (NADPHF/NADP+F) at increasing cytosolic NADPHF levels. The developed innovative methods enable real-time NADH/NAD+ and NADPH/NADP+ monitoring in any distinct cell compartment. Conclusion: The export of reducing equivalents from mitochondria adjusts lower mitochondrial superoxide production on GSIS, but it does not prevent oxidative stress in pancreatic β cells.
Collapse
Affiliation(s)
- Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Engstová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Tauber
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Špaček
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Špačková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Gotvaldová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katarína Smolková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
33
|
Yalage Don SM, Schmidtke LM, Gambetta JM, Steel CC. Volatile organic compounds produced by Aureobasidium pullulans induce electrolyte loss and oxidative stress in Botrytis cinerea and Alternaria alternata. Res Microbiol 2020; 172:103788. [PMID: 33049328 DOI: 10.1016/j.resmic.2020.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Aureobasidium pullulans is a yeast-like fungus that produces volatile organic compounds (VOCs) with antifungal properties. VOCs have the potential to trigger the production of intracellular reactive oxygen species (ROS), lipid peroxidation and electrolyte loss in microorganisms. The relationship among A. pullulans VOCs, induced ROS accumulation and electrolyte leakage was investigated in Botrytis cinerea and Alternaria alternata in vitro. Exposure to a mixture of A. pullulans VOCs: ethanol, 2-methyl-1-propanol, 3-methyl-1-butanol and 2-phenylethanol, resulted in electrolyte leakage in both B. cinerea and A. alternata. Fluorescence microscopy using 2',7'-dichlorofluorescein diacetate indicated triggered ROS accumulation in exposed fungal mycelia and the presence of the superoxide radical was evident by intense red fluorescence with dihydroethidium. Partial inhibition of enzymes of the mitochondrial respiratory chain complex I of B. cinerea and A. alternata by pre-treatment with rotenone reduced ROS accumulation in hypha exposed to A. pullulans VOCs and reversed the VOCs inhibition of fungal growth. Scanning electron micrographs revealed that B. cinerea and A. alternata hypha exposed to A. pullulans VOCs had altered cell wall structures. Our findings give insights into the potential mechanisms involved in the antifungal properties of A. pullulans in the suppression of B. cinerea and A. alternata growth in vitro.
Collapse
Affiliation(s)
- Sashika M Yalage Don
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia.
| | - Leigh M Schmidtke
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia.
| | - Joanna M Gambetta
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia.
| | - Christopher C Steel
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia.
| |
Collapse
|
34
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
35
|
Sun L, Zhou F, Shao Y, Lv Z, Li C. The iron-sulfur protein subunit of succinate dehydrogenase is critical in driving mitochondrial reactive oxygen species generation in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 102:350-360. [PMID: 32371258 DOI: 10.1016/j.fsi.2020.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Succinate dehydrogenase (SDH) is a mitochondrial enzyme with the unique ability to participate in both the tricarboxylic acid cycle and the electron transport chain to produce reactive oxygen species (ROS). The B subunit of SDH is required for succinate oxidation, which is critical for pro-inflammatory response. In this study, we cloned the iron-sulfur protein subunit of SDH from Apostichopus japonicus (denoted as AjSDHB) via RACE technology and explored its role in the immune system as a response to pathogen infection. The full-length cDNA of AjSDHB was 1442 bp with a complete open reading frame of 858 bp encoding 286 amino acids. Simple modular architecture research tool analysis revealed that AjSDHB contained two conserved domains, including a 2Fe-2S iron-sulfur cluster binding domain and a 4Fe-4S dicluster domain, without a signal peptide. Multiple sequence alignment demonstrated that AjSDHB shared a high degree of structural conservation and sequence identities with other counterparts from invertebrates and vertebrates. Phylogenetic analysis supported the finding that AjSDHB is a new member of the SDHB protein subfamily. Tissue distribution analysis revealed that AjSDHB was expressed in all examined tissues and particularly highly expressed in the muscles. AjSDHB transcripts were markedly induced in coelomocytes both by Vibrio splendidus challenge in vivo and lipopolysaccharide exposure in vitro. Function analysis showed that siRNA-mediated AjSDHB knockdown could substantially reduce the mitochondrial membrane potential (ΔΨm) and further decrease mitochondrial ROS production in A. japonicus coelomocytes. By contrast, AjSDHB overexpression considerably increased ΔΨm and mitochondrial ROS production of A. japonicus coelomocytes. These results supported the idea that AjSDHB is involved in the innate immunity of A. japonicus through its participation in mitochondrial ROS generation.
Collapse
Affiliation(s)
- Lianlian Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Fangyuan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhimeng Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
36
|
Tsuji A, Akao T, Masuya T, Murai M, Miyoshi H. IACS-010759, a potent inhibitor of glycolysis-deficient hypoxic tumor cells, inhibits mitochondrial respiratory complex I through a unique mechanism. J Biol Chem 2020; 295:7481-7491. [PMID: 32295842 PMCID: PMC7247293 DOI: 10.1074/jbc.ra120.013366] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
The small molecule IACS-010759 has been reported to potently inhibit the proliferation of glycolysis-deficient hypoxic tumor cells by interfering with the functions of mitochondrial NADH-ubiquinone oxidoreductase (complex I) without exhibiting cytotoxicity at tolerated doses in normal cells. Considering the significant cytotoxicity of conventional quinone-site inhibitors of complex I, such as piericidin and acetogenin families, we hypothesized that the mechanism of action of IACS-010759 on complex I differs from that of other known quinone-site inhibitors. To test this possibility, here we investigated IACS-010759's mechanism in bovine heart submitochondrial particles. We found that IACS-010759, like known quinone-site inhibitors, suppresses chemical modification by the tosyl reagent AL1 of Asp160 in the 49-kDa subunit, located deep in the interior of a previously proposed quinone-access channel. However, contrary to the other inhibitors, IACS-010759 direction-dependently inhibited forward and reverse electron transfer and did not suppress binding of the quinazoline-type inhibitor [125I]AzQ to the N terminus of the 49-kDa subunit. Photoaffinity labeling experiments revealed that the photoreactive derivative [125I]IACS-010759-PD1 binds to the middle of the membrane subunit ND1 and that inhibitors that bind to the 49-kDa or PSST subunit cannot suppress the binding. We conclude that IACS-010759's binding location in complex I differs from that of any other known inhibitor of the enzyme. Our findings, along with those from previous study, reveal that the mechanisms of action of complex I inhibitors with widely different chemical properties are more diverse than can be accounted for by the quinone-access channel model proposed by structural biology studies.
Collapse
Affiliation(s)
- Atsuhito Tsuji
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takumi Akao
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
37
|
Murai M. Exploring the binding pocket of quinone/inhibitors in mitochondrial respiratory complex I by chemical biology approaches. Biosci Biotechnol Biochem 2020; 84:1322-1331. [PMID: 32264779 DOI: 10.1080/09168451.2020.1747974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
NADH-quinone oxidoreductase (respiratory complex I) is a key player in mitochondrial energy metabolism. The enzyme couples electron transfer from NADH to quinone with the translocation of protons across the membrane, providing a major proton-motive force that drives ATP synthesis. Recently, X-ray crystallography and cryo-electron microscopy provided further insights into the structure and functions of the enzyme. However, little is known about the mechanism of quinone reduction, which is a crucial step in the energy coupling process. A variety of complex I inhibitors targeting the quinone-binding site have been indispensable tools for mechanistic studies on the enzyme. Using biorationally designed inhibitor probes, the author has accumulated a large amount of experimental data characterizing the actions of complex I inhibitors. On the basis of comprehensive interpretations of the data, the author reviews the structural features of the binding pocket of quinone/inhibitors in bovine mitochondrial complex I. ABBREVIATIONS ATP: adenosine triphosphate; BODIPY: boron dipyrromethene; complex I: proton-translocating NADH-quinone oxidoreductase; DIBO: dibenzocyclooctyne; EM: electron microscopy; FeS: iron-sulfur; FMN: flavin adenine mononucleotide; LDT: ligand-directed tosylate; NADH: nicotinamide adenine dinucleotide; ROS: reactive oxygen species; SMP: submitochondrial particle; TAMRA: 6-carboxy-N,N,N',N'-tetramethylrhodamine; THF: tetrahydrofuran; TMH: transmembrane helix.
Collapse
Affiliation(s)
- Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto, Japan
| |
Collapse
|
38
|
El-Hafidi M, Correa F, Zazueta C. Mitochondrial dysfunction in metabolic and cardiovascular diseases associated with cardiolipin remodeling. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165744. [PMID: 32105822 DOI: 10.1016/j.bbadis.2020.165744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/21/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Cardiolipin (CL) is an acidic phospholipid almost exclusively found in the inner mitochondrial membrane, that not only stabilizes the structure and function of individual components of the mitochondrial electron transport chain, but regulates relevant mitochondrial processes, like mitochondrial dynamics and cristae structure maintenance among others. Alterations in CL due to peroxidation, correlates with loss of such mitochondrial activities and disease progression. In this review it is recapitulated the current state of knowledge of the role of cardiolipin remodeling associated with mitochondrial dysfunction in metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología I. Ch. 14080, Ciudad de México, México
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología I. Ch. 14080, Ciudad de México, México
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología I. Ch. 14080, Ciudad de México, México.
| |
Collapse
|
39
|
Mazat JP, Devin A, Ransac S. Modelling mitochondrial ROS production by the respiratory chain. Cell Mol Life Sci 2020; 77:455-465. [PMID: 31748915 PMCID: PMC11104992 DOI: 10.1007/s00018-019-03381-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Abstract
ROS (superoxide and oxygen peroxide in this paper) play a dual role as signalling molecules and strong oxidizing agents leading to oxidative stress. Their production mainly occurs in mitochondria although they may have other locations (such as NADPH oxidase in particular cell types). Mitochondrial ROS production depends in an interweaving way upon many factors such as the membrane potential, the cell type and the respiratory substrates. Moreover, it is experimentally difficult to quantitatively assess the contribution of each potential site in the respiratory chain. To overcome these difficulties, mathematical models have been developed with different degrees of complexity in order to analyse different physiological questions ranging from a simple reproduction/simulation of experimental results to a detailed model of the possible mechanisms leading to ROS production. Here, we analyse experimental results concerning ROS production including results still under discussion. We then critically review the three models of ROS production in the whole respiratory chain available in the literature and propose some direction for future modelling work.
Collapse
Affiliation(s)
- Jean-Pierre Mazat
- UMR 5095, IBGC CNRS, 1 Rue Camille Saint-Saëns 33077, Bordeaux Cedex, France.
- Université de Bordeaux, 146 Rue Léo-Saignat, 33076, Bordeaux Cedex, France.
| | - Anne Devin
- UMR 5095, IBGC CNRS, 1 Rue Camille Saint-Saëns 33077, Bordeaux Cedex, France
| | - Stéphane Ransac
- UMR 5095, IBGC CNRS, 1 Rue Camille Saint-Saëns 33077, Bordeaux Cedex, France
- Université de Bordeaux, 146 Rue Léo-Saignat, 33076, Bordeaux Cedex, France
| |
Collapse
|
40
|
Redox Signaling from Mitochondria: Signal Propagation and Its Targets. Biomolecules 2020; 10:biom10010093. [PMID: 31935965 PMCID: PMC7023504 DOI: 10.3390/biom10010093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Progress in mass spectroscopy of posttranslational oxidative modifications has enabled researchers to experimentally verify the concept of redox signaling. We focus here on redox signaling originating from mitochondria under physiological situations, discussing mechanisms of transient redox burst in mitochondria, as well as the possible ways to transfer such redox signals to specific extramitochondrial targets. A role of peroxiredoxins is described which enables redox relay to other targets. Examples of mitochondrial redox signaling are discussed: initiation of hypoxia-inducible factor (HIF) responses; retrograde redox signaling to PGC1α during exercise in skeletal muscle; redox signaling in innate immune cells; redox stimulation of insulin secretion, and other physiological situations.
Collapse
|
41
|
Ishihara G, Kawamoto K, Komori N, Ishibashi T. Molecular hydrogen suppresses superoxide generation in the mitochondrial complex I and reduced mitochondrial membrane potential. Biochem Biophys Res Commun 2019; 522:965-970. [PMID: 31810604 DOI: 10.1016/j.bbrc.2019.11.135] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023]
Abstract
Molecular hydrogen (H2) is recognized as a medical gas applicable to numerous diseases including neurodegenerative diseases, metabolic disorders, and rheumatoid arthritis. Although the efficacy of H2 is reportedly attributed to its scavenging capability against the hydroxyl radical, the mechanisms underlying its therapeutic efficacy are not fully understood. Herein, we estimated the role of H2 in the energy converting system of the mitochondria, the source of reactive oxygen species. To investigate the effects of H2 on mitochondrial function, direction of electron flow, superoxide generation, and mitochondrial membrane potential were investigated. Forward electron transport (FET) or reverse electron transport (RET) was assessed by monitoring the decrease or increase of β-nicotinamide adenine dinucleotide hydrate (NADH, - or +, μM, respectively) in the presence of β-nicotinamide adenine dinucleotide (NAD+) and/or succinate in the isolated mitochondria. H2O2 converted from superoxide by superoxide dismutase (SOD) was measured to estimate electron leakage in the mitochondria. The effects of H2 on mitochondrial membrane potential were observed by staining cells with the fluorescence probe, teramethylrhodamine ethyl ester (TMRE). Despite the absence of succinate, a distinct RET was observed (from +0.0313 ± 0.0106 μM to +1.20 ± 0.302 μM) by adding 25 μM H2. In the presence of 5 μM NADH, RET by succinate inverted to FET from +1.62 ± 0.358 μM to -1.83 ± 0.191 μM, accompanied by a suppression of superoxide generated predominantly from complex I by 51.1%. H2 solely reduced mitochondrial membrane potential of the cultured cells by 11.3% as assessed by TMRE. The direction of electron flow was altered by H2 depending on the NAD+/NADH ratio, accompanied by suppression of superoxide generation H2 could suppress superoxide generation in complex I in vitro and reduce membrane potential in vivo. H2 may also neutralize semiquinone radicals to reduce superoxide produced in complex III. H2 may function as a rectifier of the electron flow affecting the mitochondrial membrane potential to suppress oxidative damage in mitochondria.
Collapse
Affiliation(s)
- Genki Ishihara
- Anicom Specialty Medical Institute, Sumitomofudosan-Nishishinnjuku-Grand-tower-39F, 8-17-1 Nishishinjuku, Shinjuku-ku, Tokyo, 161-0023, Japan.
| | - Kosuke Kawamoto
- Anicom Specialty Medical Institute, Sumitomofudosan-Nishishinnjuku-Grand-tower-39F, 8-17-1 Nishishinjuku, Shinjuku-ku, Tokyo, 161-0023, Japan.
| | - Nobuaki Komori
- Anicom Specialty Medical Institute, Sumitomofudosan-Nishishinnjuku-Grand-tower-39F, 8-17-1 Nishishinjuku, Shinjuku-ku, Tokyo, 161-0023, Japan.
| | - Toru Ishibashi
- Anicom Specialty Medical Institute, Sumitomofudosan-Nishishinnjuku-Grand-tower-39F, 8-17-1 Nishishinjuku, Shinjuku-ku, Tokyo, 161-0023, Japan.
| |
Collapse
|
42
|
Wong HS, Monternier PA, Brand MD. S1QELs suppress mitochondrial superoxide/hydrogen peroxide production from site I Q without inhibiting reverse electron flow through Complex I. Free Radic Biol Med 2019; 143:545-559. [PMID: 31518685 DOI: 10.1016/j.freeradbiomed.2019.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Mitochondria are important sources of superoxide and hydrogen peroxide in cell signaling and disease. In particular, superoxide/hydrogen peroxide production during reverse electron transport from ubiquinol to NAD+ though Complex I is implicated in several physiological and pathological processes. S1QELs are small molecules that suppress superoxide/hydrogen peroxide production at Complex I without affecting forward electron transport. Their mechanism of action is disputed. To test different mechanistic models, we compared the effects of two inhibitors of Complex I electron transport (piericidin A and rotenone) and two S1QELs from different chemical families on superoxide/hydrogen peroxide production and electron transport by Complex I in isolated mitochondria. Piericidin A and rotenone (and S1QEL1.1 at higher concentrations) prevented superoxide/hydrogen peroxide production from sites IQ and IF in Complex I by inhibiting reverse electron transport into the complex. S1QELs decreased the potency of electron transport inhibition by piericidin A and rotenone, suggesting that S1QELs bind directly to Complex I. S1QEL2.1 (and S1QEL1.1 at lower concentrations) suppressed site IQ without affecting reverse electron transport or site IF, showing that sites IQ and IF are distinct, and that S1QELs do not work simply by decreasing reverse electron transport to site IF (or site IQ). S1QELs did not affect the reduction of NAD+ or the rate of site IF driven by reverse electron transport, therefore they do not alter the driving forces for reverse electron transport and that is not how they suppress site IQ. We conclude that S1QELs bind to Complex I to influence the conformation of the piericidin A and rotenone binding sites and directly suppress superoxide/hydrogen peroxide production at site IQ, which is a separate site from site IF.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | | | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
43
|
Attenuation of Equine Lentivirus Alters Mitochondrial Protein Expression Profile from Inflammation to Apoptosis. J Virol 2019; 93:JVI.00653-19. [PMID: 31391270 DOI: 10.1128/jvi.00653-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
Equine infectious anemia virus (EIAV) is an equine lentivirus similar to HIV-1, targets host immune cells, and causes a life-long infection in horses. The Chinese live EIAV vaccine is attenuated from long-term passaging of a highly virulent strain in vitro The parent pathogenic strain (EIAVDLV34) induces a host inflammatory storm to cause severe pathological injury of animals. However, the vaccine strain (EIAVDLV121) induces a high level of apoptosis to eliminate infected cells. To investigate how these processes are regulated, we performed a comparative proteomics analysis and functional study in equine monocyte-derived macrophages (eMDMs) and found that the divergent mitochondrial protein expression profiles caused by EIAV strains with different virulence led to disparate mitochondrial function, morphology, and metabolism. This in turn promoted the distinct transformation of macrophage inflammatory polarization and intrinsic apoptosis. In EIAVDLV34-infected cells, a high level of glycolysis and increased mitochondrial fragmentation were induced, resulting in the M1-polarized proinflammatory-type transformation of macrophages and the subsequent production of a strong inflammatory response. Following infection with EIAVDLV121, the infected cells were transformed into M2-polarized anti-inflammatory macrophages by inhibition of glycolysis. In this case, a decrease in the mitochondrial membrane potential and impairment of the electron transport chain led to increased levels of apoptosis and reactive oxygen species. These results correlated with viral pathogenicity loss and may help provide an understanding of the key mechanism of lentiviral attenuation.IMPORTANCE Following viral infection, the working pattern and function of the cell can be transformed through the impact on mitochondria. It still unknown how the mitochondrial response changes in cells infected with viruses in the process of virulence attenuation. EIAVDLV121 is the only effective lentiviral vaccine for large-scale use in the world. EIAVDLV34 is the parent pathogenic strain. Unlike EIAVDLV34-induced inflammation storms, EIAVDLV121 can induce high levels of apoptosis. For the first time, we found that, after the mitochondrial protein expression profile is altered, EIAVDLV34-infected cells are transformed into M1-polarized-type macrophages and cause inflammatory injury and that the intrinsic apoptosis pathway is activated in EIAVDLV121-infected cells. These studies shed light on how the mitochondrial protein expression profile changes between cells infected by pathogenic lentivirus strains and cells infected by attenuated lentivirus strains to drive different cellular responses, especially from inflammation to apoptosis.
Collapse
|
44
|
Goncalves RLS, Watson MA, Wong HS, Orr AL, Brand MD. The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production. Redox Biol 2019; 28:101341. [PMID: 31627168 PMCID: PMC6812158 DOI: 10.1016/j.redox.2019.101341] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 01/14/2023] Open
Abstract
Reactive oxygen species are important signaling molecules crucial for muscle differentiation and adaptation to exercise. However, their uncontrolled generation is associated with an array of pathological conditions. To identify and quantify the sources of superoxide and hydrogen peroxide in skeletal muscle we used site-specific suppressors (S1QELs, S3QELs and NADPH oxidase inhibitors). We measured the rates of hydrogen peroxide release from isolated rat muscle mitochondria incubated in media mimicking the cytosol of intact muscle. By measuring the extent of inhibition caused by the addition of different site-specific suppressors of mitochondrial superoxide/hydrogen peroxide production (S1QELs for site IQ and S3QELs for site IIIQo), we determined the contributions of these sites to the total signal. In media mimicking resting muscle, their contributions were each 12–18%, consistent with a previous method. In C2C12 myoblasts, site IQ contributed 12% of cellular hydrogen peroxide production and site IIIQo contributed about 30%. When C2C12 myoblasts were differentiated to myotubes, hydrogen peroxide release increased five-fold, and the proportional contribution of site IQ doubled. The use of S1QELs and S3QELs is a powerful new way to measure the relative contributions of different mitochondrial sites to muscle hydrogen peroxide production under different conditions. Our results show that mitochondrial sites IQ and IIIQo make a substantial contribution to superoxide/hydrogen peroxide production in muscle mitochondria and C2C12 myoblasts. The total hydrogen peroxide release rate and the relative contribution of site IQ both increase substantially upon differentiation to myotubes. S1QELs, S3QELs and NOX inhibitors report sites of superoxide/H2O2 generation. Mitochondria and NOXs are the major sources of H2O2 in C2C12 cells. H2O2 release increases 5-fold during differentiation of C2C12 myoblasts to myotubes. The relative contribution of site IQ doubles during differentiation. The relative contributions of site IIIQo and NOXs remain the same.
Collapse
Affiliation(s)
| | - Mark A Watson
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Adam L Orr
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
45
|
Ten V, Galkin A. Mechanism of mitochondrial complex I damage in brain ischemia/reperfusion injury. A hypothesis. Mol Cell Neurosci 2019; 100:103408. [PMID: 31494262 PMCID: PMC11500760 DOI: 10.1016/j.mcn.2019.103408] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/30/2019] [Accepted: 09/04/2019] [Indexed: 11/19/2022] Open
Abstract
The purpose of this review is to integrate available data on the effect of brain ischemia/reperfusion (I/R) on mitochondrial complex I. Complex I is a key component of the mitochondrial respiratory chain and it is the only enzyme responsible for regenerating NAD+ for the maintenance of energy metabolism. The vulnerability of brain complex I to I/R injury has been observed in multiple animal models, but the mechanisms of enzyme damage have not been studied. This review summarizes old and new data on the effect of cerebral I/R on mitochondrial complex I, focusing on a recently discovered mechanism of the enzyme impairment. We found that the loss of the natural cofactor flavin mononucleotide (FMN) by complex I takes place after brain I/R. Reduced FMN dissociates from the enzyme if complex I is maintained under conditions of reverse electron transfer when mitochondria oxidize succinate accumulated during ischemia. The potential role of this process in the development of mitochondrial I/R damage in the brain is discussed.
Collapse
Affiliation(s)
- Vadim Ten
- Division of Neonatology, Department of Pediatrics, Columbia University, William Black Building, 650 W 168th St, New York, NY 10032, United States of America
| | - Alexander Galkin
- Division of Neonatology, Department of Pediatrics, Columbia University, William Black Building, 650 W 168th St, New York, NY 10032, United States of America.
| |
Collapse
|
46
|
Use of S1QELs and S3QELs to link mitochondrial sites of superoxide and hydrogen peroxide generation to physiological and pathological outcomes. Biochem Soc Trans 2019; 47:1461-1469. [DOI: 10.1042/bst20190305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Changes in mitochondrial superoxide and hydrogen peroxide production may contribute to various pathologies, and even aging, given that over time and in certain conditions, they damage macromolecules and disrupt normal redox signalling. Mitochondria-targeted antioxidants such as mitoQ, mitoVitE, and mitoTEMPO have opened up the study of the importance of altered mitochondrial matrix superoxide/hydrogen peroxide in disease. However, the use of such tools has caveats and they are unable to distinguish precise sites of production within the reactions of substrate oxidation and the electron transport chain. S1QELs are specific small-molecule Suppressors of site IQElectron Leak and S3QELs are specific small-molecule Suppressors of site IIIQoElectron Leak; they prevent superoxide/hydrogen production at specific sites without affecting electron transport or oxidative phosphorylation. We discuss the benefits of using S1QELs and S3QELs as opposed to mitochondria-targeted antioxidants, mitochondrial poisons, and genetic manipulation. We summarise pathologies in which site IQ in mitochondrial complex I and site IIIQo in mitochondrial complex III have been implicated using S1QELs and S3QELs.
Collapse
|
47
|
Antioxidant Versus Pro-Apoptotic Effects of Mushroom-Enriched Diets on Mitochondria in Liver Disease. Int J Mol Sci 2019; 20:ijms20163987. [PMID: 31426291 PMCID: PMC6720908 DOI: 10.3390/ijms20163987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play a central role in non-alcoholic fatty liver disease (NAFLD) progression and in the control of cell death signalling during the progression to hepatocellular carcinoma (HCC). Associated with the metabolic syndrome, NAFLD is mostly driven by insulin-resistant white adipose tissue lipolysis that results in an increased hepatic fatty acid influx and the ectopic accumulation of fat in the liver. Upregulation of beta-oxidation as one compensatory mechanism leads to an increase in mitochondrial tricarboxylic acid cycle flux and ATP generation. The progression of NAFLD is associated with alterations in the mitochondrial molecular composition and respiratory capacity, which increases their vulnerability to different stressors, including calcium and pro-inflammatory molecules, which result in an increased generation of reactive oxygen species (ROS) that, altogether, may ultimately lead to mitochondrial dysfunction. This may activate further pro-inflammatory pathways involved in the progression from steatosis to steatohepatitis (NASH). Mushroom-enriched diets, or the administration of their isolated bioactive compounds, have been shown to display beneficial effects on insulin resistance, hepatic steatosis, oxidative stress, and inflammation by regulating nutrient uptake and lipid metabolism as well as modulating the antioxidant activity of the cell. In addition, the gut microbiota has also been described to be modulated by mushroom bioactive molecules, with implications in reducing liver inflammation during NAFLD progression. Dietary mushroom extracts have been reported to have anti-tumorigenic properties and to induce cell-death via the mitochondrial apoptosis pathway. This calls for particular attention to the potential therapeutic properties of these natural compounds which may push the development of novel pharmacological options to treat NASH and HCC. We here review the diverse effects of mushroom-enriched diets in liver disease, emphasizing those effects that are dependent on mitochondria.
Collapse
|
48
|
Increased reactive oxygen species production and maintenance of membrane potential in VDAC-less Neurospora crassa mitochondria. J Bioenerg Biomembr 2019; 51:341-354. [PMID: 31392584 DOI: 10.1007/s10863-019-09807-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
The highly abundant voltage-dependent anion-selective channel (VDAC) allows transit of metabolites across the mitochondrial outer membrane. Previous studies in Neurospora crassa showed that the LoPo strain, expressing 50% of normal VDAC levels, is indistinguishable from wild-type (WT). In contrast, the absence of VDAC (ΔPor-1), or the expression of an N-terminally truncated variant VDAC (ΔN2-12porin), is associated with deficiencies in cytochromes b and aa3 of complexes III and IV and concomitantly increased alternative oxidase (AOX) activity. These observations led us to investigate complex I and complex II activities in these strains, and to explore their mitochondrial bioenergetics. The current study reveals that the total NADH dehydrogenase activity is similar in mitochondria from WT, LoPo, ΔPor-1 and ΔN2-12porin strains; however, in ΔPor-1 most of this activity is the product of rotenone-insensitive alternative NADH dehydrogenases. Unexpectedly, LoPo mitochondria have increased complex II activity. In all mitochondrial types analyzed, oxygen consumption is higher in the presence of the complex II substrate succinate, than with the NADH-linked (complex I) substrates glutamate and malate. When driven by a combination of complex I and II substrates, membrane potentials (Δψ) and oxygen consumption rates (OCR) under non-phosphorylating conditions are similar in all mitochondria. However, as expected, the induction of state 3 (phosphorylating) conditions in ΔPor-1 mitochondria is associated with smaller but significant increases in OCR and smaller decreases in Δψ than those seen in wild-type mitochondria. High ROS production, particularly in the presence of rotenone, was observed under non-phosphorylating conditions in the ΔPor-1 mitochondria. Thus, the absence of VDAC is associated with increased ROS production, in spite of AOX activity and wild-type OCR in ΔPor-1 mitochondria.
Collapse
|
49
|
Physiologic Implications of Reactive Oxygen Species Production by Mitochondrial Complex I Reverse Electron Transport. Antioxidants (Basel) 2019; 8:antiox8080285. [PMID: 31390791 PMCID: PMC6719910 DOI: 10.3390/antiox8080285] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial reactive oxygen species (ROS) can be either detrimental or beneficial depending on the amount, duration, and location of their production. Mitochondrial complex I is a component of the electron transport chain and transfers electrons from NADH to ubiquinone. Complex I is also a source of ROS production. Under certain thermodynamic conditions, electron transfer can reverse direction and reduce oxygen at complex I to generate ROS. Conditions that favor this reverse electron transport (RET) include highly reduced ubiquinone pools, high mitochondrial membrane potential, and accumulated metabolic substrates. Historically, complex I RET was associated with pathological conditions, causing oxidative stress. However, recent evidence suggests that ROS generation by complex I RET contributes to signaling events in cells and organisms. Collectively, these studies demonstrate that the impact of complex I RET, either beneficial or detrimental, can be determined by the timing and quantity of ROS production. In this article we review the role of site-specific ROS production at complex I in the contexts of pathology and physiologic signaling.
Collapse
|
50
|
Wolin MS, Alruwaili N, Kandhi S. Studies on Hypoxic Pulmonary Vasoconstriction Detect a Novel Role for the Mitochondrial Complex I Subunit Ndufs2 in Controlling Peroxide Generation for Oxygen-Sensing. Circ Res 2019; 124:1683-1685. [PMID: 31170054 DOI: 10.1161/circresaha.119.315137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael S Wolin
- From the Department of Physiology, New York Medical College, Valhalla
| | - Norah Alruwaili
- From the Department of Physiology, New York Medical College, Valhalla
| | - Sharath Kandhi
- From the Department of Physiology, New York Medical College, Valhalla
| |
Collapse
|