1
|
Zhao J, Chen A, Wang R, Qiu D, Chen H, Li J, Zhang J, Wang T, Wang Y, Lin Y, Zhou J, Du Y, Yuan H, Zhang Y, Miao D, Wang Y, Jin J. Bmi-1 Epigenetically Orchestrates Osteogenic and Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells to Delay Bone Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404518. [PMID: 39225325 PMCID: PMC11633582 DOI: 10.1002/advs.202404518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
With the increase in the aging population, senile osteoporosis (SOP) has become a major global public health concern. Here, it is found that Prx1 and Bmi-1 co-localized in trabecular bone, bone marrow cavity, endosteum, and periosteum. Prx1-driven Bmi-1 knockout in bone-marrow mesenchymal stem cells (BMSCs) reduced bone mass and increased bone marrow adiposity by inhibiting osteoblastic bone formation, promoting osteoclastic bone resorption, downregulating the proliferation and osteogenic differentiation of BMSCs, and upregulating the adipogenic differentiation of BMSCs. However, Prx1-driven Bmi-1 overexpression showed a contrasting phenotype to Prx1-driven Bmi-1 knockout in BMSCs. Regarding mechanism, Bmi-1-RING1B bound to DNMT3A and promoted its ubiquitination and inhibited DNA methylation of Runx2 at the region from 45047012 to 45047313 bp, thus promoting the osteogenic differentiation of BMSCs. Moreover, Bmi-1-EZH2 repressed the transcription of Cebpa by promoting H3K27 trimethylation at the promoter region -1605 to -1596 bp, thus inhibiting the adipogenic differentiation of BMSCs. It is also found that Prx1-driven Bmi-1 overexpression rescued the SOP induced by Prx1-driven Bmi-1 knockout in BMSCs. Thus, Bmi-1 functioned as a hub protein in the epigenetic regulation of BMSCs differentiation to delay bone aging. The Prx1-driven Bmi-1 overexpression in BMSCs can be used as an approach for the translational therapy of SOP.
Collapse
Affiliation(s)
- Jingyu Zhao
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Ao Chen
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Rong Wang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Dong Qiu
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Haiyun Chen
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Jiyu Li
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Jin'ge Zhang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Tianxiao Wang
- School of PharmacyNanjing Medical UniversityNanjingJiangsu211166China
| | - Yue Wang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Yujie Lin
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Jiawen Zhou
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Yifei Du
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Hua Yuan
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Yongjie Zhang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Dengshun Miao
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Yuli Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Jianliang Jin
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| |
Collapse
|
2
|
Liang G, Hu JY, Liu RJ, Chao YP, Hu YF, Zheng H, Pan XY, Li YJ, Gong YH, Lin C, Lin JH, Wang JD, Li TX, Pan JP, Guo DY. α-Ketoglutarate plays an inflammatory inhibitory role by regulating scavenger receptor class a expression through N6-methyladenine methylation during sepsis. Eur J Immunol 2024; 54:e2350655. [PMID: 38973083 DOI: 10.1002/eji.202350655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.
Collapse
Affiliation(s)
- Gang Liang
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
- Zhejiang University school of medicine, Hangzhou, P. R. China
| | - Jia-Yan Hu
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Rou-Jun Liu
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yu-Peng Chao
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yi-Fan Hu
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Hong Zheng
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Xin-Yu Pan
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yuan-Jing Li
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yang-Hui Gong
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Chi Lin
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Jia-Hao Lin
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Jia-Dong Wang
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Tong-Xin Li
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Jian-Ping Pan
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
- Institute of Translational Medicine, Hangzhou City University, Hangzhou, P.R. China
| | - Dong-Yang Guo
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
- Institute of Translational Medicine, Hangzhou City University, Hangzhou, P.R. China
| |
Collapse
|
3
|
Niepoth N, Merritt JR, Uminski M, Lei E, Esquibies VS, Bando IB, Hernandez K, Gebhardt C, Wacker SA, Lutzu S, Poudel A, Soma KK, Rudolph S, Bendesky A. Evolution of a novel adrenal cell type that promotes parental care. Nature 2024; 629:1082-1090. [PMID: 38750354 PMCID: PMC11329292 DOI: 10.1038/s41586-024-07423-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Cell types with specialized functions fundamentally regulate animal behaviour, and yet the genetic mechanisms that underlie the emergence of novel cell types and their consequences for behaviour are not well understood1. Here we show that the monogamous oldfield mouse (Peromyscus polionotus) has recently evolved a novel cell type in the adrenal gland that expresses the enzyme AKR1C18, which converts progesterone into 20α-hydroxyprogesterone. We then demonstrate that 20α-hydroxyprogesterone is more abundant in oldfield mice, where it induces monogamous-typical parental behaviours, than in the closely related promiscuous deer mice (Peromyscus maniculatus). Using quantitative trait locus mapping in a cross between these species, we ultimately find interspecific genetic variation that drives expression of the nuclear protein GADD45A and the glycoprotein tenascin N, which contribute to the emergence and function of this cell type in oldfield mice. Our results provide an example by which the recent evolution of a new cell type in a gland outside the brain contributes to the evolution of social behaviour.
Collapse
Affiliation(s)
- Natalie Niepoth
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Jennifer R Merritt
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Michelle Uminski
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Emily Lei
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Victoria S Esquibies
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Ina B Bando
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Kimberly Hernandez
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Christoph Gebhardt
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Sarah A Wacker
- Department of Chemistry and Biochemistry, Manhattan College, New York, NY, USA
| | - Stefano Lutzu
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - Asmita Poudel
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie Rudolph
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Wu Y, Wang X, Zhang Y, Wen Z, Li Y, Zhang K, Gosar N, Li Q, Mao J, Gong S. Proanthocyanidins Ameliorate LPS-Inhibited Osteogenesis of PDLSCs by Restoring Lysine Lactylation. Int J Mol Sci 2024; 25:2947. [PMID: 38474198 DOI: 10.3390/ijms25052947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Periodontitis is a bacteria-induced inflammatory disease characterized by the progressive destruction of periodontal supporting tissues. Periodontal ligament stem cells (PDLSCs) are capable of differentiating into osteoblasts, which is an important stem cell source for endogenous periodontal tissue regeneration. Lysine lactylation (Kla) is a novel post-translational modification of proteins that is recently thought to be associated with osteogenic differentiation. Here, we found that lactylation levels are reduced both in the periodontal tissue of rats with periodontitis and lipopolysaccharide (LPS)-stimulated human PDLSCs. Proanthocyanidins were able to promote the osteogenesis of inflamed PDLSCs by restoring lactylation levels. Mechanistically, proanthocyanidins increased lactate production and restored the lactylation levels of PDLSCs, which recovered osteogenesis of inflamed PDLSCs via the Wnt/β-catenin pathway. These results provide evidence on how epigenetic regulation by pharmacological agents influence the osteogenic phenotype of stem cells and the process of periodontal tissue repair. Our current study highlights the valuable potential of natural product proanthocyanidins in the regenerative engineering of periodontal tissues.
Collapse
Affiliation(s)
- Yaxin Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Xiangyao Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Yuxiao Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Zhihao Wen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Yuanyuan Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Kehan Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Nuerlan Gosar
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Shiqiang Gong
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| |
Collapse
|
5
|
Xu K, Fei W, Gao W, Fan C, Li Y, Hong Y, Cui R. SOD3 regulates FLT1 to affect bone metabolism by promoting osteogenesis and inhibiting adipogenesis through PI3K/AKT and MAPK pathways. Free Radic Biol Med 2024; 212:65-79. [PMID: 38141889 DOI: 10.1016/j.freeradbiomed.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/30/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Osteoporosis is a chronic disease that seriously affects the quality of life and longevity of the elderly, so exploring the mechanism of osteoporosis is crucial for drug development and treatment. Bone marrow mesenchymal stem cells are stem cells with multiple differentiation potentials in bone marrow, and changing their differentiation direction can change bone mass. As an extracellular superoxide dismutase, Superoxide Dismutase 3 (SOD3) has been proved to play an important role in multiple organs, but the detailed mechanism of action in bone metabolism is still unclear. In this study, the results of clinical serum samples ELISA and single cell sequencing chip analysis proved that the expression of SOD3 was positively correlated with bone mass, and SOD3 was mainly expressed in osteoblasts and adipocytes and rarely expressed in osteoblasts in BMSCs. In vitro experiments showed that SOD3 can promote osteogenesis and inhibit adipogenesis. Compared with WT mice, the mice that were knocked out of SOD3 had a significant decrease in bone mineral density and significant changes in related parameters. The results of HE and IHC staining suggested that knocking out SOD3 would lead to fat accumulation in the bone marrow cavity and weakened osteogenesis. Both in vitro and in vivo experiments indicated that SOD3 affects bone metabolism by promoting osteogenesis and inhibiting adipogenesis. The results of transcriptome sequencing and revalidation showed that SOD3 can affect the expression of FLT1. Through in vitro experiments, we proved that FLT1 can also promote osteogenesis and inhibit adipogenesis. In addition, through the repeated experiments, the interaction between the two molecules (SOD3 and FLT1) was verified again. Finally, it was verified by WB that SOD3 regulates FLT1 to affect bone metabolism through PI3K/AKT and MAPK pathways.
Collapse
Affiliation(s)
- Ke Xu
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| | - Wenchao Fei
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| | - Wenxue Gao
- Medical Services Section, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Changxiu Fan
- Department of Stomatology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Yinghua Li
- Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China; Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Yang Hong
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| | - Ran Cui
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Wang Y, Huang X, Zhang Q, Cheng C, Qin Z, Lu L, Huang Q. The osteoporosis susceptibility SNP rs188303909 at 2q14.2 regulates EN1 expression by modulating DNA methylation and E2F6 binding. J Mol Med (Berl) 2024; 102:273-284. [PMID: 38153509 DOI: 10.1007/s00109-023-02412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
EN1 encodes a homeodomain-containing transcription factor and is a determinant of bone density and fracture. Previous powerful genome-wide association studies (GWASs) have identified multiple single-nucleotide polymorphisms (SNPs) near EN1 at 2q14.2 locus for osteoporosis, but the causal SNPs and functional mechanisms underlying these associations are poorly understood. The target genes regulated by the transcription factor EN1 are also unclear. In this study, we identified rs188303909, a functional CpG-SNP, as a causal SNP for osteoporosis at 2q14.2 through the integration of functional and epigenomic analyses. Functional experiments demonstrated that unmethylated rs188303909 acted as a strong allele-specific distal enhancer to regulate EN1 expression by modifying the binding of transcription factor E2F6, but rs188303909 methylation attenuated the active effect of E2F6 on EN1 expression. Importantly, transcription factor EN1 could differentially bind osteoporosis GWAS lead SNPs rs4869739-T and rs4355801-G to upregulate CCDC170 and COLEC10 expression, thus promoting bone formation. Our study provided a mechanistic insight into expression regulation of the osteoporosis susceptibility gene EN1, which could be a potential therapeutic target for osteoporosis precision medicine. KEY MESSAGES: CpG-SNP rs188303909 is a causal SNP at the osteoporosis susceptibility locus 2q14.2. Rs188303909 distally regulates EN1 expression by modulating DNA methylation and E2F6 binding. EN1 upregulates CCDC170 and COLEC10 expression through osteoporosis GWAS lead SNPs rs4869739 and rs4355801.
Collapse
Affiliation(s)
- Ya Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinyao Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Qiongdan Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Chen Cheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Zixuan Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Li Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Qingyang Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
7
|
Himič V, Syrmos N, Ligarotti GKI, Kato S, Fehlings MG, Ganau M. The role of genetic and epigenetic factors in determining the risk of spinal fragility fractures: new insights in the management of spinal osteoporosis. Quant Imaging Med Surg 2023; 13:7632-7645. [PMID: 37969626 PMCID: PMC10644129 DOI: 10.21037/qims-23-513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/18/2023] [Indexed: 11/17/2023]
Abstract
Osteoporosis predisposes patients to spinal fragility fractures. Imaging plays a key role in the diagnosis and prognostication of these osteoporotic vertebral fractures (OVF). However, the current imaging knowledge base for OVF is lacking sufficient standardisation to enable effective risk prognostication. OVF have been shown to be more prevalent in Caucasian patient cohorts in comparison to the Eastern Asian population. These population-based differences in risk for developing OVF suggest that there could be genetic and epigenetic factors that drive the pathogenesis of osteoporosis, low bone mineral density (BMD) and OVF. Several genetic loci have been associated with a higher vertebral fracture risk, although at varying degrees of significance. The present challenge is clarifying whether these associations are specific to vertebral fractures or osteoporosis more generally. Furthermore, these factors could be exploited for diagnostic interpretation as biomarkers [including novel long non-coding (lnc)RNAs, micro (mi)RNAs and circular (circ)RNAs]. The extent of methylation of genes, alongside post-translational histone modifications, have shown to affect several interlinked pathways that converge on the regulation of bone deposition and resorption, partially through their influence on osteoblast and osteoclast differentiation. Lastly, in addition to biomarkers, several exciting new imaging modalities could add to the established dual-energy X-ray absorptiometry (DXA) method used for BMD assessment. New technologies, and novel sequences within existing imaging modalities, may be able to quantify the quality of bone in addition to the BMD and bone structure; these are making progress through various stages of development from the pre-clinical sphere through to deployment in the clinical setting. In this mini review, we explore the literature to clarify the genetic and epigenetic factors associated with spinal fragility fractures and delineate the causal genes, pathways and interactions which could drive different risk profiles. We also outline the cutting-edge imaging modalities which could transform diagnostic protocols for OVF.
Collapse
Affiliation(s)
- Vratko Himič
- Department of Neurosurgery, Oxford University Hospitals NHS FT, Oxford, UK
| | - Nikolaos Syrmos
- Department of Neurosurgery, Aristotle University of Thessaloniki, Macedonia, Greece
| | | | - So Kato
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Michael G. Fehlings
- Division of Neurosurgery and Spinal Program, University of Toronto, Toronto, Canada
| | - Mario Ganau
- Department of Neurosurgery, Oxford University Hospitals NHS FT, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
You W, Liu S, Li J, Tu Y, Shan T. GADD45A regulates subcutaneous fat deposition and lipid metabolism by interacting with Stat1. BMC Biol 2023; 21:212. [PMID: 37807064 PMCID: PMC10561432 DOI: 10.1186/s12915-023-01713-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Obesity, characterized by excessive white adipose tissue expansion, is associated with several metabolic complications. Identifying new adipogenesis regulators may lead to effective therapies for obesity-induced metabolic disorders. RESULTS Here, we identified the growth arrest and DNA damage-inducible A (GADD45A), a stress-inducible histone-folding protein, as a novel regulator of subcutaneous adipose metabolism. We found that GADD45A expression was positively correlated with subcutaneous fat deposition and obesity in humans and fatty animals. In vitro, the gain or loss function of GADD45A promoted or inhibited subcutaneous adipogenic differentiation and lipid accumulation, respectively. Using a Gadd45a-/- mouse model, we showed that compared to wild-type (WT) mice, knockout (KO) mice exhibited subcutaneous fat browning and resistance to high-fat diet (HFD)-induced obesity. GADD45A deletion also upregulated the expression of mitochondria-related genes. Importantly, we further revealed that the interaction of GADD45A with Stat1 prevented phosphorylation of Stat1, resulting in the impaired expression of Lkb1, thereby regulating subcutaneous adipogenesis and lipid metabolism. CONCLUSIONS Overall, our results reveal the critical regulatory roles of GADD45A in subcutaneous fat deposition and lipid metabolism. We demonstrate that GADD45A deficiency induces the inguinal white adipose tissue (iWAT) browning and protects mice against HFD-induced obesity. Our findings provide new potential targets for combating obesity-related metabolic diseases and improving human health.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
9
|
You W, Liu S, Ji J, Ling D, Tu Y, Zhou Y, Chen W, Valencak TG, Wang Y, Shan T. Growth arrest and DNA damage-inducible alpha regulates muscle repair and fat infiltration through ATP synthase F1 subunit alpha. J Cachexia Sarcopenia Muscle 2023; 14:326-341. [PMID: 36511343 PMCID: PMC9891974 DOI: 10.1002/jcsm.13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Skeletal muscle fat infiltration is a common feature during ageing, obesity and several myopathies associated with muscular dysfunction and sarcopenia. However, the regulatory mechanisms of intramuscular adipogenesis and strategies to reduce fat infiltration in muscle remain unclear. Here, we identified the growth arrest and DNA damage-inducible alpha (GADD45A), a stress-inducible histone folding protein, as a critical regulator of intramuscular fat (IMAT) infiltration. METHODS To explore the role of GADD45A on IMAT infiltration and muscle regeneration, the gain or loss function of GADD45A in intramuscular preadipocytes was performed. The adipocyte-specific GADD45A knock-in (KI) mice and high IMAT-infiltrated muscle model by glycerol injection (50 μL of 50% v/v GLY) were generated. RNA-sequencing, histological changes, gene expression, lipid metabolism, mitochondrial function and the effect of dietary factor epigallocatechin-3-gallate (EGCG) treatment (100 mg/kg) on IMAT infiltration were studied. RESULTS The unbiased transcriptomics data analysis indicated that GADD45A expression positively correlates with IMAT infiltration and muscle metabolic disorders in humans (correlation: young vs. aged people, Gadd45a and Cebpa, r2 = 0.20, P < 0.05) and animals (correlation: wild-type [WT] vs. mdx mice, Gadd45a and Cebpa, r2 = 0.38, P < 0.05; NaCl vs. GLY mice, Gadd45a and Adipoq/Fabp4, r2 = 0.80/0.71, both P < 0.0001). In vitro, GADD45A overexpression promotes intramuscular preadipocyte adipogenesis, upregulating the expression of adipogenic genes (Ppara: +47%, Adipoq: +28%, P < 0.001; Cebpa: +135%, Fabp4: +16%, P < 0.01; Pparg: +66%, Leptin: +77%, P < 0.05). GADD45A knockdown robustly decreased lipid accumulation (Pparg: -57%, Adipoq: -35%, P < 0.001; Fabp4: -37%, P < 0.01; Leptin: -28%, P < 0.05). GADD45A KI mice exhibit inhibited skeletal muscle regeneration (myofibres: -40%, P < 0.01) and enhanced IMAT infiltration (adipocytes: +20%, P < 0.05). These KI mice have impaired exercise endurance and mitochondrial function. Mechanistically, GADD45A affects ATP synthase F1 subunit alpha (ATP5A1) ubiquitination degradation (ubiquitinated ATP5A1, P < 0.001) by recruiting the E3 ubiquitin ligase TRIM25, which decreases ATP synthesis (ATP production: -23%, P < 0.01) and inactivates the cAMP/PKA/LKB1 signalling pathway (cAMP: -36%, P < 0.01; decreased phospho-PKA and phospho-LKB1 protein content, P < 0.01). The dietary factor EGCG can protect against muscle fat infiltration (triglyceride: -64%, P < 0.05) via downregulating GADD45A (decreased GADD45A protein content, P < 0.001). CONCLUSIONS Our findings reveal a crucial role of GADD45A in regulating muscle repair and fat infiltration and suggest that inhibition of GADD45A by EGCG might be a potential strategy to combat fat infiltration and its associated muscle dysfunction.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Shiqi Liu
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Jianfei Ji
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Defeng Ling
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Yuang Tu
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Yanbing Zhou
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Wentao Chen
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | | | - Yizhen Wang
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Tizhong Shan
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| |
Collapse
|
10
|
Wang Z, Wen S, Zhong M, Yang Z, Xiong W, Zhang K, Yang S, Li H, Guo S. Epigenetics: Novel crucial approach for osteogenesis of mesenchymal stem cells. J Tissue Eng 2023; 14:20417314231175364. [PMID: 37342486 PMCID: PMC10278427 DOI: 10.1177/20417314231175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
Bone has a robust regenerative potential, but its capacity to repair critical-sized bone defects is limited. In recent years, stem cells have attracted significant interest for their potential in tissue engineering. Applying mesenchymal stem cells (MSCs) for enhancing bone regeneration is a promising therapeutic strategy. However, maintaining optimal cell efficacy or viability of MSCs is limited by several factors. Epigenetic modification can cause changes in gene expression levels without changing its sequence, mainly including nucleic acids methylation, histone modification, and non-coding RNAs. This modification is believed to be one of the determinants of MSCs fate and differentiation. Understanding the epigenetic modification of MSCs can improve the activity and function of stem cells. This review summarizes recent advances in the epigenetic mechanisms of MSCs differentiation into osteoblast lineages. We expound that epigenetic modification of MSCs can be harnessed to treat bone defects and promote bone regeneration, providing potential therapeutic targets for bone-related diseases.
Collapse
Affiliation(s)
- Zhaohua Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Si Wen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Meiqi Zhong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ziming Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Kuo Zhang
- College of Humanities and Social Sciences, Dalian Medical University, Dalian, Liaoning Province, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Huizheng Li
- Department of Otorhinolaryngology & Head and Neck Surgery, Dalian Friendship Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
11
|
Çakan E, Gunaydin G. Activation induced cytidine deaminase: An old friend with new faces. Front Immunol 2022; 13:965312. [PMID: 36405752 PMCID: PMC9670734 DOI: 10.3389/fimmu.2022.965312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Activation induced cytidine deaminase (AID) protein is a member of APOBEC family. AID converts cytidine to uracil, which is a key step for somatic hypermutation (SHM) and class switch recombination (CSR). AID also plays critical roles in B cell precursor stages, removing polyreactive B cells from immune repertoire. Since the main function of AID is inducing point mutations, dysregulation can lead to increased mutation load, translocations, disturbed genomic integrity, and lymphomagenesis. As such, expression of AID as well as its function is controlled strictly at various molecular steps. Other members of the APOBEC family also play crucial roles during carcinogenesis. Considering all these functions, AID represents a bridge, linking chronic inflammation to carcinogenesis and immune deficiencies to autoimmune manifestations.
Collapse
Affiliation(s)
- Elif Çakan
- Hacettepe University School of Medicine, Sihhiye, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| |
Collapse
|
12
|
Epigenetic Regulation of Methylation in Determining the Fate of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:5015856. [PMID: 36187229 PMCID: PMC9522499 DOI: 10.1155/2022/5015856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are crucial in tooth development and periodontal health, and their multipotential differentiation and self-renewal ability play a critical role in tissue engineering and regenerative medicine. Methylation modifications could promote the appropriate biological behavior by postsynthetic modification of DNA or protein and make the organism adapt to developmental and environmental prompts by regulating gene expression without changing the DNA sequence. Methylation modifications involved in DMSC fate include DNA methylation, RNA methylation, and histone modifications, which have been proven to exert a significant effect on the regulation of the fate of DMSCs, such as proliferation, self-renewal, and differentiation potential. Understanding the regulation of methylation modifications on the behavior and the immunoinflammatory responses involved in DMSCs contributes to further study of the mechanism of methylation on tissue regeneration and inflammation. In this review, we briefly summarize the key functions of histone methylation, RNA methylation, and DNA methylation in the differentiation potential and self-renewal of DMSCs as well as the opportunities and challenges for their application in tissue regeneration and disease therapy.
Collapse
|
13
|
Zhang M, Gao Y, Li Q, Cao H, Yang J, Cai X, Xiao J. Downregulation of DNA methyltransferase-3a ameliorates the osteogenic differentiation ability of adipose-derived stem cells in diabetic osteoporosis via Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2022; 13:397. [PMID: 35927735 PMCID: PMC9351106 DOI: 10.1186/s13287-022-03088-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background Diabetes-related osteoporosis (DOP) is a chronic disease caused by the high glucose environment that induces a metabolic disorder of osteocytes and osteoblast-associated mesenchymal stem cells. The processes of bone defect repair and regeneration become extremely difficult with DOP. Adipose-derived stem cells (ASCs), as seed cells in bone tissue engineering technology, provide a promising therapeutic approach for bone regeneration in DOP patients. The osteogenic ability of ASCs is lower in a DOP model than that of control ASCs. DNA methylation, as a mechanism of epigenetic regulation, may be involved in DNA methylation of various genes, thereby participating in biological behaviors of various cells. Emerging evidence suggests that increased DNA methylation levels are associated with activation of Wnt/β-catenin signaling pathway. The purpose of this study was to investigate the influence of the diabetic environment on the osteogenic potential of ASCs, to explore the role of DNA methylation on osteogenic differentiation of DOP-ASCs via Wnt/β-catenin signaling pathway, and to improve the osteogenic differentiation ability of ASCs with DOP. Methods DOP-ASCs and control ASCs were isolated from DOP C57BL/6 and control mice, respectively. The multipotency of DOP-ASCs was confirmed by Alizarin Red-S, Oil Red-O, and Alcian blue staining. Real-time polymerase chain reaction (RT-PCR), immunofluorescence, and western blotting were used to analyze changes in markers of osteogenic differentiation, DNA methylation, and Wnt/β-catenin signaling. Alizarin Red-S staining was also used to confirm changes in the osteogenic ability. DNMT small interfering RNA (siRNA), shRNA-Dnmt3a, and LVRNA-Dnmt3a were used to assess the role of Dnmt3a in osteogenic differentiation of control ASCs and DOP-ASCs. Micro-computed tomography, hematoxylin and eosin staining, and Masson staining were used to analyze changes in the osteogenic capability while downregulating Dnmt3a with lentivirus in DOP mice in vivo. Results The proliferative ability of DOP-ASCs was lower than that of control ASCs. DOP-ASCs showed a decrease in osteogenic differentiation capacity, lower Wnt/β-catenin signaling pathway activity, and a higher level of Dnmt3a than control ASCs. When Dnmt3a was downregulated by siRNA and shRNA, osteogenic-related factors Runt-related transcription factor 2 and osteopontin, and activity of Wnt/β-catenin signaling pathway were increased, which rescued the poor osteogenic potential of DOP-ASCs. When Dnmt3a was upregulated by LVRNA-Dnmt3a, the osteogenic ability was inhibited. The same results were obtained in vivo. Conclusions Dnmt3a silencing rescues the negative effects of DOP on ASCs and provides a possible approach for bone tissue regeneration in patients with diabetic osteoporosis.
Collapse
Affiliation(s)
- Maorui Zhang
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yujin Gao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qing Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Huayue Cao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianghua Yang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China. .,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
14
|
Chandramouly G. Gadd45 in DNA Demethylation and DNA Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:55-67. [PMID: 35505162 DOI: 10.1007/978-3-030-94804-7_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growth arrest and DNA damage 45 (Gadd45) family genes, Gadd45A, Gadd45B, and GADD45 G are implicated as stress sensors that are rapidly induced upon genotoxic/physiological stress. They are involved in regulation of various cellular functions such as DNA repair, senescence, and cell cycle control. Gadd45 family of genes serve as tumor suppressors in response to different stimuli and defects in Gadd45 pathway can give rise to oncogenesis. More recently, Gadd45 has been shown to promote gene activation by demethylation and this function is important for transcriptional regulation and differentiation during development. Gadd45 serves as an adaptor for DNA repair factors to promote removal of 5-methylcytosine from DNA at gene specific loci. Therefore, Gadd45 serves as a powerful link between DNA repair and epigenetic gene regulation.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Abstract
Osteoporosis, characterised by low bone mass, poor bone structure, and an increased risk of fracture, is a major public health problem. There is increasing evidence that the influence of the environment on gene expression, through epigenetic processes, contributes to variation in BMD and fracture risk across the lifecourse. Such epigenetic processes include DNA methylation, histone and chromatin modifications and non-coding RNAs. Examples of associations with phenotype include DNA methylation in utero linked to maternal vitamin D status, and to methylation of target genes such as OPG and RANKL being associated with osteoporosis in later life. Epigenome-wide association studies and multi-omics technologies have further revealed susceptibility loci, and histone acetyltransferases, deacetylases and methylases are being considered as therapeutic targets. This review encompasses recent advances in our understanding of epigenetic mechanisms in the regulation of bone mass and osteoporosis development, and outlines possible diagnostic and prognostic biomarker applications.
Collapse
Affiliation(s)
| | | | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
16
|
GADD45A induces neuropathic pain by activating P53 apoptosis pathway in mice. Genes Genomics 2022; 44:1051-1060. [PMID: 35167054 DOI: 10.1007/s13258-022-01226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/25/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Neuropathic pain is a common condition with current heights of varying etiology. The therapeutic drugs are also poorly work and often limited by side effects such as dizziness. OBJECTIVE This study aimed to explore the function mechanism of GADD45A in neuropathic pain. METHODS The DEGs in neuropathic pain mouse model chip were screened by bioinformatics analysis. The expression of GADD45A in SNL model was determined by RT-qPCR and Immunofluorescence assay. The protein expression of p53-apoptosis pathway proteins was determined by western blotting. RESULTS Combination analysis of bioinformatics methods revealed that the expression of GADD45A was upregulated in SNL. The results of RT-qPCR assay and Immunofluorescence assay revealed that GADD45A was overexpressed in all of time points SNL model. Furthermore, knockdown of GADD45A in SNL remarkably antagonized the malignance phenotype compared with the Ad-GFP treated SNL. In addition, knockdown of GADD45A downregulated the expression of p53 and reduced the apoptosis of spinal cord nerve cells. CONCLUSIONS Our study suggests that GADD45A may be a biomarker in the neuropathic pain of mice.
Collapse
|
17
|
Oton-Gonzalez L, Mazziotta C, Iaquinta MR, Mazzoni E, Nocini R, Trevisiol L, D’Agostino A, Tognon M, Rotondo JC, Martini F. Genetics and Epigenetics of Bone Remodeling and Metabolic Bone Diseases. Int J Mol Sci 2022; 23:ijms23031500. [PMID: 35163424 PMCID: PMC8836080 DOI: 10.3390/ijms23031500] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Bone metabolism consists of a balance between bone formation and bone resorption, which is mediated by osteoblast and osteoclast activity, respectively. In order to ensure bone plasticity, the bone remodeling process needs to function properly. Mesenchymal stem cells differentiate into the osteoblast lineage by activating different signaling pathways, including transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1 (Wnt)/β-catenin pathways. Recent data indicate that bone remodeling processes are also epigenetically regulated by DNA methylation, histone post-translational modifications, and non-coding RNA expressions, such as micro-RNAs, long non-coding RNAs, and circular RNAs. Mutations and dysfunctions in pathways regulating the osteoblast differentiation might influence the bone remodeling process, ultimately leading to a large variety of metabolic bone diseases. In this review, we aim to summarize and describe the genetics and epigenetics of the bone remodeling process. Moreover, the current findings behind the genetics of metabolic bone diseases are also reported.
Collapse
Affiliation(s)
- Lucia Oton-Gonzalez
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Riccardo Nocini
- Unit of Otolaryngology, University of Verona, 37134 Verona, Italy;
| | - Lorenzo Trevisiol
- Unit of Maxillo-Facial Surgery and Dentistry, University of Verona, 37134 Verona, Italy; (L.T.); (A.D.)
| | - Antonio D’Agostino
- Unit of Maxillo-Facial Surgery and Dentistry, University of Verona, 37134 Verona, Italy; (L.T.); (A.D.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (J.C.R.); (F.M.); Tel.: +39-0532-455536 (J.C.R.); +39-0532-455540 (F.M.)
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (J.C.R.); (F.M.); Tel.: +39-0532-455536 (J.C.R.); +39-0532-455540 (F.M.)
| |
Collapse
|
18
|
Schmitz I. Gadd45 Proteins in Immunity 2.0. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:69-86. [DOI: 10.1007/978-3-030-94804-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Fatema K, Luelling S, Kirkham M, Pavek A, Heyneman AL, Barrott J. Epigenetics and precision medicine in bone and soft tissue sarcomas. EPIGENETICS IN PRECISION MEDICINE 2022:147-191. [DOI: 10.1016/b978-0-12-823008-4.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Misra BB, Jayapalan S, Richards AK, Helderman RCM, Rendina-Ruedy E. Untargeted metabolomics in primary murine bone marrow stromal cells reveals distinct profile throughout osteoblast differentiation. Metabolomics 2021; 17:86. [PMID: 34537901 PMCID: PMC8450216 DOI: 10.1007/s11306-021-01829-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/17/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Skeletal homeostasis is an exquisitely regulated process most directly influenced by bone resorbing osteoclasts, bone forming osteoblasts, and the mechano-sensing osteocytes. These cells work together to constantly remodel bone as a mechanism to prevent from skeletal fragility. As such, when an individual experiences a disconnect in these tightly coupled processes, fracture incidence increases, such as during ageing, gonadal hormone deficiency, weightlessness, and diabetes. While therapeutic options have significantly aided in the treatment of low bone mineral density (BMD) or osteoporosis, limited options remain for anabolic or bone forming agents. Therefore, it is of interest to continue to understand how osteoblasts regulate their metabolism to support the energy expensive process of bone formation. OBJECTIVE The current project sought to rigorously characterize the distinct metabolic processes and intracellular metabolite profiles in stromal cells throughout osteoblast differentiation using untargeted metabolomics. METHODS Primary, murine bone marrow stromal cells (BMSCs) were characterized throughout osteoblast differentiation using standard staining protocols, Seahorse XFe metabolic flux analyses, and untargeted metabolomics. RESULTS We demonstrate here that the metabolic footprint of stromal cells undergoing osteoblast differentiation are distinct, and while oxidative phosphorylation drives adenosine triphosphate (ATP) generation early in the differentiation process, mature osteoblasts depend on glycolysis. Importantly, the intracellular metabolite profile supports these findings while also suggesting additional pathways critical for proper osteoblast function. CONCLUSION These data are the first of their kind to characterize these metabolites in conjunction with the bioenergetic profile in primary, murine stromal cells throughout osteoblast differentiation and provide provocative targets for future investigation.
Collapse
Affiliation(s)
- Biswapriya B Misra
- , Pine-211, Raintree Park Dwaraka Krishna, Namburu, 522508, Andhra Pradesh, India
| | - Shobana Jayapalan
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alison K Richards
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ron C M Helderman
- Maine Medical Center Research Institute, Scarborough, ME, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth Rendina-Ruedy
- Maine Medical Center Research Institute, Scarborough, ME, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
21
|
Feng Y, Wang Z, Wei W, Zhang T, Li Z, Chen J, Liu K. Gadd45α is involved in regulating activity-dependent and exon-specific BDNF expression in postmitotic cortical neurons. Neuroreport 2021; 32:1147-1152. [PMID: 34334778 DOI: 10.1097/wnr.0000000000001705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to explore the epigenetic regulation of activity-dependent and exon-specific brain-derived neurotrophic factor (BDNF) expression under KCl depolarization in primary cortical neurons. METHODS We investigated BDNF exon I, exon IV and the growth arrest and DNA damage-inducible protein 45 alpha (Gadd45α) transcription levels under KCl-induced neuronal activation in postmitotic neurons. Gadd45α occupancy at BDNF I and IV promoter was measured by chromatin immunoprecipitation (ChIP) followed by quantitative PCR; DNA methylation level was checked by methylated DNA immunoprecipitation (MeDIP) followed by qPCR. In addition, lentiviral shRNA targeting Gadd45α was used to knockdown Gadd45α expression. RESULTS BDNF exon I and IV mRNA expressions were both highly induced by KCl depolarization. However, ChIP analysis demonstrated a significantly increased Gadd45α occupancy only at the BDNF P1 promotor, but not P4, which is associated with reducing DNA methylation within BDNF P1 promoter. Furthermore, after the lentiviral-mediated knockdown of Gadd45α, the increased Gadd45α occupancy at the BDNF P1 was inhibited, which was accompanying the complete blocking of the demethylation effect at P1. Nonetheless, the induction of BDNF exon I mRNA by KCl was only partially prevented by Gadd45α shRNA, indicting other mechanisms involved in regulating BDNF exon I expression. CONCLUSIONS DNA demethylation mediated by Gadd45α protein involves promoting the regulation of activity-dependent BDNF exon I expression in neurons.
Collapse
Affiliation(s)
- Yu Feng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Growth arrest and DNA damage-inducible proteins (GADD45) in psoriasis. Sci Rep 2021; 11:14579. [PMID: 34272424 PMCID: PMC8285512 DOI: 10.1038/s41598-021-93780-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
The interplay between T cells, dendritic cells and keratinocytes is crucial for the development and maintenance of inflammation in psoriasis. GADD45 proteins mediate DNA repair in different cells including keratinocytes. In the immune system, GADD45a and GADD45b regulate the function and activation of both T lymphocytes and dendritic cells and GADD45a links DNA repair and epigenetic regulation through its demethylase activity. Here, we analyzed the expression of GADD45a and GADD45b in the skin, dendritic cells and circulating T cells in a cohort of psoriasis patients and their regulation by inflammatory signals. Thirty patients (17 male/13 female) with plaque psoriasis and 15 controls subjects (7 male/8 female), were enrolled. Psoriasis patients exhibited a lower expression of GADD45a at the epidermis but a higher expression in dermal infiltrating T cells in lesional skin. The expression of GADD45a and GADD45b was also higher in peripheral T cells from psoriasis patients, although no differences were observed in p38 activation. The expression and methylation state of the GADD45a target UCHL1 were evaluated, revealing a hypermethylation of its promoter in lesional skin compared to controls. Furthermore, reduced levels of GADD45a correlated with a lower expression UCHL1 in lesional skin. We propose that the demethylase function of GADD45a may account for its pleiotropic effects, and the complex and heterogeneous pattern of expression observed in psoriatic disease.
Collapse
|
23
|
Li L, Wang H, Chen X, Li X, Wang G, Jie Z, Zhao X, Sun X, Huang H, Fan S, Xie Z, Wang J. Oxidative Stress-Induced Hypermethylation of KLF5 Promoter Mediated by DNMT3B Impairs Osteogenesis by Diminishing the Interaction with β-Catenin. Antioxid Redox Signal 2021; 35:1-20. [PMID: 33588625 DOI: 10.1089/ars.2020.8200] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aims: Emerging evidence suggests that the pathogenesis of osteoporosis, characterized by impaired osteogenesis, is shifting from estrogen centric to oxidative stress. Our previous studies have shown that the zinc-finger transcription factor krüppel-like factor 5 (KLF5) plays a key role in the degeneration of nucleus pulposus and cartilage. However, its role in osteoporosis remains unknown. We aimed to investigate the effect and mechanism of KLF5 on osteogenesis under oxidative stress. Results: First, KLF5 was required for osteogenesis and stimulated osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). KLF5 was hypermethylated and downregulated in ovariectomy-induced osteoporosis mice and in BMSCs treated with H2O2. Interestingly, DNA methyltransferases 3B (DNMT3B) upregulation mediated the hypermethylation of KLF5 induced by oxidative stress, thereby impairing osteogenic differentiation. The inhibition of KLF5 hypermethylation using DNMT3B siRNA or 5-AZA-2-deoxycytidine (5-AZA) protected osteogenic differentiation of BMSCs from oxidative stress. Regarding the downstream mechanism, KLF5 induced β-catenin expression. More importantly, KLF5 promoted the nuclear translocation of β-catenin, which was mediated by the armadillo repeat region of β-catenin. Consistently, oxidative stress-induced KLF5 hypermethylation inhibited osteogenic differentiation by reducing the expression and nuclear translocation of β-catenin. Innovation: We describe the novel effect and mechanism of KLF5 on osteogenesis under oxidative stress, which is linked to osteoporosis for the first time. Conclusion: Our results suggested that oxidative stress-induced hypermethylation of KLF5 mediated by DNMT3B impairs osteogenesis by diminishing the interaction with β-catenin, which is likely to contribute to osteoporosis. Targeting the hypermethylation of KLF5 might be a new strategy for the treatment of osteoporosis. Antioxid. Redox Signal. 35, 1-20.
Collapse
Affiliation(s)
- Liangping Li
- Department of Orthopaedics, Medical College of Zhejiang University, Sir Run Run Shaw Hospital, Hangzhou, People's Republic of China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Haoming Wang
- Department of Orthopaedics, Medical College of Zhejiang University, Sir Run Run Shaw Hospital, Hangzhou, People's Republic of China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xiaoying Chen
- Department of Emergency, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiang Li
- Department of Orthopaedics, Medical College of Zhejiang University, Sir Run Run Shaw Hospital, Hangzhou, People's Republic of China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
| | - Gangliang Wang
- Department of Orthopaedics, Medical College of Zhejiang University, Sir Run Run Shaw Hospital, Hangzhou, People's Republic of China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
| | - Zhiwei Jie
- Department of Orthopaedics, Medical College of Zhejiang University, Sir Run Run Shaw Hospital, Hangzhou, People's Republic of China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xiangde Zhao
- Department of Orthopaedics, Medical College of Zhejiang University, Sir Run Run Shaw Hospital, Hangzhou, People's Republic of China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xuewu Sun
- Department of Orthopaedics, Medical College of Zhejiang University, Sir Run Run Shaw Hospital, Hangzhou, People's Republic of China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
| | - Hai Huang
- Department of Orthopaedics, Medical College of Zhejiang University, Sir Run Run Shaw Hospital, Hangzhou, People's Republic of China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
| | - Shunwu Fan
- Department of Orthopaedics, Medical College of Zhejiang University, Sir Run Run Shaw Hospital, Hangzhou, People's Republic of China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
| | - Ziang Xie
- Department of Orthopaedics, Medical College of Zhejiang University, Sir Run Run Shaw Hospital, Hangzhou, People's Republic of China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jian Wang
- Department of Orthopaedics, Medical College of Zhejiang University, Sir Run Run Shaw Hospital, Hangzhou, People's Republic of China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
- Department of Orthopaedics, Tongde Hospital of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
24
|
Das P, Hore A, Ghosh A, Datta P. Bone tissue engineering construct fabricated using a cell electrospinning technique with polyglutamic acid biopolymer. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02612-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Wu L, Jiao Y, Li Y, Jiang J, Zhao L, Li M, Li B, Yan Z, Chen X, Li X, Lu Y. Hepatic Gadd45β promotes hyperglycemia and glucose intolerance through DNA demethylation of PGC-1α. J Exp Med 2021; 218:e20201475. [PMID: 33688917 PMCID: PMC7953268 DOI: 10.1084/jem.20201475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022] Open
Abstract
Although widely used for their potent anti-inflammatory and immunosuppressive properties, the prescription of glucocorticoid analogues (e.g., dexamethasone) has been associated with deleterious glucose metabolism, compromising their long-term therapeutic use. However, the molecular mechanism remains poorly understood. In the present study, through transcriptomic and epigenomic analysis of two mouse models, we identified a growth arrest and DNA damage-inducible β (Gadd45β)-dependent pathway that stimulates hepatic glucose production (HGP). Functional studies showed that overexpression of Gadd45β in vivo or in cultured hepatocytes activates gluconeogenesis and increases HGP. In contrast, liver-specific Gadd45β-knockout mice were resistant to high-fat diet- or steroid-induced hyperglycemia. Of pathophysiological significance, hepatic Gadd45β expression is up-regulated in several mouse models of obesity and diabetic patients. Mechanistically, Gadd45β promotes DNA demethylation of PGC-1α promoter in conjunction with TET1, thereby stimulating PGC-1α expression to promote gluconeogenesis and hyperglycemia. Collectively, these findings unveil an epigenomic signature involving Gadd45β/TET1/DNA demethylation in hepatic glucose metabolism, enabling the identification of pathogenic factors in diabetes.
Collapse
Affiliation(s)
- Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Jiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Menghui Li
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
赵 健, 李 东, 安 阳. [Roles of ten eleven translocation proteins family and 5-hydroxymethylcytosine in epigenetic regulation of stem cells and regenerative medicine]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:420-424. [PMID: 33879920 PMCID: PMC8072413 DOI: 10.19723/j.issn.1671-167x.2021.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 06/12/2023]
Abstract
The methylation of cytosine is one of the most fundamental epigenetic modifications in mammalian genomes, and is involved in multiple crucial processes including gene expression, cell differentiation, embryo development and oncogenesis. In the past, DNA methylation was thought to be an irreversible process, which could only be diluted passively through DNA replication. It is now becoming increa-singly obvious that DNA demethylation can be an active process and plays a crucial role in biological processes. Ten eleven translocation (TET) proteins are the key factors modulating DNA demethylation. This family contains three members: TET1, TET2 and TET3. Although three TET proteins have relatively conserved catalytic domains, their roles in organisms are not repeated, and their expression has significant cell/organ specificity. TET1 is mainly expressed in embryonic stem cells, TET2 is mainly expressed in hematopoietic system, and TET3 is widely expressed in cerebellum, cortex and hippocampus. This family catalyzes 5-methylcytosine to 5-hydroxymethylcytosine and other oxidative products, reactivates silenced-gene expression, in turn maintains stem cell pluripotency and regulates lineage specification. With the development of tissue engineering, organ transplantation, autologous tissue transplantation and artificial prosthesis have been widely used in clinical treatment, but these technologies have limitations. Regenerative medicine, which uses stem cells and stem cell related factors for treatment, may provide alternative therapeutic strategies for multiple diseases. Among all kinds of human stem cells, adipose-derived stem cells (ADSCs) are the most prospective stem cell lineage since they have no ethical issues and can be easily obtained with large quantities. To date, ADSCs have been shown to have strong proli-feration capacity, secrete numerous soluble factors and have multipotent differentiation ability. However, the underlying mechanism of the proliferation, secretion, acquired pluripotency, and lineage specific differentiation of ADSCs are still largely unknown. Some studies have explored the role of epigenetic regulation and TET protein in embryonic stem cells, but little is known about its role in ADSCs. By studying the roles of TET proteins and 5-hydroxymethylcytosine in ADSCs, we could provide new theoretical foundation for the clinical application of ADSCs and the stem cell-based therapy. In the future, combined with bioprinting technology, ADSCs may be used in tissue and organ regeneration, plastic surgery reconstruction and other broader fields.
Collapse
Affiliation(s)
- 健芳 赵
- 北京大学第三医院成形外科,北京 100191Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
- 北京大学第一医院整形烧伤外科,北京 100034Department of Plastic Surgery and Burns, Peking University First Hospital, Beijing 100034, China
| | - 东 李
- 北京大学第三医院成形外科,北京 100191Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - 阳 安
- 北京大学第三医院成形外科,北京 100191Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
27
|
Xu F, Li W, Yang X, Na L, Chen L, Liu G. The Roles of Epigenetics Regulation in Bone Metabolism and Osteoporosis. Front Cell Dev Biol 2021; 8:619301. [PMID: 33569383 PMCID: PMC7868402 DOI: 10.3389/fcell.2020.619301] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a metabolic disease characterized by decreased bone mineral density and the destruction of bone microstructure, which can lead to increased bone fragility and risk of fracture. In recent years, with the deepening of the research on the pathological mechanism of osteoporosis, the research on epigenetics has made significant progress. Epigenetics refers to changes in gene expression levels that are not caused by changes in gene sequences, mainly including DNA methylation, histone modification, and non-coding RNAs (lncRNA, microRNA, and circRNA). Epigenetics play mainly a post-transcriptional regulatory role and have important functions in the biological signal regulatory network. Studies have shown that epigenetic mechanisms are closely related to osteogenic differentiation, osteogenesis, bone remodeling and other bone metabolism-related processes. Abnormal epigenetic regulation can lead to a series of bone metabolism-related diseases, such as osteoporosis. Considering the important role of epigenetic mechanisms in the regulation of bone metabolism, we mainly review the research progress on epigenetic mechanisms (DNA methylation, histone modification, and non-coding RNAs) in the osteogenic differentiation and the pathogenesis of osteoporosis to provide a new direction for the treatment of bone metabolism-related diseases.
Collapse
Affiliation(s)
- Fei Xu
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhui Li
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiao Yang
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Na
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linjun Chen
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guobin Liu
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
Chakraborty S, Sinha S, Sengupta A. Emerging trends in chromatin remodeler plasticity in mesenchymal stromal cell function. FASEB J 2020; 35:e21234. [PMID: 33337557 DOI: 10.1096/fj.202002232r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Emerging evidences highlight importance of epigenetic regulation and their integration with transcriptional and cell signaling machinery in determining tissue resident adult pluripotent mesenchymal stem/stromal cell (MSC) activity, lineage commitment, and multicellular development. Histone modifying enzymes and large multi-subunit chromatin remodeling complexes and their cell type-specific plasticity remain the central defining features of gene regulation and establishment of tissue identity. Modulation of transcription factor expression gradient ex vivo and concomitant flexibility of higher order chromatin architecture in response to signaling cues are exciting approaches to regulate MSC activity and tissue rejuvenation. Being an important constituent of the adult bone marrow microenvironment/niche, pathophysiological perturbation in MSC homeostasis also causes impaired hematopoietic stem/progenitor cell function in a non-cell autonomous mechanism. In addition, pluripotent MSCs can function as immune regulatory cells, and they reside at the crossroad of innate and adaptive immune response pathways. Research in the past few years suggest that MSCs/stromal fibroblasts significantly contribute to the establishment of immunosuppressive microenvironment in shaping antitumor immunity. Therefore, it is important to understand mesenchymal stromal epigenome and transcriptional regulation to leverage its applications in regenerative medicine, epigenetic memory-guided trained immunity, immune-metabolic rewiring, and precision immune reprogramming. In this review, we highlight the latest developments and prospects in chromatin biology in determining MSC function in the context of lineage commitment and immunomodulation.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| | - Sayantani Sinha
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| | - Amitava Sengupta
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| |
Collapse
|
29
|
Saw G, Tang FR. Epigenetic Regulation of the Hippocampus, with Special Reference to Radiation Exposure. Int J Mol Sci 2020; 21:ijms21249514. [PMID: 33327654 PMCID: PMC7765140 DOI: 10.3390/ijms21249514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
The hippocampus is crucial in learning, memory and emotion processing, and is involved in the development of different neurological and neuropsychological disorders. Several epigenetic factors, including DNA methylation, histone modifications and non-coding RNAs, have been shown to regulate the development and function of the hippocampus, and the alteration of epigenetic regulation may play important roles in the development of neurocognitive and neurodegenerative diseases. This review summarizes the epigenetic modifications of various cell types and processes within the hippocampus and their resulting effects on cognition, memory and overall hippocampal function. In addition, the effects of exposure to radiation that may induce a myriad of epigenetic changes in the hippocampus are reviewed. By assessing and evaluating the current literature, we hope to prompt a more thorough understanding of the molecular mechanisms that underlie radiation-induced epigenetic changes, an area which can be further explored.
Collapse
|
30
|
Kim KT, Lee YS, Han I. The Role of Epigenomics in Osteoporosis and Osteoporotic Vertebral Fracture. Int J Mol Sci 2020; 21:E9455. [PMID: 33322579 PMCID: PMC7763330 DOI: 10.3390/ijms21249455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
Osteoporosis is a complex multifactorial condition of the musculoskeletal system. Osteoporosis and osteoporotic vertebral fracture (OVF) are associated with high medical costs and can lead to poor quality of life. Genetic factors are important in determining bone mass and structure, as well as any predisposition for bone degradation and OVF. However, genetic factors are not enough to explain osteoporosis development and OVF occurrence. Epigenetics describes a mechanism for controlling gene expression and cellular processes without altering DNA sequences. The main mechanisms in epigenetics are DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). Recently, alterations in epigenetic mechanisms and their activity have been associated with osteoporosis and OVF. Here, we review emerging evidence that epigenetics contributes to the machinery that can alter DNA structure, gene expression, and cellular differentiation during physiological and pathological bone remodeling. A progressive understanding of normal bone metabolism and the role of epigenetic mechanisms in multifactorial osteopathy can help us better understand the etiology of the disease and convert this information into clinical practice. A deep understanding of these mechanisms will help in properly coordinating future individual treatments of osteoporosis and OVF.
Collapse
Affiliation(s)
- Kyoung-Tae Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (K.-T.K.); (Y.-S.L.)
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Young-Seok Lee
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (K.-T.K.); (Y.-S.L.)
- Department of Neurosurgery, Kyungpook National University Chilgok Hospital, Daegu 41944, Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do 13496, Korea
| |
Collapse
|
31
|
Ghorbaninejad M, Khademi-Shirvan M, Hosseini S, Baghaban Eslaminejad M. Epidrugs: novel epigenetic regulators that open a new window for targeting osteoblast differentiation. Stem Cell Res Ther 2020; 11:456. [PMID: 33115508 PMCID: PMC7594482 DOI: 10.1186/s13287-020-01966-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023] Open
Abstract
Efficient osteogenic differentiation of mesenchymal stem cells (MSCs) is a critical step in the treatment of bone defects and skeletal disorders, which present challenges for cell-based therapy and regenerative medicine. Thus, it is necessary to understand the regulatory agents involved in osteogenesis. Epigenetic mechanisms are considered to be the primary mediators that regulate gene expression during MSC differentiation. In recent years, epigenetic enzyme inhibitors have been used as epidrugs in cancer therapy. A number of studies mentioned the role of epigenetic inhibitors in the regulation of gene expression patterns related to osteogenic differentiation. This review attempts to provide an overview of the key regulatory agents of osteogenesis: transcription factors, signaling pathways, and, especially, epigenetic mechanisms. In addition, we propose to introduce epigenetic enzyme inhibitors (epidrugs) and their applications as future therapeutic approaches for bone defect regeneration.
Collapse
Affiliation(s)
- Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maliheh Khademi-Shirvan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
32
|
You W, Xu Z, Sun Y, Valencak TG, Wang Y, Shan T. GADD45α drives brown adipose tissue formation through upregulating PPARγ in mice. Cell Death Dis 2020; 11:585. [PMID: 32719383 PMCID: PMC7385159 DOI: 10.1038/s41419-020-02802-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Stress can lead to obesity and metabolic dysfunction, but the underlying mechanisms are unclear. Here we identify GADD45α, a stress-inducible histone folding protein, as a potential regulator for brown adipose tissue biogenesis. Unbiased transcriptomics data indicate a positive correlation between adipose Gadd45a mRNA level and obesity. At the cellular level, Gadd45a knockdown promoted proliferation and lipolysis of brown adipocytes, while Gadd45a overexpression had the opposite effects. Consistently, using a knockout (Gadd45a−/−) mouse line, we found that GADD45α deficiency inhibited lipid accumulation and promoted expression of thermogenic genes in brown adipocytes, leading to improvements in insulin sensitivity, glucose uptake, energy expenditure. At the molecular level, GADD45α deficiency increased proliferation through upregulating expression of cell cycle related genes. GADD45α promoted brown adipogenesis via interacting with PPARγ and upregulating its transcriptional activity. Our new data suggest that GADD45α may be targeted to promote non-shivering thermogenesis and metabolism while counteracting obesity.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ye Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | | | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China. .,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China. .,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China.
| |
Collapse
|
33
|
Xin TY, Yu TT, Yang RL. DNA methylation and demethylation link the properties of mesenchymal stem cells: Regeneration and immunomodulation. World J Stem Cells 2020; 12:351-358. [PMID: 32547683 PMCID: PMC7280864 DOI: 10.4252/wjsc.v12.i5.351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a heterogeneous population that can be isolated from various tissues, including bone marrow, adipose tissue, umbilical cord blood, and craniofacial tissue. MSCs have attracted increasingly more attention over the years due to their regenerative capacity and function in immunomodulation. The foundation of tissue regeneration is the potential of cells to differentiate into multiple cell lineages and give rise to multiple tissue types. In addition,the immunoregulatory function of MSCs has provided insights into therapeutic treatments for immune-mediated diseases. DNA methylation and demethylation are important epigenetic mechanisms that have been shown to modulate embryonic stem cell maintenance, proliferation, differentiation and apoptosis by activating or suppressing a number of genes. In most studies, DNA hypermethylation is associated with gene suppression, while hypomethylation or demethylation is associated with gene activation. The dynamic balance of DNA methylation and demethylation is required for normal mammalian development and inhibits the onset of abnormal phenotypes. However, the exact role of DNA methylation and demethylation in MSC-based tissue regeneration and immunomodulation requires further investigation. In this review, we discuss how DNA methylation and demethylation function in multi-lineage cell differentiation and immunomodulation of MSCs based on previously published work. Furthermore, we discuss the implications of the role of DNA methylation and demethylation in MSCs for the treatment of metabolic or immune-related diseases.
Collapse
Affiliation(s)
- Tian-Yi Xin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Ting-Ting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Rui-Li Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
34
|
Yang X, Chen X, Xia C, Li S, Zhu L, Xu C. Comparative analysis of the expression profiles of genes related to the Gadd45α signaling pathway in four kinds of liver diseases. Histol Histopathol 2020; 35:949-960. [PMID: 32298459 DOI: 10.14670/hh-18-218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gadd45α (growth arrest and DNA damage inducible alpha) is a member of a group of genes whose transcript levels are increased following stressful conditions that lead to growth arrest and treatment with agents that lead to DNA damage. Gadd45α is upregulated in liver cirrhosis (LC), hepatic cancer (HC), acute liver failure (AHF) and non-alcoholic fatty liver disease(NAFLD). Here, we investigated the essential differences in the Gadd45α signaling pathway in these diseases at the transcriptional level. The results showed that 44, 46, 71 and 27 genes significant changes in these diseases, and the H-cluster showed that the expression of the Gadd45α signaling-related genes was significantly different in the four liver diseases. DAVID functional analysis showed that the Gadd45α signaling pathway-related genes were mainly involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory responses, etc. Ingenuity pathway analysis (IPA) software was used to predict the functions of the Gadd45α signaling-related genes, and the results indicated that there were significant changes in cell differentiation, DNA damage repair, autophagy, apoptosis and necrosis. Gadd45α signaling pathway is involved in four kinds of liver disease and regulates a variety of activities via P38 MAPK, NF-κB, mTOR/STAT3, P21, PCNA, PI3K/Akt and other signaling pathways. Modulation of Gadd45α may be exploited to prevent the progression of liver disease, and to identify specific treatments for different stages of liver disease. In summary, the Gadd45α signaling pathway is involved in four kinds of liver disease and regulates a variety of physiological activities through various signaling pathways.
Collapse
Affiliation(s)
- Xianguang Yang
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China
| | - Xuelin Chen
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Cong Xia
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Shuaihong Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Lin Zhu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| |
Collapse
|
35
|
DNA methylation of noncoding RNAs: new insights into osteogenesis and common bone diseases. Stem Cell Res Ther 2020; 11:109. [PMID: 32143708 PMCID: PMC7060611 DOI: 10.1186/s13287-020-01625-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/09/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
Bone diseases such as osteoarthritis, osteoporosis, and bone tumor present a severe public health problem. Osteogenic differentiation is a complex process associated with the differentiation of different cells, which could regulate transcription factors, cytokines, many signaling pathways, noncoding RNAs (ncRNAs), and epigenetic modulation. DNA methylation is a kind of stable epigenetic alterations in CpG islands without DNA sequence changes and is involved in cancer and other diseases, including bone development and homeostasis. ncRNAs can perform their crucial biological functions at the RNA level, and many findings have demonstrated essential functions of ncRNAs in osteogenic differentiation. In this review, we highlight current researches in DNA methylation of two relevant ncRNAs, including microRNAs and long noncoding RNAs, in the initiation and progression of osteogenesis and bone diseases.
Collapse
|
36
|
You W, Xu Z, Shan T. Regulatory Roles of GADD45α in Skeletal Muscle and Adipocyte. Curr Protein Pept Sci 2020; 20:918-925. [PMID: 31232235 DOI: 10.2174/1389203720666190624143503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/02/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
GADD45α, a member of the GADD45 family proteins, is involved in various cellular processes including the maintenance of genomic integrity, growth arrest, apoptosis, senescence, and signal transduction. In skeletal muscle, GADD45α plays an important role in regulating mitochondrial biogenesis and muscle atrophy. In adipocytes, GADD45α regulates preadipocyte differentiation, lipid accumulation, and thermogenesis metabolism. Moreover, it has been recently demonstrated that GADD45α promotes gene activation by inducing DNA demethylation. The epigenetic function of GADD45α is important for preadipocyte differentiation and transcriptional regulation during development. This article mainly reviews and discusses the regulatory roles of GADD45α in skeletal muscle development, adipocyte progenitor differentiation, and DNA demethylation.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal Sciences, Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
37
|
Feng L, Zhou J, Xia B, Tian BF. The Positive Effect of TET2 on the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Cell Reprogram 2020; 22:3-13. [PMID: 31829736 DOI: 10.1089/cell.2019.0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Li Feng
- Department of Traumatic Orthopedics, Jining No. 1 People's Hospital, Jining, China
| | - Jing Zhou
- Department of Gynecology, Jining No. 1 People's Hospital, Jining, China
| | - Bo Xia
- Department of Traumatic Orthopedics, Jining No. 1 People's Hospital, Jining, China
| | - Bao-Fang Tian
- Department of Traumatic Orthopedics, Jining No. 1 People's Hospital, Jining, China
| |
Collapse
|
38
|
Gomathi K, Akshaya N, Srinaath N, Moorthi A, Selvamurugan N. Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sci 2020; 245:117389. [PMID: 32007573 DOI: 10.1016/j.lfs.2020.117389] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/27/2023]
Abstract
Osteogenesis is the process of new bone formation where transcription factors play an important role in controlling cell proliferation and differentiation. Runt-related transcription factor 2 (Runx2), a key transcription factor, regulates the differentiation of mesenchymal stem cells into osteoblasts, which further mature into osteocytes. Runx2 acts as a modulator such that it can either stimulate or inhibit the osteoblast differentiation. A defect/alteration in the expression/activity of this gene may lead to skeletal dysplasia. Runx2 thus serves as the best therapeutic model gene for studying bone and bone-related diseases. In this review, we briefly outline the regulation of Runx2 and its activity at the post-translational levels by the virtue of phosphorylation, acetylation, and ubiquitination in controlling the bone homeostasis.
Collapse
Affiliation(s)
- K Gomathi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Srinaath
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - A Moorthi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
39
|
Impact of genotype, body weight and sex on the prenatal muscle transcriptome of Iberian pigs. PLoS One 2020; 15:e0227861. [PMID: 31990923 PMCID: PMC6986718 DOI: 10.1371/journal.pone.0227861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
Growth is dependent on genotype and diet, even at early developmental stages. In this study, we investigated the effects of genotype, sex, and body weight on the fetal muscle transcriptome of purebred Iberian and crossbred Iberian x Large White pigs sharing the same uterine environment. RNA sequencing was performed on 16 purebred and crossbred fetuses with high body weight (340±14g and 415±14g, respectively) and 16 with low body weight (246±14g and 311±14g, respectively), on gestational day 77. Genotype had the greatest effect on gene expression, with 645 genes identified as differentially expressed (DE) between purebred and crossbred animals. Functional analysis showed differential regulation of pathways involved in energy and lipid metabolism, muscle development, and tissue disorders. In purebred animals, fetal body weight was associated with 35 DE genes involved in development, lipid metabolism and adipogenesis. In crossbred animals, fetal body weight was associated with 60 DE genes involved in muscle development, viability, and immunity. Interestingly, the results suggested an interaction genotype*weight for some DE genes. Fetal sex had only a modest effect on gene expression. This study allowed the identification of genes, metabolic pathways, biological functions and regulators related to fetal genotype, weight and sex, in animals sharing the same uterine environment. Our findings contribute to a better understanding of the molecular events that influence prenatal muscle development and highlight the complex interactions affecting transcriptional regulation during development.
Collapse
|
40
|
Dnmt3a-Mediated DNA Methylation Changes Regulate Osteogenic Differentiation of hMSCs Cultivated in the 3D Scaffolds under Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4824209. [PMID: 31827676 PMCID: PMC6885223 DOI: 10.1155/2019/4824209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/07/2019] [Indexed: 01/17/2023]
Abstract
Oxidative stress (OS) caused by multiple factors occurs after the implantation of bone repair materials. DNA methylation plays an important role in the regulation of osteogenic differentiation. Moreover, recent studies suggest that DNA methyltransferases (Dnmts) are involved in bone formation and resorption. However, the effect and mechanism of DNA methylation changes induced by OS on bone formation after implantation still remain unknown. Three-dimensional (3D) cell culture systems are much closer to the real situation than traditional monolayer cell culture systems in mimicking the in vivo microenvironment. We have developed porous 3D scaffolds composed of mineralized collagen type I, which mimics the composition of the extracellular matrix of human bone. Here, we first established a 3D culture model of human mesenchymal stem cells (hMSCs) seeded in the biomimetic scaffolds using 160 μM H2O2 to simulate the microenvironment of osteogenesis after implantation. Our results showed that decreased methylation levels of ALP and RUNX2 were induced by H2O2 treatment in hMSCs cultivated in the 3D scaffolds. Furthermore, we found that Dnmt3a was significantly downregulated in a porcine anterior lumbar interbody fusion model and was confirmed to be reduced by H2O2 treatment using the 3D in vitro model. The hypomethylation of ALP and RUNX2 induced by H2O2 treatment was abolished by Dnmt3a overexpression. Moreover, our findings demonstrated that the Dnmt inhibitor 5-AZA can enhance osteogenic differentiation of hMSCs under OS, evidenced by the increased expression of ALP and RUNX2 accompanied by the decreased DNA methylation of ALP and RUNX2. Taken together, these results suggest that Dnmt3a-mediated DNA methylation changes regulate osteogenic differentiation and 5-AZA can enhance osteogenic differentiation via the hypomethylation of ALP and RUNX2 under OS. The biomimetic 3D scaffolds combined with 5-AZA and antioxidants may serve as a promising novel strategy to improve osteogenesis after implantation.
Collapse
|
41
|
Chen R, Ren L, Cai Q, Zou Y, Fu Q, Ma Y. The role of epigenetic modifications in the osteogenic differentiation of adipose-derived stem cells. Connect Tissue Res 2019; 60:507-520. [PMID: 31203665 DOI: 10.1080/03008207.2019.1593395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the last decade, stem cells have drawn extensive attention from scientists due to their full potential in tissue engineering, gene therapy, and cell therapy. Adipose-derived stem cells (ADSCs), which represent one type of mesenchymal stem cell (MSC), hold great promise in bone tissue engineering due to their painless collection procedure, their ability to self-renew and their multi-lineage differentiation properties. Major epigenetic mechanisms, which involve DNA methylation, histone modifications and RNA interference (RNAi), are known to represent one of the determining factors of ADSC fate and differentiation. Understanding the epigenetic modifications of ADSCs may provide a clue for improving stem cell therapy in bone repair and regeneration. The aim of this review is to present the recent advances in understanding the epigenetic mechanisms that facilitate ADSC differentiation into an osteogenic lineage, in addition to the characteristics of the main epigenetic modifications.
Collapse
Affiliation(s)
- Ruixin Chen
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Lin Ren
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Qingwei Cai
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Yang Zou
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Qiang Fu
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Yuanyuan Ma
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| |
Collapse
|
42
|
Schüle KM, Leichsenring M, Andreani T, Vastolo V, Mallick M, Musheev MU, Karaulanov E, Niehrs C. GADD45 promotes locus-specific DNA demethylation and 2C cycling in embryonic stem cells. Genes Dev 2019; 33:782-798. [PMID: 31171699 PMCID: PMC6601511 DOI: 10.1101/gad.325696.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022]
Abstract
In this study, Schüle et al. report an unexpected role of GADD45 proteins in regulation of the cycling of ESCs in the 2C state. Using methylome analysis of Gadd45 triple-mutant ESCs, they found a role for GADD45 in demethylation of specific TET targets and partial deregulation of ZGA genes at the two-cell stage. Mouse embryonic stem cell (ESC) cultures contain a rare cell population of “2C-like” cells resembling two-cell embryos, the key stage of zygotic genome activation (ZGA). Little is known about positive regulators of the 2C-like state and two-cell stage embryos. Here we show that GADD45 (growth arrest and DNA damage 45) proteins, regulators of TET (TET methylcytosine dioxygenase)-mediated DNA demethylation, promote both states. Methylome analysis of Gadd45a,b,g triple-knockout (TKO) ESCs reveal locus-specific DNA hypermethylation of ∼7000 sites, which are enriched for enhancers and loci undergoing TET–TDG (thymine DNA glycosylase)-mediated demethylation. Gene expression is misregulated in TKOs, notably upon differentiation, and displays signatures of DNMT (DNA methyltransferase) and TET targets. TKOs manifest impaired transition into the 2C-like state and exhibit DNA hypermethylation and down-regulation of 2C-like state-specific genes. Gadd45a,b double-mutant mouse embryos display embryonic sublethality, deregulated ZGA gene expression, and developmental arrest. Our study reveals an unexpected role of GADD45 proteins in embryonic two-cell stage regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,German Cancer Research Center (DKFZ), Division of Molecular Embryology, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Li RN, Lin YZ, Pan YC, Lin CH, Tseng CC, Sung WY, Wu CC, Ou TT, Tsai WC, Yen JH. GADD45a and GADD45b Genes in Rheumatoid Arthritis and Systemic Lupus Erythematosus Patients. J Clin Med 2019; 8:jcm8060801. [PMID: 31195707 PMCID: PMC6617344 DOI: 10.3390/jcm8060801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 12/29/2022] Open
Abstract
Background: GADD45 genes are stress sensors in response to cellular stress response, activated signal pathways leading to the stimulation of inflammatory cytokines. This study is to examine the associations of GADD45a and GADD45b genes with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) patients. Methods: 230 patients of RA, 140 patients of SLE, and 191 healthy controls were enrolled. Genomic DNA was extracted from peripheral blood mononuclear cells and gene polymorphisms were genotyped by TaqMan assay. RNA expression was quantitated with real-time polymerase chain reaction. Results: The RNA expression of the GADD45b gene was significantly lower in RA patients than the control cases (p = 0.03). The odds ratio of GADD45a genotype -589 CC (rs581000) was significantly low (OR = 0.36, 95% CI, 0.15–0.87) in DR4-negative RA patients. The odds ratio of GADD45b genotype -712CT (rs3795024) in DR4-negative RA patients was 0.41 (95% CI, 0.18–0.95). In clinical manifestation, the odds ratio of GADD45b -712CT genotype with anti-RNP antibody was 4.14 (95% CI, 1.10–15.63) in SLE patients. GADD45a genotype -589GG+GC was associated with rheumatoid factor (RF) in SLE patients. Conclusions: Genotypes GADD45a -589CC and GADD45b -712CT were shown to be less susceptible to RA and related to the disease state in SLE patients.
Collapse
Affiliation(s)
- Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yuan-Zhao Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ya-Chun Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Hui Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Chun Tseng
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 807, Taiwan.
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
44
|
Das P, Veazey KJ, Van HT, Kaushik S, Lin K, Lu Y, Ishii M, Kikuta J, Ge K, Nussenzweig A, Santos MA. Histone methylation regulator PTIP is required to maintain normal and leukemic bone marrow niches. Proc Natl Acad Sci U S A 2018; 115:E10137-E10146. [PMID: 30297393 PMCID: PMC6205459 DOI: 10.1073/pnas.1806019115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The bone is essential for locomotion, calcium storage, and harboring the hematopoietic stem cells (HSCs) that supply the body with mature blood cells throughout life. HSCs reside at the interface of the bone and bone marrow (BM), where active bone remodeling takes place. Although the cellular components of the BM niche have been characterized, little is known about its epigenetic regulation. Here we find that the histone methylation regulator PTIP (Pax interaction with transcription-activation domain protein-1) is required to maintain the integrity of the BM niche by promoting osteoclast differentiation. PTIP directly promotes chromatin changes required for the expression of Pparγ (peroxisome proliferator-activated receptor-γ), a transcription factor essential for osteoclastogenesis. PTIP deletion leads to a drastic reduction of HSCs in the BM and induces extramedullary hematopoiesis. Furthermore, exposure of acute myeloid leukemia cells to a PTIP-deficient BM microenvironment leads to a reduction in leukemia-initiating cells and increased survival upon transplantation. Taken together, our data identify PTIP as an epigenetic regulator of osteoclastogenesis that is required for the integrity of the BM niche to sustain both normal hematopoiesis and leukemia.
Collapse
Affiliation(s)
- Prosun Das
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Kylee J Veazey
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Hieu T Van
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Saakshi Kaushik
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Margarida A Santos
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030;
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
45
|
Ma JX, Li JY, Fan DD, Feng W, Lin AF, Xiang LX, Shao JZ. Identification of DEAD-Box RNA Helicase DDX41 as a Trafficking Protein That Involves in Multiple Innate Immune Signaling Pathways in a Zebrafish Model. Front Immunol 2018; 9:1327. [PMID: 29942316 PMCID: PMC6005158 DOI: 10.3389/fimmu.2018.01327] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
DDX41 is an important sensor for host recognition of DNA viruses and initiation of nuclear factor-κB (NF-κB) and IFN signaling pathways in mammals. However, its occurrence and functions in other vertebrates remain poorly defined. Here, a DDX41 ortholog [Danio rerio DDX41 (DrDDX41)] with various conserved structural features to its mammalian counterparts was identified from a zebrafish model. This DrDDX41 was found to be a trafficking protein distributed in the nucleus of resting cells but transported into the cytoplasm under DNA stimulation. Two nuclear localization signal motifs were localized beside the coiled-coil domain, whereas one nuclear export signal motif existed in the DEADc domain. DrDDX41 acts as an initiator for the activation of NF-κB and IFN signaling pathways in a Danio rerio STING (DrSTING)-dependent manner through its DEADc domain, which is a typical performance of mammalian DDX41. These observations suggested the conservation of DDX41 proteins throughout the vertebrate evolution, making zebrafish an alternative model in understanding DDX41-mediated immunology. With this model system, we found that DrDDX41 contributes to DrSTING–Danio rerio STAT6 (DrSTAT6)-mediated chemokine (Danio rerio CCL20) production through its DEADc domain. To the best of our knowledge, this work is the first report showing that DDX41 is an upstream initiator in this newly identified signaling pathway. The DrDDX41-mediated signaling pathways play important roles in innate antibacterial immunity because knockdown of either DrDDX41 or DrSTING/DrSTAT6 significantly reduced the survival of zebrafish under Aeromonas hydrophilia or Edwardsiella tarda infection. Our findings would enrich the current knowledge of DDX41-mediated immunology and the evolutionary history of the DDX41 family.
Collapse
Affiliation(s)
- Jun-Xia Ma
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiang-Yuan Li
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wei Feng
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
46
|
Schäfer A, Mekker B, Mallick M, Vastolo V, Karaulanov E, Sebastian D, von der Lippen C, Epe B, Downes DJ, Scholz C, Niehrs C. Impaired DNA demethylation of C/EBP sites causes premature aging. Genes Dev 2018; 32:742-762. [PMID: 29884649 PMCID: PMC6049513 DOI: 10.1101/gad.311969.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/25/2022]
Abstract
Here, Schäfer et al. investigated whether DNA methylation alterations are involved in aging. Using knockout mice for adapter proteins for site-specific demethylation by TET methylcytosine dioxygenases Gadd45a and Ing1, they show that enhancer methylation can affect aging and imply that C/EBP proteins play an unexpected role in this process. Changes in DNA methylation are among the best-documented epigenetic alterations accompanying organismal aging. However, whether and how altered DNA methylation is causally involved in aging have remained elusive. GADD45α (growth arrest and DNA damage protein 45A) and ING1 (inhibitor of growth family member 1) are adapter proteins for site-specific demethylation by TET (ten-eleven translocation) methylcytosine dioxygenases. Here we show that Gadd45a/Ing1 double-knockout mice display segmental progeria and phenocopy impaired energy homeostasis and lipodystrophy characteristic of Cebp (CCAAT/enhancer-binding protein) mutants. Correspondingly, GADD45α occupies C/EBPβ/δ-dependent superenhancers and, cooperatively with ING1, promotes local DNA demethylation via long-range chromatin loops to permit C/EBPβ recruitment. The results indicate that enhancer methylation can affect aging and imply that C/EBP proteins play an unexpected role in this process. Our study suggests a causal nexus between DNA demethylation, metabolism, and organismal aging.
Collapse
Affiliation(s)
- Andrea Schäfer
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | | | | | | | | | - Carina von der Lippen
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Damien J Downes
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Carola Scholz
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,German Cancer Research Center, Division of Molecular Embryology, German Cancer Research Center-Center for Molecular Biology (DKFZ-ZMBH) Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Wang B, Fu X, Zhu MJ, Du M. Retinoic acid inhibits white adipogenesis by disrupting GADD45A-mediated Zfp423 DNA demethylation. J Mol Cell Biol 2018; 9:338-349. [PMID: 28992291 DOI: 10.1093/jmcb/mjx026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
Retinoic acid (RA), a bioactive metabolite of vitamin A, is a critical mediator of cell differentiation. RA blocks adipogenesis, but mechanisms remain to be established. ZFP423 is a key transcription factor maintaining white adipose identity. We found that RA inhibits Zfp423 expression and adipogenesis via blocking DNA demethylation in the promoter of Zfp423, a process mediated by growth arrest and DNA-damage-inducible protein alpha (GADD45A). RA induces the partnering between retinoic acid receptor (RAR) and tumor suppressor inhibitor of growth protein 1 (ING1), which prevents the formation of GADD45A and ING1 complex necessary for locus-specific Zfp423 DNA demethylation. In vivo, vitamin A supplementation prevents obesity, downregulates Gadd45a expression, and reduces GADD45A binding and DNA demethylation in the Zfp423 promoter. Inhibition of Zfp423 expression due to RA contributes to the enhanced brown adipogenesis. In summary, RA inhibits white adipogenesis by inducing RAR and ING1 interaction and inhibiting Gadd45a expression, which prevents GADD45A-mediated DNA demethylation.
Collapse
Affiliation(s)
- B Wang
- Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100094, China.,Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Xing Fu
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100094, China.,Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
48
|
Gadd45a opens up the promoter regions of miR-295 facilitating pluripotency induction. Cell Death Dis 2017; 8:e3107. [PMID: 29022923 PMCID: PMC5682663 DOI: 10.1038/cddis.2017.497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/13/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) play crucial roles in the establishment of pluripotent state by controlling pluripotent network. However, the molecular mechanisms controlling miRNAs during somatic cell reprogramming remain obscure. In this study, we show Gadd45a (growth arrest and DNA-damage-inducible protein 45a) enhances reprogramming by activating miR-295. Furthermore, we show that Gadd45a binds the promoter regions of miR-295. Nuclease accessibility assay indicates that Gadd45a opens the promoter regions of miR-295. Levels of H3K9Ac and H3K27Ac on the promoter regions of miR-295 were also increased. In conclusion, our results indicate that Gadd45a relaxes the promoter regions of miR-295 and promotes the expression of miR-295 during reprogramming, implying a concise mechanism of Gadd45a and miR-290 cluster cooperation in cell-fate determination.
Collapse
|
49
|
Curtis EM, Murray R, Titcombe P, Cook E, Clarke-Harris R, Costello P, Garratt E, Holbrook JD, Barton S, Inskip H, Godfrey KM, Bell CG, Cooper C, Lillycrop KA, Harvey NC. Perinatal DNA Methylation at CDKN2A Is Associated With Offspring Bone Mass: Findings From the Southampton Women's Survey. J Bone Miner Res 2017; 32:2030-2040. [PMID: 28419547 PMCID: PMC5528139 DOI: 10.1002/jbmr.3153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/28/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Poor intrauterine and childhood growth has been linked with the risk of osteoporosis in later life, a relationship that may in part be mediated through altered epigenetic regulation of genes. We previously identified a region within the promoter of the long non-coding RNA ANRIL encoded by the CDKN2A locus, at which differential DNA methylation at birth showed correlations with offspring adiposity. Given the common lineage of adipocytes and osteoblasts, we investigated the relationship between perinatal CDKN2A methylation and bone mass at ages 4 and 6 years. Using sodium bisulfite pyrosequencing, we measured the methylation status of the 9 CpGs within this region in umbilical cord samples from discovery (n = 332) and replication (n = 337) cohorts of children from the Southampton Women's Survey, whose bone mass was assessed by dual-energy X-ray absorptiomietry (DXA; Hologic Discovery). Inverse associations were found between perinatal CDKN2A methylation and whole-body minus head bone area (BA), bone mineral content (BMC), and areal bone mineral density (BMD). This was confirmed in replication and combined data sets (all p < 0.01), with each 10% increase in methylation being associated with a decrease in BMC of 4 to 9 g at age 4 years (p ≤ 0.001). Relationships were similar with 6-year bone mass. Functional investigation of the differentially methylated region in the SaOS-2 osteosarcoma cell line showed that transcription factors bound to the identified CpGs in a methylation-specific manner and that CpG mutagenesis modulated ANRIL expression. In conclusion, perinatal methylation at CDKN2A is associated with childhood bone development and has significance for cell function. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Elizabeth M Curtis
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Robert Murray
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Philip Titcombe
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Eloïse Cook
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | | | - Paula Costello
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Emma Garratt
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Joanna D Holbrook
- Institute of Developmental Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Singapore Institute for Clinical Sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Sheila Barton
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Hazel Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,Institute of Developmental Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher G Bell
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,Institute of Developmental Sciences, University of Southampton, Southampton, UK.,Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,NIHR Oxford Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - Karen A Lillycrop
- Institute of Developmental Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
50
|
Effects of microRNA-374 on proliferation, migration, invasion, and apoptosis of human SCC cells by targeting Gadd45a through P53 signaling pathway. Biosci Rep 2017; 37:BSR20170710. [PMID: 28679648 PMCID: PMC6435473 DOI: 10.1042/bsr20170710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 12/20/2022] Open
Abstract
The present study investigated the effects of microRNA-374 (miR-374) on human squamous cell carcinoma (SCC) cell proliferation, migration, invasion, and apoptosis through P53 signaling pathway by targeting growth arrest and DNA-damage-inducible protein 45 α (Gadd45a). Skin samples were collected from patients with skin SCC and normal skin samples. Expression of miR-374, Gadd45a, P53, P73, P16, c-myc, bcl-2, Bax, caspase-3, and caspase-9 were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. A431 and SCL-1 cells were divided into blank, negative control (NC), miR-374 mimics, miR374 inhibitors, siRNA–Gadd45a, and miR-374 inhibitors + siRNA–Gadd45a groups. Their proliferation, migration, invasion, cell cycle, and apoptosis were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, scratch test, Transwell assay, and flow cytometry. SCC skin tissues exhibited decreased expression of miR-374, P73, P16, Bax caspase-3 and caspase-9, and increased levels of Gadd45a, P53, c-myc, and Bcl-2 compared with the normal skin tissues. The miR-374 inhibitors group exhibited decreased expression of miR-374, P73, P16, Bax caspase-3 and caspase-9, and increased expression of Gadd45a, P53, c-myc, and Bcl-2, enhanced cell proliferation, migration, and invasion, and reduced apoptosis compared with the blank and NC groups; the miR-374 mimics group followed opposite trends. Compared with the blank and NC groups, the miR-374 inhibitors + siRNA–Gadd45a group showed decreased miR-374 level; the siRNA–Gadd45a group showed elevated levels of P73, P16, Bax, caspase-3 and caspase-9, decreased levels of Gadd45a, P53, c-myc, and Bcl-2, reduced cell proliferation, migration, and invasion, and accelerated apoptosis. miR-374 induces apoptosis and inhibits proliferation, migration, and invasion of SCC cells through P53 signaling pathway by down-regulating Gadd45a.
Collapse
|