1
|
Chikopela T, Mwesigwa N, Masenga SK, Kirabo A, Shibao CA. The Interplay of HIV and Long COVID in Sub-Saharan Africa: Mechanisms of Endothelial Dysfunction. Curr Cardiol Rep 2024; 26:859-871. [PMID: 38958890 DOI: 10.1007/s11886-024-02087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Long COVID affects approximately 5 million people in Africa. This disease is characterized by persistent symptoms or new onset of symptoms after an acute SARS-CoV-2 infection. Specifically, the most common symptoms include a range of cardiovascular problems such as chest pain, orthostatic intolerance, tachycardia, syncope, and uncontrolled hypertension. Importantly, these conditions appear to have endothelial dysfunction as the common denominator, which is often due to impaired nitric oxide (NO) mechanisms. This review discusses the role of mechanisms contributing to endothelial dysfunction in Long COVID, particularly in people living with HIV. RECENT FINDINGS Recent studies have reported that increased inflammation and oxidative stress, frequently observed in Long COVID, may contribute to NO dysfunction, ultimately leading to decreased vascular reactivity. These mechanisms have also been reported in people living with HIV. In regions like Africa, where HIV infection is still a major public health challenge with a prevalence of approximately 26 million people in 2022. Specifically, endothelial dysfunction has been reported as a major mechanism that appears to contribute to cardiovascular diseases and the intersection with Long COVID mechanisms is of particular concern. Further, it is well established that this population is more likely to develop Long COVID following infection with SARS-CoV-2. Therefore, concomitant infection with SARS-CoV-2 may lead to accelerated cardiovascular disease. We outline the details of the worsening health problems caused by Long COVID, which exacerbate pre-existing conditions such as endothelial dysfunction. The overlapping mechanisms of HIV and SARS-CoV-2, particularly the prolonged inflammatory response and chronic hypoxia, may increase susceptibility to Long COVID. Addressing these overlapping health issues is critical as it provides clinical entry points for interventions that could improve and enhance outcomes and quality of life for those affected by both HIV and Long COVID in the region.
Collapse
Affiliation(s)
- Theresa Chikopela
- Department of Human Physiology, Faculty of Medicine, Lusaka Apex Medical University, Lusaka, Zambia
| | - Naome Mwesigwa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37332-0615, USA
| | - Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone, Zambia
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37332-0615, USA
| | - Cyndya A Shibao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37332-0615, USA.
| |
Collapse
|
2
|
Speidell A, Agbey C, Mocchetti I. Accelerated neurodegeneration of basal forebrain cholinergic neurons in HIV-1 gp120 transgenic mice: Critical role of the p75 neurotrophin receptor. Brain Behav Immun 2024; 117:347-355. [PMID: 38266662 PMCID: PMC10935610 DOI: 10.1016/j.bbi.2024.01.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024] Open
Abstract
Human Immunodeficiency Virus-1 (HIV) infection of the brain induces HIV-associated neurocognitive disorders (HAND). The set of molecular events employed by HIV to drive cognitive impairments in people living with HIV are diverse and remain not completely understood. We have shown that the HIV envelope protein gp120 promotes loss of synapses and decreases performance on cognitive tasks through the p75 neurotrophin receptor (p75NTR). This receptor is abundant on cholinergic neurons of the basal forebrain and contributes to cognitive impairment in various neurological disorders. In this study, we examined cholinergic neurons of gp120 transgenic (gp120tg) mice for signs of degeneration. We observed that the number of choline acetyltransferase-expressing cells is decreased in old (12-14-month-old) gp120tg mice when compared to age matched wild type. In the same animals, we observed an increase in the levels of pro-nerve growth factor, a ligand of p75NTR, as well as a disruption of consolidation of extinction of conditioned fear, a behavior regulated by cholinergic neurons of the basal forebrain. Both biochemical and behavioral outcomes of gp120tg mice were rescued by the deletion of the p75NTR gene, strongly supporting the role that this receptor plays in the neurotoxic effects of gp120. These data indicate that future p75NTR-directed pharmacotherapies could provide an adjunct therapy against synaptic simplification caused by HIV.
Collapse
Affiliation(s)
- Andrew Speidell
- Interdisciplinary Program in Neuroscience, and Department of Neuroscience, NRB WP13, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Christy Agbey
- Interdisciplinary Program in Neuroscience, and Department of Neuroscience, NRB WP13, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Italo Mocchetti
- Interdisciplinary Program in Neuroscience, and Department of Neuroscience, NRB WP13, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
3
|
Leonard S, Benfante R. Unanswered questions in the regulation and function of the duplicated α7 nicotinic receptor gene CHRFAM7A. Pharmacol Res 2023; 192:106783. [PMID: 37164281 DOI: 10.1016/j.phrs.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The α7 nicotinic receptor (α7 nAChR) is an important entry point for Ca2+ into the cell, which has broad and important effects on gene expression and function. The gene (CHRNA7), mapping to chromosome (15q14), has been genetically linked to a large number of diseases, many of which involve defects in cognition. While numerous mutations in CHRNA7 are associated with mental illness and inflammation, an important control point may be the function of a recently discovered partial duplication CHRNA7, CHRFAM7A, that negatively regulates the function of the α7 receptor, through the formation of heteropentamers; other functions cannot be excluded. The deregulation of this human specific gene (CHRFAM7A) has been linked to neurodevelopmental, neurodegenerative, and inflammatory disorders and has important copy number variations. Much effort is being made to understand its function and regulation both in healthy and pathological conditions. However, many questions remain to be answered regarding its functional role, its regulation, and its role in the etiogenesis of neurological and inflammatory disorders. Missing knowledge on the pharmacology of the heteroreceptor has limited the discovery of new molecules capable of modulating its activity. Here we review the state of the art on the role of CHRFAM7A, highlighting unanswered questions to be addressed. A possible therapeutic approach based on genome editing protocols is also discussed.
Collapse
Affiliation(s)
- Sherry Leonard
- Department of Psychiatry - University of Colorado Anschutz, Aurora, Colorado, USA
| | - Roberta Benfante
- CNR - Institute of Neuroscience, Vedano al Lambro (MB), Italy; Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; NeuroMI - Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
4
|
Lun J, Li Y, Gao X, Gong Z, Chen X, Zou J, Zhou C, Huang Y, Zhou B, Huang P, Cao H. Kynurenic acid blunts A1 astrocyte activation against neurodegeneration in HIV-associated neurocognitive disorders. J Neuroinflammation 2023; 20:87. [PMID: 36997969 PMCID: PMC10061717 DOI: 10.1186/s12974-023-02771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
Despite extensive astrocyte activation in patients suffering from HIV-associated neurocognitive disorders (HAND), little is known about the contribution of astrocytes to HAND neuropathology. Here, we report that the robust activation of neurotoxic astrocytes (A1 astrocytes) in the CNS promotes neuron damage and cognitive deficits in HIV-1 gp120 transgenic mice. Notably, knockout of α7 nicotinic acetylcholine receptors (α7nAChR) blunted A1 astrocyte responses, ultimately facilitating neuronal and cognitive improvement in the gp120tg mice. Furthermore, we provide evidence that Kynurenic acid (KYNA), a tryptophan metabolite with α7nAChR inhibitory properties, attenuates gp120-induced A1 astrocyte formation through the blockade of α7nAChR/JAK2/STAT3 signaling activation. Meanwhile, compared with gp120tg mice, mice fed with tryptophan showed dramatic improvement in cognitive performance, which was related to the inhibition of A1 astrocyte responses. These initial and determinant findings mark a turning point in our understanding of the role of α7nAChR in gp120-mediated A1 astrocyte activation, opening up new opportunities to control neurotoxic astrocyte generation through KYNA and tryptophan administration.
Collapse
Affiliation(s)
- Jingxian Lun
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Yubin Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Xuefeng Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Xiaoliang Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Jinhu Zou
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Chengxing Zhou
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Yuanyuan Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Bingliang Zhou
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Pengwei Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| |
Collapse
|
5
|
Siddiqui A, He C, Lee G, Figueroa A, Slaughter A, Robinson-Papp J. Neuropathogenesis of HIV and emerging therapeutic targets. Expert Opin Ther Targets 2022; 26:603-615. [PMID: 35815686 PMCID: PMC9887458 DOI: 10.1080/14728222.2022.2100253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION HIV infection causes a wide range of neurological complications, many of which are among the most common complications of chronic HIV infection in the era of combined antiretroviral therapy. These neurological conditions arise due to complex interactions between HIV viral proteins and neuronal and glial cells that lead to the activation of various inflammatory and neurotoxic pathways across the nervous system. AREAS COVERED This review summarizes the current literature on the pathogenesis and clinical manifestations of neurological injuries associated with HIV in the brain, spinal cord, and peripheral nervous system. Molecular pathways relevant for possible therapeutic targets or advancements are emphasized. Gaps in knowledge and current challenges in therapeutic design are also discussed. EXPERT OPINION Several challenges exist in the development of therapeutic targets for HIV-associated cognitive impairments. However, recent developments in drug delivery systems and treatment strategies are encouraging. Treatments for HIV-associated pain and peripheral sensory neuropathies currently consist of symptomatic management, but a greater understanding of their pathogenesis can lead to the development of targeted molecular therapies and disease-modifying therapies. HIV-associated autonomic dysfunction may affect the course of systemic disease via disrupted neuro-immune interactions; however, more research is needed to facilitate our understanding of how these processes present clinically.
Collapse
Affiliation(s)
- Alina Siddiqui
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Celestine He
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Gina Lee
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Alex Figueroa
- University of Texas at Southwestern Medical School, Dallas, TX, 75390 USA
| | - Alexander Slaughter
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Jessica Robinson-Papp
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| |
Collapse
|
6
|
Wen J, Zhao C, Chen J, Song S, Lin Z, Xie S, Qi H, Wang J, Su X. Activation of α7 nicotinic acetylcholine receptor promotes HIV-1 transcription. CELL INSIGHT 2022; 1:100028. [PMID: 37193048 PMCID: PMC10120325 DOI: 10.1016/j.cellin.2022.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 05/18/2023]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7 nAChR), a hub of the cholinergic anti-inflammatory pathway (CAP), is required for the treatment of inflammatory diseases. HIV-1 infection can upregulate the expression of α7 nAChR in T lymphocytes and affect the role of CAP. However, whether α7 nAChR regulates HIV-1 infection in CD4+ T cells is unclear. In this study, we first found that activation of α7 nAChR by GTS-21 (an α7 nAChR agonist) can promote the transcription of HIV-1 proviral DNA. Then, through transcriptome sequencing analysis, we found that p38 MAPK signaling was enriched in GTS-21 treated HIV-latent T cells. Mechanistically, activation of α7 nAChR could increase reactive oxygen species (ROS), reduce DUSP1 and DUSP6, and consequently enhance the phosphorylation of p38 MAPK. By co-immunoprecipitation and liquid chromatography tandem mass spectrometry, we found that p-p38 MAPK interacted with Lamin B1 (LMNB1). Activation of α7 nAChR increased the binding between p-p38 MAPK and LMNB1. We confirmed that knockdown of MAPK14 significantly downregulated NFATC4, a key activator of HIV-1 transcription. Taken together, activation of the α7 nAChR could trigger ROS/p-p38 MAPK/LMNB1/NFATC4 signaling pathway enhancing HIV-1 transcription. We have revealed an unrecognized mechanism of α7 nAChR-mediated neuroimmune regulation of HIV infection.
Collapse
Affiliation(s)
- Jing Wen
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caiqi Zhao
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuting Song
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhekai Lin
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shitao Xie
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaxin Qi
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510670, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Young JW, Barback CV, Stolz LA, Groman SM, Vera DR, Hoh C, Kotta KK, Minassian A, Powell SB, Brody AL. MicroPET evidence for a hypersensitive neuroinflammatory profile of gp120 mouse model of HIV. Psychiatry Res Neuroimaging 2022; 321:111445. [PMID: 35101828 DOI: 10.1016/j.pscychresns.2022.111445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Despite increased survivability for people living with HIV (PLWH), HIV-related cognitive deficits persist. Determining biological mechanism(s) underlying abnormalities is critical to minimize the long-term impact of HIV. Positron emission tomography (PET) studies reveal that PLWH exhibit elevated neuroinflammation, potentially contributing to these problems. PLWH are hypersensitive to environmental insults that drive elevated inflammatory profiles. Gp120 is an envelope glycoprotein exposed on the surface of the HIV envelope which enables HIV entry into a cell contributing to HIV-related neurotoxicity. In vivo evidence for mice overexpressing gp120 (transgenic) mice exhibiting neuroinflammation remains unclear. Here, we conducted microPET imaging in gp120 transgenic and wildtype mice, using the radiotracer [(18)F]FEPPA (binds to the translocator protein expressed by activated microglial serving as a neuroinflammatory marker). Imaging was performed at baseline and 24 h after lipopolysaccharide (LPS; 5 mg/kg) treatment (endotoxin that triggers an immune response). Gp120 transgenic mice exhibited elevated [(18F)]FEPPA in response to LPS vs. wildtype mice throughout the brain including dorsal and ventral striata, hypothalamus, and hippocampus. Gp120 transgenic mice are hypersensitive to environmental inflammatory insults, consistent with PLWH, measurable in vivo. It remains to-be-determined whether this heightened sensitivity is connected to the behavioral abnormalities of these mice or sensitive to any treatments.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Christopher V Barback
- Department of Radiology, University of California, San Diego, La Jolla California; UCSD In Vivo Cancer and Molecular Imaging Program
| | - Louise A Stolz
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA
| | - Stephanie M Groman
- Department of Neuroscience, Medical Discovery Team on Addiction, University of Minnesota
| | - David R Vera
- Department of Radiology, University of California, San Diego, La Jolla California; UCSD In Vivo Cancer and Molecular Imaging Program
| | - Carl Hoh
- Department of Radiology, University of California, San Diego, La Jolla California; UCSD In Vivo Cancer and Molecular Imaging Program
| | - Kishore K Kotta
- Department of Radiology, University of California, San Diego, La Jolla California; UCSD In Vivo Cancer and Molecular Imaging Program
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Susan B Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Arthur L Brody
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
8
|
Di Lascio S, Fornasari D, Benfante R. The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders. Int J Mol Sci 2022; 23:ijms23073463. [PMID: 35408823 PMCID: PMC8998457 DOI: 10.3390/ijms23073463] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
CHRFAM7A is a relatively recent and exclusively human gene arising from the partial duplication of exons 5 to 10 of the α7 neuronal nicotinic acetylcholine receptor subunit (α7 nAChR) encoding gene, CHRNA7. CHRNA7 is related to several disorders that involve cognitive deficits, including neuropsychiatric, neurodegenerative, and inflammatory disorders. In extra-neuronal tissues, α7nAChR plays an important role in proliferation, differentiation, migration, adhesion, cell contact, apoptosis, angiogenesis, and tumor progression, as well as in the modulation of the inflammatory response through the “cholinergic anti-inflammatory pathway”. CHRFAM7A translates the dupα7 protein in a multitude of cell lines and heterologous systems, while maintaining processing and trafficking that are very similar to the full-length form. It does not form functional ion channel receptors alone. In the presence of CHRNA7 gene products, dupα7 can assemble and form heteromeric receptors that, in order to be functional, should include at least two α7 subunits to form the agonist binding site. When incorporated into the receptor, in vitro and in vivo data showed that dupα7 negatively modulated α7 activity, probably due to a reduction in the number of ACh binding sites. Very recent data in the literature report that the presence of the duplicated gene may be responsible for the translational gap in several human diseases. Here, we will review the studies that have been conducted on CHRFAM7A in different pathologies, with the intent of providing evidence regarding when and how the expression of this duplicated gene may be beneficial or detrimental in the pathogenesis, and eventually in the therapeutic response, to CHRNA7-related neurological and non-neurological diseases.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
- NeuroMi, Milan Center for Neuroscience, University of Milano Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
9
|
Wallace DR. HIV-associated neurotoxicity and cognitive decline: Therapeutic implications. Pharmacol Ther 2021; 234:108047. [PMID: 34848202 DOI: 10.1016/j.pharmthera.2021.108047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
As our understanding of changes to the neurological system has improved, it has become clear that patients who have contracted human immunodeficiency virus type 1 (HIV-1) can potentially suffer from a cascade of neurological issues, including neuropathy, dementia, and declining cognitive function. The progression from mild to severe symptoms tends to affect motor function, followed by cognitive changes. Central nervous system deficits that are observed as the disease progresses have been reported as most severe in later-stage HIV infection. Examining the full spectrum of neuronal damage, generalized cortical atrophy is a common hallmark, resulting in the death of multiple classes of neurons. With antiretroviral therapy (ART), we can partially control disease progression, slowing the onset of the most severe symptoms such as, reducing viral load in the brain, and developing HIV-associated dementia (HAD). HAD is a severe and debilitating outcome from HIV-related neuropathologies. HIV neurotoxicity can be direct (action directly on the neuron) or indirect (actions off-site that affect normal neuronal function). There are two critical HIV-associated proteins, Tat and gp120, which bear responsibility for many of the neuropathologies associated with HAD and HIV-associated neurocognitive disorder (HAND). A cascade of systems is involved in HIV-related neurotoxicity, and determining a critical point where therapeutic strategies can be employed is of the utmost importance. This review will provide an overview of the existing hypotheses on HIV-neurotoxicity and the potential for the development of therapeutics to aid in the treatment of HIV-related nervous system dysfunction.
Collapse
Affiliation(s)
- David R Wallace
- Oklahoma State University Center for Health Sciences, School of Biomedical Science, 1111 West 17(th) Street, Tulsa, OK 74107-1898, USA.
| |
Collapse
|
10
|
Smith LK, Babcock IW, Minamide LS, Shaw AE, Bamburg JR, Kuhn TB. Direct interaction of HIV gp120 with neuronal CXCR4 and CCR5 receptors induces cofilin-actin rod pathology via a cellular prion protein- and NOX-dependent mechanism. PLoS One 2021; 16:e0248309. [PMID: 33705493 PMCID: PMC7951892 DOI: 10.1371/journal.pone.0248309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/23/2021] [Indexed: 01/08/2023] Open
Abstract
Nearly 50% of individuals with long-term HIV infection are affected by the onset of progressive HIV-associated neurocognitive disorders (HAND). HIV infiltrates the central nervous system (CNS) early during primary infection where it establishes persistent infection in microglia (resident macrophages) and astrocytes that in turn release inflammatory cytokines, small neurotoxic mediators, and viral proteins. While the molecular mechanisms underlying pathology in HAND remain poorly understood, synaptodendritic damage has emerged as a hallmark of HIV infection of the CNS. Here, we report that the HIV viral envelope glycoprotein gp120 induces the formation of aberrant, rod-shaped cofilin-actin inclusions (rods) in cultured mouse hippocampal neurons via a signaling pathway common to other neurodegenerative stimuli including oligomeric, soluble amyloid-β and proinflammatory cytokines. Previous studies showed that synaptic function is impaired preferentially in the distal proximity of rods within dendrites. Our studies demonstrate gp120 binding to either chemokine co-receptor CCR5 or CXCR4 is capable of inducing rod formation, and signaling through this pathway requires active NADPH oxidase presumably through the formation of superoxide (O2-) and the expression of cellular prion protein (PrPC). These findings link gp120-mediated oxidative stress to the generation of rods, which may underlie early synaptic dysfunction observed in HAND.
Collapse
Affiliation(s)
- Lisa K. Smith
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Isaac W. Babcock
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Thomas B. Kuhn
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
11
|
Vivekanandarajah A, Nelson ME, Kinney HC, Elliott AJ, Folkerth RD, Tran H, Cotton J, Jacobs P, Minter M, McMillan K, Duncan JR, Broadbelt KG, Schissler K, Odendaal HJ, Angal J, Brink L, Burger EH, Coldrey JA, Dempers J, Boyd TK, Fifer WP, Geldenhuys E, Groenewald C, Holm IA, Myers MM, Randall B, Schubert P, Sens MA, Wright CA, Roberts DJ, Nelsen L, Wadee S, Zaharie D, Haynes RL. Nicotinic Receptors in the Brainstem Ascending Arousal System in SIDS With Analysis of Pre-natal Exposures to Maternal Smoking and Alcohol in High-Risk Populations of the Safe Passage Study. Front Neurol 2021; 12:636668. [PMID: 33776893 PMCID: PMC7988476 DOI: 10.3389/fneur.2021.636668] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Pre-natal exposures to nicotine and alcohol are known risk factors for sudden infant death syndrome (SIDS), the leading cause of post-neonatal infant mortality. Here, we present data on nicotinic receptor binding, as determined by 125I-epibatidine receptor autoradiography, in the brainstems of infants dying of SIDS and of other known causes of death collected from the Safe Passage Study, a prospective, multicenter study with clinical sites in Cape Town, South Africa and 5 United States sites, including 2 American Indian Reservations. We examined 15 pons and medulla regions related to cardiovascular control and arousal in infants dying of SIDS (n = 12) and infants dying from known causes (n = 20, 10 pre-discharge from time of birth, 10 post-discharge). Overall, there was a developmental decrease in 125I-epibatidine binding with increasing postconceptional age in 5 medullary sites [raphe obscurus, gigantocellularis, paragigantocellularis, centralis, and dorsal accessory olive (p = 0.0002-0.03)], three of which are nuclei containing serotonin cells. Comparing SIDS with post-discharge known cause of death (post-KCOD) controls, we found significant decreased binding in SIDS in the nucleus pontis oralis (p = 0.02), a critical component of the cholinergic ascending arousal system of the rostral pons (post-KCOD, 12.1 ± 0.9 fmol/mg and SIDS, 9.1 ± 0.78 fmol/mg). In addition, we found an effect of maternal smoking in SIDS (n = 11) combined with post-KCOD controls (n = 8) on the raphe obscurus (p = 0.01), gigantocellularis (p = 0.02), and the paragigantocellularis (p = 0.002), three medullary sites found in this study to have decreased binding with age and found in previous studies to have abnormal indices of serotonin neurotransmission in SIDS infants. At these sites, 125I-epibatidine binding increased with increasing cigarettes per week. We found no effect of maternal drinking on 125I-epibatidine binding at any site measured. Taken together, these data support changes in nicotinic receptor binding related to development, cause of death, and exposure to maternal cigarette smoking. These data present new evidence in a prospective study supporting the roles of developmental factors, as well as adverse exposure on nicotinic receptors, in serotonergic nuclei of the rostral medulla-a finding that highlights the interwoven and complex relationship between acetylcholine (via nicotinic receptors) and serotonergic neurotransmission in the medulla.
Collapse
Affiliation(s)
- Arunnjah Vivekanandarajah
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Morgan E. Nelson
- Avera Research Institute, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, United States
| | - Hannah C. Kinney
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Amy J. Elliott
- Avera Research Institute, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, United States
| | - Rebecca D. Folkerth
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Forensic Medicine, New York University School of Medicine, New York City, NY, United States
| | - Hoa Tran
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jacob Cotton
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Perri Jacobs
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Megan Minter
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Kristin McMillan
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jhodie R. Duncan
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Kevin G. Broadbelt
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Kathryn Schissler
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Hein J. Odendaal
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Jyoti Angal
- Avera Research Institute, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, United States
| | - Lucy Brink
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Elsie H. Burger
- Division of Forensic Pathology, Department of Pathology, Faculty of Health Sciences, Stellenbosch University & Western Cape Forensic Pathology Service, Tygerberg, South Africa
| | - Jean A. Coldrey
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Johan Dempers
- Division of Forensic Pathology, Department of Pathology, Faculty of Health Sciences, Stellenbosch University & Western Cape Forensic Pathology Service, Tygerberg, South Africa
| | - Theonia K. Boyd
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - William P. Fifer
- Department of Psychiatry and Pediatrics, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, United States
| | - Elaine Geldenhuys
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Coen Groenewald
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Ingrid A. Holm
- Division of Genetics and Genomics and the Manton Center for Orphan Diseases Research, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Michael M. Myers
- Department of Psychiatry and Pediatrics, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, United States
| | - Bradley Randall
- Department of Pathology, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - Pawel Schubert
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Mary Ann Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Colleen A. Wright
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
- Lancet Laboratories, Johannesburg, South Africa
| | - Drucilla J. Roberts
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | | | - Shabbir Wadee
- Division of Forensic Pathology, Department of Pathology, Faculty of Health Sciences, Stellenbosch University & Western Cape Forensic Pathology Service, Tygerberg, South Africa
| | - Dan Zaharie
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Robin L. Haynes
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | | |
Collapse
|
12
|
Ríos SC, Colón Sáez JO, Quesada O, Figueroa KQ, Lasalde Dominicci JA. Disruption of the cholinergic anti-inflammatory response by R5-tropic HIV-1 protein gp120 JRFL. J Biol Chem 2021; 296:100618. [PMID: 33811859 PMCID: PMC8102909 DOI: 10.1016/j.jbc.2021.100618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/13/2023] Open
Abstract
Despite current pharmacological intervention strategies, patients with HIV still suffer from chronic inflammation. The nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the nervous and immune systems. In macrophages, activation of alpha7-nAChR (α7-nAChR) controls inflammatory processes through the cholinergic anti-inflammatory response (CAR). Given that this innate immune response controls inflammation and α7-nAChR plays a critical role in the regulation of systemic inflammation, we investigated the effects of an R5-tropic HIV soluble component, gp120JRFL, on the CAR functioning. We previously demonstrated that X4-tropic HIV-1 gp120IIIB disrupts the CAR as well as inducing upregulation of the α7-nAChR in vitro in monocyte-derived macrophages (MDMs), which correlates with the upregulation observed in monocytes, T-lymphocytes, and MDMs recovered from HIV-infected people. We demonstrate here using imaging and molecular assays that the R5-tropic HIV-1 glycoprotein gp120JRFL upregulates the α7-nAChR in MDMs dependent on CD4 and/or CCR5 activation. This upregulation was also dependent on MEK1 since its inhibition attenuates the upregulation of α7-nAChR induced by gp120JRFL and was concomitant with an increase in basal calcium levels, which did not result in apoptosis. Moreover, the CAR was determined to be disrupted, since α7-nAChR activation in MDMs did not reduce the production of the proinflammatory cytokines IL-6, GRO-α, or I-309. Furthermore, a partial antagonist of α7-nAChR, bupropion, rescued IL-6 but not GRO-α or I-309 production. Together, these results demonstrate that gp120JRFL disrupts the CAR in MDMs. Other medications targeting the α7-nAChR need to be tested to reactivate the CAR to ameliorate inflammation in HIV-infected subjects.
Collapse
Affiliation(s)
- Sonnieliz Cotto Ríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, USA
| | - José O Colón Sáez
- Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Orestes Quesada
- Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, USA
| | | | - José A Lasalde Dominicci
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, USA; Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, USA; Institute of Neurobiology, University of Puerto Rico Medical Science Campus, San Juan, Puerto Rico, USA; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA.
| |
Collapse
|
13
|
Maldonado-Hernández R, Quesada O, Colón-Sáez JO, Lasalde-Dominicci JA. Sequential purification and characterization of Torpedo californica nAChR-DC supplemented with CHS for high-resolution crystallization studies. Anal Biochem 2020; 610:113887. [PMID: 32763308 DOI: 10.1016/j.ab.2020.113887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023]
Abstract
Over the past 10 years we have been developing a multi-attribute analytical platform that allows for the preparation of milligram amounts of functional, high-pure, and stable Torpedo (muscle-type) nAChR detergent complexes for crystallization purpose. In the present work, we have been able to significantly improve and optimize the purity and yield of nicotinic acetylcholine receptors in detergent complexes (nAChR-DC) without compromising stability and functionality. We implemented new methods in the process, such as analysis and rapid production of samples for future crystallization preparations. Native nAChR was extracted from the electric organ of Torpedo californica using the lipid-like detergent LysoFos Choline 16 (LFC-16), followed by three consecutive steps of chromatography purification. We evaluated the effect of cholesteryl hemisuccinate (CHS) supplementation during the affinity purification steps of nAChR-LFC-16 in terms of receptor secondary structure, stability and functionality. CHS produced significant changes in the degree of β-secondary structure, these changes compromise the diffusion of the nAChR-LFC-16 in lipid cubic phase. The behavior was reversed by Methyl-β-Cyclodextrin treatment. Also, CHS decreased acetylcholine evoked currents of Xenopus leavis oocyte injected with nAChR-LFC-16 in a concentration-dependent manner. Methyl-β-Cyclodextrin treatment do not reverse functionality, however column delipidation produced a functional protein similar to nAChR-LFC-16 without CHS treatment.
Collapse
Affiliation(s)
- Rafael Maldonado-Hernández
- Department of the Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Orestes Quesada
- Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - José O Colón-Sáez
- Pharmaceutical Sciences, University of Puerto Rico Medical Science Campus, Puerto Rico
| | - José A Lasalde-Dominicci
- Department of the Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Puerto Rico.
| |
Collapse
|
14
|
Chang L, Liang H, Kandel SR, He JJ. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J Neuroimmune Pharmacol 2020; 15:658-693. [PMID: 33108618 DOI: 10.1007/s11481-020-09963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Tobacco smoking is highly prevalent among HIV-infected individuals. Chronic smokers with HIV showed greater cognitive deficits and impulsivity, and had more psychopathological symptoms and greater neuroinflammation than HIV non-smokers or smokers without HIV infection. However, preclinical studies that evaluated the combined effects of HIV-infection and tobacco smoking are scare. The preclinical models typically used cell cultures or animal models that involved specific HIV viral proteins or the administration of nicotine to rodents. These preclinical models consistently demonstrated that nicotine had neuroprotective and anti-inflammatory effects, leading to cognitive enhancement. Although the major addictive ingredient in tobacco smoking is nicotine, chronic smoking does not lead to improved cognitive function in humans. Therefore, preclinical studies designed to unravel the interactive effects of chronic tobacco smoking and HIV infection are needed. In this review, we summarized the preclinical studies that demonstrated the neuroprotective effects of nicotine, the neurotoxic effects of the HIV viral proteins, and the scant literature on nicotine or tobacco smoke in HIV transgenic rat models. We also reviewed the clinical studies that evaluated the neurotoxic effects of tobacco smoking, HIV infection and their combined effects on the brain, including studies that evaluated the cognitive and behavioral assessments, as well as neuroimaging measures. Lastly, we compared the different approaches between preclinical and clinical studies, identified some gaps and proposed some future directions. Graphical abstract Independent and combined effects of HIV and tobacco/nicotine. Left top and bottom panels: Both clinical studies of HIV infected persons and preclinical studies using viral proteins in vitro or in vivo in animal models showed that HIV infection could lead to neurotoxicity and neuroinflammation. Right top and bottom panels: While clinical studies of tobacco smoking consistently showed deleterious effects of smoking, clinical and preclinical studies that used nicotine show mild cognitive enhancement, neuroprotective and possibly anti-inflammatory effects. In the developing brain, however, nicotine is neurotoxic. Middle overlapping panels: Clinical studies of persons with HIV who were smokers typically showed additive deleterious effects of HIV and tobacco smoking. However, in the preclinical studies, when nicotine was administered to the HIV-1 Tg rats, the neurotoxic effects of HIV were attenuated, but tobacco smoke worsened the inflammatory cascade.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA.
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA.
| |
Collapse
|
15
|
胡 彤, 龚 泽, 万 宇, 李 煜, 高 雪, 伦 静, 黄 胜, 曹 虹. [Establishment of a gp120 transgenic mouse model with α7 nAChR knockout]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1184-1191. [PMID: 32895175 PMCID: PMC7429164 DOI: 10.12122/j.issn.1673-4254.2020.08.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct a HIV-1 gp120 transgenic mouse model (gp120+) with α7 nicotinic acetylcholine receptor (α7nAChR) gene knockout. METHODS The α7nAChR gene knockout mice (α7R-/-) were crossed with HIV-1gp120 transgenic mice (gp120+) to generate F1 generation mice. We selected the F1 mice with the genotype of α7R+/-/gp120+ to mate to obtain the F2 mice. The genotypes of the F3 mice were identified by PCR, and the protein expressions in the double transgenic animal model was analyzed by immunohistochemistry. BV2 cells were treated with gp120 protein and α7nAChR inhibitor, and the expressions of IL-1β and TNF-α were detected using ELISA. RESULTS The results of PCR showed the bands of the expected size in F3 mice. Two F3 mice with successful double gene editing (α7R-/-/gp120+) were obtained, and immunohistochemistry showed that the brain tissue of the mice did not express α7 nAChR but with high gp120 protein expression. In the in vitro cell experiment, treatment with gp120 promoted the secretion of IL-1β and TNF-α in BV2 cells, while inhibition of α7nAChR significantly decreased the expression of IL-1β and TNF-α (P < 0.001). CONCLUSIONS By mating gp120 Tg mice with α7R-/- mice, we obtained gp120 transgenic mice with α7nAChR gene deletion, which serve as a new animal model for exploring the role of α7nAChR in gp120-induced neurotoxicity.
Collapse
Affiliation(s)
- 彤彤 胡
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| | - 泽龙 龚
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| | - 宇 万
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| | - 煜彬 李
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| | - 雪锋 高
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| | - 静娴 伦
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| | - 胜和 黄
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
- 南加州大学洛杉矶儿童医院,洛杉矶 90027Los Angeles Children's Hospital, University of Southern California, Los Angeles, 90027, USA
| | - 虹 曹
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| |
Collapse
|
16
|
Ghura S, Gross R, Jordan-Sciutto K, Dubroff J, Schnoll R, Collman RG, Ashare RL. Bidirectional Associations among Nicotine and Tobacco Smoke, NeuroHIV, and Antiretroviral Therapy. J Neuroimmune Pharmacol 2019; 15:694-714. [PMID: 31834620 DOI: 10.1007/s11481-019-09897-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022]
Abstract
People living with HIV (PLWH) in the antiretroviral therapy (ART) era may lose more life-years to tobacco use than to HIV. Yet, smoking rates are more than twice as high among PLWH than the general population, contributing not just to mortality but to other adverse health outcomes, including neurocognitive deficits (neuroHIV). There is growing evidence that synergy with chronic inflammation and immune dysregulation that persists despite ART may be one mechanism by which tobacco smoking contributes to neuroHIV. This review will summarize the differential effects of nicotine vs tobacco smoking on inflammation in addition to the effects of tobacco smoke components on HIV disease progression. We will also discuss biomarkers of inflammation via neuroimaging as well as biomarkers of nicotine dependence (e.g., nicotine metabolite ratio). Tobacco smoking and nicotine may impact ART drug metabolism and conversely, certain ARTs may impact nicotine metabolism. Thus, we will review these bidirectional relationships and how they may contribute to neuroHIV and other adverse outcomes. We will also discuss the effects of tobacco use on the interaction between peripheral organs (lungs, heart, kidney) and subsequent CNS function in the context of HIV. Lastly, given the dramatic rise in the use of electronic nicotine delivery systems, we will discuss the implications of vaping on these processes. Despite the growing recognition of the importance of addressing tobacco use among PLWH, more research is necessary at both the preclinical and clinical level to disentangle the potentially synergistic effects of tobacco use, nicotine, HIV, cognition and immune dysregulation, as well as identify optimal approaches to reduce tobacco use. Graphical Abstract Proposed model of the relationships among HIV, ART, smoking, inflammation, and neurocognition. Solid lines represent relationships supported by evidence. Dashed lines represent relationships for which there is not enough evidence to make a conclusion. (a) HIV infection produces elevated levels of inflammation even among virally suppressed individuals. (b) HIV is associated with deficits in cognition function. (c) Smoking rates are higher among PLWH, compared to the general population. (d) The nicotine metabolite ratio (NMR) is associated with smoking behavior. (e) HIV and tobacco use are both associated with higher rates of psychiatric comorbidities, such as depression, and elevated levels of chronic stress. These factors may represent other mechanisms linking HIV and tobacco use. (f) The relationship between nicotine, tobacco smoking, and inflammation is complex, but it is well-established that smoking induces inflammation; the evidence for nicotine as anti-inflammatory is supported in some studies, but not others. (g) The relationship between tobacco use and neurocognition may differ for the effects of nicotine (acute nicotine use may have beneficial effects) vs. tobacco smoking (chronic use may impair cognition). (h) Elevated levels of inflammation may be associated with deficits in cognition. (i) PLWH may metabolize nicotine faster than those without HIV; the mechanism is not yet known and the finding needs validation in larger samples. We also hypothesize that if HIV-infection increases nicotine metabolism, then we should observe an attenuation effect once ART is initiated. (j) It is possible that the increase in NMR is due to ART effects on CYP2A6. (k) We hypothesize that faster nicotine metabolism may result in higher levels of inflammation since nicotine has anti-inflammatory properties.
Collapse
Affiliation(s)
- Shivesh Ghura
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Gross
- Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA, USA.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Dubroff
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Schnoll
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Suite, Philadelphia, PA, 4100, USA
| | - Ronald G Collman
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca L Ashare
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Suite, Philadelphia, PA, 4100, USA.
| |
Collapse
|
17
|
Molecular Signatures of HIV-1 Envelope Associated with HIV-Associated Neurocognitive Disorders. Curr HIV/AIDS Rep 2019; 15:72-83. [PMID: 29460224 DOI: 10.1007/s11904-018-0374-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The HIV-1 envelope gene (env) has been an intense focus of investigation in the search for genetic determinants of viral entry and persistence in the central nervous system (CNS). RECENT FINDINGS Molecular signatures of CNS-derived HIV-1 env reflect the immune characteristics and cellular constraints of the CNS compartment. Although more readily found in those with advanced HIV-1 and HIV-associated neurocognitive disorders (HAND), molecular signatures distinguishing CNS-derived quasispecies can be identified early in HIV-1 infection, in the presence or absence of combination antiretroviral therapy (cART), and are dynamic. Amino acid signatures of CNS-compartmentalization and HAND have been identified across populations. While some significant overlap exists, none are universal. Detailed analyses of CNS-derived HIV-1 env have allowed researchers to identify a number of molecular determinants associated with neuroadaptation. Future investigations using comprehensive cohorts and longitudinal databases have the greatest potential for the identification of robust, validated signatures of HAND in the cART era.
Collapse
|
18
|
Chen G, Liu S, Pan R, Li G, Tang H, Jiang M, Xing Y, Jin F, Lin L, Dong J. Curcumin Attenuates gp120-Induced Microglial Inflammation by Inhibiting Autophagy via the PI3K Pathway. Cell Mol Neurobiol 2018; 38:1465-1477. [PMID: 30155758 DOI: 10.1007/s10571-018-0616-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/22/2018] [Indexed: 11/29/2022]
Abstract
Microglial inflammation plays an essential role in the pathogenesis of HIV-associated neurocognitive disorders. A previous study indicated that curcumin relieved microglial inflammatory responses. However, the mechanism of this process remained unclear. Autophagy is a lysosome-mediated cell content-dependent degradation pathway, and uncontrolled autophagy leads to enhanced inflammation. The role of autophagy in curcumin-attenuating BV2 cell inflammation caused by gp120 was investigated with or without pretreatment with the autophagy inhibitor 3-MA and blockers of NF-κB, IKK, AKT, and PI3K, and we then detected the production of the inflammatory mediators monocyte chemoattractant protein-1 (MCP-1) and IL17 using ELISA, and autophagy markers ATG5 and LC3 II by Western Blot. The autophagic flux was observed by transuding mRFP-GFP-LC3 adenovirus. The effect of the blockers on gp120-induced BV2 cells was examined by the expression of p-AKT, p-IKK, NF-κB, and p65 in the nuclei and LC3 II and ATG5. gp120 promoted the expression of MCP-1 and IL-17, enhanced autophagic flux, and up-regulated the expression of LC3 II and ATG5, while the autophagy inhibitor 3-MA down-regulated the phenomena above. Curcumin has similar effects with 3-MA, in which curcumin inhibited NF-κB by preventing the translocation of NF-κB p65. Curcumin also inhibited the phosphorylation of p-PI3K, p-AKT, and p-IKK, which leads to down-regulation of NF-κB. Curcumin reduced autophagy via PI3K/AKT/IKK/NF-κB, thereby reducing BV2 cellular inflammation induced by gp120.
Collapse
Affiliation(s)
- Guiling Chen
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Sisi Liu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Rui Pan
- Department of Orthopaedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guangming Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Haijie Tang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mingliang Jiang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yanyan Xing
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Fujun Jin
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Liqing Lin
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jun Dong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
19
|
Capó-Vélez CM, Delgado-Vélez M, Báez-Pagán CA, Lasalde-Dominicci JA. Nicotinic Acetylcholine Receptors in HIV: Possible Roles During HAND and Inflammation. Cell Mol Neurobiol 2018; 38:1335-1348. [PMID: 30008143 PMCID: PMC6133022 DOI: 10.1007/s10571-018-0603-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
Infection with the human immunodeficiency virus (HIV) remains a threat to global health. Since its discovery, many efforts have been directed at understanding the mechanisms and consequences of infection. Although there have been substantial advances since the advent of antiretroviral therapy, there are still complications that significantly compromise the health of infected patients, particularly, chronic inflammation and HIV-associated neurocognitive disorders (HAND). In this review, a new perspective is addressed in the field of HIV, where the alpha7 nicotinic acetylcholine receptor (α7-nAChR) is the protagonist. We comprehensively discuss the available evidence implicating α7-nAChRs in the context of HIV and provide possible explanations about its role in HAND and inflammation in both the central nervous system and the periphery.
Collapse
Affiliation(s)
- Coral M Capó-Vélez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA.,Molecular Sciences Research Center, San Juan, PR, 00926, USA
| | - Manuel Delgado-Vélez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA.,Molecular Sciences Research Center, San Juan, PR, 00926, USA
| | - Carlos A Báez-Pagán
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA.,Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, PO Box 23323, San Juan, PR, 00931, USA
| | - José A Lasalde-Dominicci
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA. .,Molecular Sciences Research Center, San Juan, PR, 00926, USA.
| |
Collapse
|
20
|
Sztukowski K, Nip K, Ostwald PN, Sathler MF, Sun JL, Shou J, Jorgensen ET, Brown TE, Elder JH, Miller C, Hofmann F, VandeWoude S, Kim S. HIV induces synaptic hyperexcitation via cGMP-dependent protein kinase II activation in the FIV infection model. PLoS Biol 2018; 16:e2005315. [PMID: 30052626 PMCID: PMC6082575 DOI: 10.1371/journal.pbio.2005315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/08/2018] [Accepted: 07/13/2018] [Indexed: 11/19/2022] Open
Abstract
Over half of individuals infected with human immunodeficiency virus (HIV) suffer from HIV-associated neurocognitive disorders (HANDs), yet the molecular mechanisms leading to neuronal dysfunction are poorly understood. Feline immunodeficiency virus (FIV) naturally infects cats and shares its structure, cell tropism, and pathology with HIV, including wide-ranging neurological deficits. We employ FIV as a model to elucidate the molecular pathways underlying HIV-induced neuronal dysfunction, in particular, synaptic alteration. Among HIV-induced neuron-damaging products, HIV envelope glycoprotein gp120 triggers elevation of intracellular Ca2+ activity in neurons, stimulating various pathways to damage synaptic functions. We quantify neuronal Ca2+ activity using intracellular Ca2+ imaging in cultured hippocampal neurons and confirm that FIV envelope glycoprotein gp95 also elevates neuronal Ca2+ activity. In addition, we reveal that gp95 interacts with the chemokine receptor, CXCR4, and facilitates the release of intracellular Ca2+ by the activation of the endoplasmic reticulum (ER)-associated Ca2+ channels, inositol triphosphate receptors (IP3Rs), and synaptic NMDA receptors (NMDARs), similar to HIV gp120. This suggests that HIV gp120 and FIV gp95 share a core pathological process in neurons. Significantly, gp95's stimulation of NMDARs activates cGMP-dependent protein kinase II (cGKII) through the activation of the neuronal nitric oxide synthase (nNOS)-cGMP pathway, which increases Ca2+ release from the ER and promotes surface expression of AMPA receptors, leading to an increase in synaptic activity. Moreover, we culture feline hippocampal neurons and confirm that gp95-induced neuronal Ca2+ overactivation is mediated by CXCR4 and cGKII. Finally, cGKII activation is also required for HIV gp120-induced Ca2+ hyperactivation. These results thus provide a novel neurobiological mechanism of cGKII-mediated synaptic hyperexcitation in HAND.
Collapse
Affiliation(s)
- Keira Sztukowski
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kaila Nip
- Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Paige N. Ostwald
- Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Matheus F. Sathler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julianna L. Sun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jiayi Shou
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emily T. Jorgensen
- Pharmaceutical Science and Neuroscience, University of Wyoming, Laramie, Wyoming, United States of America
| | - Travis E. Brown
- Pharmaceutical Science and Neuroscience, University of Wyoming, Laramie, Wyoming, United States of America
| | - John H. Elder
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Craig Miller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Seonil Kim
- Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
21
|
Delgado-Vélez M, Lasalde-Dominicci JA. The Cholinergic Anti-Inflammatory Response and the Role of Macrophages in HIV-Induced Inflammation. Int J Mol Sci 2018; 19:ijms19051473. [PMID: 29772664 PMCID: PMC5983673 DOI: 10.3390/ijms19051473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/11/2018] [Accepted: 04/29/2018] [Indexed: 12/20/2022] Open
Abstract
Macrophages are phagocytic immune cells that protect the body from foreign invaders and actively support the immune response by releasing anti- and proinflammatory cytokines. A seminal finding revolutionized the way macrophages are seen. The expression of the neuronal alpha7 nicotinic acetylcholine receptor (α7-nAChR) in macrophages led to the establishment of the cholinergic anti-inflammatory response (CAR) in which the activation of this receptor inactivates macrophage production of proinflammatory cytokines. This novel neuroimmune response soon began to emerge as a potential target to counteract inflammation during illness and infection states. Human immunodeficiency virus (HIV)-infected individuals suffer from chronic inflammation that persists even under antiretroviral therapy. Despite the CAR’s importance, few studies involving macrophages have been performed in the HIV field. Evidence demonstrates that monocyte-derived macrophages (MDMs) recovered from HIV-infected individuals are upregulated for α7-nAChR. Moreover, in vitro studies demonstrate that addition of an HIV viral constituent, gp120IIIB, to uninfected MDMs also upregulates the α7-nAChR. Importantly, contrary to what was expected, activation of upregulated α7-nAChRs in macrophages does not reduce inflammation, suggesting a CAR disruption. Although it is reasonable to consider this receptor as a pharmacological target, additional studies are necessary since its activity seems to differ from that observed in neurons.
Collapse
Affiliation(s)
- Manuel Delgado-Vélez
- Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico.
| | - José A Lasalde-Dominicci
- Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico.
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan 00931, Puerto Rico.
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00931, Puerto Rico.
| |
Collapse
|
22
|
Applications of the FIV Model to Study HIV Pathogenesis. Viruses 2018; 10:v10040206. [PMID: 29677122 PMCID: PMC5923500 DOI: 10.3390/v10040206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a naturally-occurring retrovirus that infects domestic and non-domestic feline species, producing progressive immune depletion that results in an acquired immunodeficiency syndrome (AIDS). Much has been learned about FIV since it was first described in 1987, particularly in regard to its application as a model to study the closely related lentivirus, human immunodeficiency virus (HIV). In particular, FIV and HIV share remarkable structure and sequence organization, utilize parallel modes of receptor-mediated entry, and result in a similar spectrum of immunodeficiency-related diseases due to analogous modes of immune dysfunction. This review summarizes current knowledge of FIV infection kinetics and the mechanisms of immune dysfunction in relation to opportunistic disease, specifically in regard to studying HIV pathogenesis. Furthermore, we present data that highlight changes in the oral microbiota and oral immune system during FIV infection, and outline the potential for the feline model of oral AIDS manifestations to elucidate pathogenic mechanisms of HIV-induced oral disease. Finally, we discuss advances in molecular biology, vaccine development, neurologic dysfunction, and the ability to apply pharmacologic interventions and sophisticated imaging technologies to study experimental and naturally occurring FIV, which provide an excellent, but often overlooked, resource for advancing therapies and the management of HIV/AIDS.
Collapse
|
23
|
Capó-Vélez CM, Morales-Vargas B, García-González A, Grajales-Reyes JG, Delgado-Vélez M, Madera B, Báez-Pagán CA, Quesada O, Lasalde-Dominicci JA. The alpha7-nicotinic receptor contributes to gp120-induced neurotoxicity: implications in HIV-associated neurocognitive disorders. Sci Rep 2018; 8:1829. [PMID: 29379089 PMCID: PMC5788855 DOI: 10.1038/s41598-018-20271-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/15/2018] [Indexed: 01/14/2023] Open
Abstract
Currently, there are no specific therapies to treat HIV-1 associated neurocognitive disorders (HAND). The HIV-1 envelope, gp120, induces neuropathological changes similar to those in HAND patients; furthermore, it triggers an upregulation of the α7-nicotinic acetylcholine receptor (α7-nAChR), facilitating intracellular calcium overload and neuronal cell death. Using a gp120IIIB-transgenic mouse (gp120-tgm) model, we demonstrate that α7-nAChRs are upregulated on striatal neurons. Activation of α7-nAChRs leads to an increase in both intracellular calcium and percentage of apoptotic cells, which can be abrogated by antagonizing the receptor, suggesting a role for α7-nAChRs in gp120-induced neurotoxicity. Moreover, we demonstrate for the first time that gp120-tgm have learning deficiencies on a striatum-dependent behavioral task. They also show locomotor deficiencies, which improved with α7-nAChR antagonists, further supporting a role for this receptor in gp120-induced neurotoxicity. Together, these results uncover a new mechanism through which gp120-induced modulation of α7-nAChRs in the striatum can contribute to HAND development.
Collapse
Affiliation(s)
- Coral M Capó-Vélez
- University of Puerto Rico, Río Piedras Campus, Department of Biology, San Juan, P.R, 00931-3360, Puerto Rico.,University of Puerto Rico, Molecular Sciences and Research Center, San Juan, P.R, 00926, Puerto Rico
| | - Bryan Morales-Vargas
- University of Puerto Rico, Río Piedras Campus, Department of Biology, San Juan, P.R, 00931-3360, Puerto Rico
| | - Aurian García-González
- University of Puerto Rico, Río Piedras Campus, Department of Biology, San Juan, P.R, 00931-3360, Puerto Rico
| | - José G Grajales-Reyes
- University of Puerto Rico, Río Piedras Campus, Department of Biology, San Juan, P.R, 00931-3360, Puerto Rico
| | - Manuel Delgado-Vélez
- University of Puerto Rico, Río Piedras Campus, Department of Biology, San Juan, P.R, 00931-3360, Puerto Rico.,University of Puerto Rico, Molecular Sciences and Research Center, San Juan, P.R, 00926, Puerto Rico
| | - Bismark Madera
- University of Puerto Rico, Río Piedras Campus, Department of Biology, San Juan, P.R, 00931-3360, Puerto Rico.,University of Puerto Rico, Molecular Sciences and Research Center, San Juan, P.R, 00926, Puerto Rico
| | - Carlos A Báez-Pagán
- University of Puerto Rico, Río Piedras Campus, Department of Physical Sciences, San Juan, P.R, 00931-3360, Puerto Rico
| | - Orestes Quesada
- University of Puerto Rico, Río Piedras Campus, Department of Physical Sciences, San Juan, P.R, 00931-3360, Puerto Rico
| | - José A Lasalde-Dominicci
- University of Puerto Rico, Río Piedras Campus, Department of Biology, San Juan, P.R, 00931-3360, Puerto Rico. .,University of Puerto Rico, Río Piedras Campus, Department of Chemistry, San Juan, P.R, 00931-3360, Puerto Rico. .,University of Puerto Rico, Molecular Sciences and Research Center, San Juan, P.R, 00926, Puerto Rico.
| |
Collapse
|
24
|
King JR, Gillevet TC, Kabbani N. A G protein-coupled α7 nicotinic receptor regulates signaling and TNF-α release in microglia. FEBS Open Bio 2017; 7:1350-1361. [PMID: 28904864 PMCID: PMC5586346 DOI: 10.1002/2211-5463.12270] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine activation of α7 nicotinic acetylcholine receptors (α7 nAChRs) in microglia attenuates neuroinflammation and regulates TNF‐α release. We used lipopolysaccharide to model inflammation in the microglial cell line EOC20 and examined signaling by the α7 nAChR. Co‐immunoprecipitation experiments confirm that α7 nAChRs bind heterotrimeric G proteins in EOC20 cells. Interaction with Gαi mediates α7 nAChR signaling via enhanced intracellular calcium release and a decrease in cAMP, p38 phosphorylation, and TNF‐α release. These α7 nAChR effects were blocked by the inhibition of Gαi signaling via pertussis toxin, PLC activity with U73122, and α7 nAChR channel activity with the selective antagonist α‐bungarotoxin. Moreover, α7 nAChR signaling in EOC20 cells was significantly diminished by the expression of a dominant‐negative α7 nAChR, α7345‐8A, shown to be impaired in G protein binding. These findings indicate an essential role for G protein coupling in α7 nAChR function in microglia leading to the regulation of inflammation in the nervous system.
Collapse
Affiliation(s)
- Justin R King
- Interdisciplinary Program in Neuroscience Krasnow Institute for Advanced Study George Mason University Fairfax VA USA
| | - Trudy C Gillevet
- Interdisciplinary Program in Neuroscience Krasnow Institute for Advanced Study George Mason University Fairfax VA USA
| | - Nadine Kabbani
- School of Systems Biology Krasnow Institute for Advanced Study George Mason University Fairfax VA USA
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW As of the year 2016, an estimated 50% of the United States' HIV-Positive population is aged 50 years or older. Due to a combination of increased rates of infection in older adults, and successful anti-retroviral (ART) regimens allowing HIV-positive adults to survive for decades with the disease, we are now faced with a steadily graying HIV-positive population, with only limited knowledge of how the cognitive and physiological effects of aging intersect with those of chronic HIV-infection. RECENT FINDINGS Age-related changes to mood, cognition, and neurological health may be experienced differently in those living with HIV, and research concerning quality of life, mental health, and cognitive aging needs to account for and explore these factors more carefully in the coming years. SUMMARY This review will explore the topic of cognitive aging with HIV: 1. Central nervous system (CNS) infection of HIV and how the virus affects brain integrity and function; 2. Cognitive and behavioral symptoms of HIV-Associated Neurocognitive Disorders (HAND); 3. Neurobiological theories of Cognitive Aging and how these processes may be exacerbated by HIV-infection; 4: Clinical implications and complications of aging with HIV and factors that may result in poorer cognitive outcomes.
Collapse
Affiliation(s)
| | - Paul Newhouse
- Vanderbilt University Center for Cognitive Medicine.,Veterans Affairs Tennessee Valley Healthcare System Geriatric Research, Education, and Clinical Center (VA TVHS GRECC)
| |
Collapse
|
26
|
Liu L, Yu J, Li L, Zhang B, Liu L, Wu CH, Jong A, Mao DA, Huang SH. Alpha7 nicotinic acetylcholine receptor is required for amyloid pathology in brain endothelial cells induced by Glycoprotein 120, methamphetamine and nicotine. Sci Rep 2017; 7:40467. [PMID: 28074940 PMCID: PMC5225415 DOI: 10.1038/srep40467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023] Open
Abstract
One of the most challenging issues in HIV-associated neurocognitive disorders (HAND) caused by HIV-1 virotoxins and drug abuse is the lack of understanding the underlying mechanisms that are commonly associated with disorders of the blood-brain barrier (BBB), which mainly consists of brain microvascular endothelial cells (BMEC). Here, we hypothesized that Glycoprotein 120 (gp120), methamphetamine (METH) and nicotine (NT) can enhance amyloid-beta (Aβ) accumulation in BMEC through Alpha7 nicotinic acetylcholine receptor (α7 nAChR). Both in vitro (human BMEC) (HBMEC) and in vivo (mice) models of BBB were used to dissect the role of α7 nAChR in up-regulation of Aβ induced by gp120, METH and NT. Aβ release from and transport across HBMEC were significantly increased by these factors. Methyllycaconitine (MLA), an antagonist of α7 nAChR, could efficiently block these pathogenic effects. Furthermore, our animal data showed that these factors could significantly increase the levels of Aβ, Tau and Ubiquitin C-Terminal Hydrolase L1 (UCHL1) in mouse cerebrospinal fluid (CSF) and Aβ in the mouse brains. These pathogenicities were significantly reduced by MLA, suggesting that α7 nAChR may play an important role in neuropathology caused by gp120, METH and NT, which are the major pathogenic factors contributing to the pathogenesis of HAND.
Collapse
Affiliation(s)
- Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA90027, USA
| | - Jingyi Yu
- Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA90027, USA.,School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.,Department of Clinical Laboratory, Kunming Children's Hospital, Kunming Medical University, Kunming, Yunnan 650034, China
| | - Bao Zhang
- Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA90027, USA.,School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chun-Hua Wu
- Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA90027, USA
| | - Ambrose Jong
- Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA90027, USA
| | - Ding-An Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Sheng-He Huang
- Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA90027, USA.,School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
27
|
Nicholson WC, Kempf MC, Moneyham L, Vance DE. The potential role of vagus-nerve stimulation in the treatment of HIV-associated depression: a review of literature. Neuropsychiatr Dis Treat 2017; 13:1677-1689. [PMID: 28721049 PMCID: PMC5499939 DOI: 10.2147/ndt.s136065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Depression is the most common comorbidity and neuropsychiatric complication in HIV. Estimates suggest that the prevalence rate for depression among HIV-infected individuals is three times that of the general population. The association between HIV and clinical depression is complex; however, chronic activation of inflammatory mechanisms, which disrupt central nervous system (CNS) function, may contribute to this association. Disruptions in CNS function can result in cognitive disorders, social withdrawal, fatigue, apathy, psychomotor impairment, and sleep disturbances, which are common manifestations in depression and HIV alike. Interestingly, the parasympathetic system-associated vagus nerve (VN) has primary homeostatic properties that restore CNS function following a stress or inflammatory response. Unfortunately, about 30% of adults with HIV are resistant to standard psychotherapeutic and psychopharmacological treatments for depression, thus suggesting the need for alternative treatment approaches. VN stimulation (VNS) and its benefits as a treatment for depression have been well documented, but remain unexplored in the HIV population. Historically, VNS has been delivered using a surgically implanted device; however, transcutanous VNS (tVNS) with nonsurgical auricular technology is now available. Although it currently lacks Food and Drug Administration approval in the US, evidence suggests several advantages of tVNS, including a reduced side-effect profile when compared to standard treatments and comparable results to implantable VNS in treating depression. Therefore, tVNS could offer an alternative for managing depression in HIV via regulating CNS function; moreover, tVNS may be useful for treatment of other symptoms common in HIV. From this, implications for nursing research and practice are provided.
Collapse
Affiliation(s)
| | | | - Linda Moneyham
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David E Vance
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
28
|
Doi A, Iijima K, Kano S, Ishizaka Y. Viral protein R of HIV type-1 induces retrotransposition and upregulates glutamate synthesis by the signal transducer and activator of transcription 1 signaling pathway. Microbiol Immunol 2016; 59:398-409. [PMID: 25990091 DOI: 10.1111/1348-0421.12266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 02/05/2023]
Abstract
Viral protein R (Vpr) of HIV-1 plays an important role in viral replication in macrophages. Various lines of evidence suggest that expression of Vpr in macrophages causes immunopathogenesis; however, the underlying mechanism is not yet fully understood. In this study, it was shown that recombinant Vpr (rVpr) induces retrotransposition of long interspersed element-1 in RAW264.7, a macrophage-like cell line, and activates reverse transcriptase-dependent immunotoxic cascades including production of IFN-β and phosphorylation of signal transducer and activator of transcription 1 (STAT1). Knockout experiments based on the CRISPR/Cas9 nickase system further demonstrated that cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and stimulator of interferon gene (STING) are responsible for IFN-β production and STAT1 phosphorylation, respectively. Moreover, rVpr was found to increase production of glutaminase C, a regulator of glutamate synthesis, which is also dependent on the cGAS-STING pathway. Taken together with reports that glutaminase C is involved in the pathogenesis of HIV-associated neurocognitive disorder (HAND) and that Vpr is detectable in the cerebrospinal fluid of HIV-1-positive patients, a possible role of Vpr-induced L1-RTP and immunotoxic cascades in the development of HAND is discussed.
Collapse
Affiliation(s)
- Akihiro Doi
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, 305-0006.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083
| | - Kenta Iijima
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052
| | - Shigeyuki Kano
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, 305-0006.,Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052
| |
Collapse
|
29
|
The α7-nicotinic receptor is upregulated in immune cells from HIV-seropositive women: consequences to the cholinergic anti-inflammatory response. Clin Transl Immunology 2015; 4:e53. [PMID: 26719799 PMCID: PMC4685439 DOI: 10.1038/cti.2015.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 01/23/2023] Open
Abstract
Antiretroviral therapy partially restores the immune system and markedly increases life expectancy of HIV-infected patients. However, antiretroviral therapy does not restore full health. These patients suffer from poorly understood chronic inflammation that causes a number of AIDS and non-AIDS complications. Here we show that chronic inflammation in HIV+ patients may be due to the disruption of the cholinergic anti-inflammatory pathway by HIV envelope protein gp120IIIB. Our results demonstrate that HIV gp120IIIB induces α7 nicotinic acetylcholine receptor (α7) upregulation and a paradoxical proinflammatory phenotype in macrophages, as activation of the upregulated α7 is no longer capable of inhibiting the release of proinflammatory cytokines. Our results demonstrate that disruption of the cholinergic-mediated anti-inflammatory response can result from an HIV protein. Collectively, these findings suggest that HIV tampering with a natural strategy to control inflammation could contribute to a crucial, unresolved problem of HIV infection: chronic inflammation.
Collapse
|
30
|
Expression of CHRFAM7A and CHRNA7 in neuronal cells and postmortem brain of HIV-infected patients: considerations for HIV-associated neurocognitive disorder. J Neurovirol 2015; 22:327-35. [PMID: 26567012 DOI: 10.1007/s13365-015-0401-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/13/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
Abstract
Despite the recent advances in antiretroviral therapy, human immunodeficiency virus type 1 (HIV-1) remains a global health threat. HIV-1 affects the central nervous system by releasing viral proteins that trigger neuronal death and neuroinflammation, and promotes alterations known as HIV-associated neurocognitive disorders (HAND). This disorder is not fully understood, and no specific treatments are available. Recently, we demonstrated that the HIV-1 envelope protein gp120IIIB induces a functional upregulation of the α7-nicotinic acetylcholine receptor (α7) in neuronal cells. Furthermore, this upregulation promotes cell death that can be abrogated with receptor antagonists, suggesting that α7 may play an important role in the development of HAND. The partial duplication of the gene coding for the α7, known as CHRFAM7A, negatively regulates α7 expression but its role in HIV infection has not been studied. Hence, we studied both CHRNA7 and CHRFAM7A regulation patterns in various gp120IIIB in vitro conditions. In addition, we measured CHRNA7 and CHRFAM7A expression levels in postmortem brain samples from patients suffering from different stages of HAND. Our results demonstrate the induction of CHRNA7 expression accompanied by a significant downregulation of CHRFAM7A in neuronal cells when exposed to pathophysiological concentrations of gp120IIIB. Our results suggest a dysregulation of CHRFAM7A and CHRNA7 expressions in the basal ganglia from postmortem brain samples of HIV+ subjects and expand the current knowledge about the consequences of HIV infection in the brain.
Collapse
|
31
|
Melendez RI, Roman C, Capo-Velez CM, Lasalde-Dominicci JA. Decreased glial and synaptic glutamate uptake in the striatum of HIV-1 gp120 transgenic mice. J Neurovirol 2015; 22:358-65. [PMID: 26567011 DOI: 10.1007/s13365-015-0403-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022]
Abstract
The mechanisms leading to the neurocognitive deficits in humans with immunodeficiency virus type 1 (HIV-1) are not well resolved. A number of cell culture models have demonstrated that the HIV-envelope glycoprotein 120 (gp120) decreases the reuptake of glutamate, which is necessary for learning, memory, and synaptic plasticity. However, the impact of brain HIV-1 gp120 on glutamate uptake systems in vivo remains unknown. Notably, alterations in brain glutamate uptake systems are implicated in a number of neurodegenerative and neurocognitive disorders. We characterized the kinetic properties of system XAG (sodium-dependent) and systems xc- (sodium-independent) [3H]-L-glutamate uptake in the striatum and hippocampus of HIV-1 gp120 transgenic mice, an established model of HIV neuropathology. We determined the kinetic constant Vmax (maximal velocity) and Km (affinity) of both systems XAG and xc- using subcellular preparations derived from neurons and glial cells. We show significant (30-35 %) reductions in the Vmax of systems XAG and xc- in both neuronal and glial preparations derived from the striatum, but not from the hippocampus of gp120 mice relative to wild-type (WT) controls. Moreover, immunoblot analysis showed that the protein expression of glutamate transporter subtype-1 (GLT-1), the predominant brain glutamate transporter, was significantly reduced in the striatum but not in the hippocampus of gp120 mice. These extensive and region-specific deficits of glutamate uptake likely contribute to the development and/or severity of HIV-associated neurocognitive disorders. Understanding the role of striatal glutamate uptake systems in HIV-1 gp120 may advance the development of new therapeutic strategies to prevent neuronal damage and improve cognitive function in HIV patients.
Collapse
Affiliation(s)
- Roberto I Melendez
- Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, Office #A-527, San Juan, 00936, Puerto Rico.
| | - Cristina Roman
- Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, Office #A-527, San Juan, 00936, Puerto Rico
| | - Coral M Capo-Velez
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, 00936, USA
| | | |
Collapse
|
32
|
Xia C, Cai Y, Lin Y, Guan R, Xiao G, Yang J. MiR-133b-5p regulates the expression of the heat shock protein 70 during rat neuronal cell apoptosis induced by the gp120 V3 loop peptide. J Med Virol 2015; 88:437-47. [PMID: 26280272 DOI: 10.1002/jmv.24355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 12/28/2022]
Abstract
Neuronal cell dysfunction and apoptosis, the main causes of HIV-associated dementia, and its underlying mechanism are important unsolved health problems. Many research reports suggest that miRNAs regulate HIV-1-induced apoptosis. We used the HIV-1 gp120 V3 Loop peptide to induce primary rat cortical neurons apoptosis. Next, we used a microRNA microarray to identify the significant changes of miRNA in the rat cortical neurons treated with the gp120 V3 loop peptide. We used western blot and real-time PCR to measure the regulation of heat shock protein 70 by rno-miR-133b-5p. In response to the gp120 V3 loop peptide treatment, rat cortical neurons exhibited 11 up-regulated and 21 down-regulated miRNAs. We further examined miR-133b-5p, a microRNA that was up-regulated more than 118-fold. In addition, both HSP70 mRNA and protein expression were dose-dependent in rats cortical neurons treated with gp120 V3 loop peptide for 48 hr. MiR-133b-5p could regulate heat shock protein 70 (HSP70) at both transcription and translation levels. Rno-miR-133b-5p might be less significant for the gp120 V3 loop peptide induced neuron apoptosis. Thus, we discovered a potential new target for the regulation of HIV-1 gp120- induced apoptosis.
Collapse
Affiliation(s)
- Chenglai Xia
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China
| | - Yantao Cai
- Department of Dermatology and Rheumatology, Foshan Maternity & Child Heath Care Hospital, Foshan, 528000, China
| | - Yuyi Lin
- Department of Reproductive Medicine Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou Medical University at Guangzhou, 63 Duobao Road, Guangzhou, GD, 510150, China
| | - Ronghua Guan
- Department of Reproductive Medicine Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou Medical University at Guangzhou, 63 Duobao Road, Guangzhou, GD, 510150, China
| | - Guohong Xiao
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou Medical University at Guangzhou, 63 Duobao Road, Guangzhou, GD, 510150, China
| | - Jie Yang
- Department of Reproductive Medicine Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou Medical University at Guangzhou, 63 Duobao Road, Guangzhou, GD, 510150, China
| |
Collapse
|
33
|
Zhang B, Yu JY, Liu LQ, Peng L, Chi F, Wu CH, Jong A, Wang SF, Cao H, Huang SH. Alpha7 nicotinic acetylcholine receptor is required for blood-brain barrier injury-related CNS disorders caused by Cryptococcus neoformans and HIV-1 associated comorbidity factors. BMC Infect Dis 2015; 15:352. [PMID: 26285576 PMCID: PMC4543465 DOI: 10.1186/s12879-015-1075-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/31/2015] [Indexed: 01/11/2023] Open
Abstract
Background Cryptococcal meningitis is the most common fungal infection of the central nervous system (CNS) in HIV/AIDS. HIV-1 virotoxins (e.g., gp41) are able to induce disorders of the blood-brain barrier (BBB), which mainly consists of BMEC. Our recent study suggests that α7 nAChR is an essential regulator of inflammation, which contributes to regulation of NF-κB signaling, neuroinflammation and BBB disorders caused by microbial (e.g., HIV-1 gp120) and non-microbial [e.g., methamphetamine (METH)] factors. However, the underlying mechanisms for multiple comorbidities are unclear. Methods In this report, an aggravating role of α7 nAChR in host defense against CNS disorders caused by these comorbidities was demonstrated by chemical [inhibitor: methyllycaconitine (MLA)] and genetic (α7−/− mice) blockages of α7 nAChR. Results As shown in our in vivo studies, BBB injury was significantly reduced in α7−/− mice infected with C. neoformans. Stimulation by the gp41 ectodomain peptide (gp41-I90) and METH was abolished in the α7−/− animals. C. neoformans and gp41-I90 could activate NF-κB. Gp41-I90- and METH-induced monocyte transmigration and senescence were significantly inhibited by MLA and CAPE (caffeic acid phenethyl ester, an NF-κB inhibitor). Conclusions Collectively, our data suggest that α7 nAChR plays a detrimental role in the host defense against C. neoformans- and HIV-1 associated comorbidity factors-induced BBB injury and CNS disorders.
Collapse
Affiliation(s)
- Bao Zhang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China. .,Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, 4650 Sunset Blvd., Mailstop #51, Los Angeles, CA, 90027, USA.
| | - Jing-Yi Yu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China. .,Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, 4650 Sunset Blvd., Mailstop #51, Los Angeles, CA, 90027, USA.
| | - Li-Qun Liu
- Division of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Liang Peng
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, 4650 Sunset Blvd., Mailstop #51, Los Angeles, CA, 90027, USA. .,Department of Clinic Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Feng Chi
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, 4650 Sunset Blvd., Mailstop #51, Los Angeles, CA, 90027, USA.
| | - Chun-Hua Wu
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, 4650 Sunset Blvd., Mailstop #51, Los Angeles, CA, 90027, USA.
| | - Ambrose Jong
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, 4650 Sunset Blvd., Mailstop #51, Los Angeles, CA, 90027, USA.
| | - Shi-Fu Wang
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, 4650 Sunset Blvd., Mailstop #51, Los Angeles, CA, 90027, USA. .,Department of Children's Medical Laboratory Diagnosis Center, Qilu Children's Hospital of Shandong University, Jinan, 250022, China.
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Sheng-He Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China. .,Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, 4650 Sunset Blvd., Mailstop #51, Los Angeles, CA, 90027, USA.
| |
Collapse
|
34
|
Rao VR, Ruiz AP, Prasad VR. Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther 2014; 11:13. [PMID: 24894206 PMCID: PMC4043700 DOI: 10.1186/1742-6405-11-13] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/08/2014] [Indexed: 11/11/2022] Open
Abstract
As the HIV-1 epidemic enters its fourth decade, HIV-1 associated neurological disorders (HAND) continue to be a major concern in the infected population, despite the widespread use of anti-retroviral therapy. Advancing age and increased life expectancy of the HIV-1 infected population have been shown to increase the risk of cognitive dysfunction. Over the past 10 years, there has been a significant progress in our understanding of the mechanisms and the risk factors involved in the development of HAND. Key events that lead up to neuronal damage in HIV-1 infected individuals can be categorized based on the interaction of HIV-1 with the various cell types, including but not limited to macrophages, brain endothelial cells, microglia, astrocytes and the neurons. This review attempts to decipher these interactions, beginning with HIV-1 infection of macrophages and ultimately resulting in the release of neurotoxic viral and host products. These include: interaction with endothelial cells, resulting in the impairment of the blood brain barrier; interaction with the astrocytes, leading to metabolic and neurotransmitter imbalance; interactions with resident immune cells in the brain, leading to release of toxic cytokines and chemokines. We also review the mechanisms underlying neuronal damage caused by the factors mentioned above. We have attempted to bring together recent findings in these areas to help appreciate the viral and host factors that bring about neurological dysfunction. In addition, we review host factors and viral genotypic differences that affect phenotypic pathological outcomes, as well as recent advances in treatment options to specifically address the neurotoxic mechanisms in play.
Collapse
|
35
|
Atluri VSR, Pilakka-Kanthikeel S, Samikkannu T, Sagar V, Kurapati KRV, Saxena SK, Yndart A, Raymond A, Ding H, Hernandez O, Nair MPN. Vorinostat positively regulates synaptic plasticity genes expression and spine density in HIV infected neurons: role of nicotine in progression of HIV-associated neurocognitive disorder. Mol Brain 2014; 7:37. [PMID: 24886748 PMCID: PMC4040511 DOI: 10.1186/1756-6606-7-37] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/28/2014] [Indexed: 11/24/2022] Open
Abstract
Background HIV-associated neurocognitive disorder (HAND) is characterized by development of cognitive, behavioral and motor abnormalities, and occurs in approximately 50% of HIV infected individuals. In the United States, the prevalence of cigarette smoking ranges from 35-70% in HIV-infected individuals compared to 20% in general population. Cognitive impairment in heavy cigarette smokers has been well reported. However, the synergistic effects of nicotine and HIV infection and the underlying mechanisms in the development of HAND are unknown. Results In this study, we explored the role of nicotine in the progression of HAND using SK-N-MC, a neuronal cell line. SK-N-MC cells were infected with HIV-1 in the presence or absence of nicotine for 7 days. We observed significant increase in HIV infectivity in SK-N-MC treated with nicotine compared to untreated HIV-infected neuronal cells. HIV and nicotine synergize to significantly dysregulate the expression of synaptic plasticity genes and spine density; with a concomitant increase of HDAC2 levels in SK-N-MC cells. In addition, inhibition of HDAC2 up-regulation with the use of vorinostat resulted in HIV latency breakdown and recovery of synaptic plasticity genes expression and spine density in nicotine/HIV alone and in co-treated SK-N-MC cells. Furthermore, increased eIF2 alpha phosphorylation, which negatively regulates eukaryotic translational process, was observed in HIV alone and in co-treatment with nicotine compared to untreated control and nicotine alone treated SK-N-MC cells. Conclusions These results suggest that nicotine and HIV synergize to negatively regulate the synaptic plasticity gene expression and spine density and this may contribute to the increased risk of HAND in HIV infected smokers. Apart from disrupting latency, vorinostat may be a useful therapeutic to inhibit the negative regulatory effects on synaptic plasticity in HIV infected nicotine abusers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Madhavan P N Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL -33199, USA.
| |
Collapse
|
36
|
Chang SL, Connaghan KP, Wei Y, Li MD. NeuroHIV and use of addictive substances. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:403-40. [PMID: 25175871 DOI: 10.1016/b978-0-12-801284-0.00013-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past three decades, substance abuse has been identified as a key comorbidity of human immunodeficiency virus-1 (HIV-1) infection. Many studies have found that the use and abuse of addictive substances hastens the progression of HIV-1 infection and HIV-associated neurocognitive disorders. Advances in highly active antiretroviral therapy (HAART) in the mid-1990s have been successful in limiting the HIV-1 viral load and maintaining a relatively healthy immune response, allowing the life expectancy of patients infected with HIV to approach that of the general population. However, even with HAART, HIV-1 viral proteins are still expressed and eradication of the virus, particularly in the brain, the key reservoir organ, does not occur. In the post-HAART era, the clinical challenge in the treatment of HIV infection is inflammation of the central nervous system (CNS) and its subsequent neurological disorders. To date, various explicit and implicit connections have been identified between the neuronal circuitry involved in immune responses and brain regions affected by and implicated in substance abuse. This chapter discusses past and current medical uses of prototypical substances of abuse, including morphine, alcohol, cocaine, methamphetamine, marijuana, and nicotine, and the evidence that systemic infections, particularly HIV-1 infection, cause neurological dysfunction as a result of inflammation in the CNS, which can increase the risk of substance abuse.
Collapse
Affiliation(s)
- Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA; Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA.
| | - Kaitlyn P Connaghan
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA
| | - Yufeng Wei
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
37
|
Animal models for depression associated with HIV-1 infection. J Neuroimmune Pharmacol 2013; 9:195-208. [PMID: 24338381 DOI: 10.1007/s11481-013-9518-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/02/2013] [Indexed: 01/12/2023]
Abstract
Antiretroviral therapy has greatly extended the lifespan of people living with human immunodeficiency virus (PLHIV). As a result, the long-term effects of HIV infection, in particular those originating in the central nervous system (CNS), such as HIV associated depression, have gained importance. Animal models for HIV infection have proved very useful for understanding the disease and developing treatment strategies. However, HIV associated depression remains poorly understood and so far there is neither a fully satisfactory animal model, nor a pathophysiologically guided treatment for this condition. Here we review the neuroimmunological, neuroendocrine, neurotoxic and neurodegenerative basis for HIV depression and discuss strategies for employing HIV animal models, in particular humanized mice which are susceptible to HIV infection, for the study of HIV depression.
Collapse
|
38
|
Costiniuk CT, Jenabian MA. The lungs as anatomical reservoirs of HIV infection. Rev Med Virol 2013; 24:35-54. [DOI: 10.1002/rmv.1772] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Cecilia T. Costiniuk
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH); Durban South Africa
- Division of Infectious Diseases, Department of Medicine; University of Ottawa; Ottawa ON Canada
| | - Mohammad-Ali Jenabian
- Chronic Viral Illnesses Service; Montreal Chest Institute; Montreal QC Canada
- Research Institute; McGill University Health Centre; Montreal QC Canada
| |
Collapse
|
39
|
Gundavarapu S, Mishra NC, Singh SP, Langley RJ, Saeed AI, Feghali-Bostwick CA, McIntosh JM, Hutt J, Hegde R, Buch S, Sopori ML. HIV gp120 induces mucus formation in human bronchial epithelial cells through CXCR4/α7-nicotinic acetylcholine receptors. PLoS One 2013; 8:e77160. [PMID: 24155926 PMCID: PMC3796539 DOI: 10.1371/journal.pone.0077160] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/06/2013] [Indexed: 01/10/2023] Open
Abstract
Lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and lung infections are major causes of morbidity and mortality among HIV-infected patients even in the era of antiretroviral therapy (ART). Many of these diseases are strongly associated with smoking and smoking is more common among HIV-infected than uninfected people; however, HIV is an independent risk factor for chronic bronchitis, COPD, and asthma. The mechanism by which HIV promotes these diseases is unclear. Excessive airway mucus formation is a characteristic of these diseases and contributes to airway obstruction and lung infections. HIV gp120 plays a critical role in several HIV-related pathologies and we investigated whether HIV gp120 promoted airway mucus formation in normal human bronchial epithelial (NHBE) cells. We found that NHBE cells expressed the HIV-coreceptor CXCR4 but not CCR5 and produced mucus in response to CXCR4-tropic gp120. The gp120-induced mucus formation was blocked by the inhibitors of CXCR4, α7-nicotinic acetylcholine receptor (α7-nAChR), and γ-aminobutyric acid (GABA)AR but not the antagonists of CCR5 and epithelial growth factor receptor (EGFR). These results identify two distinct pathways (α7-nAChR-GABAAR and EGFR) for airway mucus formation and demonstrate for the first time that HIV-gp120 induces and regulates mucus formation in the airway epithelial cells through the CXCR4-α7-nAChR-GABAAR pathway. Interestingly, lung sections from HIV ± ART and simian immunodeficiency virus (SIV) ± ART have significantly more mucus and gp120-immunoreactivity than control lung sections from humans and macaques, respectively. Thus, even after ART, lungs from HIV-infected patients contain significant amounts of gp120 and mucus that may contribute to the higher incidence of obstructive pulmonary diseases in this population.
Collapse
Affiliation(s)
- Sravanthi Gundavarapu
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Neerad C. Mishra
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Shashi P. Singh
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Raymond J. Langley
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Ali Imran Saeed
- Pulmonary and Critical Care Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Carol A. Feghali-Bostwick
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - J. Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- Departments of Psychiatry and Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Julie Hutt
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Ramakrishna Hegde
- The Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mohan L. Sopori
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| |
Collapse
|
40
|
Cao J, Wang S, Wang J, Cui W, Nesil T, Vigorito M, Chang SL, Li MD. RNA deep sequencing analysis reveals that nicotine restores impaired gene expression by viral proteins in the brains of HIV-1 transgenic rats. PLoS One 2013; 8:e68517. [PMID: 23874651 PMCID: PMC3712985 DOI: 10.1371/journal.pone.0068517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/06/2013] [Indexed: 01/06/2023] Open
Abstract
Persons infected with HIV-1 often develop neurologic disorders despite receiving highly active anti-retroviral therapy. Although the underlying mechanism is largely undetermined, our previous RNA-seq-based study showed that the expression of many genes was altered in the central nervous system (CNS) of HIV-1 transgenic (HIV-1Tg) rats. Because nicotine, a natural agonist of nicotinic acetylcholine receptors, exhibits a neuroprotective effect, we presently tested the hypothesis that nicotine restores the expression of altered genes in the CNS of HIV-1Tg rats. Adult male HIV-1Tg and F344 control strain rats were injected with either nicotine (0.25 mg/kg) or saline subcutaneously twice a day for 17 days. Gene expression in the prefrontal cortex (PFC), dorsal hippocampus (HIP), and dorsal striatum (STR) was evaluated using the RNA deep sequencing technique. We found that about 20% of the altered genes in the HIV-1Tg rat were affected by nicotine in each brain region, with the expression of most restored. Analysis of the restored genes showed distinct pathways corrected by nicotine in different brain regions of HIV-1Tg rats. Specifically, the two most significantly restored pathways were Wnt/β-catenin signaling and ephrin B signaling in the PFC, cAMP-responsive element-binding protein (CREB) signaling and glutathione metabolism pathway in the HIP, and tricarboxylic acid (TCA) cycle and calcium signaling in the STR. Together, our findings indicate that cholinergic modulators such as nicotine have beneficial effects on HIV-1-induced neurologic deficits.
Collapse
Affiliation(s)
- Junran Cao
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Shaolin Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ju Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Wenyan Cui
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael Vigorito
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, United States of America
- Department of Psychology, Seton Hall University, South Orange, New Jersey, United States of America
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, United States of America
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
| | - Ming D. Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
41
|
Huang SH, Wang L, Chi F, Wu CH, Cao H, Zhang A, Jong A. Circulating brain microvascular endothelial cells (cBMECs) as potential biomarkers of the blood-brain barrier disorders caused by microbial and non-microbial factors. PLoS One 2013; 8:e62164. [PMID: 23637989 PMCID: PMC3637435 DOI: 10.1371/journal.pone.0062164] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/18/2013] [Indexed: 11/18/2022] Open
Abstract
Despite aggressive research, central nervous system (CNS) disorders, including blood-brain barrier (BBB) injury caused by microbial infection, stroke, abused drugs [e.g., methamphetamine (METH) and nicotine], and other pathogenic insults, remain the world's leading cause of disabilities. In our previous work, we found that dysfunction of brain microvascular endothelial cells (BMECs), which are a major component of the BBB, could be caused by nicotine, meningitic pathogens and microbial factors, including HIV-1 virulence factors gp41 and gp120. One of the most challenging issues in this area is that there are no available cell-based biomarkers in peripheral blood for BBB disorders caused by microbial and non-microbial insults. To identify such cellular biomarkers for BBB injuries, our studies have shown that mice treated with nicotine, METH and gp120 resulted in increased blood levels of CD146+(endothelial marker)/S100B+ (brain marker) circulating BMECs (cBMECs) and CD133+[progenitor cell (PC) marker]/CD146+ endothelial PCs (EPCs), along with enhanced Evans blue and albumin extravasation into the brain. Nicotine and gp120 were able to significantly increase the serum levels of ubiquitin C-terminal hydrolase 1 (UCHL1) (a new BBB marker) as well as S100B in mice, which are correlated with the changes in cBMECs and EPCs. Nicotine- and meningitic E. coli K1-induced enhancement of cBMEC levels, leukocyte migration across the BBB and albumin extravasation into the brain were significantly reduced in alpha7 nAChR knockout mice, suggesting that this inflammatory regulator plays an important role in CNS inflammation and BBB disorders caused by microbial and non-microbial factors. These results demonstrated that cBMECs as well as EPCs may be used as potential cell-based biomarkers for indexing of BBB injury.
Collapse
Affiliation(s)
- Sheng-He Huang
- Department of Pediatrics, Saban Research Institute of Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
42
|
Bryant VE, Kahler CW, Devlin KN, Monti PM, Cohen RA. The effects of cigarette smoking on learning and memory performance among people living with HIV/AIDS. AIDS Care 2013; 25:1308-16. [PMID: 23394125 DOI: 10.1080/09540121.2013.764965] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to examine the effects of smoking (past and current) on multiple domains of cognitive functioning in a sample of people living with HIV/AIDS (PLWHA). We hypothesized that among PLWHA, current smokers would demonstrate poorer cognitive functioning when compared to non-smokers, specifically in the cognitive domains of auditory-verbal learning and memory, visuospatial memory, overall cognitive efficiency, executive skills, processing speed, and working memory. Results suggest that in patients being treated for HIV infection, current smoking is negatively associated with learning, memory, and global cognitive functioning. There was also some evidence that cognitive deficits in learning associated with smoking were more pronounced among men compared to women. However, the cause of these effects is not at all clear. In multivariate models, the differences associated with smoking were non-significant when adjusting for education and hepatitis C virus infection. Therefore, smoking may simply reflect a general tendency to more widespread deficits and comorbidities rather than directly impacting cognitive function. Future studies should attempt to examine a priori cognitive factors which contribute to smoking debut and other associated risk factors in order to understand why smoking may be a marker for other risk factors and may ultimately influence neurocognitive functioning critical to daily activities and adherence.
Collapse
Affiliation(s)
- Vaughn E Bryant
- a Behavioral and Social Sciences , Brown University , Providence , RI , USA
| | | | | | | | | |
Collapse
|
43
|
Jaeger LB, Nath A. Modeling HIV-associated neurocognitive disorders in mice: new approaches in the changing face of HIV neuropathogenesis. Dis Model Mech 2012; 5:313-22. [PMID: 22563057 PMCID: PMC3339825 DOI: 10.1242/dmm.008763] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well established that infection with the human immunodeficiency virus (HIV) leads to immune suppression. Less well known is the fact that long-term, progressive HIV disease is associated with the development of cognitive deficits. Since the introduction of combined antiretroviral therapy (cART), the clinical presentation of HIV infection has evolved into a chronic illness with very low levels of viral replication and chronic immune activation, with compliant affected individuals surviving for decades with a high quality of life. Despite these advances, many HIV-infected individuals develop some degree of neurodegeneration and cognitive impairment. The underlying pathophysiological mechanisms are not well understood, and there are no effective treatments. Thus, there is an unmet need for animal models that enable the study of HIV-associated neurocognitive disorders (HAND) and the testing of new therapeutic approaches to combat them. Here, we review the pros and cons of existing mouse models of HIV infection for addressing these aims and propose a detailed strategy for developing a new mouse model of HIV infection.
Collapse
Affiliation(s)
- Laura B Jaeger
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1296, USA
| | | |
Collapse
|