1
|
Boleti APDA, Jacobowski AC, Monteiro-Alfredo T, Pereira APR, Oliva MLV, Maria DA, Macedo MLR. Cutaneous Melanoma: An Overview of Physiological and Therapeutic Aspects and Biotechnological Use of Serine Protease Inhibitors. Molecules 2024; 29:3891. [PMID: 39202970 PMCID: PMC11357276 DOI: 10.3390/molecules29163891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Metastatic melanoma stands out as the most lethal form of skin cancer because of its high propensity to spread and its remarkable resistance to treatment methods. METHODS In this review article, we address the incidence of melanoma worldwide and its staging phases. We thoroughly investigate the different melanomas and their associated risk factors. In addition, we underscore the principal therapeutic goals and pharmacological methods that are currently used in the treatment of melanoma. RESULTS The implementation of targeted therapies has contributed to improving the approach to patients. However, because of the emergence of resistance early in treatment, overall survival and progression-free periods continue to be limited. CONCLUSIONS We provide new insights into plant serine protease inhibitor therapeutics, supporting high-throughput drug screening soon, and seeking a complementary approach to explain crucial mechanisms associated with melanoma.
Collapse
Affiliation(s)
- Ana Paula De Araújo Boleti
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Cristina Jacobowski
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Tamaeh Monteiro-Alfredo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Paula Ramos Pereira
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil;
| | - Durvanei Augusto Maria
- Divisão de Ciências Fisiológicas e Químicas, Serviço de Bioquímica, Instituto Butantan, São Paulo 05585-000, SP, Brazil;
| | - Maria Lígia Rodrigues Macedo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
- Department of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
2
|
da Silva MM, de Oliveira CFR, Almeida CV, Sobrinho IAS, Macedo MLR. A Novel Kunitz Trypsin Inhibitor from Enterolobium gummiferum Seeds Exhibits Antibiofilm Properties against Pathogenic Yeasts. Molecules 2024; 29:3777. [PMID: 39202855 PMCID: PMC11357210 DOI: 10.3390/molecules29163777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Plant peptidase inhibitors play crucial roles in plant defence mechanisms and physiological processes. In this study, we isolated and characterised a Kunitz trypsin inhibitor from Enterolobium gummiferum seeds named EgPI (E. gummiferum peptidase inhibitor). The purification process involved two chromatography steps using size exclusion and hydrophobic resins, resulting in high purity and yield. EgPI appeared as a single band of ~20 kDa in SDS-PAGE. Under reducing conditions, the inhibitor exhibited two polypeptide chains, with 15 and 5 kDa. Functional characterisation revealed that EgPI displayed an inhibition stoichiometry of 1:1 against trypsin, with a dissociation constant of 8.4 × 10-9 mol·L-1. The amino-terminal sequencing of EgPI revealed the homology with Kunitz inhibitors. Circular dichroism analysis provided insights into the secondary structure of EgPI, which displayed the signature typical of Kunitz inhibitors. Stability studies demonstrated that EgPI maintained the secondary structure necessary to exhibit its inhibitory activity up to 70 °C and over a pH range from 2 to 8. Microbiological screening revealed that EgPI has antibiofilm properties against pathogenic yeasts at 1.125 μmol·L-1, and EgPI reduced C. albicans biofilm formation by 82.7%. The high affinity of EgPI for trypsin suggests potential applications in various fields. Furthermore, its antibiofilm properties recommended its usefulness in agriculture and antimicrobial therapy research, highlighting the practical implications of our research.
Collapse
Affiliation(s)
- Matheus M. da Silva
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (M.M.d.S.); (C.V.A.); (I.A.S.S.)
| | - Caio F. R. de Oliveira
- Instituto Federal de Mato Grosso, Campus Guarantã do Norte, Guarantã do Norte 78520-000, MT, Brazil;
| | - Claudiane V. Almeida
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (M.M.d.S.); (C.V.A.); (I.A.S.S.)
| | - Ismaell A. S. Sobrinho
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (M.M.d.S.); (C.V.A.); (I.A.S.S.)
| | - Maria L. R. Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (M.M.d.S.); (C.V.A.); (I.A.S.S.)
| |
Collapse
|
3
|
Santos NRM, de Oliveira WF, Cabrera MP, Bezerra Filho CM, Patriota LLS, Napoleão TH, Paiva PMG, Oliva MLV, Cabral Filho PE, Fontes A, Correia MTS. A fluorescent quantum dot conjugate to probe the interaction of Enterolobium contortisiliquum trypsin inhibitor with cancer cells. Int J Biol Macromol 2023; 252:126453. [PMID: 37619683 DOI: 10.1016/j.ijbiomac.2023.126453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Serine proteases play crucial biological roles and have their activity controlled by inhibitors, such as the EcTI, a serine protease inhibitor purified from Enterolobium contortisiliquum seeds, which has anticancer activity. This study aimed to conjugate EcTI with quantum dots (QDs), fluorophores with outstanding optical properties, and investigate the interaction of QDs-EcTI nanoprobe with cancer cells. The conjugation was evaluated by fluorescence correlation spectroscopy (FCS) and fluorescence microplate assay (FMA). EcTI inhibitory activity after interaction with QDs was also analyzed. From FCS, the conjugate presented a hydrodynamic diameter about 4× greater than bare QDs, suggesting a successful conjugation. This was supported by FMA, which showed a relative fluorescence intensity of ca. 3815% for the nanosystem, concerning bare QDs or EcTI alone. The EcTI inhibitory activity remained intact after its interaction with QDs. From flow cytometry analyses, approximately 62% of MDA-MB-231 and 90% of HeLa cells were labeled with the QD-EcTI conjugate, suggesting that their membranes have different protease levels to which EcTI exhibits an affinity. Concluding, the QD-EcTI represents a valuable nanotool to study the interaction of this inhibitor with cancer cells using fluorescence-based techniques with the potential to unravel the intricate dynamics of interplays between proteases and inhibitors in cancer biology.
Collapse
Affiliation(s)
- Natália R M Santos
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Weslley F de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Mariana P Cabrera
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, PE, 50740-560, Brazil
| | - Clovis M Bezerra Filho
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, 04044-020, Brazil; Núcleo de Pesquisas em Ciências Ambientais e Biotecnologia, Universidade Católica de Pernambuco, Recife, PE, 50050-900, Brazil
| | - Leydianne L S Patriota
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Maria Luiza V Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, 04044-020, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| | - Maria T S Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
4
|
Bonturi CR, Salu BR, Bonazza CN, Sinigaglia RDC, Rodrigues T, Alvarez-Flores MP, Chudzinski-Tavassi AM, Oliva MLV. Proliferation and Invasion of Melanoma Are Suppressed by a Plant Protease Inhibitor, Leading to Downregulation of Survival/Death-Related Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092956. [PMID: 35566311 PMCID: PMC9104945 DOI: 10.3390/molecules27092956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Cell adhesion and migration are crucial for cancer progression and malignancy. Drugs available for the treatment of metastatic melanoma are expensive and unfit for certain patients. Therefore, there is still a need to identify new drugs that block tumor cell development. We investigated the effects of Enterolobium contortisiliquum trypsin inhibitor (EcTI), a protease inhibitor, on cell viability, cell migration, invasion, cell adhesion, and cell death (hallmarks of cancer) in vitro using human melanoma cells (SK-MEL-28 and CHL-1). Although EcTI did not affect non-tumor cells, it significantly inhibited the proliferation, migration, invasion, and adhesion of melanoma cells. Investigation of the underlying mechanisms revealed that EcTI triggered apoptosis and nuclear shrinkage, increased PI uptake, activated effector caspases-3/7, and produced reactive oxygen species (ROS). Furthermore, EcTI disrupted the mitochondrial membrane potential, altered calcium homeostasis, and modified proteins associated with survival and apoptosis/autophagy regulation. Acridine orange staining indicated acidic vesicular organelle formation upon EcTI treatment, demonstrating a cell death display. Electronic microscopy corroborated the apoptotic pattern by allowing the visualization of apoptotic bodies, mitochondrial cristae disorganization, and autophagic vesicles. Taken together, these results provide new insights into the anti-cancer properties of the natural EcTI protein, establishing it as a promising new therapeutic drug for use in melanoma treatment.
Collapse
Affiliation(s)
- Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Bruno Ramos Salu
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Camila Nimri Bonazza
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Rita de Cassia Sinigaglia
- Electron Microscopy Center, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Tiago Rodrigues
- Centre for Natural and Human Sciences, Universidade Federal do ABC (UFABC), Santo André 09210-580, Brazil
| | | | | | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| |
Collapse
|
5
|
Jasemi SV, Khazaei H, Momtaz S, Farzaei MH, Echeverría J. Natural products in the treatment of pulmonary emphysema: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153988. [PMID: 35217434 DOI: 10.1016/j.phymed.2022.153988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a class of lung diseases including chronic bronchitis, asthma, and emphysema. Long-time smoking is considered the main reason for developing emphysema. Emphysema can be defined as damage to the walls of the air sacs (alveoli) of the lung. It has been demonstrated that natural compounds with antioxidant and anti-inflammatory effects can effectively improve or protect the lung against this disease. This paper is dedicated to systematically review the effective natural compounds in the treatment of pulmonary emphysema. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating pulmonary emphysema STUDY DESIGN AND METHODS: A systematic and comprehensive review was done based on Scopus, PubMed, and Cochrane Library databases were searched using the "emphysema", "plant", "herb", and "phytochemical" keywords. Non-English, review, and repetitive articles were excluded from the study. Search results were included in the Prisma diagram. RESULTS From a total of 1285 results, finally, 22 articles were included in the present study. The results show that some herbs such as Scutellaria baicalensis Georgi and Monascus adlay and some phytochemicals such as gallic acid and quercetin and blackboard tree indole alkaloids affect more factors in improving the lung emphysema. Also, some natural compounds such as marijuana smoke and humic acid also play an aggravating role in this disease. It also seems that some of the medicinal plants such as PM014 herbal formula, pomegranate juice and açaí berry sometimes have side effects that are inconsistent with their therapeutic effects. CONCLUSION We concluded that natural compounds can effectively improve pulmonary emphysema due to their antioxidant, anti-inflammatory, and anti-apoptotic properties. However, additional studies are suggested to prove efficacy and side effects.
Collapse
Affiliation(s)
- Sayed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Plant Kunitz Inhibitors and Their Interaction with Proteases: Current and Potential Pharmacological Targets. Int J Mol Sci 2022; 23:ijms23094742. [PMID: 35563133 PMCID: PMC9100506 DOI: 10.3390/ijms23094742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The action of proteases can be controlled by several mechanisms, including regulation through gene expression; post-translational modifications, such as glycosylation; zymogen activation; targeting specific compartments, such as lysosomes and mitochondria; and blocking proteolysis using endogenous inhibitors. Protease inhibitors are important molecules to be explored for the control of proteolytic processes in organisms because of their ability to act on several proteases. In this context, plants synthesize numerous proteins that contribute to protection against attacks by microorganisms (fungi and bacteria) and/or invertebrates (insects and nematodes) through the inhibition of proteases in these organisms. These proteins are widely distributed in the plant kingdom, and are present in higher concentrations in legume seeds (compared to other organs and other botanical families), motivating studies on their inhibitory effects in various organisms, including humans. In most cases, the biological roles of these proteins have been assigned based mostly on their in vitro action, as is the case with enzyme inhibitors. This review highlights the structural evolution, function, and wide variety of effects of plant Kunitz protease inhibitors, and their potential for pharmaceutical application based on their interactions with different proteases.
Collapse
|
7
|
Differences in the Inhibitory Specificity Distinguish the Efficacy of Plant Protease Inhibitors on Mouse Fibrosarcoma. PLANTS 2021; 10:plants10030602. [PMID: 33806820 PMCID: PMC8005126 DOI: 10.3390/plants10030602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022]
Abstract
Metastasis, the primary cause of death from malignant tumors, is facilitated by multiple protease-mediated processes. Thus, effort has been invested in the development of protease inhibitors to prevent metastasis. Here, we investigated the effects of protease inhibitors including the recombinant inhibitors rBbKI (serine protease inhibitor) and rBbCI (serine and cysteine inhibitor) derived from native inhibitors identified in Bauhinia bauhinioides seeds, and EcTI (serine and metalloprotease inhibitor) isolated from the seeds of Enterolobium contortisiliquum on the mouse fibrosarcoma model (lineage L929). rBbKI inhibited 80% of cell viability of L929 cells after 48 h, while EcTI showed similar efficacy after 72 h. Both inhibitors acted in a dose and time-dependent manner. Conversely, rBbCI did not significantly affect the viability of L929 cells. Confocal microscopy revealed the binding of rBbKI and EcTI to the L929 cell surface. rBbKI inhibited approximately 63% of L929 adhesion to fibronectin, in contrast with EcTI and rBbCI, which did not significantly interfere with adhesion. None of the inhibitors interfered with the L929 cell cycle phases. The synthetic peptide RPGLPVRFESPL-NH2, based on the BbKI reactive site, inhibited 45% of the cellular viability of L929, becoming a promising protease inhibitor due to its ease of synthesis.
Collapse
|
8
|
Biotechnological Potential of Araucaria angustifolia Pine Nuts Extract and the Cysteine Protease Inhibitor AaCI-2S. PLANTS 2020; 9:plants9121676. [PMID: 33266031 PMCID: PMC7760129 DOI: 10.3390/plants9121676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023]
Abstract
Protease inhibitors are involved in the regulation of endogenous cysteine proteases during seed development and play a defensive role because of their ability to inhibit exogenous proteases such as those present in the digestive tracts of insects. Araucaria angustifolia seeds, which can be used in human and animal feed, were investigated for their potential for the development of agricultural biotechnology and in the field of human health. In the pine nuts extract, which blocked the activities of cysteine proteases, it was detected potent insecticidal activity against termites (Nasutitermes corniger) belonging to the most abundant termite genus in tropical regions. The cysteine inhibitor (AaCI-2S) was purified by ion-exchange, size exclusion, and reversed-phase chromatography. Its functional and structural stability was confirmed by spectroscopic and circular dichroism studies, and by detection of inhibitory activity at different temperatures and pH values. Besides having activity on cysteine proteases from C. maculatus digestive tract, AaCI-2S inhibited papain, bromelain, ficin, and cathepsin L and impaired cell proliferation in gastric and prostate cancer cell lines. These properties qualify A. angustifolia seeds as a protein source with value properties of natural insecticide and to contain a protease inhibitor with the potential to be a bioactive molecule on different cancer cells.
Collapse
|
9
|
Lobo YA, Bonazza C, Batista FP, Castro RA, Bonturi CR, Salu BR, de Cassia Sinigaglia R, Toma L, Vicente CM, Pidde G, Tambourgi DV, Alvarez-Flores MP, Chudzinski-Tavassi AM, Oliva MLV. EcTI impairs survival and proliferation pathways in triple-negative breast cancer by modulating cell-glycosaminoglycans and inflammatory cytokines. Cancer Lett 2020; 491:108-120. [PMID: 32841713 DOI: 10.1016/j.canlet.2020.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/21/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
Breast cancer is the most common malignant tumor among women worldwide, and triple-negative breast cancer is the most aggressive type of breast cancer, which does not respond to hormonal therapies. The protease inhibitor, EcTI, extracted from seeds of Enterolobium contortisiliquum, acts on the main signaling pathways of the MDA-MB-231 triple-negative breast cancer cells. This inhibitor, when bound to collagen I of the extracellular matrix, triggers a series of pathways capable of decreasing the viability, adhesion, migration, and invasion of these cells. This inhibitor can interfere in the cell cycle process through the main signaling pathways such as the adhesion, Integrin/FAK/SRC, Akt, ERK, and the cell death pathway BAX and BCL-2. It also acts by reducing the main inflammatory cytokines such as TGF-α, IL-6, IL-8, and MCP-1, besides NFκB, a transcription factor, responsible for the aggressive and metastatic characteristics of this type of tumor. Thus, the inhibitor was able to reduce the main processes of carcinogenesis of this type of cancer.
Collapse
Affiliation(s)
- Yara A Lobo
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Camila Bonazza
- Gynecology, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Fabrício P Batista
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Rodrigo A Castro
- Gynecology, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Camila R Bonturi
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Bruno R Salu
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Rita de Cassia Sinigaglia
- Electron Microscopy Center at the Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Leny Toma
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Carolina M Vicente
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Giselle Pidde
- Immunochemistry, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Denise V Tambourgi
- Immunochemistry, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Miryam P Alvarez-Flores
- Center of Excellence in New Target Discovery (CENTD), Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Ana M Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Maria Luiza V Oliva
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Liu H, Zhang H, Luo J, Peng J, An B, Qiao Z, Wei N, Zhang Y, Zhu W. Highly Efficient Cell Membrane Tracker Based on a Solvatochromic Dye with Near-Infrared Emission. ACS OMEGA 2020; 5:11829-11835. [PMID: 32478274 PMCID: PMC7254808 DOI: 10.1021/acsomega.0c01416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The cell membrane is composed of a phospholipid bilayer with embedded proteins and maintains cell homeostasis through dynamic changes. An abnormal cell membrane shape could be a sign of unhealthy cells. Probes for subcellular fluorescence imaging that can identify the abnormal plasma membrane and record the dynamic changes are needed. Based on a solvatochromic dye with a near-infrared emission strategy, the amphipathic molecule (E)-2,2'-((4-(2-(4-(dicyanomethylene)-4H-chromen-2-yl)vinyl)phenyl)azanediyl)bis(ethane-1-sulfonic acid) (MRL) contained a hydrophilic sulfo group and a hydrophobic chromone group, which was designed and synthesized for staining the cell membrane and monitoring the morphology of the membranes under different conditions. MRL exhibited an excellent photostability and low cytotoxicity; when cells were incubated with MRL, cell membranes were specifically labeled. MRL is capable of long-term monitoring of the morphological changes of cell membrane.
Collapse
|
11
|
Batista FP, de Aguiar RB, Sumikawa JT, Lobo YA, Bonturi CR, Ferreira RDS, Andrade SS, Guedes Paiva PM, dos Santos Correia MT, Vicente CM, Toma L, Sampaio MU, Paschoalin T, Girão MJBC, de Moraes JZ, de Paula CAA, Oliva MLV. Crataeva tapia bark lectin (CrataBL) is a chemoattractant for endothelial cells that targets heparan sulfate and promotes in vitro angiogenesis. Biochimie 2019; 166:173-183. [DOI: 10.1016/j.biochi.2019.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/08/2019] [Indexed: 12/31/2022]
|
12
|
Wu KH, Lee WJ, Cheng TC, Chang HW, Chen LC, Chen CC, Lien HM, Lin TN, Ho YS. Study of the antitumor mechanisms of apiole derivatives (AP-02) from Petroselinum crispum through induction of G0/G1 phase cell cycle arrest in human COLO 205 cancer cells. Altern Ther Health Med 2019; 19:188. [PMID: 31351461 PMCID: PMC6660667 DOI: 10.1186/s12906-019-2590-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/02/2019] [Indexed: 01/17/2023]
Abstract
Background Apiole was isolated from the leaves of various plants and vegetables and has been demonstrated to inhibit human colon cancer cell (COLO 205 cells) growth through induction of G0/G1 cell cycle arrest and apoptotic cell death. This study further explored the antitumor effects of apiole derivatives AP-02, 04, and 05 in COLO 205 cancer cells. Methods Human breast (MDA-MB-231, ZR75), lung (A549, PE089), colon (COLO 205, HT 29), and hepatocellular (Hep G2, Hep 3B) cancer cells were treated with apiole and its derivatives in a dose-dependent manner. Flow cytometry analysis was subsequently performed to determine the mechanism of AP-02-induced G0/G1 cell cycle arrest. The in vivo antitumor effect of AP-02 (1 and 5 mg/kg, administered twice per week) was examined by treating athymic nude mice bearing COLO 205 tumor xenografts. The molecular mechanisms of AP-02-induced antitumor effects were determined using western blot analysis. Results AP-02 was the most effective compound, especially for inhibition of COLO 205 colon cancer cell growth. The cytotoxicity of AP-02 in normal colon epithelial (FHC) cells was significantly lower than that in other normal cells derived from the breast, lung or liver. Flow cytometry analysis indicated that AP-02-induced G0/G1 cell cycle arrest in COLO 205 cells but not in HT 29 cells (< 5 μM for 24 h, **p < 0.01). Tumor growth volume was also significantly inhibited in AP-02 (> 1 mg/kg)-treated athymic nude mice bearing COLO 205 tumor xenografts compared to control mice (*p < 0.05). Furthermore, G0/G1 phase regulatory proteins (p53 and p21/Cip1) and an invasion suppressor protein (E-cadherin) were significantly upregulated, while cyclin D1 was significantly downregulated, in AP-02-treated tumor tissues compared to the control group (> 1 mg/kg, *p < 0.05). Conclusions Our results provide in vitro and in vivo molecular evidence of AP-02-induced anti-proliferative effects on colon cancer, indicating that this compound might have potential clinical applications. Electronic supplementary material The online version of this article (10.1186/s12906-019-2590-9) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
da Silva Ferreira R, Napoleão TH, Silva-Lucca RA, Silva MCC, Paiva PMG, Oliva MLV. The effects of Enterolobium contortisiliquum serine protease inhibitor on the survival of the termite Nasutitermes corniger, and its use as affinity adsorbent to purify termite proteases. PEST MANAGEMENT SCIENCE 2019; 75:632-638. [PMID: 30051588 DOI: 10.1002/ps.5154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
The immobilization of Enterolobium contortisiliquum protease inhibitor, EcTI-Sepharose, as an affinity chromatography matrix is a powerful biotechnological tool to purify targets from Nasutitermes corniger in the investigation of insecticidal properties of natural compounds.
Collapse
|
14
|
Bonturi CR, Motaln H, Silva MCC, Salu BR, de Brito MV, de Andrade Luz Cost L, Torquato HFV, Nunes NNDS, Paredes-Gamero EJ, Turnšek TL, Oliva MLV. Could a plant derived protein potentiate the anticancer effects of a stem cell in brain cancer? Oncotarget 2018; 9:21296-21312. [PMID: 29765540 PMCID: PMC5940364 DOI: 10.18632/oncotarget.25090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/26/2018] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is the most aggressive brain tumor with poor overall survival bellow 2 years. The natural compounds with anti-cancer properties, are thus gaining attention for possible adjuvant GBM treatment. In various cancer models Enterolobium contortisiliquum Trypsin Inhibitor (EcTI) proved to have anti-cancer effects. Here, we investigated the EcTI effects on GBM U87 cells and on mesenchymal stem cells (MSC) compared to their direct coculture (MSC/U87). MSC are present in tumor stroma, modulating GBM cells phenotype, and also represent potential drug delivery vehicle due to their tumor tropism. We showed that in p53-wild type U87 cells, metabolic activity was less affected by EcTI as in MSC monocuture, but the metabolic rate of mixed coculture was significantly reduced at lower EcTI concentration. Under coculture condition, EcTI potentiated MSC induced cell cycle arrest, possible due to highly increased p53, p21 and lower D1 expression, but there was no effect on apoptosis. Accordingly, in the coculture EcTI also enhanced Ca2+ signalling mediated via bradykinin receptor 2, being associated with nitric oxide release that highly impaired proliferation and invasion. The mechanism did not seem to involve changes in cell adhesion but rather it down-regulated the β1 integrin signaling with associated p-FAK in U87 cells, both supporting inhibition of invasion. Finally, some cytokines were down-regulated, indicating that EcTI inhibition of signalling might be mediated by cytokines. In conclusion, these results indicate that in cocultured MSC/U87 cells EcTI impairs the metabolic activity, proliferation, and reduced invasion, possibly associated with observed cytokines secretion. In this context, we confirmed that the plant derived protein potentiated the anticancer effects, induced by MSC, as represented by GBM U87 cell line.
Collapse
Affiliation(s)
- Camila Ramalho Bonturi
- Biochemistry Department, Federal University of São Paulo, 04044-020, São Paulo - SP, Brazil
| | - Helena Motaln
- Genetic Toxicology and Cancer Biology Department, National Institute of Biology, 1000, Ljubljana, Slovenia
| | | | - Bruno Ramos Salu
- Biochemistry Department, Federal University of São Paulo, 04044-020, São Paulo - SP, Brazil
| | - Marlon Vilela de Brito
- Biochemistry Department, Federal University of São Paulo, 04044-020, São Paulo - SP, Brazil
| | | | | | | | | | - Tamara Lah Turnšek
- Genetic Toxicology and Cancer Biology Department, National Institute of Biology, 1000, Ljubljana, Slovenia
| | | |
Collapse
|
15
|
Coulson-Thomas YM, Coulson-Thomas VJ. 3D Stroma Invasion Assay. Bio Protoc 2017; 7:e2195. [PMID: 34458502 DOI: 10.21769/bioprotoc.2195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/20/2016] [Accepted: 02/18/2017] [Indexed: 11/02/2022] Open
Abstract
We have developed a 3D co-culture system composed of fibroblasts and colorectal cancer cells that enables us to study the desmoplastic reaction. This method also enables us to study the influence of the desmoplastic reaction on the migration of colorectal cancer cells through the surrounding stroma. This protocol has been previously published (Coulson- Thomas et al., 2011 ) and is described here in more detail.
Collapse
|
16
|
A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice. Int J Mol Sci 2017; 18:ijms18020403. [PMID: 28216579 PMCID: PMC5343937 DOI: 10.3390/ijms18020403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/17/2017] [Accepted: 02/03/2017] [Indexed: 01/02/2023] Open
Abstract
Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management.
Collapse
|
17
|
Zhen Z, Tang W, Wang M, Zhou S, Wang H, Wu Z, Hao Z, Li Z, Liu L, Xie J. Protein Nanocage Mediated Fibroblast-Activation Protein Targeted Photoimmunotherapy To Enhance Cytotoxic T Cell Infiltration and Tumor Control. NANO LETTERS 2017; 17:862-869. [PMID: 28027646 DOI: 10.1021/acs.nanolett.6b04150] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carcinoma-associated fibroblasts (CAFs) are found in many types of cancer and play an important role in tumor growth and metastasis. Fibroblast-activation protein (FAP), which is overexpressed on the surface of CAFs, has been proposed as a universal tumor targeting antigen. However, recent studies show that FAP is also expressed on multipotent bone marrow stem cells. A systematic anti-FAP therapy may lead to severe side effects and even death. Hence, there is an urgent need of a therapy that can selectively kill CAFs without causing systemic toxicity. Herein we report a nanoparticle-based photoimmunotherapy (nano-PIT) approach that addresses the need. Specifically, we exploit ferritin, a compact nanoparticle protein cage, as a photosensitizer carrier, and we conjugate to the surface of ferritin a FAP-specific single chain variable fragment (scFv). With photoirradiation, the enabled nano-PIT efficiently eliminates CAFs in tumors but causes little damage to healthy tissues due to the localized nature of the treatment. Interestingly, while not directly killing cancer cells, the nano-PIT caused efficient tumor suppression in tumor-bearing immunocompetent mice. Further investigations found that the nano-PIT led to suppressed C-X-C motif chemokine ligand 12 (CXCL12) secretion and extracellular matrix (ECM) deposition, both of which are regulated by CAFs in untreated tumors and mediate T cell exclusion that prevents physical contact between T cells and cancer cells. By selective killing of CAFs, the nano-PIT reversed the effect, leading to significantly enhanced T cell infiltration, followed by efficient tumor suppression. Our study suggests a new and safe CAF-targeted therapy and a novel strategy to modulate tumor microenvironment (TME) for enhanced immunity against cancer.
Collapse
Affiliation(s)
- Zipeng Zhen
- Department of Radiology, China-Japan Union Hospital, Jilin University , Changchun 130033, China
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Wei Tang
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Shiyi Zhou
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Zhanhong Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Zhonglin Hao
- Department of Internal Medicine, Medical College of Georgia, Augusta University , Augusta, Georgia 30912, United States
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital, Jilin University , Changchun 130033, China
| | - Jin Xie
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Srikanth S, Chen Z. Plant Protease Inhibitors in Therapeutics-Focus on Cancer Therapy. Front Pharmacol 2016; 7:470. [PMID: 28008315 PMCID: PMC5143346 DOI: 10.3389/fphar.2016.00470] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/18/2016] [Indexed: 12/28/2022] Open
Abstract
Plants are known to have many secondary metabolites and phytochemical compounds which are highly explored at biochemical and molecular genetics level and exploited enormously in the human health care sector. However, there are other less explored small molecular weight proteins, which inhibit proteases/proteinases. Plants are good sources of protease inhibitors (PIs) which protect them against diseases, insects, pests, and herbivores. In the past, proteinaceous PIs were considered primarily as protein-degrading enzymes. Nevertheless, this view has significantly changed and PIs are now treated as very important signaling molecules in many biological activities such as inflammation, apoptosis, blood clotting and hormone processing. In recent years, PIs have been examined extensively as therapeutic agents, primarily to deal with various human cancers. Interestingly, many plant-based PIs are also found to be effective against cardiovascular diseases, osteoporosis, inflammatory diseases and neurological disorders. Several plant PIs are under further evaluation in in vitro clinical trials. Among all types of PIs, Bowman-Birk inhibitors (BBI) have been studied extensively in the treatment of many diseases, especially in the field of cancer prevention. So far, crops such as beans, potatoes, barley, squash, millet, wheat, buckwheat, groundnut, chickpea, pigeonpea, corn, and pineapple have been identified as good sources of PIs. The PI content of such foods has a significant influence on human health disorders, particularly in the regions where people mostly depend on these kind of foods. These natural PIs vary in concentration, protease specificity, heat stability, and sometimes several PIs may be present in the same species or tissue. However, it is important to carry out individual studies to identify the potential effects of each PI on human health. PIs in plants make them incredible sources to determine novel PIs with specific pharmacological and therapeutic effects due to their peculiarity and superabundance.
Collapse
Affiliation(s)
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
19
|
Ren K, Lu X, Yao N, Chen Y, Yang A, Chen H, Zhang J, Wu S, Shi X, Wang C, Sun X. Focal adhesion kinase overexpression and its impact on human osteosarcoma. Oncotarget 2016; 6:31085-103. [PMID: 26393679 PMCID: PMC4741590 DOI: 10.18632/oncotarget.5044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 08/24/2015] [Indexed: 11/25/2022] Open
Abstract
Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various malignancies. We sought to examine the expression patterns of FAK and the activated form, phosphorylated FAK (pFAK), in human osteosarcoma and to investigate the correlation of FAK expression with clinicopathologic parameters and prognosis. In addition, the functional consequence of manipulating the FAK protein level was investigated in human osteosarcoma cell lines. Immunohistochemical staining was used to detect FAK and pFAK in pathologic archived materials from 113 patients with primary osteosarcoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognoses. The role of FAK in the cytological behavior of MG63 and 143B human osteosarcoma cell lines was studied via FAK protein knock down with siRNA. Cell proliferation, migration, invasiveness and apoptosis were assessed using the CCK8, Transwell and Annexin V/PI staining methods. Both FAK and pFAK were overexpressed in osteosarcoma. There were significant differences in overall survival between the FAK-/pFAK- and FAK+/pFAK- groups (P = 0.016), the FAK+/pFAK- and FAK+/pFAK+ groups (P = 0.012) and the FAK-/pFAK- and FAK+/pFAK+ groups (P < 0.001). There were similar differences in metastasis-free survival between groups. The Cox proportional hazards analysis showed that the FAK expression profile was an independent indicator of both overall and metastasis-free survival. SiRNA-based knockdown of FAK not only dramatically reduced the migration and invasion of MG63 and 143B cells, but also had a distinct effect on osteosarcoma cell proliferation and apoptosis. These results collectively suggest that FAK overexpression and phosphorylation might predict more aggressive biologic behavior in osteosarcoma and may be an independent predictor of poor prognosis.
Collapse
Affiliation(s)
- Ke Ren
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, Jiangsu Province, P.R.China.,Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Xiao Lu
- Center Laboratory of Cancer Center, The Jingdu Hospital of Nanjing, Nanjing 210002, Jiangsu Province, P.R.China
| | - Nan Yao
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Yong Chen
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Aizhen Yang
- Center Laboratory of Cancer Center, The Jingdu Hospital of Nanjing, Nanjing 210002, Jiangsu Province, P.R.China
| | - Hui Chen
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Sujia Wu
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Xin Shi
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Chen Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Xiaoliang Sun
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, Jiangsu Province, P.R.China
| |
Collapse
|
20
|
Bonazza C, Andrade SS, Sumikawa JT, Batista FP, Paredes-Gamero EJ, Girão MJBC, Oliva MLV, Castro RA. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids. PLoS One 2016; 11:e0158578. [PMID: 27391384 PMCID: PMC4938619 DOI: 10.1371/journal.pone.0158578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/17/2016] [Indexed: 01/05/2023] Open
Abstract
Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2) and progesterone (P4) effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation). These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.
Collapse
Affiliation(s)
- Camila Bonazza
- Department of Gynecology of Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Joana Tomomi Sumikawa
- Department of Gynecology of Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | - Manoel J. B. C. Girão
- Department of Gynecology of Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Luiza V. Oliva
- Department of Biochemistry of Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo Aquino Castro
- Department of Gynecology of Universidade Federal de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
21
|
Exploiting the biological roles of the trypsin inhibitor from Inga vera seeds: A multifunctional Kunitz inhibitor. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Oliva LV, Almeida-Reis R, Theodoro-Junior O, Oliveira BM, Leick EA, Prado CM, Brito MV, Correia MTDS, Paiva PM, Martins MA, Oliva MLV, Tibério IF. A plant proteinase inhibitor from Crataeva tapia (CrataBL) attenuates elastase-induced pulmonary inflammatory, remodeling, and mechanical alterations in mice. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Cheng YJ, Zhu ZX, Zhou JS, Hu ZQ, Zhang JP, Cai QP, Wang LH. Silencing profilin-1 inhibits gastric cancer progression via integrin β1/focal adhesion kinase pathway modulation. World J Gastroenterol 2015; 21:2323-2335. [PMID: 25741138 PMCID: PMC4342907 DOI: 10.3748/wjg.v21.i8.2323] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/22/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of profilin-1 (PFN1) in gastric cancer and the underlying mechanisms.
METHODS: Immunohistochemical analysis, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to detect PFN1 expression in clinical gastric carcinoma and adjacent tissues, and the association of PFN1 expression with patient clinicopathological characteristics was analyzed. PFN1 was knocked down to investigate the role of this protein in cell proliferation and metastasis in the SGC-7901 cell line. To explore the underlying mechanisms, the expression of integrin β1 and the activity of focal adhesion kinase (FAK) and the downstream proteins extracellular-regulated kinase (ERK)1/2, P38 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), AKT and mammalian target of rapamycin (mTOR) were measured through Western blot or qRT-PCR analysis. Fibronectin (FN), a ligand of integrin β1, was used to verify the correlation between alterations in the integrin β1/FAK pathway and changes in tumor cell aggressiveness upon PFN1 perturbation.
RESULTS: Immunohistochemical, Western blot and qRT-PCR analyses revealed that PFN1 expression was higher at both the protein and mRNA levels in gastric carcinoma tissues compared with the adjacent tissues. In addition, high PFN1 expression (53/75, 70.4%) was correlated with tumor infiltration, lymph node metastasis and TNM stage in gastric cancer, but not with gender, age, location, tumor size, or histological differentiation. In vitro experiments showed that PFN1 knockdown inhibited the proliferation of SGC-7901 cells through the induction G0/G1 arrest. Silencing PFN1 inhibited cell migration and invasion and down-regulated the expression of matrix metalloproteinase (MMP)-2 and MMP9. Moreover, silencing PFN1 reduced the expression of integrin β1 at the protein level and inhibited the activity of FAK, and the downstream effectors ERK1/2, P38MAPK, PI3K, AKT and mTOR. FN-promoted cell proliferation and metastasis via the integrin β1/FAK pathway was ameliorated by PFN1 silencing.
CONCLUSION: These findings suggest that PFN1 plays a critical role in gastric carcinoma progression, and these effects are likely mediated through the integrin β1/FAK pathway.
Collapse
|
24
|
Silva MCC, de Paula CAA, Ferreira JG, Paredes-Gamero EJ, Vaz AMSF, Sampaio MU, Correia MTS, Oliva MLV. Bauhinia forficata lectin (BfL) induces cell death and inhibits integrin-mediated adhesion on MCF7 human breast cancer cells. Biochim Biophys Acta Gen Subj 2014; 1840:2262-71. [PMID: 24641823 DOI: 10.1016/j.bbagen.2014.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/31/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Plant lectins have attracted great interest in cancer studies due to their antitumor activities. These proteins or glycoproteins specifically and reversibly bind to different types of carbohydrates or glycoproteins. Breast cancer, which presents altered glycosylation of cell surface glycoproteins, is one of the most frequent malignant diseases in women. In this work, we describe the effect of the lectin Bauhinia forficata lectin (BfL), which was purified from B. forficata Link subsp. forficata seeds, on the MCF7 human breast cancer cellular line, investigating the mechanisms involved in its antiproliferative activity. METHODS MCF7 cells were treated with BfL. Viability and adhesion alterations were evaluated using flow cytometry and western blotting. RESULTS BfL inhibited the viability of the MCF7 cell line but was ineffective on MDA-MB-231 and MCF 10A cells. It inhibits MCF7 adhesion on laminin, collagen I and fibronectin, decreases α1, α6 and β1 integrin subunit expression, and increases α5 subunit expression. BfL triggers necrosis and secondary necrosis, with caspase-9 inhibition. It also causes deoxyribonucleic acid (DNA) fragmentation, which leads to cell cycle arrest in the G2/M phase and a decrease in the expression of the regulatory proteins pRb and p21. CONCLUSION BfL shows selective cytotoxic effect and adhesion inhibition on MCF7 breast cancer cells. GENERAL SIGNIFICANCE Cell death induction and inhibition of cell adhesion may contribute to understanding the action of lectins in breast cancer.
Collapse
Affiliation(s)
- Mariana C C Silva
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Cláudia A A de Paula
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Joana G Ferreira
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Departamento de Biofísica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Angela M S F Vaz
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, 22460-030 Rio de Janeiro, RJ, Brazil
| | - Misako U Sampaio
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Maria Tereza S Correia
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego s/n, 50670-910 Recife, PE, Brazil
| | - Maria Luiza V Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil.
| |
Collapse
|
25
|
Ferreira RDS, Zhou D, Ferreira JG, Silva MCC, Silva-Lucca RA, Mentele R, Paredes-Gamero EJ, Bertolin TC, dos Santos Correia MT, Paiva PMG, Gustchina A, Wlodawer A, Oliva MLV. Crystal Structure of Crataeva tapia Bark Protein (CrataBL) and Its Effect in Human Prostate Cancer Cell Lines. PLoS One 2013; 8:e64426. [PMID: 23823708 PMCID: PMC3688800 DOI: 10.1371/journal.pone.0064426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/15/2013] [Indexed: 11/29/2022] Open
Abstract
A protein isolated from the bark of Crataeva tapia (CrataBL) is both a Kunitz-type plant protease inhibitor and a lectin. We have determined the amino acid sequence and three-dimensional structure of CrataBL, as well as characterized its selected biochemical and biological properties. We found two different isoforms of CrataBL isolated from the original source, differing in positions 31 (Pro/Leu); 92 (Ser/Leu); 93 (Ile/Thr); 95 (Arg/Gly) and 97 (Leu/Ser). CrataBL showed relatively weak inhibitory activity against trypsin (Kiapp = 43 µM) and was more potent against Factor Xa (Kiapp = 8.6 µM), but was not active against a number of other proteases. We have confirmed that CrataBL contains two glycosylation sites and forms a dimer at high concentration. The high-resolution crystal structures of two different crystal forms of isoform II verified the β-trefoil fold of CrataBL and have shown the presence of dimers consisting of two almost identical molecules making extensive contacts (∼645 Å2). The structure differs from those of the most closely related proteins by the lack of the N-terminal β-hairpin. In experiments aimed at investigating the biological properties of CrataBL, we have shown that addition of 40 µM of the protein for 48 h caused maximum growth inhibition in MTT assay (47% of DU145 cells and 43% of PC3 cells). The apoptosis of DU145 and PC3 cell lines was confirmed by flow cytometry using Annexin V/FITC and propidium iodide staining. Treatment with CrataBL resulted in the release of mitochondrial cytochrome c and in the activation of caspase-3 in DU145 and PC3 cells.
Collapse
Affiliation(s)
| | - Dongwen Zhou
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | | | | | | | - Reinhard Mentele
- Institute of Clinical Neuroimmunology LMU, Max-Planck-Institute for Biochemistry, Martinsried, Munich, Germany
- Department for Protein Analytics, Max-Planck-Institute for Biochemistry, Martinsried, Munich, Germany
| | | | - Thiago Carlos Bertolin
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | | | - Alla Gustchina
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail: (AW); (MLVO)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail: (AW); (MLVO)
| |
Collapse
|
26
|
Vicente CM, Ricci R, Nader HB, Toma L. Syndecan-2 is upregulated in colorectal cancer cells through interactions with extracellular matrix produced by stromal fibroblasts. BMC Cell Biol 2013; 14:25. [PMID: 23705906 PMCID: PMC3681618 DOI: 10.1186/1471-2121-14-25] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/20/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The extracellular matrix (ECM) influences the structure, viability and functions of cells and tissues. Recent evidence indicates that tumor cells and stromal cells interact through direct cell-cell contact, the production of ECM components and the secretion of growth factors. Syndecans are a family of transmembrane heparan sulfate proteoglycans that are involved in cell adhesion, motility, proliferation and differentiation. Syndecan-2 has been found to be highly expressed in colorectal cancer cell lines and appears to be critical for cancer cell behavior. We have examined the effect of stromal fibroblast-produced ECM on the production of proteoglycans by colorectal cancer cell lines. RESULTS Our results showed that in a highly metastatic colorectal cancer cell line, HCT-116, syndecan-2 expression is enhanced by fibroblast ECM, while the expression of other syndecans decreased. Of the various components of the stromal ECM, fibronectin was the most important in stimulating the increase in syndecan-2 expression. The co-localization of syndecan-2 and fibronectin suggests that these two molecules are involved in the adhesion of HCT-116 cells to the ECM. Additionally, we demonstrated an increase in the expression of integrins alpha-2 and beta-1, in addition to an increase in the expression of phospho-FAK in the presence of fibroblast ECM. Furthermore, blocking syndecan-2 with a specific antibody resulted in a decrease in cell adhesion, migration, and organization of actin filaments. CONCLUSIONS Overall, these results show that interactions between cancer cells and stromal ECM proteins induce significant changes in the behavior of cancer cells. In particular, a shift from the expression of anti-tumorigenic syndecans to the tumorigenic syndecan-2 may have implications in the migratory behavior of highly metastatic tumor cells.
Collapse
Affiliation(s)
- Carolina Meloni Vicente
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, Rua Três de Maio, 100 - 4º andar, Vila Clementino, São Paulo, SP CEP 04044-020, Brazil
| | | | | | | |
Collapse
|
27
|
Zhou D, Lobo YA, Batista IFC, Marques-Porto R, Gustchina A, Oliva MLV, Wlodawer A. Crystal structures of a plant trypsin inhibitor from Enterolobium contortisiliquum (EcTI) and of its complex with bovine trypsin. PLoS One 2013; 8:e62252. [PMID: 23626794 PMCID: PMC3633903 DOI: 10.1371/journal.pone.0062252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/19/2013] [Indexed: 12/03/2022] Open
Abstract
A serine protease inhibitor from Enterolobium contortisiliquum (EcTI) belongs to the Kunitz family of plant inhibitors, common in plant seeds. It was shown that EcTI inhibits the invasion of gastric cancer cells through alterations in integrin-dependent cell signaling pathway. We determined high-resolution crystal structures of free EcTI (at 1.75 Å) and complexed with bovine trypsin (at 2 Å). High quality of the resulting electron density maps and the redundancy of structural information indicated that the sequence of the crystallized isoform contained 176 residues and differed from the one published previously. The structure of the complex confirmed the standard inhibitory mechanism in which the reactive loop of the inhibitor is docked into trypsin active site with the side chains of Arg64 and Ile65 occupying the S1 and S1′ pockets, respectively. The overall conformation of the reactive loop undergoes only minor adjustments upon binding to trypsin. Larger deviations are seen in the vicinity of Arg64, driven by the needs to satisfy specificity requirements. A comparison of the EcTI-trypsin complex with the complexes of related Kunitz inhibitors has shown that rigid body rotation of the inhibitors by as much as 15° is required for accurate juxtaposition of the reactive loop with the active site while preserving its conformation. Modeling of the putative complexes of EcTI with several serine proteases and a comparison with equivalent models for other Kunitz inhibitors elucidated the structural basis for the fine differences in their specificity, providing tools that might allow modification of their potency towards the individual enzymes.
Collapse
Affiliation(s)
- Dongwen Zhou
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | | | | | | | | | | | | |
Collapse
|
28
|
Jin KM, Lu M, Liu FF, Gu J, Du XJ, Xing BC. N-WASP is highly expressed in hepatocellular carcinoma and associated with poor prognosis. Surgery 2013; 153:518-25. [DOI: 10.1016/j.surg.2012.08.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/31/2012] [Indexed: 01/13/2023]
|
29
|
Ferreira JG, Diniz PMM, Andrade de Paula CA, Lobo YA, Paredes-Gamero EJ, Paschoalin T, Nogueira-Pedro A, Maza PK, Toledo MS, Suzuki E, Oliva MLV. The impaired viability of prostate cancer cell lines by the recombinant plant kallikrein inhibitor. J Biol Chem 2013; 288:13641-54. [PMID: 23511635 DOI: 10.1074/jbc.m112.404053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Kallikreins play a pivotal role in establishing prostate cancer. RESULTS In contrast to the classical Kunitz plant inhibitor SbTI, the recombinant kallikrein inhibitor (rBbKIm) led to prostate cancer cell death, whereas fibroblast viability was not affected. CONCLUSION rBbKIm shows selective cytotoxic effect and angiogenesis inhibition against prostate cancer cells. SIGNIFICANCE New actions of rBbKIm may contribute to understanding the mechanisms of prostate cancer. Prostate cancer is the most common type of cancer, and kallikreins play an important role in the establishment of this disease. rBbKIm is the recombinant Bauhinia bauhinioides kallikreins inhibitor that was modified to include the RGD/RGE motifs of the inhibitor BrTI from Bauhinia rufa. This work reports the effects of rBbKIm on DU145 and PC3 prostate cancer cell lines. rBbKIm inhibited the cell viability of DU145 and PC3 cells but did not affect the viability of fibroblasts. rBbKIm caused an arrest of the PC3 cell cycle at the G0/G1 and G2/M phases but did not affect the DU145 cell cycle, although rBbKIm triggers apoptosis and cytochrome c release into the cytosol of both cell types. The differences in caspase activation were observed because rBbKIm treatment promoted activation of caspase-3 in DU145 cells, whereas caspase-9 but not caspase-3 was activated in PC3 cells. Because angiogenesis is important to the development of a tumor, the effect of rBbKIm in this process was also analyzed, and an inhibition of 49% was observed in in vitro endothelial cell capillary-like tube network formation. In summary, we demonstrated that different properties of the protease inhibitor rBbKIm may be explored for investigating the androgen-independent prostate cancer cell lines PC3 and DU145.
Collapse
Affiliation(s)
- Joana Gasperazzo Ferreira
- Departments of Biochemistry, Universidade Federal de São Paulo-Escola Paulista de Medicina, 04044-020, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Patil DN, Chaudhary A, Sharma AK, Tomar S, Kumar P. Structural basis for dual inhibitory role of tamarind Kunitz inhibitor (TKI) against factor Xa and trypsin. FEBS J 2012; 279:4547-64. [DOI: 10.1111/febs.12042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/09/2012] [Accepted: 10/19/2012] [Indexed: 12/23/2022]
Affiliation(s)
- Dipak N. Patil
- Department of Biotechnology; Indian Institute of Technology Roorkee; Roorkee; Uttarakhand; India
| | - Anshul Chaudhary
- Department of Biotechnology; Indian Institute of Technology Roorkee; Roorkee; Uttarakhand; India
| | - Ashwani K. Sharma
- Department of Biotechnology; Indian Institute of Technology Roorkee; Roorkee; Uttarakhand; India
| | - Shailly Tomar
- Department of Biotechnology; Indian Institute of Technology Roorkee; Roorkee; Uttarakhand; India
| | - Pravindra Kumar
- Department of Biotechnology; Indian Institute of Technology Roorkee; Roorkee; Uttarakhand; India
| |
Collapse
|