1
|
Nelissen E, Schepers M, Ponsaerts L, Foulquier S, Bronckaers A, Vanmierlo T, Sandner P, Prickaerts J. Soluble guanylyl cyclase: A novel target for the treatment of vascular cognitive impairment? Pharmacol Res 2023; 197:106970. [PMID: 37884069 DOI: 10.1016/j.phrs.2023.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Vascular cognitive impairment (VCI) describes neurodegenerative disorders characterized by a vascular component. Pathologically, it involves decreased cerebral blood flow (CBF), white matter lesions, endothelial dysfunction, and blood-brain barrier (BBB) impairments. Molecularly, oxidative stress and inflammation are two of the major underlying mechanisms. Nitric oxide (NO) physiologically stimulates soluble guanylate cyclase (sGC) to induce cGMP production. However, under pathological conditions, NO seems to be at the basis of oxidative stress and inflammation, leading to a decrease in sGC activity and expression. The native form of sGC needs a ferrous heme group bound in order to be sensitive to NO (Fe(II)sGC). Oxidation of sGC leads to the conversion of ferrous to ferric heme (Fe(III)sGC) and even heme-loss (apo-sGC). Both Fe(III)sGC and apo-sGC are insensitive to NO, and the enzyme is therefore inactive. sGC activity can be enhanced either by targeting the NO-sensitive native sGC (Fe(II)sGC), or the inactive, oxidized sGC (Fe(III)sGC) and the heme-free apo-sGC. For this purpose, sGC stimulators acting on Fe(II)sGC and sGC activators acting on Fe(III)sGC/apo-sGC have been developed. These sGC agonists have shown their efficacy in cardiovascular diseases by restoring the physiological and protective functions of the NO-sGC-cGMP pathway, including the reduction of oxidative stress and inflammation, and improvement of vascular functioning. Yet, only very little research has been performed within the cerebrovascular system and VCI pathology when focusing on sGC modulation and its potential protective mechanisms on vascular and neural function. Therefore, within this review, the potential of sGC as a target for treating VCI is highlighted.
Collapse
Affiliation(s)
- Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Laura Ponsaerts
- Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, School for Mental Health and Neuroscience (MHeNS), School for Cardiovascular Diseases (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113 Wuppertal, Germany; Hannover Medical School, 30625 Hannover, Germany
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
2
|
Ieda N, Nakamura A, Tomita N, Ohkubo K, Izumi R, Hotta Y, Kawaguchi M, Kimura K, Nakagawa H. A BODIPY-picolinium-cation conjugate as a blue-light-responsive caged group. RSC Adv 2023; 13:26375-26379. [PMID: 37671339 PMCID: PMC10476028 DOI: 10.1039/d3ra03826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023] Open
Abstract
Caged compounds protected with photolabile protecting groups (PPGs) are useful for controlling various biological events with high spatiotemporal resolution. Most of the commonly used PPGs are controlled by ultraviolet light irradiation, but it is desirable to have PPGs controlled by visible light irradiation in order to minimize tissue damage. Here, we describe a boron-dipyrromethene (BODIPY)-picolinium conjugate (BPc group) that functions as a blue-light-controllable PPG. ESR experiments indicate that the photolysis mechanism is based on intramolecular photoinduced electron transfer. We illustrate the applicability of the BPc group to biologically active compounds by employing it firstly to photocontrol release of histamine, and secondly to photocontrol release of a soluble guanylyl cyclase (sGC) activator, GSK2181236A, which induces photovasodilation. The BPc group is expected to be a useful PPG for controlling various biological events with blue light irradiation.
Collapse
Affiliation(s)
- Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1, Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Akira Nakamura
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1, Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Natsumi Tomita
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1, Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives & Institute for Advanced Co-Creation Studies, Osaka University 1-6 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Ryo Izumi
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1, Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Yuji Hotta
- Graduate School of Medical Sciences, Nagoya City University 1, Kawasumi, Mizuho-cho, Mizuho-ku Nagoya Aichi 467-8601 Japan
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1, Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Kazunori Kimura
- Graduate School of Medical Sciences, Nagoya City University 1, Kawasumi, Mizuho-cho, Mizuho-ku Nagoya Aichi 467-8601 Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1, Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| |
Collapse
|
3
|
Adams HR, Svistunenko DA, Wilson MT, Fujii S, Strange RW, Hardy ZA, Vazquez PA, Dabritz T, Streblow GJ, Andrew CR, Hough MA. A Heme Pocket Aromatic Quadrupole Modulates Gas Binding to Cytochrome c'-β: Implications for NO Sensors. J Biol Chem 2023:104742. [PMID: 37100286 DOI: 10.1016/j.jbc.2023.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
The structural basis by which gas-binding heme proteins control their interactions with NO, CO, and O2, is fundamental to enzymology, biotechnology and human health. Cytochromes c´ (cyts c´) are a group of putative NO-binding heme proteins that fall into two families: the well characterised four alpha helix bundle fold (cyts c´-α) and an unrelated family with a largely beta sheet fold (cyts c´-β) resembling that of cytochromes P460. A recent structure of cyt c´-β from Methylococcus capsulatus Bath (McCP-β) revealed two heme pocket phenylalanine residues (Phe 32 and Phe 61) positioned near the distal gas binding site. This feature, dubbed the "Phe cap", is highly conserved within the sequences of other cyts c´-β, but is absent in their close homologues, the hydroxylamine oxidizing cytochromes P460, although some do contain a single Phe residue. Here we report an integrated structural, spectroscopic, and kinetic characterization of McCP-β complexes with diatomic gases, focusing on the interaction of the Phe cap with NO and CO. Significantly, crystallographic and resonance Raman data show that orientation of the electron rich aromatic ring face of Phe 32 towards distally-bound NO or CO is associated with weakened backbonding and higher off rates. Moreover, we propose that an aromatic quadrupole also contributes to the unusually weak backbonding reported for some heme-based gas sensors, including the mammalian NO-sensor, soluble guanylate cyclase (sGC). Collectively, this study sheds light on the influence of highly conserved distal Phe residues on heme-gas complexes of cytochrome c'-β, including the potential for aromatic quadrupoles to modulate NO and CO binding in other heme proteins.
Collapse
Affiliation(s)
- Hannah R Adams
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Sotaro Fujii
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, Hiroshima, 739-8528, Japan; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Richard W Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Zoe A Hardy
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Priscilla A Vazquez
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Tyler Dabritz
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Gabriel J Streblow
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Colin R Andrew
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA.
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
4
|
Azargoonjahromi A. Dual role of nitric oxide in Alzheimer's Disease. Nitric Oxide 2023; 134-135:23-37. [PMID: 37019299 DOI: 10.1016/j.niox.2023.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Nitric oxide (NO), an enzymatic product of nitric oxide synthase (NOS), has been associated with a variety of neurological diseases such as Alzheimer's disease (AD). NO has long been thought to contribute to neurotoxic insults caused by neuroinflammation in AD. This perception shifts as more attention is paid to the early stages before cognitive problems manifest. However, it has revealed a compensatory neuroprotective role for NO that protects synapses by increasing neuronal excitability. NO can positively affect neurons by inducing neuroplasticity, neuroprotection, and myelination, as well as having cytolytic activity to reduce inflammation. NO can also induce long-term potentiation (LTP), a process by which synaptic connections among neurons become more potent. Not to mention that such functions give rise to AD protection. Notably, it is unquestionably necessary to conduct more research to clarify NO pathways in neurodegenerative dementias because doing so could help us better understand their pathophysiology and develop more effective treatment options. All these findings bring us to the prevailing notion that NO can be used either as a therapeutic agent in patients afflicted with AD and other memory impairment disorders or as a contributor to the neurotoxic and aggressive factor in AD. In this review, after presenting a general background on AD and NO, various factors that have a pivotal role in both protecting and exacerbating AD and their correlation with NO will be elucidated. Following this, both the neuroprotective and neurotoxic effects of NO on neurons and glial cells among AD cases will be discussed in detail.
Collapse
|
5
|
Sharina I, Martin E. Cellular Factors That Shape the Activity or Function of Nitric Oxide-Stimulated Soluble Guanylyl Cyclase. Cells 2023; 12:471. [PMID: 36766813 PMCID: PMC9914232 DOI: 10.3390/cells12030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
NO-stimulated guanylyl cyclase (SGC) is a hemoprotein that plays key roles in various physiological functions. SGC is a typical enzyme-linked receptor that combines the functions of a sensor for NO gas and cGMP generator. SGC possesses exclusive selectivity for NO and exhibits a very fast binding of NO, which allows it to function as a sensitive NO receptor. This review describes the effect of various cellular factors, such as additional NO, cell thiols, cell-derived small molecules and proteins on the function of SGC as cellular NO receptor. Due to its vital physiological function SGC is an important drug target. An increasing number of synthetic compounds that affect SGC activity via different mechanisms are discovered and brought to clinical trials and clinics. Cellular factors modifying the activity of SGC constitute an opportunity for improving the effectiveness of existing SGC-directed drugs and/or the creation of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Emil Martin
- Department of Internal Medicine, Cardiology Division, The University of Texas—McGovern Medical School, 1941 East Road, Houston, TX 77054, USA
| |
Collapse
|
6
|
Wu G, Sharina I, Martin E. Soluble guanylyl cyclase: Molecular basis for ligand selectivity and action in vitro and in vivo. Front Mol Biosci 2022; 9:1007768. [PMID: 36304925 PMCID: PMC9592903 DOI: 10.3389/fmolb.2022.1007768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023] Open
Abstract
Nitric oxide (NO), carbon monoxide (CO), oxygen (O2), hydrogen sulfide (H2S) are gaseous molecules that play important roles in the physiology and pathophysiology of eukaryotes. Tissue concentrations of these physiologically relevant gases vary remarkable from nM range for NO to high μM range of O2. Various hemoproteins play a significant role in sensing and transducing cellular signals encoded by gaseous molecules or in transporting them. Soluble guanylyl cyclase (sGC) is a hemoprotein that plays vital roles in a wide range of physiological functions and combines the functions of gaseous sensor and signal transducer. sGC uniquely evolved to sense low non-toxic levels of NO and respond to elevated NO levels by increasing its catalytic ability to generate the secondary signaling messenger cyclic guanosine monophosphate (cGMP). This review discusses sGC's gaseous ligand selectivity and the molecular basis for sGC function as high-affinity and selectivity NO receptor. The effects of other gaseous molecules and small molecules of cellular origin on sGC's function are also discussed.
Collapse
Affiliation(s)
- Gang Wu
- Hematology-Oncology Division, Department of Internal Medicine, The University of Texas—McGovern Medical School, Houston, TX, United States,*Correspondence: Gang Wu, ; Emil Martin,
| | - Iraida Sharina
- Cardiology Division, Department of Internal Medicine, The University of Texas—McGovern Medical School, Houston, TX, United States
| | - Emil Martin
- Cardiology Division, Department of Internal Medicine, The University of Texas—McGovern Medical School, Houston, TX, United States,*Correspondence: Gang Wu, ; Emil Martin,
| |
Collapse
|
7
|
Soluble guanylate cyclase stimulator riociguat improves spatial memory in mice via peripheral mechanisms. Neurosci Lett 2022; 788:136840. [PMID: 35985509 DOI: 10.1016/j.neulet.2022.136840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 01/02/2023]
Abstract
Soluble guanylate cyclase (sGC) - cyclic guanosine monophosphate (cGMP) signalling is important for healthy memory function and a healthy vascular system. Targeting sGC-cGMP signalling can therefore be a potential strategy to enhance memory processes. sGC can be targeted by using agonists, such as sGC stimulator riociguat. Therefore, this study aimed to target sGC using riociguat to investigate its acute effects on memory function and neuronal plasticity in mice. The effects of riociguat on long-term memory and a biperiden-induced memory deficit model for assessing short-term memory were tested in the object location task, and working memory was tested in the Y-maze continuous alternation task. Pharmacokinetic measurements were performed within brain tissue of mice, and hippocampal plasticity measures were assessed using western blotting. Acute oral administration with a low dose of 0.03 mg/kg riociguat was able to enhance working-, short-, and long-term spatial memory. Under cerebral vasoconstriction higher doses of riociguat were still effective on memory. Pharmacokinetic measurements revealed poor brain penetration of riociguat and its metabolite M-1. Increased activation of VASP was found, while no effects were found on other memory-related hippocampal plasticity measures. Memory enhancing effects of riociguat are most likely regulated by vascular peripheral effects on cGMP signalling. Yet, further research is needed to investigate the possible contribution of hemodynamic or metabolic effects of sGC stimulators on memory performance.
Collapse
|
8
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
9
|
Liu R, Kang Y, Chen L. Activation mechanism of human soluble guanylate cyclase by stimulators and activators. Nat Commun 2021; 12:5492. [PMID: 34535643 PMCID: PMC8448884 DOI: 10.1038/s41467-021-25617-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Soluble guanylate cyclase (sGC) is the receptor for nitric oxide (NO) in human. It is an important validated drug target for cardiovascular diseases. sGC can be pharmacologically activated by stimulators and activators. However, the detailed structural mechanisms, through which sGC is recognized and positively modulated by these drugs at high spacial resolution, are poorly understood. Here, we present cryo-electron microscopy structures of human sGC in complex with NO and sGC stimulators, YC-1 and riociguat, and also in complex with the activator cinaciguat. These structures uncover the molecular details of how stimulators interact with residues from both β H-NOX and CC domains, to stabilize sGC in the extended active conformation. In contrast, cinaciguat occupies the haem pocket in the β H-NOX domain and sGC shows both inactive and active conformations. These structures suggest a converged mechanism of sGC activation by pharmacological compounds. Soluble guanylate cyclase (sGC) is a validated drug target for cardiovascular diseases. Here, the authors report structures of human sGC in complex with NO and sGC stimulators or activator, providing insight into the mechanism of sGC activation by pharmacological compounds.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Yunlu Kang
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
10
|
Dai Y, Stuehr DJ. Inactivation of soluble guanylyl cyclase in living cells proceeds without loss of haem and involves heterodimer dissociation as a common step. Br J Pharmacol 2021; 179:2505-2518. [PMID: 33975383 DOI: 10.1111/bph.15527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Nitric oxide (NO) activates soluble guanylyl cyclase (sGC) for cGMP production, but in disease, sGC becomes insensitive towards NO activation. What changes occur to sGC during its inactivation in cells is not clear. EXPERIMENTAL APPROACH We utilized HEK293 cells expressing sGC proteins to study the changes that occur regarding its haem content, heterodimer status and sGCβ protein partners when the cells were given the oxidant ODQ or the NO donor NOC12 to inactivate sGC. Haem content of sGCβ was monitored in live cells through use of a fluorescent-labelled sGCβ construct, whereas sGC heterodimer status and protein interactions were studied by Western blot analysis. Experiments with purified proteins were also performed. KEY RESULTS ODQ- or NOC12-driven inactivation of sGC in HEK293 cells was associated with haem oxidation (by ODQ), S-nitrosation of the sGCβ subunit (by NOC12), sGC heterodimer breakup and association of the freed sGCβ subunit with cell chaperone Hsp90. These changes occurred without detectable loss of haem from the sGCβ reporter construct. Treating a purified ferrous haem-containing sGCβ with ODQ or NOC12 caused it to bind with Hsp90 without showing any haem loss. CONCLUSION AND IMPLICATIONS Oxidative (ODQ) or nitrosative (NOC12) inactivation of cell sGC involves sGC heterodimer dissociation and rearrangement of the sGCβ protein partners without any haem loss from sGCβ. Clarifying what changes do and do not occur to sGC during its inactivation in cells may direct strategies to preserve or recover NO-dependent cGMP signalling in health and disease.
Collapse
Affiliation(s)
- Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, 44195, USA
| |
Collapse
|
11
|
Sharina I, Lezgyieva K, Krutsenko Y, Martin E. Higher susceptibility to heme oxidation and lower protein stability of the rare α 1C517Yβ 1 sGC variant associated with moyamoya syndrome. Biochem Pharmacol 2021; 186:114459. [PMID: 33571505 PMCID: PMC8052303 DOI: 10.1016/j.bcp.2021.114459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/22/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
NO sensitive soluble guanylyl cyclase (sGC) plays a key role in mediating physiological functions of NO. Genetic alterations of the GUCY1A3 gene, coding for the α1 subunit of sGC, are associated with several cardiovascular dysfunctions. A rare sGC variant with Cys517 → Tyr substitution in the α1subunit, has been associated with moyamoya disease and achalasia. In this report we characterize the properties of this rare sGC variant. Purified α1C517Yβ1 sGC preserved only ~25% of its cGMP-forming activity and showed an elevated Km for GTP substrate. However, the mutant enzyme retained a high affinity for and robust activation by NO, similar to wild type sGC. Purified α1C517Yβ1 enzyme was more sensitive to specific sGC heme oxidizers and less responsive to heme reducing agents. When expressed in COS7 cells, α1C517Yβ1 sGC showed a much stronger response to cinaciguat or gemfibrozil, which targets apo-sGC or sGC with ferric heme, as compared to its NO response or the relative response of the wild type sGC. A stronger response to cinaciguat was also observed for purified α1C517Yβ1 in the absence of reducing agents. In COS7 cells, αCys517β sGC was less stable than the wild type enzyme under normal conditions and exhibited accelerated degradation upon induction of cellular oxidative stress. We conclude that diminished cGMP-forming activity of this sGC variant is aggravated by its high susceptibility to oxidative stress and diminished protein stability. The combination of these deficiencies contributes to the severity of observed moyamoya and achalasia symptoms in human carriers of this rare α1C517Yβ1 sGC variant.
Collapse
Affiliation(s)
- Iraida Sharina
- University of Texas Health Science Center, McGovern Medical School, Department of Internal Medicine, Division of Cardiology, United States
| | - Karina Lezgyieva
- School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | | | - Emil Martin
- University of Texas Health Science Center, McGovern Medical School, Department of Internal Medicine, Division of Cardiology, United States.
| |
Collapse
|
12
|
Paulo M, Costa DEFR, Bonaventura D, Lunardi CN, Bendhack LM. Nitric Oxide Donors as Potential Drugs for the Treatment of Vascular Diseases Due to Endothelium Dysfunction. Curr Pharm Des 2021; 26:3748-3759. [PMID: 32427079 DOI: 10.2174/1381612826666200519114442] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
Endothelial dysfunction and consequent vasoconstriction are a common condition in patients with hypertension and other cardiovascular diseases. Endothelial cells produce and release vasodilator substances that play a pivotal role in normal vascular tone. The mechanisms underlying endothelial dysfunction are multifactorial. However, enhanced reactive oxygen species (ROS) production and consequent vasoconstriction instead of endothelium-derived relaxant generation and consequent vasodilatation contribute to this dysfunction considerably. The main targets of the drugs that are currently used to treat vascular diseases concerning enzyme activities and protein functions that are impaired by endothelial nitric oxide synthase (eNOS) uncoupling and ROS production. Nitric oxide (NO) bioavailability can decrease due to deficient NO production by eNOS and/or NO release to vascular smooth muscle cells, which impairs endothelial function. Considering the NO cellular mechanisms, tackling the issue of eNOS uncoupling could avoid endothelial dysfunction: provision of the enzyme cofactor tetrahydrobiopterin (BH4) should elicit NO release from NO donors, to activate soluble guanylyl cyclase. This should increase cyclic guanosine-monophosphate (cGMP) generation and inhibit phosphodiesterases (especially PDE5) that selectively degrade cGMP. Consequently, protein kinase-G should be activated, and K+ channels should be phosphorylated and activated, which is crucial for cell membrane hyperpolarization and vasodilation and/or inhibition of ROS production. The present review summarizes the current concepts about the vascular cellular mechanisms that underlie endothelial dysfunction and which could be the target of drugs for the treatment of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Michele Paulo
- Department Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto- University of Sao Paulo Av. Do Cafe SN, Brazil
| | - Daniela E F R Costa
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Bonaventura
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Claure N Lunardi
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Brasilia, Brazil
| | - Lusiane M Bendhack
- Department Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto- University of Sao Paulo Av. Do Cafe SN, Brazil
| |
Collapse
|
13
|
A new paradigm for gaseous ligand selectivity of hemoproteins highlighted by soluble guanylate cyclase. J Inorg Biochem 2020; 214:111267. [PMID: 33099233 DOI: 10.1016/j.jinorgbio.2020.111267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and oxygen (O2) are important physiological messengers whose concentrations vary in a remarkable range, [NO] typically from nM to several μM while [O2] reaching to hundreds of μM. One of the machineries evolved in living organisms for gas sensing is sensor hemoproteins whose conformational change upon gas binding triggers downstream response cascades. The recently proposed "sliding scale rule" hypothesis provides a general interpretation for gaseous ligand selectivity of hemoproteins, identifying five factors that govern gaseous ligand selectivity. Hemoproteins have intrinsic selectivity for the three gases due to a neutral proximal histidine ligand while proximal strain of heme and distal steric hindrance indiscriminately adjust the affinity of these three gases for heme. On the other hand, multiple-step NO binding and distal hydrogen bond donor(s) specifically enhance affinity for NO and O2, respectively. The "sliding scale rule" hypothesis provides clear interpretation for dramatic selectivity for NO over O2 in soluble guanylate cyclase (sGC) which is an important example of sensor hemoproteins and plays vital roles in a wide range of physiological functions. The "sliding scale rule" hypothesis has so far been validated by all experimental data and it may guide future designs for heme-based gas sensors.
Collapse
|
14
|
Geeraerts Z, Heskin AK, DuBois J, Rodgers KR, Lukat-Rodgers GS. Structure and reactivity of chlorite dismutase nitrosyls. J Inorg Biochem 2020; 211:111203. [PMID: 32768737 PMCID: PMC7749827 DOI: 10.1016/j.jinorgbio.2020.111203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/28/2022]
Abstract
Ferric nitrosyl ({FeNO}6) and ferrous nitrosyl ({FeNO}7) complexes of the chlorite dismutases (Cld) from Klebsiella pneumoniae and Dechloromonas aromatica have been characterized using UV-visible absorbance and Soret-excited resonance Raman spectroscopy. Both of these Clds form kinetically stable {FeNO}6 complexes and they occupy a unique region of ν(Fe-NO)/ν(N-O) correlation space for proximal histidine liganded heme proteins, characteristic of weak Fe-NO and N-O bonds. This location is attributed to admixed FeIII-NO character of the {FeNO}6 ground state. Cld {FeNO}6 complexes undergo slow reductive nitrosylation to yield {FeNO}7 complexes. The effects of proximal and distal environment on reductive nitroylsation rates for these dimeric and pentameric Clds are reported. The ν(Fe-NO) and ν(N-O) frequencies for Cld {FeNO}7 complexes reveal both six-coordinate (6c) and five-coordinate (5c) nitrosyl hemes. These 6c and 5c forms are in a pH dependent equilibrium. The 6c and 5c {FeNO}7 Cld frequencies provided positions of both Clds on their respective ν(Fe-NO) vs ν(N-O) correlation lines. The 6c {FeNO}7 complexes fall below (along the ν(Fe-NO) axis) the correlation line that reports hydrogen-bond donation to NNO, which is consistent with a relatively weak Fe-NO bond. Kinetic and spectroscopic evidence is consistent with the 5c {FeNO}7 Clds having NO coordinated on the proximal side of the heme, analogous to 5c {FeNO}7 hemes in proteins known to have NO sensing functions.
Collapse
Affiliation(s)
- Zachary Geeraerts
- North Dakota State University, Fargo, ND 58108, United States of America
| | - Alisa K Heskin
- North Dakota State University, Fargo, ND 58108, United States of America
| | - Jennifer DuBois
- Montana State University, Bozeman, MT 59717, United States of America
| | - Kenton R Rodgers
- North Dakota State University, Fargo, ND 58108, United States of America.
| | | |
Collapse
|
15
|
Belluati A, Craciun I, Palivan CG. Bioactive Catalytic Nanocompartments Integrated into Cell Physiology and Their Amplification of a Native Signaling Cascade. ACS NANO 2020; 14:12101-12112. [PMID: 32869973 DOI: 10.1021/acsnano.0c05574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioactive nanomaterials have the potential to overcome the limitations of classical pharmacological approaches by taking advantage of native pathways to influence cell behavior, interacting with them and eliciting responses. Herein, we propose a cascade system mediated by two catalytic nanocompartments (CNC) with biological activity. Activated by nitric oxide (NO) produced by inducible nitric oxidase synthase (iNOS), soluble guanylyl cyclase (sGC) produces cyclic guanosine monophosphate (cGMP), a second messenger that modulates a broad range of physiological functions. As alterations in cGMP signaling are implicated in a multitude of pathologies, its signaling cascade represents a viable target for therapeutic intervention. Following along this line, we encapsulated iNOS and sGC in two separate polymeric compartments that function in unison to produce NO and cGMP. Their action was tested in vitro by monitoring the derived changes in cytoplasmic calcium concentrations of HeLa and differentiated C2C12 myocytes, where the produced second messenger influenced the cellular homeostasis.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
16
|
Négrerie M. Iron transitions during activation of allosteric heme proteins in cell signaling. Metallomics 2020; 11:868-893. [PMID: 30957812 DOI: 10.1039/c8mt00337h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allosteric heme proteins can fulfill a very large number of different functions thanks to the remarkable chemical versatility of heme through the entire living kingdom. Their efficacy resides in the ability of heme to transmit both iron coordination changes and iron redox state changes to the protein structure. Besides the properties of iron, proteins may impose a particular heme geometry leading to distortion, which allows selection or modulation of the electronic properties of heme. This review focusses on the mechanisms of allosteric protein activation triggered by heme coordination changes following diatomic binding to proteins as diverse as the human NO-receptor, cytochromes, NO-transporters and sensors, and a heme-activated potassium channel. It describes at the molecular level the chemical capabilities of heme to achieve very different tasks and emphasizes how the properties of heme are determined by the protein structure. Particularly, this reviews aims at giving an overview of the exquisite adaptability of heme, from bacteria to mammals.
Collapse
Affiliation(s)
- Michel Négrerie
- Laboratoire d'Optique et Biosciences, INSERM, CNRS, Ecole Polytechnique, 91120 Palaiseau, France.
| |
Collapse
|
17
|
Structural insights into the mechanism of human soluble guanylate cyclase. Nature 2019; 574:206-210. [PMID: 31514202 DOI: 10.1038/s41586-019-1584-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023]
Abstract
Soluble guanylate cyclase (sGC) is the primary sensor of nitric oxide. It has a central role in nitric oxide signalling and has been implicated in many essential physiological processes and disease conditions. The binding of nitric oxide boosts the enzymatic activity of sGC. However, the mechanism by which nitric oxide activates the enzyme is unclear. Here we report the cryo-electron microscopy structures of the human sGCα1β1 heterodimer in different functional states. These structures revealed that the transducer module bridges the nitric oxide sensor module and the catalytic module. Binding of nitric oxide to the β1 haem-nitric oxide and oxygen binding (H-NOX) domain triggers the structural rearrangement of the sensor module and a conformational switch of the transducer module from bending to straightening. The resulting movement of the N termini of the catalytic domains drives structural changes within the catalytic module, which in turn boost the enzymatic activity of sGC.
Collapse
|
18
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Sömmer A, Behrends S. Methods to investigate structure and activation dynamics of GC-1/GC-2. Nitric Oxide 2018; 78:S1089-8603(17)30348-8. [PMID: 29705716 DOI: 10.1016/j.niox.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme consisting of one α and one β subunit. The α1β1 (GC-1) and α2β1 (GC-2) heterodimers are important for NO signaling in humans and catalyse the conversion from GTP to cGMP. Each sGC subunit consists of four domains. Several crystal structures of the isolated domains are available. However, crystals of full-length sGC have failed to materialise. In consequence, the detailed three dimensional structure of sGC remains unknown to date. Different techniques including stopped-flow spectroscopy, Förster-resonance energy transfer, direct fluorescence, analytical ultracentrifugation, chemical cross-linking, small-angle X-ray scattering, electron microscopy, hydrogen-deuterium exchange and protein thermal shift assays, were used to collect indirect information. Taken together, this circumstantial evidence from different groups brings forth a plausible model of sGC domain arrangement, spatial orientation and dynamic rearrangement upon activation. For analysis of the active conformation the stable binding mode of sGC activators has a significant methodological advantage over the transient, elusive, complex and highly concentration dependent effects of NO in many applications. The methods used and the results obtained are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Anne Sömmer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Sönke Behrends
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| |
Collapse
|
20
|
Regulation of nitric oxide signaling by formation of a distal receptor-ligand complex. Nat Chem Biol 2017; 13:1216-1221. [PMID: 28967923 PMCID: PMC5698159 DOI: 10.1038/nchembio.2488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/28/2017] [Indexed: 12/23/2022]
Abstract
The binding of nitric oxide (NO) to the heme cofactor of heme-nitric oxide/oxygen binding (H-NOX) proteins can lead to the dissociation of the heme-ligating histidine residue and yield a five-coordinate nitrosyl complex, which is an important step for NO-dependent signaling. In the five-coordinate nitrosyl complex, NO can reside either on the distal or proximal side of the heme, which could have a profound influence over the lifetime of the in vivo signal. To investigate this central molecular question, the Shewanella oneidensis H-NOX (So H-NOX)–NO complex was biophysically characterized under limiting and excess NO. The results show that So H-NOX preferably forms a distal NO species under both limiting and excess NO. Therefore, signal strength and complex lifetime in vivo will be dictated by the dissociation rate of NO from the distal complex and the return of the histidine ligand to the heme.
Collapse
|
21
|
Thrombospondins: A Role in Cardiovascular Disease. Int J Mol Sci 2017; 18:ijms18071540. [PMID: 28714932 PMCID: PMC5536028 DOI: 10.3390/ijms18071540] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Thrombospondins (TSPs) represent extracellular matrix (ECM) proteins belonging to the TSP family that comprises five members. All TSPs have a complex multidomain structure that permits the interaction with various partners including other ECM proteins, cytokines, receptors, growth factors, etc. Among TSPs, TSP1, TSP2, and TSP4 are the most studied and functionally tested. TSP1 possesses anti-angiogenic activity and is able to activate transforming growth factor (TGF)-β, a potent profibrotic and anti-inflammatory factor. Both TSP2 and TSP4 are implicated in the control of ECM composition in hypertrophic hearts. TSP1, TSP2, and TSP4 also influence cardiac remodeling by affecting collagen production, activity of matrix metalloproteinases and TGF-β signaling, myofibroblast differentiation, cardiomyocyte apoptosis, and stretch-mediated enhancement of myocardial contraction. The development and evaluation of TSP-deficient animal models provided an option to assess the contribution of TSPs to cardiovascular pathology such as (myocardial infarction) MI, cardiac hypertrophy, heart failure, atherosclerosis, and aortic valve stenosis. Targeting of TSPs has a significant therapeutic value for treatment of cardiovascular disease. The activation of cardiac TSP signaling in stress and pressure overload may be therefore beneficial.
Collapse
|
22
|
Kekilli D, Petersen CA, Pixton DA, Ghafoor DD, Abdullah GH, Dworkowski FSN, Wilson MT, Heyes DJ, Hardman SJO, Murphy LM, Strange RW, Scrutton NS, Andrew CR, Hough MA. Engineering proximal vs. distal heme-NO coordination via dinitrosyl dynamics: implications for NO sensor design. Chem Sci 2017; 8:1986-1994. [PMID: 28451315 PMCID: PMC5390784 DOI: 10.1039/c6sc04190f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/08/2016] [Indexed: 01/18/2023] Open
Abstract
Proximal vs. distal heme-NO coordination is a novel strategy for selective gas response in heme-based NO-sensors. In the case of Alcaligenes xylosoxidans cytochrome c' (AXCP), formation of a transient distal 6cNO complex is followed by scission of the trans Fe-His bond and conversion to a proximal 5cNO product via a putative dinitrosyl species. Here we show that replacement of the AXCP distal Leu16 residue with smaller or similar sized residues (Ala, Val or Ile) traps the distal 6cNO complex, whereas Leu or Phe residues lead to a proximal 5cNO product with a transient or non-detectable distal 6cNO precursor. Crystallographic, spectroscopic, and kinetic measurements of 6cNO AXCP complexes show that increased distal steric hindrance leads to distortion of the Fe-N-O angle and flipping of the heme 7-propionate. However, it is the kinetic parameters of the distal NO ligand that determine whether 6cNO or proximal 5cNO end products are formed. Our data support a 'balance of affinities' mechanism in which proximal 5cNO coordination depends on relatively rapid release of the distal NO from the dinitrosyl precursor. This mechanism, which is applicable to other proteins that form transient dinitrosyls, represents a novel strategy for 5cNO formation that does not rely on an inherently weak Fe-His bond. Our data suggest a general means of engineering selective gas response into biologically-derived gas sensors in synthetic biology.
Collapse
Affiliation(s)
- Demet Kekilli
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Christine A Petersen
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - David A Pixton
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Dlzar D Ghafoor
- Faculty of Science and Education Science , University of Sulaimani , Sulaymaniyah , Iraq
| | | | | | - Michael T Wilson
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Derren J Heyes
- Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , UK
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , UK
| | - Loretta M Murphy
- School of Chemistry , Bangor University , Bangor , Gwynedd , Wales LL57 2UW , UK
| | - Richard W Strange
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
- Molecular Biophysics Group , Institute of Integrative Biology , Faculty of Health and Life Sciences , University of Liverpool , Liverpool , L69 7ZB , UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , UK
| | - Colin R Andrew
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Michael A Hough
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| |
Collapse
|
23
|
Ghosh A, Stuehr DJ. Regulation of sGC via hsp90, Cellular Heme, sGC Agonists, and NO: New Pathways and Clinical Perspectives. Antioxid Redox Signal 2017; 26:182-190. [PMID: 26983679 PMCID: PMC5278824 DOI: 10.1089/ars.2016.6690] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Soluble guanylate cyclase (sGC) is an intracellular enzyme that plays a primary role in sensing nitric oxide (NO) and transducing its multiple signaling effects in mammals. Recent Advances: The chaperone heat shock protein 90 (hsp90) associates with signaling proteins in cells, including sGC, where it helps to drive heme insertion into the sGC-β1 subunit. This allows sGC-β1 to associate with a partner sGC-α1 subunit and mature into an NO-responsive active form. CRITICAL ISSUES In this article, we review evidence to date regarding the mechanisms that modulate sGC activity by a pathway where binding of hsp90 or sGC agonist to heme-free sGC dictates the assembly and fate of an active sGC heterodimer, both by NO and heme-dependent or heme-independent pathways. FUTURE DIRECTIONS We discuss some therapeutic implications of the NO-sGC-hsp90 nexus and its potential as a marker of inflammatory disease. Antioxid. Redox Signal. 26, 182-190.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Pathobiology, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
24
|
Sharina IG, Martin E. The Role of Reactive Oxygen and Nitrogen Species in the Expression and Splicing of Nitric Oxide Receptor. Antioxid Redox Signal 2017; 26:122-136. [PMID: 26972233 PMCID: PMC7061304 DOI: 10.1089/ars.2016.6687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO)-dependent signaling is critical to many cellular functions and physiological processes. Soluble guanylyl cyclase (sGC) acts as an NO receptor and mediates the majority of NO functions. The signaling between NO and sGC is strongly altered by reactive oxygen and nitrogen species. Recent Advances: Besides NO scavenging, sGC is affected by oxidation/loss of sGC heme, oxidation, or nitrosation of cysteine residues and phosphorylation. Apo-sGC or sGC containing oxidized heme is targeted for degradation. sGC transcription and the stability of sGC mRNA are also affected by oxidative stress. CRITICAL ISSUES Studies cited in this review suggest the existence of compensatory processes that adapt cellular processes to diminished sGC function under conditions of short-term or moderate oxidative stress. Alternative splicing of sGC transcripts is discussed as a mechanism with the potential to both enhance and reduce sGC function. The expression of α1 isoform B, a functional and stable splice variant of human α1 sGC subunit, is proposed as one of such compensatory mechanisms. The expression of dysfunctional splice isoforms is discussed as a contributor to decreased sGC function in vascular disease. FUTURE DIRECTIONS Targeting the process of sGC splicing may be an important approach to maintain the composition of sGC transcripts that are expressed in healthy tissues under normal conditions. Emerging new strategies that allow for targeted manipulations of RNA splicing offer opportunities to use this approach as a preventive measure and to control the composition of sGC splice isoforms. Rational management of expressed sGC splice forms may be a valuable complementary treatment strategy for existing sGC-directed therapies. Antioxid. Redox Signal. 26, 122-136.
Collapse
Affiliation(s)
- Iraida G Sharina
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas
| | - Emil Martin
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas.,2 School of Science and Technology, Nazarbayev University , Astana, Kazakhstan
| |
Collapse
|
25
|
Montfort WR, Wales JA, Weichsel A. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor. Antioxid Redox Signal 2017; 26:107-121. [PMID: 26979942 PMCID: PMC5240008 DOI: 10.1089/ars.2016.6693] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Soluble guanylyl/guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) and is central to the physiology of blood pressure regulation, wound healing, memory formation, and other key physiological activities. sGC is increasingly implicated in disease and is targeted by novel therapeutic compounds. The protein displays a rich evolutionary history and a fascinating signal transduction mechanism, with NO binding to an N-terminal heme-containing domain, which activates the C-terminal cyclase domains. Recent Advances: Crystal structures of individual sGC domains or their bacterial homologues coupled with small-angle x-ray scattering, electron microscopy, chemical cross-linking, and Förster resonance energy transfer measurements are yielding insight into the overall structure for sGC, which is elongated and likely quite dynamic. Transient kinetic measurements reveal a role for individual domains in lowering NO affinity for heme. New sGC stimulatory drugs are now in the clinic and appear to function through binding near or directly to the sGC heme domain, relieving inhibitory contacts with other domains. New sGC-activating drugs show promise for recovering oxidized sGC in diseases with high inflammation by replacing lost heme. CRITICAL ISSUES Despite the many recent advances, sGC regulation, NO activation, and mechanisms of drug binding remain unclear. Here, we describe the molecular evolution of sGC, new molecular models, and the linked equilibria between sGC NO binding, drug binding, and catalytic activity. FUTURE DIRECTIONS Recent results and ongoing studies lay the foundation for a complete understanding of structure and mechanism, and they open the door for new drug discovery targeting sGC. Antioxid. Redox Signal. 26, 107-121.
Collapse
Affiliation(s)
- William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| | - Jessica A Wales
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| | - Andrzej Weichsel
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| |
Collapse
|
26
|
Wang Y, Ren Y, Xing L, Dai X, Liu S, Yu B, Wang Y. Endothelium-dependent vasodilation effects of Panax notoginseng and its main components are mediated by nitric oxide and cyclooxygenase pathways. Exp Ther Med 2016; 12:3998-4006. [PMID: 28101178 PMCID: PMC5228079 DOI: 10.3892/etm.2016.3890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/21/2016] [Indexed: 01/01/2023] Open
Abstract
Panax notoginseng, a traditional Chinese herbal medicine, has been used for the treatment of cardiovascular diseases. The main bioactive components of this species are Panax notoginseng saponins (PNS). The present study aimed to investigate the effects of PNS and five of its main components (ginsenosides Rg1, Re, Rb1 and Rd, and notoginsenoside R1) on rat aorta rings pre-contracted with norepinephrine (NE) and to determine the underlying mechanism of action. Isolated aorta rings (with or without intact endothelium) from adult male Wistar rats were stimulated with NE to induce vasoconstriction, and subsequently treated with different concentrations of PNS and its five main components (Rg1, Re, Rb1, R1 and Rd) separately. This procedure was repeated after pre-incubation with the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and the cyclooxygenase (COX) inhibitor indomethacin (INDO), in order to elucidate the mechanism of action of PNS and its components. The results demonstrated that PNS and the components Rg1, Re, Rb1 and R1, but not Rd, induced vessel relaxation in a concentration-dependent manner when the endothelium lining was intact. NO synthase inhibitor L-NAME and guanylate cyclase inhibitor ODQ attenuated the diastolic effects of PNS, Rg1, Re, Rb1 and R1 in aortic rings with intact endothelium. By contrast, INDO, a known COX inhibitor weakened the vasodilation effects of PNS, Re and Rb1 but demonstrated no effect on Rg1 and R1. In conclusion, PNS and two of its main components (Re and Rb1) exert vasodilating effects through the NO and COX pathways.
Collapse
Affiliation(s)
- Yanyan Wang
- Institute of Traditional Chinese Medicine Research, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yu Ren
- Institute of Traditional Chinese Medicine Research, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Leilei Xing
- Institute of Traditional Chinese Medicine Research, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiangdong Dai
- Institute of Traditional Chinese Medicine Research, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Sheng Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Bin Yu
- Institute of Traditional Chinese Medicine Research, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yi Wang
- Institute of Traditional Chinese Medicine Research, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
27
|
Benz PM, Fleming I. Can erythrocytes release biologically active NO? Cell Commun Signal 2016; 14:22. [PMID: 27639852 PMCID: PMC5027109 DOI: 10.1186/s12964-016-0145-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/28/2023] Open
Abstract
Under physiological conditions, endothelial cells and the endothelial nitric oxide (NO) synthase (eNOS) are the main source of NO in the cardiovascular system. However, several other cell types have also been implicated in the NO-dependent regulation of cell function, including erythrocytes. NO derived from red blood cells has been proposed to regulate erythrocyte membrane fluidity, inhibit platelet activation and induce vasodilation in hypoxic areas, but these proposals are highly controversial. In the current issue of Cell Communication and Signaling, an elegant study by Gambaryan et al., assayed NO production by erythrocytes by monitoring the activation of the platelet intracellular NO receptor, soluble guanylyl cyclase, and its downstream kinase protein kinase G. After systematically testing different combinations of erythrocyte/platelet suspensions, the authors found no evidence for platelet soluble guanylyl cyclase/protein kinase G activation by erythrocytes and conclude that erythrocytes do not release biologically active NO to inhibit platelet activation.
Collapse
Affiliation(s)
- Peter M Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany. .,DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, 60590, Frankfurt am Main, Germany.
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, 60590, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Gambaryan S, Subramanian H, Kehrer L, Mindukshev I, Sudnitsyna J, Reiss C, Rukoyatkina N, Friebe A, Sharina I, Martin E, Walter U. Erythrocytes do not activate purified and platelet soluble guanylate cyclases even in conditions favourable for NO synthesis. Cell Commun Signal 2016; 14:16. [PMID: 27515066 PMCID: PMC4982240 DOI: 10.1186/s12964-016-0139-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/01/2016] [Indexed: 01/28/2023] Open
Abstract
Background Direct interaction between Red blood cells (RBCs) and platelets is known for a long time. The bleeding time is prolonged in anemic patients independent of their platelet count and could be corrected by transfusion of RBCs, which indicates that RBCs play an important role in hemostasis and platelet activation. However, in the last few years, opposing mechanisms of platelet inhibition by RBCs derived nitric oxide (NO) were proposed. The aim of our study was to identify whether RBCs could produce NO and activate soluble guanylate cyclase (sGC) in platelets. Methods To test whether RBCs could activate sGC under different conditions (whole blood, under hypoxia, or even loaded with NO), we used our well-established and highly sensitive models of NO-dependent sGC activation in platelets and activation of purified sGC. The activation of sGC was monitored by detecting the phosphorylation of Vasodilator Stimulated Phosphoprotein (VASPS239) by flow cytometry and Western blot. ANOVA followed by Bonferroni’s test and Student’s t-test were used as appropriate. Results We show that in the whole blood, RBCs prevent NO-mediated inhibition of ADP and TRAP6-induced platelet activation. Likewise, coincubation of RBCs with platelets results in strong inhibition of NO-induced sGC activation. Under hypoxic conditions, incubation of RBCs with NO donor leads to Hb-NO formation which inhibits sGC activation in platelets. Similarly, RBCs inhibit activation of purified sGC, even under conditions optimal for RBC-mediated generation of NO from nitrite. Conclusions All our experiments demonstrate that RBCs act as strong NO scavengers and prevent NO-mediated inhibition of activated platelets. In all tested conditions, RBCs were not able to activate platelet or purified sGC.
Collapse
Affiliation(s)
- Stepan Gambaryan
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Grombuehlstraße 12, D-97080, Wuerzburg, Germany. .,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, St, Petersburg, 194223, Russia. .,Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany.
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Kehrer
- Institute of Physiology, University of Wuerzburg, Wuerzburg, Germany
| | - Igor Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, St, Petersburg, 194223, Russia
| | - Julia Sudnitsyna
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, St, Petersburg, 194223, Russia
| | - Cora Reiss
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Natalia Rukoyatkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, St, Petersburg, 194223, Russia
| | - Andreas Friebe
- Institute of Physiology, University of Wuerzburg, Wuerzburg, Germany
| | - Iraida Sharina
- Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, USA
| | - Emil Martin
- Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, USA
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany.,German Centre for Cardiovascular Research (DZHK) RheinMain, Mainz, Germany
| |
Collapse
|
29
|
S-nitrosothiols dilate the mesenteric artery more potently than the femoral artery by a cGMP and L-type calcium channel-dependent mechanism. Nitric Oxide 2016; 58:20-7. [PMID: 27235767 DOI: 10.1016/j.niox.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/06/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
S-nitrosothiols (SNOs) are metabolites of NO with potent vasodilatory activity. Our previous studies in sheep indicated that intra-arterially infused SNOs dilate the mesenteric vasculature more than the femoral vasculature. We hypothesized that the mesenteric artery is more responsive to SNO-mediated vasodilation, and investigated various steps along the NO/cGMP pathway to determine the mechanism for this difference. In anesthetized adult sheep, we monitored the conductance of mesenteric and femoral arteries during infusion of S-nitroso-l-cysteine (L-cysNO), and found mesenteric vascular conductance increased (137 ± 3%) significantly more than femoral conductance (26 ± 25%). Similar results were found in wire myography studies of isolated sheep mesenteric and femoral arteries. Vasodilation by SNOs was attenuated in both vessel types by the presence of ODQ (sGC inhibitor), and both YC-1 (sGC agonist) and 8-Br-cGMP (cGMP analog) mediated more potent relaxation in mesenteric arteries than femoral arteries. The vasodilatory difference between mesenteric and femoral arteries was eliminated by antagonists of either protein kinase G or L-type Ca(2+) channels. Western immunoblots showed a larger L-type Ca(2+)/sGC abundance ratio in mesenteric arteries than in femoral arteries. Fetal sheep mesenteric arteries were more responsive to SNOs than adult mesenteric arteries, and had a greater L-Ca(2+)/sGC ratio (p = 0.047 and r = -0.906 for correlation between Emax and L-Ca(2+)/sGC). These results suggest that mesenteric arteries, especially those in fetus, are more responsive to SNO-mediated vasodilation than femoral arteries due to a greater role of the L-type calcium channel in the NO/cGMP pathway.
Collapse
|
30
|
Liu T, Schroeder HJ, Wilson SM, Terry MH, Romero M, Longo LD, Power GG, Blood AB. Local and systemic vasodilatory effects of low molecular weight S-nitrosothiols. Free Radic Biol Med 2016; 91:215-23. [PMID: 26686469 PMCID: PMC4761500 DOI: 10.1016/j.freeradbiomed.2015.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 10/02/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022]
Abstract
S-nitrosothiols (SNOs) such as S-nitroso-L-cysteine (L-cysNO) are endogenous compounds with potent vasodilatory activity. During circulation in the blood, the NO moiety can be exchanged among various thiol-containing compounds by S-transnitrosylation, resulting in SNOs with differing capacities to enter the cell (membrane permeability). To determine whether the vasodilating potency of SNOs is dependent upon membrane permeability, membrane-permeable L-cysNO and impermeable S-nitroso-D-cysteine (D-cysNO) and S-nitroso-glutathione (GSNO) were infused into one femoral artery of anesthetized adult sheep while measuring bilateral femoral and systemic vascular conductances. L-cysNO induced vasodilation in the infused hind limb, whereas D-cysNO and GSNO did not. L-cysNO also increased intracellular NO in isolated arterial smooth muscle cells, whereas GSNO did not. The infused SNOs remained predominantly in a low molecular weight form during first-passage through the hind limb vasculature, but were converted into high molecular weight SNOs upon systemic recirculation. At systemic concentrations of ~0.6 μmol/L, all three SNOs reduced mean arterial blood pressure by ~50%, with pronounced vasodilation in the mesenteric bed. Pharmacokinetics of L-cysNO and GSNO were measured in vitro and in vivo and correlated with their hemodynamic effects, membrane permeability, and S-transnitrosylation. These results suggest local vasodilation by SNOs in the hind limb requires membrane permeation, whereas systemic vasodilation does not. The systemic hemodynamic effects of SNOs occur after equilibration of the NO moiety amongst the plasma thiols via S-transnitrosylation.
Collapse
Affiliation(s)
- Taiming Liu
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Hobe J Schroeder
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Sean M Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Michael H Terry
- Department of Respiratory Care, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Monica Romero
- Advanced Microscopy Imaging Core, Loma Linda University School of Medicine, Loma Linda, CA 92354
| | - Lawrence D Longo
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Gordon G Power
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Arlin B Blood
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
31
|
Basudhar D, Ridnour LA, Cheng R, Kesarwala AH, Heinecke J, Wink DA. Biological signaling by small inorganic molecules. Coord Chem Rev 2016; 306:708-723. [PMID: 26688591 PMCID: PMC4680994 DOI: 10.1016/j.ccr.2015.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Small redox active molecules such as reactive nitrogen and oxygen species and hydrogen sulfide have emerged as important biological mediators that are involved in various physiological and pathophysiological processes. Advancement in understanding of cellular mechanisms that tightly regulate both generation and reactivity of these molecules is central to improved management of various disease states including cancer and cardiovascular dysfunction. Imbalance in the production of redox active molecules can lead to damage of critical cellular components such as cell membranes, proteins and DNA and thus may trigger the onset of disease. These small inorganic molecules react independently as well as in a concerted manner to mediate physiological responses. This review provides a general overview of the redox biology of these key molecules, their diverse chemistry relevant to physiological processes and their interrelated nature in cellular signaling.
Collapse
Affiliation(s)
- Debashree Basudhar
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Lisa A. Ridnour
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Robert Cheng
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Aparna H. Kesarwala
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Julie Heinecke
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - David A. Wink
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
32
|
Wu G, Liu W, Berka V, Tsai AL. H-NOX from Clostridium botulinum, like H-NOX from Thermoanaerobacter tengcongensis, Binds Oxygen but with a Less Stable Oxyferrous Heme Intermediate. Biochemistry 2015; 54:7098-109. [PMID: 26574914 DOI: 10.1021/acs.biochem.5b00994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heme nitric oxide/oxygen binding protein isolated from the obligate anaerobe Clostridium botulinum (Cb H-NOX) was previously reported to bind NO with a femtomolar K(D) (Nioche, P. et al. Science 2004, 306, 1550-1553). On the other hand, no oxyferrous Cb H-NOX was observed despite full conservation of the key residues that stabilize the oxyferrous complex in the H-NOX from Thermoanaerobacter tengcongensis (Tt H-NOX) (the same study). In this study, we re-measured the kinetics/affinities of Cb H-NOX for CO, NO, and O2. K(D)(CO) for the simple one-step equilibrium binding was 1.6 × 10(-7) M. The K(D)(NO) of Cb H-NOX was 8.0 × 10(-11) M for the first six-coordinate NO complex, and the previous femtomolar K(D)(NO) was actually an apparent K(D) for its multiple-step NO binding. An oxyferrous Cb H-NOX was clearly observed with a K(D)(O2) of 5.3 × 10(-5) M, which is significantly higher than Tt H-NOX's K(D)(O2) = 4.4 × 10(-8) M. The gaseous ligand binding of Cb H-NOX provides another supportive example for the "sliding scale rule" hypothesis (Tsai, A.-L. et al. Antioxid. Redox Signal. 2012, 17, 1246-1263), and the presence of hydrogen bond donor Tyr139 in Cb H-NOX selectively enhanced its affinity for oxygen.
Collapse
Affiliation(s)
- Gang Wu
- Division of Hematology, Department of Internal Medicine, The University of Texas-Medical School at Houston , 6431 Fannin Street, Houston, Texas 77030, United States
| | - Wen Liu
- Division of Hematology, Department of Internal Medicine, The University of Texas-Medical School at Houston , 6431 Fannin Street, Houston, Texas 77030, United States
| | - Vladimir Berka
- Division of Hematology, Department of Internal Medicine, The University of Texas-Medical School at Houston , 6431 Fannin Street, Houston, Texas 77030, United States
| | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine, The University of Texas-Medical School at Houston , 6431 Fannin Street, Houston, Texas 77030, United States
| |
Collapse
|
33
|
Sürmeli NB, Müskens FM, Marletta MA. The Influence of Nitric Oxide on Soluble Guanylate Cyclase Regulation by Nucleotides: ROLE OF THE PSEUDOSYMMETRIC SITE. J Biol Chem 2015; 290:15570-15580. [PMID: 25907555 DOI: 10.1074/jbc.m115.641431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 01/09/2023] Open
Abstract
Activation of soluble guanylate cyclase (sGC) by the signaling molecule nitric oxide (NO) leads to formation of the second messenger cGMP, which mediates numerous physiological processes. NO activates sGC by binding to the ferrous heme cofactor; the relative amount of NO with respect to sGC heme affects the enzyme activity. ATP can also influence the activity by binding to an allosteric site, most likely the pseudosymmetric site located in the catalytic domain. Here, the role of the pseudosymmetric site on nucleotide regulation was investigated by point mutations at this site. ATP inhibition kinetics of wild type and a pseudosymmetric site (α1-C594A/β1-D477A) variant of sGC was determined at various levels of NO. Results obtained show that in the presence of less than 1 eq of NO, there appears to be less than complete activation and little change in the nucleotide binding parameters. The most dramatic effects are observed for the addition of excess NO, which results in an increase in the affinity of GTP at the catalytic site and full activation of sGC. The pseudosymmetric site mutation only affected nucleotide affinities in the presence of excess NO; there was a decrease in the affinity for ATP in both the allosteric and catalytic sites. These observations led to a new kinetic model for sGC activity in the presence of excess NO. This model revealed that the active and allosteric sites show cooperativity. This new comprehensive model gives a more accurate description of sGC regulation by NO and nucleotides in vivo.
Collapse
Affiliation(s)
- Nur Başak Sürmeli
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037
| | - Frederike M Müskens
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CG Utrecht, The Netherlands
| | - Michael A Marletta
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
34
|
Motion of proximal histidine and structural allosteric transition in soluble guanylate cyclase. Proc Natl Acad Sci U S A 2015; 112:E1697-704. [PMID: 25831539 DOI: 10.1073/pnas.1423098112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We investigated the changes of heme coordination in purified soluble guanylate cyclase (sGC) by time-resolved spectroscopy in a time range encompassing 11 orders of magnitude (from 1 ps to 0.2 s). After dissociation, NO either recombines geminately to the 4-coordinate (4c) heme (τG1 = 7.5 ps; 97 ± 1% of the population) or exits the heme pocket (3 ± 1%). The proximal His rebinds to the 4c heme with a 70-ps time constant. Then, NO is distributed in two approximately equal populations (1.5%). One geminately rebinds to the 5c heme (τG2 = 6.5 ns), whereas the other diffuses out to the solution, from where it rebinds bimolecularly (τ = 50 μs with [NO] = 200 μM) forming a 6c heme with a diffusion-limited rate constant of 2 × 10(8) M(-1)⋅s(-1). In both cases, the rebinding of NO induces the cleavage of the Fe-His bond that can be observed as an individual reaction step. Saliently, the time constant of bond cleavage differs depending on whether NO binds geminately or from solution (τ5C1 = 0.66 μs and τ5C2 = 10 ms, respectively). Because the same event occurs with rates separated by four orders of magnitude, this measurement implies that sGC is in different structural states in both cases, having different strain exerted on the Fe-His bond. We show here that this structural allosteric transition takes place in the range 1-50 μs. In this context, the detection of NO binding to the proximal side of sGC heme is discussed.
Collapse
|
35
|
Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters. Proc Natl Acad Sci U S A 2015; 112:2343-8. [PMID: 25675492 DOI: 10.1073/pnas.1417047112] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many diseases are associated with oxidative stress, which occurs when the production of reactive oxygen species (ROS) overwhelms the scavenging ability of an organism. Here, we evaluated the carbon nanoparticle antioxidant properties of poly(ethylene glycolated) hydrophilic carbon clusters (PEG-HCCs) by electron paramagnetic resonance (EPR) spectroscopy, oxygen electrode, and spectrophotometric assays. These carbon nanoparticles have 1 equivalent of stable radical and showed superoxide (O2 (•-)) dismutase-like properties yet were inert to nitric oxide (NO(•)) as well as peroxynitrite (ONOO(-)). Thus, PEG-HCCs can act as selective antioxidants that do not require regeneration by enzymes. Our steady-state kinetic assay using KO2 and direct freeze-trap EPR to follow its decay removed the rate-limiting substrate provision, thus enabling determination of the remarkable intrinsic turnover numbers of O2 (•-) to O2 by PEG-HCCs at >20,000 s(-1). The major products of this catalytic turnover are O2 and H2O2, making the PEG-HCCs a biomimetic superoxide dismutase.
Collapse
|
36
|
Hough MA, Andrew CR. Cytochromes c': Structure, Reactivity and Relevance to Haem-Based Gas Sensing. Adv Microb Physiol 2015; 67:1-84. [PMID: 26616515 DOI: 10.1016/bs.ampbs.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochromes c' are a group of class IIa cytochromes with pentacoordinate haem centres and are found in photosynthetic, denitrifying and methanotrophic bacteria. Their function remains unclear, although roles in nitric oxide (NO) trafficking during denitrification or in cellular defence against nitrosoative stress have been proposed. Cytochromes c' are typically dimeric with each c-type haem-containing monomer folding as a four-α-helix bundle. Their hydrophobic and crowded distal sites impose severe restrictions on the binding of distal ligands, including diatomic gases. By contrast, NO binds to the proximal haem face in a similar manner to that of the eukaryotic NO sensor, soluble guanylate cyclase and bacterial analogues. In this review, we focus on how structural features of cytochromes c' influence haem spectroscopy and reactivity with NO, CO and O2. We also discuss the relevance of cytochrome c' to understanding the mechanisms of gas binding to haem-based sensor proteins.
Collapse
|
37
|
Matta-Camacho E, Banerjee S, Hughes TS, Solt LA, Wang Y, Burris TP, Kojetin DJ. Structure of REV-ERBβ ligand-binding domain bound to a porphyrin antagonist. J Biol Chem 2014; 289:20054-66. [PMID: 24872411 DOI: 10.1074/jbc.m113.545111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
REV-ERBα and REV-ERBβ are members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors that play important roles in the regulation of circadian physiology, metabolism, and immune function. Although the REV-ERBs were originally characterized as orphan receptors, recent studies have demonstrated that they function as receptors for heme. Here, we demonstrate that cobalt protoporphyrin IX (CoPP) and zinc protoporphyrin IX (ZnPP) are ligands that bind directly to the REV-ERBs. However, instead of mimicking the agonist action of heme, CoPP and ZnPP function as antagonists of REV-ERB function. This was unexpected because the only distinction between these ligands is the metal ion that is coordinated. To understand the structural basis by which REV-ERBβ can differentiate between a porphyrin agonist and antagonist, we characterized the interaction between REV-ERBβ with heme, CoPP, and ZnPP using biochemical and structural approaches, including x-ray crystallography and NMR. The crystal structure of CoPP-bound REV-ERBβ indicates only minor conformational changes induced by CoPP compared with heme, including the porphyrin ring of CoPP, which adopts a planar conformation as opposed to the puckered conformation observed in the heme-bound REV-ERBβ crystal structure. Thus, subtle changes in the porphyrin metal center and ring conformation may influence the agonist versus antagonist action of porphyrins and when considered with other studies suggest that gas binding to the iron metal center heme may drive alterations in REV-ERB activity.
Collapse
Affiliation(s)
- Edna Matta-Camacho
- From the Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33418 and
| | - Subhashis Banerjee
- From the Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33418 and
| | - Travis S Hughes
- From the Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33418 and
| | - Laura A Solt
- From the Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33418 and
| | - Yongjun Wang
- From the Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33418 and the Department of Pharmacological and Physiological Sciences, St. Louis University School of Medicine, St. Louis, Missouri 63103
| | - Thomas P Burris
- From the Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33418 and the Department of Pharmacological and Physiological Sciences, St. Louis University School of Medicine, St. Louis, Missouri 63103
| | - Douglas J Kojetin
- From the Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33418 and
| |
Collapse
|
38
|
Kekilli D, Dworkowski FSN, Pompidor G, Fuchs MR, Andrew CR, Antonyuk S, Strange RW, Eady RR, Hasnain SS, Hough MA. Fingerprinting redox and ligand states in haemprotein crystal structures using resonance Raman spectroscopy. ACTA ACUST UNITED AC 2014; 70:1289-96. [PMID: 24816098 DOI: 10.1107/s1399004714004039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/20/2014] [Indexed: 11/10/2022]
Abstract
It is crucial to assign the correct redox and ligand states to crystal structures of proteins with an active redox centre to gain valid functional information and prevent the misinterpretation of structures. Single-crystal spectroscopies, particularly when applied in situ at macromolecular crystallography beamlines, allow spectroscopic investigations of redox and ligand states and the identification of reaction intermediates in protein crystals during the collection of structural data. Single-crystal resonance Raman spectroscopy was carried out in combination with macromolecular crystallography on Swiss Light Source beamline X10SA using cytochrome c' from Alcaligenes xylosoxidans. This allowed the fingerprinting and validation of different redox and ligand states, identification of vibrational modes and identification of intermediates together with monitoring of radiation-induced changes. This combined approach provides a powerful tool to obtain complementary data and correctly assign the true oxidation and ligand state(s) in redox-protein crystals.
Collapse
Affiliation(s)
- Demet Kekilli
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | | | - Guillaume Pompidor
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Martin R Fuchs
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Colin R Andrew
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, OR 97850-2899, USA
| | - Svetlana Antonyuk
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, England
| | - Richard W Strange
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, England
| | - Robert R Eady
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, England
| | - S Samar Hasnain
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, England
| | - Michael A Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| |
Collapse
|
39
|
Rogers NM, Seeger F, Garcin ED, Roberts DD, Isenberg JS. Regulation of soluble guanylate cyclase by matricellular thrombospondins: implications for blood flow. Front Physiol 2014; 5:134. [PMID: 24772092 PMCID: PMC3983488 DOI: 10.3389/fphys.2014.00134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/18/2014] [Indexed: 01/16/2023] Open
Abstract
Nitric oxide (NO) maintains cardiovascular health by activating soluble guanylate cyclase (sGC) to increase cellular cGMP levels. Cardiovascular disease is characterized by decreased NO-sGC-cGMP signaling. Pharmacological activators and stimulators of sGC are being actively pursued as therapies for acute heart failure and pulmonary hypertension. Here we review molecular mechanisms that modulate sGC activity while emphasizing a novel biochemical pathway in which binding of the matricellular protein thrombospondin-1 (TSP1) to the cell surface receptor CD47 causes inhibition of sGC. We discuss the therapeutic implications of this pathway for blood flow, tissue perfusion, and cell survival under physiologic and disease conditions.
Collapse
Affiliation(s)
- Natasha M Rogers
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Franziska Seeger
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County Baltimore, MD, USA
| | - Elsa D Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County Baltimore, MD, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH Bethesda, MD, USA
| | - Jeffrey S Isenberg
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine Pittsburgh, PA, USA ; Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| |
Collapse
|
40
|
Hough MA, Silkstone G, Worrall JAR, Wilson MT. NO binding to the proapoptotic cytochrome c-cardiolipin complex. VITAMINS AND HORMONES 2014; 96:193-209. [PMID: 25189388 DOI: 10.1016/b978-0-12-800254-4.00008-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytochrome c is a heme protein that is localized in the compartment between the inner and outer mitochondrial membranes where it functions to transfer electrons between complex III and complex IV of the respiratory chain. It can also form an intimate association with the mitochondrion-specific phospholipid cardiolipin that induces a conformational change in the protein enabling it to act as a peroxidase catalyzing the oxidation of cardiolipin and thereby instigating a chain of events that leads to apoptosis. Unlike the native protein, cytochrome c within the complex binds ligands rapidly; in particular, NO can coordinate to either the ferric or ferrous iron of the heme. Remarkably, in the ferrous form, NO binds preferentially to the proximal side of the heme and thus behaves in a way similar to cytochrome c'-type proteins and to guanylate cyclase. The implications of NO binding to the proapoptotic cytochrome c/cardiolipin complex are discussed in terms of modulating the apoptotic response and buffering NO concentrations. Insights into the structure of the complex are provided by comparison with cytochrome c' for which X-ray structures are available.
Collapse
Affiliation(s)
- Michael A Hough
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Gary Silkstone
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - J A R Worrall
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom.
| |
Collapse
|
41
|
Purohit R, Fritz BG, The J, Issaian A, Weichsel A, David CL, Campbell E, Hausrath AC, Rassouli-Taylor L, Garcin ED, Gage MJ, Montfort WR. YC-1 binding to the β subunit of soluble guanylyl cyclase overcomes allosteric inhibition by the α subunit. Biochemistry 2013; 53:101-14. [PMID: 24328155 DOI: 10.1021/bi4015133] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Soluble guanylate cyclase (sGC) is a heterodimeric heme protein and the primary nitric oxide receptor. NO binding stimulates cyclase activity, leading to regulation of cardiovascular physiology and making sGC an attractive target for drug discovery. YC-1 and related compounds stimulate sGC both independently and synergistically with NO and CO binding; however, where the compounds bind and how they work remain unknown. Using linked equilibrium binding measurements, surface plasmon resonance, and domain truncations in Manduca sexta and bovine sGC, we demonstrate that YC-1 binds near or directly to the heme-containing domain of the β subunit. In the absence of CO, YC-1 binds with a Kd of 9-21 μM, depending on the construct. In the presence of CO, these values decrease to 0.6-1.1 μM. Pfizer compound 25 bound ∼10-fold weaker than YC-1 in the absence of CO, whereas compound BAY 41-2272 bound particularly tightly in the presence of CO (Kd = 30-90 nM). Additionally, we found that CO binds much more weakly to heterodimeric sGC proteins (Kd = 50-100 μM) than to the isolated heme domain (Kd = 0.2 μM for Manduca β H-NOX/PAS). YC-1 greatly enhanced binding of CO to heterodimeric sGC, as expected (Kd ∼ 1 μM). These data indicate the α subunit induces a heme pocket conformation with a lower affinity for CO and NO. YC-1 family compounds bind near the heme domain, overcoming the α subunit effect and inducing a heme pocket conformation with high affinity. We propose this high-affinity conformation is required for the full-length protein to achieve high catalytic activity.
Collapse
Affiliation(s)
- Rahul Purohit
- Department of Chemistry and Biochemistry, The University of Arizona , Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu G, Liu W, Berka V, Tsai AL. The selectivity of Vibrio cholerae H-NOX for gaseous ligands follows the "sliding scale rule" hypothesis. Ligand interactions with both ferrous and ferric Vc H-NOX. Biochemistry 2013; 52:9432-46. [PMID: 24351060 DOI: 10.1021/bi401408x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vc H-NOX (or VCA0720) is an H-NOX (heme-nitric oxide and oxygen binding) protein from facultative aerobic bacterium Vibrio cholerae. It shares significant sequence homology with soluble guanylyl cyclase (sGC), a NO sensor protein commonly found in animals. Similar to sGC, Vc H-NOX binds strongly to NO and CO with affinities of 0.27 nM and 0.77 μM, respectively, but weakly to O2. When positioned on a "sliding scale" plot [Tsai, A.-l., et al. (2012) Biochemistry 51, 172-186], the line connecting log K(D)(NO) and log K(D)(CO) of Vc H-NOX can almost be superimposed with that of Ns H-NOX. Therefore, the measured affinities and kinetic parameters of gaseous ligands to Vc H-NOX provide more evidence to validate the "sliding scale rule" hypothesis. Like sGC, Vc H-NOX binds NO in multiple steps, forming first a six-coordinate heme-NO complex at a rate of 1.1 × 10(9) M(-1) s(-1), and then converts to a five-coordinate heme-NO complex at a rate that is also dependent on NO concentration. Although the formation of oxyferrous Vc H-NOX cannot be detected at a normal atmospheric oxygen level, ferrous Vc H-NOX is oxidized to the ferric form at a rate of 0.06 s(-1) when mixed with O2. Ferric Vc H-NOX exists as a mixture of high- and low-spin states and is influenced by binding to different ligands. Characterization of both ferric and ferrous Vc H-NOX and their complexes with various ligands lays the foundation for understanding the possible dual roles in gas and redox sensing of Vc H-NOX.
Collapse
Affiliation(s)
- Gang Wu
- Division of Hematology, Department of Internal Medicine, The University of Texas-Medical School at Houston , 6431 Fannin Street, Houston, Texas 77030, United States
| | | | | | | |
Collapse
|
43
|
Russell HJ, Hardman SJO, Heyes DJ, Hough MA, Greetham GM, Towrie M, Hay S, Scrutton NS. Modulation of ligand-heme reactivity by binding pocket residues demonstrated in cytochrome c' over the femtosecond-second temporal range. FEBS J 2013; 280:6070-82. [PMID: 24034856 PMCID: PMC4163637 DOI: 10.1111/febs.12526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 12/27/2022]
Abstract
The ability of hemoproteins to discriminate between diatomic molecules, and the subsequent affinity for their chosen ligand, is fundamental to the existence of life. These processes are often controlled by precise structural arrangements in proteins, with heme pocket residues driving reactivity and specificity. One such protein is cytochrome c', which has the ability to bind nitric oxide (NO) and carbon monoxide (CO) on opposite faces of the heme, a property that is shared with soluble guanylate cycle. Like soluble guanylate cyclase, cytochrome c' also excludes O2 completely from the binding pocket. Previous studies have shown that the NO binding mechanism is regulated by a proximal arginine residue (R124) and a distal leucine residue (L16). Here, we have investigated the roles of these residues in maintaining the affinity for NO in the heme binding environment by using various time‐resolved spectroscopy techniques that span the entire femtosecond–second temporal range in the UV‐vis spectrum, and the femtosecond–nanosecond range by IR spectroscopy. Our findings indicate that the tightly regulated NO rebinding events following excitation in wild‐type cytochrome c' are affected in the R124A variant. In the R124A variant, vibrational and electronic changes extend continuously across all time scales (from fs–s), in contrast to wild‐type cytochrome c' and the L16A variant. Based on these findings, we propose a NO (re)binding mechanism for the R124A variant of cytochrome c' that is distinct from that in wild‐type cytochrome c'. In the wider context, these findings emphasize the importance of heme pocket architecture in maintaining the reactivity of hemoproteins towards their chosen ligand, and demonstrate the power of spectroscopic probes spanning a wide temporal range.
Collapse
Affiliation(s)
- Henry J Russell
- Faculty of Life Sciences, Manchester Institute of Biotechnology and Photon Science Institute, The University of Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pal B, Tanaka K, Takenaka S, Shaik TB, Kitagawa T. Structural characterization of nitric oxide-bound soluble Guanylate Cyclase using resonance Raman spectroscopy. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mammalian soluble Guanylate Cyclase (sGC), working as a physiological NO receptor, is investigated using resonance Raman spectroscopy for NO bound states with different saturation levels in the presence and absence of effectors. The Fe–NO (νFe–NO) and N–O (νN-O) stretching bands appeared at 521 and 1681 cm-1, respectively, without effectors, but νN-O was split into 1681 and 1699 cm-1 in the presence of GTP and shifted to 1687 cm-1 in the presence of YC-1 or BAY 41-2272, while νFe-NO remained unaltered. The split two νN-O bands were independent of NO saturation levels. GTP or YC-1/BAY 41-2272 altered the vinyl and propionate bending modes from 423 to 399 cm-1 and 376 to 367 cm-1, respectively. Based on these observations, allosteric effects on NO …protein interactions are discussed.
Collapse
Affiliation(s)
- Biswajit Pal
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Katsuhiro Tanaka
- Department of Veterinary Science, Osaka Prefecture University, Sakai, Osaka 593-8531, Japan
| | - Shigeo Takenaka
- Department of Veterinary Science, Osaka Prefecture University, Sakai, Osaka 593-8531, Japan
| | - Tajith B. Shaik
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Teizo Kitagawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
45
|
Tsai AL, Martin E, Berka V, Olson JS. How do heme-protein sensors exclude oxygen? Lessons learned from cytochrome c', Nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase. Antioxid Redox Signal 2012; 17:1246-63. [PMID: 22356101 PMCID: PMC3430480 DOI: 10.1089/ars.2012.4564] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Ligand selectivity for dioxygen (O(2)), carbon monoxide (CO), and nitric oxide (NO) is critical for signal transduction and is tailored specifically for each heme-protein sensor. Key NO sensors, such as soluble guanylyl cyclase (sGC), specifically recognized low levels of NO and achieve a total O(2) exclusion. Several mechanisms have been proposed to explain the O(2) insensitivity, including lack of a hydrogen bond donor and negative electrostatic fields to selectively destabilize bound O(2), distal steric hindrance of all bound ligands to the heme iron, and restriction of in-plane movements of the iron atom. RECENT ADVANCES Crystallographic structures of the gas sensors, Thermoanaerobacter tengcongensis heme-nitric oxide/oxygen-binding domain (Tt H-NOX(1)) or Nostoc puntiforme (Ns) H-NOX, and measurements of O(2) binding to site-specific mutants of Tt H-NOX and the truncated β subunit of sGC suggest the need for a H-bonding donor to facilitate O(2) binding. CRITICAL ISSUES However, the O(2) insensitivity of full length sGC with a site-specific replacement of isoleucine by a tyrosine on residue 145 and the very slow autooxidation of Ns H-NOX and cytochrome c' suggest that more complex mechanisms have evolved to exclude O(2) but retain high affinity NO binding. A combined graphical analysis of ligand binding data for libraries of heme sensors, globins, and model heme shows that the NO sensors dramatically inhibit the formation of six-coordinated NO, CO, and O(2) complexes by direct distal steric hindrance (cyt c'), proximal constraints of in-plane iron movement (sGC), or combinations of both following a sliding scale rule. High affinity NO binding in H-NOX proteins is achieved by multiple NO binding steps that produce a high affinity five-coordinate NO complex, a mechanism that also prevents NO dioxygenation. FUTURE DIRECTIONS Knowledge advanced by further extensive test of this "sliding scale rule" hypothesis should be valuable in guiding novel designs for heme based sensors.
Collapse
Affiliation(s)
- Ah-Lim Tsai
- Division of Hematology, University of Texas Health Science Center at Houston, Houston, Texas 77225, USA.
| | | | | | | |
Collapse
|
46
|
Dai Z, Farquhar ER, Arora DP, Boon EM. Is histidine dissociation a critical component of the NO/H-NOX signaling mechanism? Insights from X-ray absorption spectroscopy. Dalton Trans 2012; 41:7984-93. [PMID: 22430114 PMCID: PMC3671924 DOI: 10.1039/c2dt30147d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The H-NOX (Heme-Nitric oxide/OXygen binding) family of diatomic gas sensing hemoproteins has attracted great interest. Soluble guanylate cyclase (sGC), the well-characterized eukaryotic nitric oxide (NO) sensor is an H-NOX family member. When NO binds sGC at the ferrous histidine-ligated protoporphyrin-IX, the proximal histidine ligand dissociates, resulting in a 5-coordinate (5c) complex; formation of this 5c complex is viewed as necessary for activation of sGC. Characterization of other H-NOX family members has revealed that while most also bind NO in a 5c complex, some bind NO in a 6-coordinate (6c) complex or as a 5c/6c mixture. To gain insight into the heme pocket structural differences between 5c and 6c Fe(ii)-NO H-NOX complexes, we investigated the extended X-ray absorption fine structure (EXAFS) of the Fe(II)-unligated and Fe(II)-NO complexes of H-NOX domains from three species, Thermoanaerobacter tengcongensis, Shewanella woodyi, and Pseudoalteromonas atlantica. Although the Fe(II)-NO complex of TtH-NOX is formally 6c, we found the Fe-N(His) bond is substantially lengthened. Furthermore, although NO binds to SwH-NOX and PaH-NOX as a 5c complex, consistent with histidine dissociation, the EXAFS data do not exclude a very weakly associated histidine. Regardless of coordination number, upon NO-binding, the Fe-N(porphyrin) bond lengths in all three H-NOXs contract by ~0.07 Å. This study reveals that the overall heme structure of 5c and 6c Fe(II)-NO H-NOX complexes are substantially similar, suggesting that formal histidine dissociation may not be required to trigger NO/H-NOX signal transduction. The study has refined our understanding of the molecular mechanisms underlying NO/H-NOX signaling.
Collapse
Affiliation(s)
- Zhou Dai
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Erik R. Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences and Center for Proteomics and Bioinformatics, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Dhruv P. Arora
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Elizabeth M. Boon
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| |
Collapse
|
47
|
Toledo JC, Augusto O. Connecting the Chemical and Biological Properties of Nitric Oxide. Chem Res Toxicol 2012; 25:975-89. [DOI: 10.1021/tx300042g] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jose Carlos Toledo
- Departamento de Química,
Faculdade de Filosofia, Ciências e Letras de Ribeirão
Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão
Preto, SP, Brazil
| | - Ohara Augusto
- Departamento
de Bioquímica,
Instituto de Química, Universidade de São Paulo, Universidade
de São Paulo, Caixa Postal 26077, CEP 05513-970, São
Paulo, SP, Brazil
| |
Collapse
|
48
|
Martin E, Berka V, Sharina I, Tsai AL. Mechanism of binding of NO to soluble guanylyl cyclase: implication for the second NO binding to the heme proximal site. Biochemistry 2012; 51:2737-46. [PMID: 22401134 DOI: 10.1021/bi300105s] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble guanylyl cyclase (sGC), the key enzyme for the formation of second messenger cyclic GMP, is an authentic sensor for nitric oxide (NO). Binding of NO to sGC leads to strong activation of the enzyme activity. Multiple molecules and steps of binding of NO to sGC have been implicated, but the target of the second NO and the detailed binding mechanism remain controversial. In this study, we used (15)NO and (14)NO and anaerobic sequential mixing-freeze-quench electron paramagnetic resonance to unambiguously confirm that the heme Fe is the target of the second NO. The linear dependence on NO concentration up to 600 s(-1) for the observed rate of the second step of NO binding not only indicates that the binding site of the second NO is different from that in the first step, i.e., the proximal site of the heme, but also supports a concerted mechanism in which the dissociation of the His105 proximal ligand occurs simultaneously with the binding of the second NO molecule. Computer modeling successfully predicts the kinetics of formation of a set of five-coordinate NO complexes with the ligand on either the distal or proximal site and supports the selective release of NO from the distal side of the transient bis-NO-sGC complex. Thus, as has been demonstrated with cytochrome c', a five-coordinate NO-sGC complex containing a proximal NO is formed after the binding of the second NO.
Collapse
Affiliation(s)
- Emil Martin
- Division of Cardiology, Internal Medicine, The University of Texas Medical School at Houston, Houston, Texas 77030, United States.
| | | | | | | |
Collapse
|
49
|
Structural and functional insights into the heme-binding domain of the human soluble guanylate cyclase α2 subunit and heterodimeric α2β1. J Biol Inorg Chem 2012; 17:719-30. [DOI: 10.1007/s00775-012-0891-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
|
50
|
Tsai AL, Berka V, Martin E, Olson JS. A "sliding scale rule" for selectivity among NO, CO, and O₂ by heme protein sensors. Biochemistry 2011; 51:172-86. [PMID: 22111978 DOI: 10.1021/bi2015629] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selectivity among NO, CO, and O₂ is crucial for the physiological function of most heme proteins. Although there is a million-fold variation in equilibrium dissociation constants (K(D)), the ratios for NO:CO:O₂ binding stay roughly the same, 1:~10(3):~10(6), when the proximal ligand is a histidine and the distal site is apolar. For these proteins, there is a "sliding scale rule" for plots of log(K(D)) versus ligand type that allows predictions of K(D) values if one or two are missing. The predicted K(D) for binding of O₂to Ns H-NOX coincides with the value determined experimentally at high pressures. Active site hydrogen bond donors break the rule and selectively increase O₂ affinity with little effect on CO and NO binding. Strong field proximal ligands such as thiolate, tyrosinate, and imidazolate exert a "leveling" effect on ligand binding affinity. The reported picomolar K(D) for binding of NO to sGC deviates even more dramatically from the sliding scale rule, showing a NO:CO K(D) ratio of 1:~10(8). This deviation is explained by a complex, multistep process, in which an initial low-affinity hexacoordinate NO complex with a measured K(D) of ≈54 nM, matching that predicted from the sliding scale rule, is formed initially and then is converted to a high-affinity pentacoordinate complex. This multistep six-coordinate to five-coordinate mechanism appears to be common to all NO sensors that exclude O₂ binding to capture a lower level of cellular NO and prevent its consumption by dioxygenation.
Collapse
Affiliation(s)
- Ah-Lim Tsai
- Division of Hematology, Internal Medicine, University of Texas Medical School at Houston, Houston, Texas 77030, United States.
| | | | | | | |
Collapse
|