1
|
Wang G, Xu B, Yu X, Liu M, Wu T, Gao W, Hu H, Jiang B, Wu Y, Zhou T, Chen X, Shen C. LINC01320 facilitates cell proliferation and migration of ovarian cancer via regulating PURB/DDB2/NEDD4L/TGF-β axis. Sci Rep 2024; 14:26233. [PMID: 39482389 PMCID: PMC11527871 DOI: 10.1038/s41598-024-78255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024] Open
Abstract
Ovarian cancer (OC) is one of the most prevalent and lethal malignancies affecting the female reproductive system, due to its tendency for metastasis and recurrence. This study identified the overexpression of LINC01320 (or long intergenic nonprotein coding RNA 1320) in tissues of ovarian cancer through the analysis of patient samples and online datasets. In vitro and in vivo experiments demonstrate that silencing of LINC01320 expression led to inhibition of proliferation and metastasis of OC cells. RNA pull-down followed by liquid chromatography tandem mass spectrometry (RNA pull-down-LC-MS/MS) revealed that LINC01320 interacted with purine-rich element binding protein B (PURB), a transcriptional repressor. Furthermore, the RNA-seq analysis identified damage-specific DNA binding protein 2 (DDB2) as a major common target of LINC01320 and PURB. Mechanistically, LINC01320 could recruit PURB to the promoter region of DDB2 to repress DDB2 transcription; thus, promoting the expression of NEDD4L and impeding the TGF-β/SMAD signaling pathway, and ultimately facilitating the progression of OC. Finally, rescue experiments confirmed the involvement of the DDB2/NEDD4L/TGF-β axis in LINC01320-mediated OC progression. In conclusion, this study unveils for the first time the pivotal function of the LINC01320/PURB/DDB2/NEDD4L/TGF-β axis and explores its prospective clinical implications in OC.
Collapse
Affiliation(s)
- Gaigai Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Bingya Xu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Xiangling Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Meng Liu
- Department of Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Wenxin Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Haoyue Hu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Bing Jiang
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Tao Zhou
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China.
| | - Xia Chen
- Department of Obstetrics and Gynecology, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong University, Nantong, 226001, China.
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
2
|
Čelešnik H, Gorenjak M, Krušič M, Crnobrnja B, Sobočan M, Takač I, Arko D, Potočnik U. Isoform-Level Transcriptome Analysis of Peripheral Blood Mononuclear Cells from Breast Cancer Patients Identifies a Disease-Associated RASGEF1A Isoform. Cancers (Basel) 2024; 16:3171. [PMID: 39335143 PMCID: PMC11429621 DOI: 10.3390/cancers16183171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Breast cancer (BC) comprises multiple subtypes with distinct molecular features, which differ in their interplay with host immunity, prognosis, and treatment. Non-invasive blood analyses can provide valuable insights into systemic immunity during cancer. The aim of this study was to analyze the expression of transcriptional isoforms in peripheral blood mononuclear cells (PBMCs) from BC patients and healthy women to identify potential BC immune biomarkers. Methods: RNA sequencing and isoform-level bioinformatics were performed on PBMCs from 12 triple-negative and 13 luminal A patients. Isoform expression validation by qRT-PCR and clinicopathological correlations were performed in a larger cohort (156 BC patients and 32 healthy women). Results: Transcriptional analyses showed a significant (p < 0.001) decrease in the ENST00000374459 RASGEF1A isoform in PBMCs of BC compared to healthy subjects, indicating disease-related expression changes. The decrease was associated with higher ctDNA and Ki-67 values. Conclusions: The levels of the RASGEF1A transcriptional isoform ENST00000374459 may have the potential to distinguish between BC and healthy subjects. The downregulation of ENST00000374459 in breast cancer is associated with higher proliferation and ctDNA shedding. Specialized bioinformatics analyses such as isoform analyses hold significant promise in the detection of biomarkers, since standard RNA sequencing analyses may overlook specific transcriptional changes that may be disease-associated and biologically important.
Collapse
Grants
- P3-0427, P3-0067, J3-4523, J3-3069, I0-0029, J3-9272 and P3-0321 Slovenian Research and Innovation Agency
- IRP-2019/01-05, IRP-2019/02-15, IRP-2021/01-02 Internal University Medical Centre Maribor research funding,
- RIUM Republic of Slovenia, the Ministry of Higher Education, Science and Innovation and the European Union from the European Regional Development Fund
Collapse
Affiliation(s)
- Helena Čelešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
| | - Mario Gorenjak
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
| | - Martina Krušič
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
| | - Bojana Crnobrnja
- Division of Gynecology and Perinatology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Monika Sobočan
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
- Division of Gynecology and Perinatology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Iztok Takač
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
- Division of Gynecology and Perinatology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Darja Arko
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
- Division of Gynecology and Perinatology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
3
|
The influence of meteorological factors and total malignant tumor health risk in Wuhu city in the context of climate change. BMC Public Health 2023; 23:346. [PMID: 36797719 PMCID: PMC9933274 DOI: 10.1186/s12889-023-15200-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
With the increasing severity of the malignant tumors situation worldwide, the impacts of climate on them are receiving increasing attention. In this study, for the first time, all-malignant tumors were used as the dependent variable and absolute humidity (AH) was innovatively introduced into the independent variable to investigate the relationship between all-malignant tumors and meteorological factors. A total of 42,188 cases of malignant tumor deaths and meteorological factors in Wuhu City were collected over a 7-year (2014-2020) period. The analysis method combines distributed lagged nonlinear modeling (DLNM) as well as generalized additive modeling (GAM), with prior pre-analysis using structural equation modeling (SEM). The results showed that AH, temperature mean (T mean) and diurnal temperature range (DTR) all increased the malignant tumors mortality risk. Exposure to low and exceedingly low AH increases the malignant tumors mortality risk with maximum RR values of 1.008 (95% CI: 1.001, 1.015, lag 3) and 1.016 (95% CI: 1.001, 1.032, lag 1), respectively. In addition, low and exceedingly low T mean exposures also increased the risk of malignant tumors mortality, the maximum RR was 1.020 (95% CI: 1.006, 1.034) for low T mean and 1.035 (95% CI: 1.014, 1.058) for exceedingly low T mean. As for DTR, all four levels (exceedingly low, low, high, exceedingly high, from low to high) of exposure increased the risk of death from malignant tumors, from exceedingly low to exceedingly high maximum RR values of 1.018 (95% CI: 1.004, 1.032), 1.011 (95% CI: 1.005, 1.017), 1.006 (95% CI: 1.001, 1.012) and 1.019 (95% CI: 1.007, 1.031), respectively. The results of the stratified analysis suggested that female appear to be more sensitive to humidity, while male require additional attention to reduce exposure to high level of DTR.
Collapse
|
4
|
Sihombing UHM, Andrijono, Purwoto G, Gandamihardja S, Harahap AR, Rustamadji P, Kekalih A, Widyawati R, Fuady DR. Expression of CD44+/CD24-, RAD6 and DDB2 on chemotherapy response in ovarian Cancer: A prospective flow cytometry study. Gynecol Oncol Rep 2022; 42:101005. [PMID: 35707599 PMCID: PMC9189034 DOI: 10.1016/j.gore.2022.101005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
Dear editor of Gynecologic Oncology Reports, these are the research highlights: CD44+/CD24- overexpression in blood circulation is associated with ovarian cancer chemoresistance. RAD6 overexpression in blood circulation is associated with ovarian cancer chemoresistance. CD44+/CD24- expression in blood circulation is a good predictor of ovarian cancer chemoresistance.
Backgrounds Ovarian cancer is the 8th deadliest common cancer in women around the world. Almost all ovarian cancer patients would experience chemoresistance, recurrence, and poor prognosis after cytoreductive surgery and platinum-based chemotherapy. Chemoresistant cancer cells have characteristic expressions of cancer stem cell proteins (CSCs) CD44+/CD24-, RAD6 and DDB2. The increased expression of CD44+/CD24-, RAD6, and decreased DDB2 are believed to be associated with chemoresistance, recurrence, and poor prognosis of the disease. Thus, this study’s objective is to analyze the correlation between the expression of CD44+/CD24-, RAD6 and DDB2 with ovarian cancer chemoresistance. Materials and methods This study was conducted with a prospective cohort of 64 patients who is divided into two groups (32 patients in each group) at the Obstetrics-gynecology and pathology department of Cipto Mangunkusumo, Tarakan, Dharmais, and Fatmawati Hospital. All suspected ovarian cancer patients underwent cytoreductive debulking and histopathological examination. Chemotherapy was given for six series followed by six months of observation. After the observation, we determined the therapy’s response with the RECIST Criteria (Response Criteria in Solid Tumors) and then classified the results into chemoresistant or chemosensitive groups. Flow cytometry blood tests were then performed to examine the expression of CD44+/CD24-, RAD6 and DDB2. Results There was a significant relationship between increased levels of CD44+/CD24-, and RAD6 (p < 0.05) levels with the chemoresistance of ovarian cancer. The logistic regression test showed that the CD44+/CD24– was better marker. Conclusions These results indicate that CD44+/CD24 and RAD6 expressions are significantly associated with ovarian cancer chemoresistance, and CD44+/CD24- is the better marker to predict ovarian cancer chemoresistance.
Collapse
|
5
|
Ticli G, Cazzalini O, Stivala LA, Prosperi E. Revisiting the Function of p21CDKN1A in DNA Repair: The Influence of Protein Interactions and Stability. Int J Mol Sci 2022; 23:ijms23137058. [PMID: 35806061 PMCID: PMC9267019 DOI: 10.3390/ijms23137058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
The p21CDKN1A protein is an important player in the maintenance of genome stability through its function as a cyclin-dependent kinase inhibitor, leading to cell-cycle arrest after genotoxic damage. In the DNA damage response, p21 interacts with specific proteins to integrate cell-cycle arrest with processes such as transcription, apoptosis, DNA repair, and cell motility. By associating with Proliferating Cell Nuclear Antigen (PCNA), the master of DNA replication, p21 is able to inhibit DNA synthesis. However, to avoid conflicts with this process, p21 protein levels are finely regulated by pathways of proteasomal degradation during the S phase, and in all the phases of the cell cycle, after DNA damage. Several lines of evidence have indicated that p21 is required for the efficient repair of different types of genotoxic lesions and, more recently, that p21 regulates DNA replication fork speed. Therefore, whether p21 is an inhibitor, or rather a regulator, of DNA replication and repair needs to be re-evaluated in light of these findings. In this review, we will discuss the lines of evidence describing how p21 is involved in DNA repair and will focus on the influence of protein interactions and p21 stability on the efficiency of DNA repair mechanisms.
Collapse
Affiliation(s)
- Giulio Ticli
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Lucia A. Stivala
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Ennio Prosperi
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-986267
| |
Collapse
|
6
|
A protein with broad functions: damage-specific DNA-binding protein 2. Mol Biol Rep 2022; 49:12181-12192. [PMID: 36190612 PMCID: PMC9712371 DOI: 10.1007/s11033-022-07963-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/17/2022] [Indexed: 02/01/2023]
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was initially identified as a component of the damage-specific DNA-binding heterodimeric complex, which cooperates with other proteins to repair UV-induced DNA damage. DDB2 is involved in the occurrence and development of cancer by affecting nucleotide excision repair (NER), cell apoptosis, and premature senescence. DDB2 also affects the sensitivity of cancer cells to radiotherapy and chemotherapy. In addition, a recent study found that DDB2 is a pathogenic gene for hepatitis and encephalitis. In recent years, there have been few relevant literature reports on DDB2, so there is still room for further research about it. In this paper, the molecular mechanisms of different biological processes involving DDB2 are reviewed in detail to provide theoretical support for research on drugs that can target DDB2.
Collapse
|
7
|
Wu X, Yu M, Zhang Z, Leng F, Ma Y, Xie N, Lu F. DDB2 regulates DNA replication through PCNA-independent degradation of CDT2. Cell Biosci 2021; 11:34. [PMID: 33557942 PMCID: PMC7869461 DOI: 10.1186/s13578-021-00540-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/15/2021] [Indexed: 01/28/2023] Open
Abstract
Background Targeting ubiquitin-dependent proteolysis is one of the strategies in cancer therapy. CRLCDT2 and CRLDDB2 are two key E3 ubiquitin ligases involved in DNA replication and DNA damage repair. But CDT2 and DDB2 are opposite prognostic factors in kinds of cancers, and the underlining mechanism needs to be elucidated. Methods Small interfering RNAs were used to determine the function of target genes. Co-immunoprecipitation (Co-IP) was performed to detect the interaction between DDB2 and CDT2. Immunofluorescence assays and fluorescence activating cell sorting (FACS) were used to measure the change of DNA content. In vivo ubiquitination assay was carried out to clarify the ubiquitination of CDT2 mediated by DDB2. Cell synchronization was performed to arrest cells at G1/S and S phase. The mechanism involved in DDB2-mediated CDT2 degradation was investigated by constructing plasmids with mutant variants and measured by Western blot. Immunohistochemistry was performed to determine the relationship between DDB2 and CDT2. Paired two-side Student’s t-test was used to measure the significance of the difference between control group and experimental group. Results Knockdown of DDB2 stabilized CDT2, while over-expression of DDB2 enhanced ubiquitination of CDT2, and subsequentially degradation of CDT2. Although both DDB2 and CDT2 contain PIP (PCNA-interacting protein) box, PIP box is dispensable for DDB2-mediated CDT2 degradation. Knockdown of PCNA had negligible effects on the stability of CDT2, but promoted accumulation of CDT1, p21 and SET8. Silencing of DDB2 arrested cell cycle in G1 phase, destabilized CDT1 and reduced the chromatin loading of MCMs, thereby blocked the formation of polyploidy induced by ablation of CDT2. In breast cancer and ovarian teratoma tissues, high level of DDB2 was along with lower level of CDT2. Conclusions We found that CRL4DDB2 is the novel E3 ubiquitin ligases of CDT2, and DDB2 regulates DNA replication through indirectly regulates CDT1 protein stability by degrading CDT2 and promotes the assembly of pre-replication complex. Our results broaden the horizon for understanding the opposite function of CDT2 and DDB2 in tumorigenesis, and may provide clues for drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Min Yu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.,Research Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Zhuxia Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Feng Leng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Yue Ma
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, 518035, Shenzhen, China.
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.
| |
Collapse
|
8
|
Association between Single-Nucleotide Polymorphism in MicroRNA Target Site of DDB2 and Risk of Hepatocellular Carcinoma in a Southern Chinese Population. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8528747. [PMID: 32090112 PMCID: PMC7031712 DOI: 10.1155/2020/8528747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 01/27/2023]
Abstract
Damage-specific DNA-binding protein 2 (DDB2) is a DNA repair protein mainly involved in nucleotide excision repair, which plays a pivotal role in maintaining genomic stability. In this study, we evaluated the association of single-nucleotide polymorphism (SNP) rs1050244 in miRNA target site of DDB2 gene with risk of hepatocellular carcinoma (HCC) among 1073 HCC patients and 1119 cancer-free controls in a southern Chinese population. Our results showed that no statistically significant association was found between DDB2 rs1050244 and HCC risk. In further analysis stratified by age, sex, smoking, alcohol drinking, and HBV infection status, we found that individuals carrying the CT/TT genotypes of SNP rs1050244 had a significantly decreased risk of HCC compared with those with the CC genotype among non-HBV infected population (adjusted OR = 0.31, 95% CI = 0.13–0.72), and a significant interaction was found between this SNP and HBV infection (Pinteraction=0.002). Our results suggested that the DDB2 rs1050244 C>T polymorphism was associated with the decreased risk of HCC among non-HBV infected population. Further studies with larger sample sizes are needed to validate our findings.
Collapse
|
9
|
Bommi PV, Chand V, Mukhopadhyay NK, Raychaudhuri P, Bagchi S. NER-factor DDB2 regulates HIF1α and hypoxia-response genes in HNSCC. Oncogene 2020; 39:1784-1796. [PMID: 31740787 PMCID: PMC11095046 DOI: 10.1038/s41388-019-1105-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022]
Abstract
Cancers in the oral/head & neck region (HNSCC) are aggressive due to high incidence of recurrence and distant metastasis. One prominent feature of aggressive HNSCC is the presence of severely hypoxic regions in tumors and activation of hypoxia-inducible factors (HIFs). In this study, we report that the XPE gene product DDB2 (damaged DNA binding protein 2), a nucleotide excision repair protein, is upregulated by hypoxia. Moreover, DDB2 inhibits HIF1α in HNSCC cells. It inhibits HIF1α in both normoxia and hypoxia by reducing mRNA expression. Knockdown of DDB2 enhances the expression of angiogenic markers and promotes tumor growth in a xenograft model. We show that DDB2 binds to an upstream promoter element in the HIF1Α gene and promotes histone H3K9 trimethylation around the binding site by recruiting Suv39h1. Also, we provide evidence that DDB2 has a significant suppressive effect on expression of the endogenous markers of hypoxia that are also prognostic indicators in HNSCC. Together, these results describe a new mechanism of hypoxia regulation that opposes expression of HIF1Α mRNA and the hypoxia-response genes.
Collapse
Affiliation(s)
- Prashant V Bommi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, 801 S, Paulina Street, Chicago, IL, 60612, USA
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Biological Sciences Research Building (BSRB), 6767 Bertner Ave, Houston, TX, USA
| | - Vaibhav Chand
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL, 60607, USA
| | - Nishit K Mukhopadhyay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL, 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL, 60607, USA.
| | - Srilata Bagchi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, 801 S, Paulina Street, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
Gilson P, Drouot G, Witz A, Merlin JL, Becuwe P, Harlé A. Emerging Roles of DDB2 in Cancer. Int J Mol Sci 2019; 20:ijms20205168. [PMID: 31635251 PMCID: PMC6834144 DOI: 10.3390/ijms20205168] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023] Open
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was originally identified as a DNA damage recognition factor that facilitates global genomic nucleotide excision repair (GG-NER) in human cells. DDB2 also contributes to other essential biological processes such as chromatin remodeling, gene transcription, cell cycle regulation, and protein decay. Recently, the potential of DDB2 in the development and progression of various cancers has been described. DDB2 activity occurs at several stages of carcinogenesis including cancer cell proliferation, survival, epithelial to mesenchymal transition, migration and invasion, angiogenesis, and cancer stem cell formation. In this review, we focus on the current state of scientific knowledge regarding DDB2 biological effects in tumor development and the underlying molecular mechanisms. We also provide insights into the clinical consequences of DDB2 activity in cancers.
Collapse
Affiliation(s)
- Pauline Gilson
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Guillaume Drouot
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Andréa Witz
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Philippe Becuwe
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Alexandre Harlé
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| |
Collapse
|
11
|
Regulation of liver receptor homologue-1 by DDB2 E3 ligase activity is critical for hepatic glucose metabolism. Sci Rep 2019; 9:5304. [PMID: 30923324 PMCID: PMC6438966 DOI: 10.1038/s41598-019-41411-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
Liver receptor homologue-1 (LRH-1) plays a critical role in hepatic metabolism and disease. Here we show that LRH-1 protein stability is regulated by the cullin 4 (CUL4) E3 ubiquitin ligase complex. We found that DNA damage-binding protein 2 (DDB2) directly interacts with LRH-1 and functions as a substrate recognition component of CUL4-DDB1 to promote LRH-1 ubiquitination and proteasomal degradation. In human hepatoma (HepG2) cells, we observed that protein levels of endogenous LRH-1 are increased by insulin without a change in mRNA levels of LRH-1. However, overexpression of DDB2 impaired the insulin-stimulated increase in LRH-1 levels. In addition, DDB2 overexpression decreased LRH-1 transcriptional activation and expression of target genes, such as glucokinase, whereas knockdown of DDB2 increased the expression of glucokinase. Finally, we demonstrated that DDB2 knockdown increases glucose uptake and intracellular levels of glucose-6-phosphate in HepG2 cells. Our study reveals a novel regulatory mechanism of LRH-1 activity and suggests a role for DDB2 in hepatic glucose metabolism.
Collapse
|
12
|
Li H, Wei C, Zhou R, Wang B, Zhang Y, Shao C, Luo Y. Mouse models in modeling aging and cancer. Exp Gerontol 2019; 120:88-94. [PMID: 30876950 DOI: 10.1016/j.exger.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/19/2019] [Accepted: 03/05/2019] [Indexed: 02/04/2023]
Abstract
Mouse models have been widely used in the research of human diseases. Aging, just as cancer, is influenced by the interaction of various genetic and environmental factors. Currently, aging could be induced by many mechanism, including telomere dysfunction, oxidase stress, DNA damage and epigenetic changes. Many of these genetic pathways are also shared by aging and cancer. The mouse models generated to study these pathways might manifest either aging or cancer phenotypes, sometimes both, which in deed has worked as a good model system in understanding the correlation between aging and cancer. Here, we reviewed these mouse models that were generated to model aging or cancer. These mouse models might help us put those related pathways in context and discover essential interactions in cancer and aging regulation.
Collapse
Affiliation(s)
- Haili Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Chuanyu Wei
- Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ruoyu Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Boyuan Wang
- Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yongjin Zhang
- Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Chihao Shao
- Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ying Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
13
|
Yang H, Liu J, Jing J, Wang Z, Li Y, Gou K, Feng X, Yuan Y, Xing C. Expression of DDB2 Protein in the Initiation, Progression, and Prognosis of Colorectal Cancer. Dig Dis Sci 2018; 63:2959-2968. [PMID: 30054844 DOI: 10.1007/s10620-018-5224-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Damage-specific DNA binding protein 2 (DDB2) is implicated in the recognition of DNA damage and the initiation of nucleotide excision repair process. The aim of this study was to explore the role of DDB2 in the initiation, progression, and prognosis of colorectal cancer (CRC). METHODS Totally tissues of 300 CRC and 300 adjacent, 267 colorectal adenoma (CRA) and 214 normal (NOR) were collected. The expression of DDB2 protein was detected by immunohistochemical staining. RESULTS DDB2 protein was highly expressed in CRC and CRA compared with NOR (P < 0.001, respectively) in the dynamic sequence of NOR → CRA → CRC; CRC tissue demonstrated increased DDB2 expression compared with non-tumor adjacent tissues (P < 0.001). DDB2 expression was higher in T1-T2 than that in T3-T4 in CRC (P = 0.023); cloddy/nested CRC demonstrated increased DDB2 expression than infiltrative CRC (P = 0.007). Survival analysis showed that high DDB2 expression was associated with favorable survival in colon cancer (adjusted HR 0.20, 95% CI 0.06-0.72, P = 0.014) and female CRC patients (adjusted HR 0.27, 95% CI 0.08-0.92, P = 0.036). CONCLUSION DDB2 protein expression was associated with the initiation, progression, and prognosis of CRC, and might function as a tumor biomarker for the diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Huaiwei Yang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Zeyang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Yi Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Kaihua Gou
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Xue Feng
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
14
|
Bommi PV, Ravindran S, Raychaudhuri P, Bagchi S. DDB2 regulates Epithelial-to-Mesenchymal Transition (EMT) in Oral/Head and Neck Squamous Cell Carcinoma. Oncotarget 2018; 9:34708-34718. [PMID: 30410671 PMCID: PMC6205178 DOI: 10.18632/oncotarget.26168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/08/2018] [Indexed: 01/21/2023] Open
Abstract
DDB2 is a sensor of DNA damage and it plays an important role in Global Genomic Repair (GG-NER). Our previous studies show that DDB2 is involved in the regulation of metastasis in colon adenocarcinoma. Squamous Cell Carcinomas in the Oral/Head & Neck region (HNSCC) are particularly aggressive due to high incidence of recurrence and distant metastasis. In this study, we show that DDB2 expression is downregulated in advanced HNSCCs and loss of DDB2 expression coincides with reduced survival. Recent meta-analysis of gene expression data characterized the mesenchymal-type (EMT-type) as one most aggressive cancer cluster in HNSCC. Here, we report that DDB2 constitutively represses mRNA expression of the EMT- regulatory transcription factors SNAIL, ZEB1, and angiogenic factor VEGF in HNSCC cells. As a result, re-expression of DDB2 in metastatic cells reversed EMT with transcriptional upregulation of epithelial marker E-cadherin, and downregulation of mesenchymal markers N-cadherin, Vimentin, and Fibronectin. Interestingly, in a reverse assay, depletion of DDB2 in non-metastatic cells induced expression of the same EMT-regulatory transcription factors. TGFβs are major regulators of Snail and Zeb1, and we observed that DDB2 transcriptionally regulates expression of TGFB2 in HNSCC cells. Re-expression of DDB2 in mouse embryonic fibroblasts (MEFs) isolated from Ddb2 (-/-) knockout-mice resulted in repression of EMT-regulatory factors Zeb1, Snail and Tgfb2. Taken together, these results support the active role of DDB2 as a candidate suppressor of the EMT-process in HNSCC. Early detection leads to significantly higher survival in HNSCC and DDB2 expression in tumors can be a predictor of EMT progression.
Collapse
Affiliation(s)
- Prashant V Bommi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA.,Current Address: Department of Clinical Cancer Prevention, Biological Sciences Research Building (BSRB), University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Srilata Bagchi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
15
|
Penke LR, Speth JM, Dommeti VL, White ES, Bergin IL, Peters-Golden M. FOXM1 is a critical driver of lung fibroblast activation and fibrogenesis. J Clin Invest 2018; 128:2389-2405. [PMID: 29733296 DOI: 10.1172/jci87631] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/20/2018] [Indexed: 12/23/2022] Open
Abstract
While the transcription factor forkhead box M1 (FOXM1) is well known as a proto-oncogene, its potential role in lung fibroblast activation has never been explored. Here, we show that FOXM1 is more highly expressed in fibrotic than in normal lung fibroblasts in humans and mice. FOXM1 was required not only for cell proliferation in response to mitogens, but also for myofibroblast differentiation and apoptosis resistance elicited by TGF-β. The lipid mediator PGE2, acting via cAMP signaling, was identified as an endogenous negative regulator of FOXM1. Finally, genetic deletion of FOXM1 in fibroblasts or administration of the FOXM1 inhibitor Siomycin A in a therapeutic protocol attenuated bleomycin-induced pulmonary fibrosis. Our results identify FOXM1 as a driver of lung fibroblast activation and underscore the therapeutic potential of targeting FOXM1 for pulmonary fibrosis.
Collapse
Affiliation(s)
- Loka R Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Jennifer M Speth
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Vijaya L Dommeti
- Michigan Center for Translational Pathology, Department of Pathology, and
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| |
Collapse
|
16
|
Perucca P, Mocchi R, Guardamagna I, Bassi E, Sommatis S, Nardo T, Prosperi E, Stivala LA, Cazzalini O. A damaged DNA binding protein 2 mutation disrupting interaction with proliferating-cell nuclear antigen affects DNA repair and confers proliferation advantage. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:898-907. [PMID: 29604309 DOI: 10.1016/j.bbamcr.2018.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
Abstract
In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2Wt and DDB2PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity.
Collapse
Affiliation(s)
- Paola Perucca
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Roberto Mocchi
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Isabella Guardamagna
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Elisabetta Bassi
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Sabrina Sommatis
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Tiziana Nardo
- Istituto di Genetica Molecolare (IGM) del CNR, Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare (IGM) del CNR, Pavia, Italy.
| | - Lucia Anna Stivala
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy.
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy.
| |
Collapse
|
17
|
Chen HH, Fan P, Chang SW, Tsao YP, Huang HP, Chen SL. NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer. Oncotarget 2017; 8:21501-21515. [PMID: 28212551 PMCID: PMC5400601 DOI: 10.18632/oncotarget.15308] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/27/2017] [Indexed: 12/12/2022] Open
Abstract
Both nuclear receptor interaction protein (NRIP) and DNA damage binding protein 2 (DDB2) belong to the Cullin 4 (CUL4)-DDB1 binding protein family and are androgen receptor (AR)-interacting proteins. Here, we investigated the expression patterns of the NRIP, DDB2 and AR proteins in human prostate cancer tissues and found that the expression levels of NRIP and AR were higher, but the DDB2 level was lower, in prostate cancer tissues than in non-neoplastic controls, suggesting NRIP as a candidate tumor promoter and DDB2 as a tumor suppressor in prostate cancer. Furthermore, both NRIP and DDB2 shared the same AR binding domain; they were competitors for the AR, but not for DDB1 binding, in the AR-DDB2-DDB1-CUL4A complex. Conclusively, NRIP stabilizes the AR protein by displacing DDB2 from the AR-DDB2 complex. Consistent with our hypothesis, a specific expression pattern with high levels of NRIP and AR, together with a low level of DDB2, was found more frequently in the human prostate cancer tissues with a cribriform pattern than in non-cribriform tumors, suggesting that disruption of the balance between NRIP and DDB2 may change AR protein homeostasis and contribute to pathogenesis in certain aggressive types of prostate cancer.
Collapse
Affiliation(s)
- Hsin-Hsiung Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ping Fan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Szu-Wei Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genetics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
18
|
Perucca P, Sommatis S, Mocchi R, Prosperi E, Stivala LA, Cazzalini O. A DDB2 mutant protein unable to interact with PCNA promotes cell cycle progression of human transformed embryonic kidney cells. Cell Cycle 2016; 14:3920-8. [PMID: 26697842 DOI: 10.1080/15384101.2015.1120921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DNA damage binding protein 2 (DDB2) is a protein involved in the early step of DNA damage recognition of the nucleotide excision repair (NER) process. Recently, it has been suggested that DDB2 may play a role in DNA replication, based on its ability to promote cell proliferation. We have previously shown that DDB2 binds PCNA during NER, but also in the absence of DNA damage; however, whether and how this interaction influences cell proliferation is not known. In this study, we have addressed this question by using HEK293 cell clones stably expressing DDB2(Wt) protein, or a mutant form (DDB2(Mut)) unable to interact with PCNA. We report that overexpression of the DDB2(Mut) protein provides a proliferative advantage over the wild type form, by influencing cell cycle progression. In particular, an increase in the number of S-phase cells, together with a reduction in p21(CDKN1A) protein level, and a shorter cell cycle length, has been observed in the DDB2(Mut) cells. These results suggest that DDB2 influences cell cycle progression thanks to its interaction with PCNA.
Collapse
Affiliation(s)
- Paola Perucca
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Sabrina Sommatis
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Roberto Mocchi
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Ennio Prosperi
- b Istituto di Genetica Molecolare (IGM) del CNR ; Pavia , Italy
| | - Lucia Anna Stivala
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Ornella Cazzalini
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| |
Collapse
|
19
|
DDB2 is involved in ubiquitination and degradation of PAQR3 and regulates tumorigenesis of gastric cancer cells. Biochem J 2015. [PMID: 26205499 DOI: 10.1042/bj20150253] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DDB2 (damage-specific DNA-binding protein 2) is the product of the xeroderma pigmentosum group E gene which is involved in the initiation of nucleotide excision repair via an ubiquitin ligase complex together with DDB1 and CUL4A (cullin 4A). PAQR3 (progestin and adipoQ receptor family member III) is a newly discovered tumour suppressor that is implicated in the development of many types of human cancers. In the present paper, we report that DDB2 is involved in ubiquitination and degradation of PAQR3. DDB2 is able to interact with PAQR3 in vivo and in vitro. Both overexpression and knockdown experiments reveal that the protein expression level, protein stability and polyubiquitination of PAQR3 are changed by DDB2. Negative regulation of EGF (epidermal growth factor)- and insulin-induced signalling by PAQR3 is also altered by DDB2. At the molecular level, Lys(61) of PAQR3 is targeted by DDB2 for ubiquitination. The cell proliferation rate and migration of gastric cancer cells are inhibited by DDB2 knockdown and such effects are abrogated by PAQR3 knockdown, indicating that the effect of DDB2 on the cancer cells is mediated by PAQR3. Collectively, our studies not only pinpoint that DDB2 is a post-translational regulator of PAQR3, but also indicate that DDB2 may play an active role in tumorigenesis via regulating PAQR3.
Collapse
|
20
|
Han C, Zhao R, Liu X, Srivastava A, Gong L, Mao H, Qu M, Zhao W, Yu J, Wang QE. DDB2 suppresses tumorigenicity by limiting the cancer stem cell population in ovarian cancer. Mol Cancer Res 2014; 12:784-94. [PMID: 24574518 DOI: 10.1158/1541-7786.mcr-13-0638] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED Ovarian cancer is an extremely aggressive disease associated with a high percentage of tumor recurrence and chemotherapy resistance. Understanding the underlying mechanism of tumor relapse is crucial for effective therapy of ovarian cancer. DNA damage-binding protein 2 (DDB2) is a DNA repair factor mainly involved in nucleotide excision repair. Here, a novel role was identified for DDB2 in the tumorigenesis of ovarian cancer cells and the prognosis of patients with ovarian cancer. Overexpressing DDB2 in human ovarian cancer cells suppressed its capability to recapitulate tumors in athymic nude mice. Mechanistic investigation demonstrated that DDB2 is able to reduce the cancer stem cell (CSC) population characterized with high aldehyde dehydrogenase activity in ovarian cancer cells, probably through disrupting the self-renewal capacity of CSCs. Low DDB2 expression correlates with poor outcomes among patients with ovarian cancer, as revealed from the analysis of publicly available gene expression array datasets. Given the finding that DDB2 protein expression is low in ovarian tumor cells, enhancement of DDB2 expression is a promising strategy to eradicate CSCs and would help to halt ovarian cancer relapse. IMPLICATIONS DDB2 status has prognostic potential, and elevating its expression eradicates CSCs and could reduce ovarian cancer relapse.
Collapse
Affiliation(s)
- Chunhua Han
- Authors' Affiliations: Departments of Radiology and 2Pathology; 3Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio; and 4Weifang Medical University, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cazzalini O, Perucca P, Mocchi R, Sommatis S, Prosperi E, Stivala LA. DDB2 association with PCNA is required for its degradation after UV-induced DNA damage. Cell Cycle 2013; 13:240-8. [PMID: 24200966 PMCID: PMC3906241 DOI: 10.4161/cc.26987] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/23/2013] [Accepted: 10/29/2013] [Indexed: 12/23/2022] Open
Abstract
DDB2 is a protein playing an essential role in the lesion recognition step of the global genome sub-pathway of nucleotide excision repair (GG-NER) process. Among the proteins involved in the DNA damage response, p21(CDKN1A) (p21) has been reported to participate in NER, but also to be removed by proteolytic degradation, thanks to its association with PCNA. DDB2 is involved in the CUL4-DDB1 complex mediating p21 degradation; however, the direct interaction between DDB2, p21 and PCNA has been never investigated. Here, we show that DDB2 co-localizes with PCNA and p21 at local UV-induced DNA-damage sites, and these proteins co-immunoprecipitate in the same complex. In addition, we provide evidence that p21 is not able to bind directly DDB2, but, to this end, the presence of PCNA is required. Direct physical association of recombinant DDB2 protein with PCNA is mediated by a conserved PIP-box present in the N-terminal region of DDB2. Mutation of the PIP-box resulted in the loss of protein interaction. Interestingly, the same mutation, or depletion of PCNA by RNA interference, greatly impaired DDB2 degradation induced by UV irradiation. These results indicate that DDB2 is a PCNA-binding protein, and that this association is required for DDB2 proteolytic degradation.
Collapse
Affiliation(s)
- Ornella Cazzalini
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| | - Paola Perucca
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| | - Roberto Mocchi
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| | - Sabrina Sommatis
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare (IGM) del CNR; Pavia, Italy
| | - Lucia Anna Stivala
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| |
Collapse
|
22
|
Fang WH, Wang Q, Li HM, Ahmed M, Kumar P, Kumar S. PAX3 in neuroblastoma: oncogenic potential, chemosensitivity and signalling pathways. J Cell Mol Med 2013; 18:38-48. [PMID: 24188742 PMCID: PMC3916116 DOI: 10.1111/jcmm.12155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 09/05/2013] [Indexed: 11/30/2022] Open
Abstract
Transcription factor PAX3/Pax3 contributes to diverse cell lineages during embryonic development and is important in tumourigenesis. We found that PAX3 is re-expressed in neuroblastoma and malignant neuroblastic (N-type) neuroblastoma cells had significantly higher PAX3 protein expression than their benign substrate-adherent (S-type) counterparts. Knock-down of PAX3 expression by siRNA transfection resulted in persistent cell growth inhibition in both types of neuroblastoma cell, owing to G1 cell cycle arrest and progressive apoptosis. Inhibition of PAX3 expression significantly decreased the attachment of S-type SH-EP1 cells to extra-cellular matrix proteins, fibronectin, laminin and collagen IV. Migration and invasion of both neuroblastoma cell types were markedly reduced after PAX3 down-regulation. PAX3 knock-down significantly augmented the cytotoxic effect of chemotherapeutic agents, etoposide, vincristine and cisplatin, commonly used to treat neuroblastoma. Microarray analyses revealed that particularly signalling pathways involving cell cycle, apoptosis, cell adhesion, cytoskeletal remodelling and development were altered by PAX3 down-regulation. Changes in PAX3 downstream genes identified by microarray analyses were validated in 47 genes by quantitative PCR. These novel findings lead us to propose that PAX3 might contribute to oncogenic characteristics of neuroblastoma cells by regulating a variety of crucial signalling pathways.
Collapse
Affiliation(s)
- Wen-Hui Fang
- Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, The University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
23
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
24
|
Roy N, Bommi PV, Bhat UG, Bhattacharjee S, Elangovan I, Li J, Patra KC, Kopanja D, Blunier A, Benya R, Bagchi S, Raychaudhuri P. DDB2 suppresses epithelial-to-mesenchymal transition in colon cancer. Cancer Res 2013; 73:3771-82. [PMID: 23610444 DOI: 10.1158/0008-5472.can-12-4069] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Colon cancer is one of the deadliest cancers worldwide because of its metastasis to other essential organs. Metastasis of colon cancer involves a complex set of events, including epithelial-to-mesenchymal transition (EMT) that increases invasiveness of the tumor cells. Here, we show that the xeroderma pigmentosum group E (XPE) gene product, damaged DNA-binding protein (DDB)-2, is downregulated in high-grade colon cancers, and it plays a dominant role in the suppression of EMT of the colon cancer cells. Depletion of DDB2 promotes mesenchymal phenotype, whereas expression of DDB2 promotes epithelial phenotype. DDB2 constitutively represses genes that are the key activators of EMT, indicating that DDB2 is a master regulator of EMT of the colon cancer cells. Moreover, we observed evidence that DDB2 functions as a barrier for EMT induced by hypoxia and TGF-β. Also, we provide evidence that DDB2 inhibits metastasis of colon cancer. The results presented here identify a transcriptional regulatory pathway of DDB2 that is directly linked to the mechanisms that suppress metastasis of colon cancer.
Collapse
Affiliation(s)
- Nilotpal Roy
- Department of Biochemistry and Molecular Genetics; Center of Molecular Biology of Oral Diseases College of Dentistry, Cancer Center; and Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Melanson BD, Cabrita MA, Bose R, Hamill JD, Pan E, Brochu C, Marcellus KA, Zhao TT, Holcik M, McKay BC. A novel cis-acting element from the 3'UTR of DNA damage-binding protein 2 mRNA links transcriptional and post-transcriptional regulation of gene expression. Nucleic Acids Res 2013; 41:5692-703. [PMID: 23605047 PMCID: PMC3675493 DOI: 10.1093/nar/gkt279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The DNA damage-binding protein 2 (DDB2) is an adapter protein that can direct a modular Cul4-DDB1-RING E3 Ligase complex to sites of ultraviolet light-induced DNA damage to ubiquitinate substrates during nucleotide excision repair. The DDB2 transcript is ultraviolet-inducible; therefore, its regulation is likely important for its function. Curiously, the DDB2 mRNA is reportedly short-lived, but the transcript does not contain any previously characterized cis-acting determinants of mRNA stability in its 3' untranslated region (3'UTR). Here, we used a tetracycline regulated d2EGFP reporter construct containing specific 3'UTR sequences from DDB2 to identify novel cis-acting elements that regulate mRNA stability. Synthetic 3'UTRs corresponding to sequences as short as 25 nucleotides from the central region of the 3'UTR of DDB2 were sufficient to accelerate decay of the heterologous reporter mRNA. Conversely, these same 3'UTRs led to more rapid induction of the reporter mRNA, export of the message to the cytoplasm and the subsequent accumulation of the encoded reporter protein, indicating that this newly identified cis-acting element affects transcriptional and post-transciptional processes. These results provide clear evidence that nuclear and cytoplasmic processing of the DDB2 mRNA is inextricably linked.
Collapse
Affiliation(s)
- Brian D Melanson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada, K1H 8L6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li X, Xu H, Xu C, Lin M, Song X, Yi F, Feng Y, Coughlan KA, Cho WCS, Kim SS, Cao L. The yin-yang of DNA damage response: roles in tumorigenesis and cellular senescence. Int J Mol Sci 2013; 14:2431-48. [PMID: 23354477 PMCID: PMC3587995 DOI: 10.3390/ijms14022431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 01/06/2023] Open
Abstract
Senescent cells are relatively stable, lacking proliferation capacity yet retaining metabolic activity. In contrast, cancer cells are rather invasive and devastating, with uncontrolled proliferative capacity and resistance to cell death signals. Although tumorigenesis and cellular senescence are seemingly opposite pathological events, they are actually driven by a unified mechanism: DNA damage. Integrity of the DNA damage response (DDR) network can impose a tumorigenesis barrier by navigating abnormal cells to cellular senescence. Compromise of DDR, possibly due to the inactivation of DDR components, may prevent cellular senescence but at the expense of tumor formation. Here we provide an overview of the fundamental role of DDR in tumorigenesis and cellular senescence, under the light of the Yin-Yang concept of Chinese philosophy. Emphasis is placed on discussing DDR outcome in the light of in vivo models. This information is critical as it can help make better decisions for clinical treatments of cancer patients.
Collapse
Affiliation(s)
- Xiaoman Li
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China; E-Mails: (X.L.); (H.X.); (M.L.); (X.S.); (F.Y.); (Y.F.)
| | - Hongde Xu
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China; E-Mails: (X.L.); (H.X.); (M.L.); (X.S.); (F.Y.); (Y.F.)
| | - Chongan Xu
- Department of Medical Oncology, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China; E-Mail:
| | - Meina Lin
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China; E-Mails: (X.L.); (H.X.); (M.L.); (X.S.); (F.Y.); (Y.F.)
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China; E-Mails: (X.L.); (H.X.); (M.L.); (X.S.); (F.Y.); (Y.F.)
| | - Fei Yi
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China; E-Mails: (X.L.); (H.X.); (M.L.); (X.S.); (F.Y.); (Y.F.)
| | - Yanling Feng
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China; E-Mails: (X.L.); (H.X.); (M.L.); (X.S.); (F.Y.); (Y.F.)
| | - Kathleen A. Coughlan
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; E-Mail:
| | | | - Sang Soo Kim
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyenggi 410-769, Korea
- Authors to whom correspondence should be addressed; E-Mails: (S.S.K.); (L.C.); Tel.: +82-31-920-2491 (S.S.K.); +86-24-23256666 (ext. 6014) (L.C.); Fax: +82-31-920-2494 (S.S.K.); +86-24-23264417 (L.C.)
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China; E-Mails: (X.L.); (H.X.); (M.L.); (X.S.); (F.Y.); (Y.F.)
- Authors to whom correspondence should be addressed; E-Mails: (S.S.K.); (L.C.); Tel.: +82-31-920-2491 (S.S.K.); +86-24-23256666 (ext. 6014) (L.C.); Fax: +82-31-920-2494 (S.S.K.); +86-24-23264417 (L.C.)
| |
Collapse
|
27
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
28
|
Roy N, Elangovan I, Kopanja D, Bagchi S, Raychaudhuri P. Tumor regression by phenethyl isothiocyanate involves DDB2. Cancer Biol Ther 2012; 14:108-16. [PMID: 23114715 DOI: 10.4161/cbt.22631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phenethyl isothiocyanate (PEITC) is a promising cancer chemopreventive agent commonly found in edible cruciferous vegetables. It has been implicated also for therapy, and is in clinical trial for lung cancer. Here, we provide evidence that the tumor suppressive effect of PEITC is related to its ability to induce expression of damaged DNA binding protein 2 (DDB2), a DNA repair protein involved also in apoptosis and premature senescence. DDB2 expression is attenuated in a wide variety of cancers including the aggressive colon cancers. We show that, in colon cancer cells, reactive oxygen species, which are induced by PEITC, augment expression of DDB2 through the p38MAPK/JNK pathway, independently of p53. PEITC-induced expression of DDB2 is critical for inhibition of tumor progression by PEITC. Tumors derived from DDB2-deficient colon cancer cells are refractory to PEITC-treatments, resulting from deficiencies in apoptosis and senescence. The DDB2-proficient tumors, on the other hand, respond effectively to PEITC. The results show that PEITC can be used to induce expression of DDB2, and that expression of DDB2 is critical for effective response of tumors to PEITC.
Collapse
Affiliation(s)
- Nilotpal Roy
- Department of Biochemistry and Molecular Genetics, Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
29
|
Roy N, Bagchi S, Raychaudhuri P. Damaged DNA binding protein 2 in reactive oxygen species (ROS) regulation and premature senescence. Int J Mol Sci 2012; 13:11012-11026. [PMID: 23109835 PMCID: PMC3472727 DOI: 10.3390/ijms130911012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 11/16/2022] Open
Abstract
Premature senescence induced by DNA damage or oncogene is a critical mechanism of tumor suppression. Reactive oxygen species (ROS) have been implicated in the induction of premature senescence response. Several pathological disorders such as cancer, aging and age related neurological abnormalities have been linked to ROS deregulation. Here, we discuss how Damaged DNA binding Protein-2 (DDB2), a nucleotide excision repair protein, plays an important role in ROS regulation by epigenetically repressing the antioxidant genes MnSOD and Catalase. We further revisit a model in which DDB2 plays an instrumental role in DNA damage induced ROS accumulation, ROS induced premature senescence and inhibition of skin tumorigenesis.
Collapse
Affiliation(s)
- Nilotpal Roy
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA; E-Mail:
| | - Srilata Bagchi
- Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave, Chicago, IL 60612, USA; E-Mail:
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA; E-Mail:
| |
Collapse
|