1
|
Saint-Martin Willer A, Montani D, Capuano V, Antigny F. Orai1/STIMs modulators in pulmonary vascular diseases. Cell Calcium 2024; 121:102892. [PMID: 38735127 DOI: 10.1016/j.ceca.2024.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Calcium (Ca2+) is a secondary messenger that regulates various cellular processes. However, Ca2+ mishandling could lead to pathological conditions. Orai1 is a Ca2+channel contributing to the store-operated calcium entry (SOCE) and plays a critical role in Ca2+ homeostasis in several cell types. Dysregulation of Orai1 contributed to severe combined immune deficiency syndrome, some cancers, pulmonary arterial hypertension (PAH), and other cardiorespiratory diseases. During its activation process, Orai1 is mainly regulated by stromal interacting molecule (STIM) proteins, especially STIM1; however, many other regulatory partners have also been recently described. Increasing knowledge about these regulatory partners provides a better view of the downstream signalling pathways of SOCE and offers an excellent opportunity to decipher Orai1 dysregulation in these diseases. These proteins participate in other cellular functions, making them attractive therapeutic targets. This review mainly focuses on Orai1 regulatory partners in the physiological and pathological conditions of the pulmonary circulation and inflammation.
Collapse
Affiliation(s)
- Anaïs Saint-Martin Willer
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis-Robinson, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| |
Collapse
|
2
|
Yang ZF, Panwar P, McFarlane CR, Tuinte WE, Campiglio M, Van Petegem F. Structures of the junctophilin/voltage-gated calcium channel interface reveal hot spot for cardiomyopathy mutations. Proc Natl Acad Sci U S A 2022; 119:e2120416119. [PMID: 35238659 PMCID: PMC8916002 DOI: 10.1073/pnas.2120416119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 01/19/2023] Open
Abstract
SignificanceIon channels have evolved the ability to communicate with one another, either through protein-protein interactions, or indirectly via intermediate diffusible messenger molecules. In special cases, the channels are part of different membranes. In muscle tissue, the T-tubule membrane is in proximity to the sarcoplasmic reticulum, allowing communication between L-type calcium channels and ryanodine receptors. This process is critical for excitation-contraction coupling and requires auxiliary proteins like junctophilin (JPH). JPHs are targets for disease-associated mutations, most notably hypertrophic cardiomyopathy mutations in the JPH2 isoform. Here we provide high-resolution snapshots of JPH, both alone and in complex with a calcium channel peptide, and show how this interaction is targeted by cardiomyopathy mutations.
Collapse
Affiliation(s)
- Zheng Fang Yang
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Pankaj Panwar
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ciaran R. McFarlane
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wietske E. Tuinte
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Marta Campiglio
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
4
|
Perni S. The Builders of the Junction: Roles of Junctophilin1 and Junctophilin2 in the Assembly of the Sarcoplasmic Reticulum–Plasma Membrane Junctions in Striated Muscle. Biomolecules 2022; 12:biom12010109. [PMID: 35053257 PMCID: PMC8774113 DOI: 10.3390/biom12010109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Contraction of striated muscle is triggered by a massive release of calcium from the sarcoplasmic reticulum (SR) into the cytoplasm. This intracellular calcium release is initiated by membrane depolarization, which is sensed by voltage-gated calcium channels CaV1.1 (in skeletal muscle) and CaV1.2 (in cardiac muscle) in the plasma membrane (PM), which in turn activate the calcium-releasing channel ryanodine receptor (RyR) embedded in the SR membrane. This cross-communication between channels in the PM and in the SR happens at specialized regions, the SR-PM junctions, where these two compartments come in close proximity. Junctophilin1 and Junctophilin2 are responsible for the formation and stabilization of SR-PM junctions in striated muscle and actively participate in the recruitment of the two essential players in intracellular calcium release, CaV and RyR. This short review focuses on the roles of junctophilins1 and 2 in the formation and organization of SR-PM junctions in skeletal and cardiac muscle and on the functional consequences of the absence or malfunction of these proteins in striated muscle in light of recently published data and recent advancements in protein structure prediction.
Collapse
Affiliation(s)
- Stefano Perni
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Calsequestrin 1 Is an Active Partner of Stromal Interaction Molecule 2 in Skeletal Muscle. Cells 2021; 10:cells10112821. [PMID: 34831044 PMCID: PMC8616366 DOI: 10.3390/cells10112821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Calsequestrin 1 (CASQ1) in skeletal muscle buffers and senses Ca2+ in the sarcoplasmic reticulum (SR). CASQ1 also regulates store-operated Ca2+ entry (SOCE) by binding to stromal interaction molecule 1 (STIM1). Abnormal SOCE and/or abnormal expression or mutations in CASQ1, STIM1, or STIM2 are associated with human skeletal, cardiac, or smooth muscle diseases. However, the functional relevance of CASQ1 along with STIM2 has not been studied in any tissue, including skeletal muscle. First, in the present study, it was found by biochemical approaches that CASQ1 is bound to STIM2 via its 92 N-terminal amino acids (C1 region). Next, to examine the functional relevance of the CASQ1-STIM2 interaction in skeletal muscle, the full-length wild-type CASQ1 or the C1 region was expressed in mouse primary skeletal myotubes, and the myotubes were examined using single-myotube Ca2+ imaging experiments and transmission electron microscopy observations. The CASQ1-STIM2 interaction via the C1 region decreased SOCE, increased intracellular Ca2+ release for skeletal muscle contraction, and changed intracellular Ca2+ distributions (high Ca2+ in the SR and low Ca2+ in the cytosol were observed). Furthermore, the C1 region itself (which lacks Ca2+-buffering ability but has STIM2-binding ability) decreased the expression of Ca2+-related proteins (canonical-type transient receptor potential cation channel type 6 and calmodulin 1) and induced mitochondrial shape abnormalities. Therefore, in skeletal muscle, CASQ1 plays active roles in Ca2+ movement and distribution by interacting with STIM2 as well as Ca2+ sensing and buffering.
Collapse
|
6
|
Park JH, Jeong SY, Choi JH, Lee EH. Pathological Mechanism of a Constitutively Active Form of Stromal Interaction Molecule 1 in Skeletal Muscle. Biomolecules 2021; 11:biom11081064. [PMID: 34439731 PMCID: PMC8394508 DOI: 10.3390/biom11081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) is the main protein that, along with Orai1, mediates store-operated Ca2+ entry (SOCE) in skeletal muscle. Abnormal SOCE due to mutations in STIM1 is one of the causes of human skeletal muscle diseases. STIM1-R304Q (a constitutively active form of STIM1) has been found in human patients with skeletal muscle phenotypes such as muscle weakness, myalgia, muscle stiffness, and contracture. However, the pathological mechanism(s) of STIM1-R304Q in skeletal muscle have not been well studied. To examine the pathological mechanism(s) of STIM1-R304Q in skeletal muscle, STIM1-R304Q was expressed in mouse primary skeletal myotubes, and the properties of the skeletal myotubes were examined using single-myotube Ca2+ imaging, transmission electron microscopy (TEM), and biochemical approaches. STIM1-R304Q did not interfere with the terminal differentiation of skeletal myoblasts to myotubes and retained the ability of STIM1 to attenuate dihydropyridine receptor (DHPR) activity. STIM1-R304Q induced hyper-SOCE (that exceeded the SOCE by wild-type STIM1) by affecting both the amplitude and the onset rate of SOCE. Unlike that by wild-type STIM1, hyper-SOCE by STIM1-R304Q contributed to a disturbance in Ca2+ distribution between the cytosol and the sarcoplasmic reticulum (SR) (high Ca2+ in the cytosol and low Ca2+ in the SR). Moreover, the hyper-SOCE and the high cytosolic Ca2+ level induced by STIM1-R304Q involve changes in mitochondrial shape. Therefore, a series of these cellular defects induced by STIM1-R304Q could induce deleterious skeletal muscle phenotypes in human patients carrying STIM1-R304Q.
Collapse
Affiliation(s)
- Ji Hee Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.H.P.); (S.Y.J.); (J.H.C.)
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.H.P.); (S.Y.J.); (J.H.C.)
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.H.P.); (S.Y.J.); (J.H.C.)
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.H.P.); (S.Y.J.); (J.H.C.)
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
7
|
Berlansky S, Humer C, Sallinger M, Frischauf I. More Than Just Simple Interaction between STIM and Orai Proteins: CRAC Channel Function Enabled by a Network of Interactions with Regulatory Proteins. Int J Mol Sci 2021; 22:E471. [PMID: 33466526 PMCID: PMC7796502 DOI: 10.3390/ijms22010471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
The calcium-release-activated calcium (CRAC) channel, activated by the release of Ca2+ from the endoplasmic reticulum (ER), is critical for Ca2+ homeostasis and active signal transduction in a plethora of cell types. Spurred by the long-sought decryption of the molecular nature of the CRAC channel, considerable scientific effort has been devoted to gaining insights into functional and structural mechanisms underlying this signalling cascade. Key players in CRAC channel function are the Stromal interaction molecule 1 (STIM1) and Orai1. STIM1 proteins span through the membrane of the ER, are competent in sensing luminal Ca2+ concentration, and in turn, are responsible for relaying the signal of Ca2+ store-depletion to pore-forming Orai1 proteins in the plasma membrane. A direct interaction of STIM1 and Orai1 allows for the re-entry of Ca2+ from the extracellular space. Although much is already known about the structure, function, and interaction of STIM1 and Orai1, there is growing evidence that CRAC under physiological conditions is dependent on additional proteins to function properly. Several auxiliary proteins have been shown to regulate CRAC channel activity by means of direct interactions with STIM1 and/or Orai1, promoting or hindering Ca2+ influx in a mechanistically diverse manner. Various proteins have also been identified to exert a modulatory role on the CRAC signalling cascade although inherently lacking an affinity for both STIM1 and Orai1. Apart from ubiquitously expressed representatives, a subset of such regulatory mechanisms seems to allow for a cell-type-specific control of CRAC channel function, considering the rather restricted expression patterns of the specific proteins. Given the high functional and clinical relevance of both generic and cell-type-specific interacting networks, the following review shall provide a comprehensive summary of regulators of the multilayered CRAC channel signalling cascade. It also includes proteins expressed in a narrow spectrum of cells and tissues that are often disregarded in other reviews of similar topics.
Collapse
Affiliation(s)
| | | | | | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (S.B.); (C.H.); (M.S.)
| |
Collapse
|
8
|
Luo T, Li L, Peng Y, Xie R, Yan N, Fan H, Zhang Q. The MORN domain of Junctophilin2 regulates functional interactions with small-conductance Ca 2+ -activated potassium channel subtype2 (SK2). Biofactors 2021; 47:69-79. [PMID: 31904168 DOI: 10.1002/biof.1608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/17/2019] [Indexed: 01/15/2023]
Abstract
Small-conductance Ca2+ -activated K+ channel subtype2 (SK2) are stable macromolecular complexes that regulate myocardial excitability and Ca2+ homeostasis. Junctophilin-2 (JP2) is a membrane-binding protein, which provides functional crosstalk by physically linking with the cell-surface and intracellular ion channels. We previously demonstrated that the MORN domain of JP2 interacts with SK2 channels. However, the roles of the JP2 MORN domain in regulating the precise subcellular localization and molecular modulation of SK2 have not yet been incompletely understood. In the present study, in vitro and in vivo assays were used to confirm the physical interactions between the SK2 channel and JP2 in H9c2 and HEK293 cells, with a concentration on the association between the C-terminus of SK2 channels and the MORN domain of JP2. Furthermore, the membrane expression of SK2 were found to be significantly impaired by the mutation or knockdown of JP2. Using immunofluorescence staining along with Golgi/early endosome markers, we studied the mechanisms of JP2-regulated SK2 membrane trafficking, which indicates that the JP2 MORN domain is probably necessary for the retrograde trafficking of SK2 channels. The functional study demonstrates that whole cell SK2 current densities recorded from the HEK293 cells co-expressing the JP2-MORN domain with SK2 were significantly augmented, compared with cells expressing SK2 alone. Our findings suggest that the MORN domain of JP2 directly modulates SK2 channel current amplitude and trafficking, through its interaction with an overlapping region of the JP2 MORN domain on the SK2 C-terminus.
Collapse
Affiliation(s)
- Tianxia Luo
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liren Li
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanghao Peng
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Rongrong Xie
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ningning Yan
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongkun Fan
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qian Zhang
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Woo JS, Jeong SY, Park JH, Choi JH, Lee EH. Calsequestrin: a well-known but curious protein in skeletal muscle. Exp Mol Med 2020; 52:1908-1925. [PMID: 33288873 PMCID: PMC8080761 DOI: 10.1038/s12276-020-00535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Calsequestrin (CASQ) was discovered in rabbit skeletal muscle tissues in 1971 and has been considered simply a passive Ca2+-buffering protein in the sarcoplasmic reticulum (SR) that provides Ca2+ ions for various Ca2+ signals. For the past three decades, physiologists, biochemists, and structural biologists have examined the roles of the skeletal muscle type of CASQ (CASQ1) in skeletal muscle and revealed that CASQ1 has various important functions as (1) a major Ca2+-buffering protein to maintain the SR with a suitable amount of Ca2+ at each moment, (2) a dynamic Ca2+ sensor in the SR that regulates Ca2+ release from the SR to the cytosol, (3) a structural regulator for the proper formation of terminal cisternae, (4) a reverse-directional regulator of extracellular Ca2+ entries, and (5) a cause of human skeletal muscle diseases. This review is focused on understanding these functions of CASQ1 in the physiological or pathophysiological status of skeletal muscle.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 10833, USA
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Ji Hee Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
10
|
A muscular hypotonia-associated STIM1 mutant at R429 induces abnormalities in intracellular Ca 2+ movement and extracellular Ca 2+ entry in skeletal muscle. Sci Rep 2019; 9:19140. [PMID: 31844136 PMCID: PMC6915709 DOI: 10.1038/s41598-019-55745-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) mediates extracellular Ca2+ entry into the cytosol through a store-operated Ca2+ entry (SOCE) mechanism, which is involved in the physiological functions of various tissues, including skeletal muscle. STIM1 is also associated with skeletal muscle diseases, but its pathological mechanisms have not been well addressed. The present study focused on examining the pathological mechanism(s) of a mutant STIM1 (R429C) that causes human muscular hypotonia. R429C was expressed in mouse primary skeletal myotubes, and the properties of the skeletal myotubes were examined using single-cell Ca2+ imaging of myotubes and transmission electron microscopy (TEM) along with biochemical approaches. R429C did not interfere with the terminal differentiation of myoblasts to myotubes. Unlike wild-type STIM1, there was no further increase of SOCE by R429C. R429C bound to endogenous STIM1 and slowed down the initial rate of SOCE that were mediated by endogenous STIM1. Moreover, R429C increased intracellular Ca2+ movement in response to membrane depolarization by eliminating the attenuation on dihydropyridine receptor-ryanodine receptor (DHPR-RyR1) coupling by endogenous STIM1. The cytosolic Ca2+ level was also increased due to the reduction in SR Ca2+ level. In addition, R429C-expressing myotubes showed abnormalities in mitochondrial shape, a significant decrease in ATP levels, and the higher expression levels of mitochondrial fission-mediating proteins. Therefore, serial defects in SOCE, intracellular Ca2+ movement, and cytosolic Ca2+ level along with mitochondrial abnormalities in shape and ATP level could be a pathological mechanism of R429C for human skeletal muscular hypotonia. This study also suggests a novel clue that STIM1 in skeletal muscle could be related to mitochondria via regulating intra and extracellular Ca2+ movements.
Collapse
|
11
|
Jiang J, Tang M, Huang Z, Chen L. Junctophilins emerge as novel therapeutic targets. J Cell Physiol 2019; 234:16933-16943. [DOI: 10.1002/jcp.28405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Jinyong Jiang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Mingzhu Tang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| |
Collapse
|
12
|
Cho CH, Lee KJ, Lee EH. With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing. BMB Rep 2018; 51:378-387. [PMID: 29898810 PMCID: PMC6130827 DOI: 10.5483/bmbrep.2018.51.8.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle contracts or relaxes to maintain the body position and locomotion. For the contraction and relaxation of skeletal muscle, Ca2+ in the cytosol of skeletal muscle fibers acts as a switch to turn on and off a series of contractile proteins. The cytosolic Ca2+ level in skeletal muscle fibers is governed mainly by movements of Ca2+ between the cytosol and the sarcoplasmic reticulum (SR). Store-operated Ca2+ entry (SOCE), a Ca2+ entryway from the extracellular space to the cytosol, has gained a significant amount of attention from muscle physiologists. Orai1 and stromal interaction molecule 1 (STIM1) are the main protein identities of SOCE. This mini-review focuses on the roles of STIM proteins and SOCE in the physiological and pathophysiological functions of skeletal muscle and in their correlations with recently identified proteins, as well as historical proteins that are known to mediate skeletal muscle function.
Collapse
Affiliation(s)
- Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 08826, Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
13
|
Fan HK, Luo TX, Zhao WD, Mu YH, Yang Y, Guo WJ, Tu HY, Zhang Q. Functional interaction of Junctophilin 2 with small- conductance Ca 2+ -activated potassium channel subtype 2(SK2) in mouse cardiac myocytes. Acta Physiol (Oxf) 2018; 222. [PMID: 29055091 PMCID: PMC6084295 DOI: 10.1111/apha.12986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 10/15/2017] [Accepted: 10/15/2017] [Indexed: 12/17/2022]
Abstract
Aim Junctophilins (JPs), a protein family of the junctional membrane complex, maintain the close conjunction between cell surface and intracellular membranes in striate muscle cells mediating the crosstalk between extracellular Ca2+ entry and intracellular Ca2+ release. The small‐conductance Ca2+‐activated K+ channels are activated by the intracellular calcium and play an essential role in the cardiac action potential profile. Molecular mechanisms of regulation of the SK channels are still uncertain. Here, we sought to determine whether there is a functional interaction of junctophilin type 2 (JP2) with the SK channels and whether JP2 gene silencing might modulate the function of SK channels in cardiac myocytes. Methods Association of JP2 with SK2 channel in mouse heart tissue as well as HEK293 cells was studied using in vivo and in vitro approaches. siRNA knockdown of JP2 gene was assessed by real‐time PCR. The expression of proteins was analysed by Western blotting. Ca2+‐activated K+ current (IK,Ca) in infected adult mouse cardiac myocytes was recorded using whole‐cell voltage‐clamp technique. The intracellular Ca2+ transient was measured using an IonOptix photometry system. Results We showed for the first time that JP2 associates with the SK2 channel in native cardiac tissue. JP2, via the membrane occupation and recognition nexus (MORN motifs) in its N‐terminus, directly interacted with SK2 channels. A colocalization of the SK2 channel with its interaction protein of JP2 was found in the cardiac myocytes. Moreover, we demonstrated that JP2 is necessary for the proper cell surface expression of the SK2 channel in HEK293. Functional experiments indicated that knockdown of JP2 caused a significant decrease in the density of IK,Ca and reduced the amplitude of the Ca2+ transient in infected cardiomyocytes. Conclusion The present data provide evidence that the functional interaction between JP2 and SK2 channels is present in the native mouse heart tissue. Junctophilin 2, as junctional membrane complex (JMC) protein, is an important regulator of the cardiac SK channels.
Collapse
Affiliation(s)
- H. K. Fan
- Department of Physiology; School of Medicine; Zhengzhou University; Zhengzhou China
| | - T. X. Luo
- Department of Physiology; School of Medicine; Zhengzhou University; Zhengzhou China
| | - W. D. Zhao
- Faculty of Medicine; KU Leuven; Leuven Belgium
| | - Y. H. Mu
- Department of Pathophysiology; School of Medicine; Xinxiang Medical College; Xinxiang China
| | - Y. Yang
- Department of Physiology; School of Medicine; Zhengzhou University; Zhengzhou China
| | - W. J. Guo
- Department of Physiology; School of Medicine; Zhengzhou University; Zhengzhou China
| | - H. Y. Tu
- Department of Physiology; School of Medicine; Zhengzhou University; Zhengzhou China
| | - Q. Zhang
- Department of Physiology; School of Medicine; Zhengzhou University; Zhengzhou China
| |
Collapse
|
14
|
Calpena E, López Del Amo V, Chakraborty M, Llamusí B, Artero R, Espinós C, Galindo MI. The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and the Notch pathway. Dis Model Mech 2018; 11:dmm.029082. [PMID: 29208631 PMCID: PMC5818072 DOI: 10.1242/dmm.029082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
Members of the Junctophilin (JPH) protein family have emerged as key actors in all excitable cells, with crucial implications for human pathophysiology. In mammals, this family consists of four members (JPH1-JPH4) that are differentially expressed throughout excitable cells. The analysis of knockout mice lacking JPH subtypes has demonstrated their essential contribution to physiological functions in skeletal and cardiac muscles and in neurons. Moreover, mutations in the human JPH2 gene are associated with hypertrophic and dilated cardiomyopathies; mutations in JPH3 are responsible for the neurodegenerative Huntington's disease-like-2 (HDL2), whereas JPH1 acts as a genetic modifier in Charcot–Marie–Tooth 2K peripheral neuropathy. Drosophila melanogaster has a single junctophilin (jp) gene, as is the case in all invertebrates, which might retain equivalent functions of the four homologous JPH genes present in mammalian genomes. Therefore, owing to the lack of putatively redundant genes, a jpDrosophila model could provide an excellent platform to model the Junctophilin-related diseases, to discover the ancestral functions of the JPH proteins and to reveal new pathways. By up- and downregulation of Jp in a tissue-specific manner in Drosophila, we show that altering its levels of expression produces a phenotypic spectrum characterized by muscular deficits, dilated cardiomyopathy and neuronal alterations. Importantly, our study has demonstrated that Jp modifies the neuronal degeneration in a Drosophila model of Huntington's disease, and it has allowed us to uncover an unsuspected functional relationship with the Notch pathway. Therefore, this Drosophila model has revealed new aspects of Junctophilin function that can be relevant for the disease mechanisms of their human counterparts. Summary: This work reveals that the Drosophila Junctophilin protein has similar functions to its mammalian homologues and uncovers new interactions of potential biomedical interest with Huntingtin and Notch signalling.
Collapse
Affiliation(s)
- Eduardo Calpena
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain
| | - Víctor López Del Amo
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain
| | - Mouli Chakraborty
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Beatriz Llamusí
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Carmen Espinós
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain.,UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain
| | - Máximo I Galindo
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain .,UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| |
Collapse
|
15
|
Oh MR, Lee KJ, Huang M, Kim JO, Kim DH, Cho CH, Lee EH. STIM2 regulates both intracellular Ca 2+ distribution and Ca 2+ movement in skeletal myotubes. Sci Rep 2017; 7:17936. [PMID: 29263348 PMCID: PMC5738411 DOI: 10.1038/s41598-017-18256-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Stromal interaction molecule 1 (STIM1) along with Orai1 mediates extracellular Ca2+ entry into the cytosol through a store-operated Ca2+ entry (SOCE) mechanism in various tissues including skeletal muscle. However, the role(s) of STIM2, a homolog of STIM1, in skeletal muscle has not been well addressed. The present study, first, was focused on searching for STIM2-binding proteins from among proteins mediating skeletal muscle functions. This study used a binding assay, quadrupole time-of-flight mass spectrometry, and co-immunoprecipitation assay with bona-fide STIM2- and SERCA1a-expressing rabbit skeletal muscle. The region for amino acids from 453 to 729 of STIM2 binds to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a (SERCA1a). Next, oxalate-supported 45Ca2+-uptake experiments and various single-myotube Ca2+ imaging experiments using STIM2-knockdown mouse primary skeletal myotubes have suggested that STIM2 attenuates SERCA1a activity during skeletal muscle contraction, which contributes to the intracellular Ca2+ distribution between the cytosol and the SR at rest. In addition, STIM2 regulates Ca2+ movement through RyR1 during skeletal muscle contraction as well as SOCE. Therefore, via regulation of SERCA1a activity, STIM2 regulates both intracellular Ca2+ distribution and Ca2+ movement in skeletal muscle, which makes it both similar to, yet different from, STIM1.
Collapse
Affiliation(s)
- Mi Ri Oh
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mei Huang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jin Ock Kim
- School of Life Sciences, GIST, Gwangju, 61005, Republic of Korea
| | - Do Han Kim
- School of Life Sciences, GIST, Gwangju, 61005, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
16
|
A focus on extracellular Ca 2+ entry into skeletal muscle. Exp Mol Med 2017; 49:e378. [PMID: 28912570 PMCID: PMC5628281 DOI: 10.1038/emm.2017.208] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023] Open
Abstract
The main task of skeletal muscle is contraction and relaxation for body movement and posture maintenance. During contraction and relaxation, Ca2+ in the cytosol has a critical role in activating and deactivating a series of contractile proteins. In skeletal muscle, the cytosolic Ca2+ level is mainly determined by Ca2+ movements between the cytosol and the sarcoplasmic reticulum. The importance of Ca2+ entry from extracellular spaces to the cytosol has gained significant attention over the past decade. Store-operated Ca2+ entry with a low amplitude and relatively slow kinetics is a main extracellular Ca2+ entryway into skeletal muscle. Herein, recent studies on extracellular Ca2+ entry into skeletal muscle are reviewed along with descriptions of the proteins that are related to extracellular Ca2+ entry and their influences on skeletal muscle function and disease.
Collapse
|
17
|
Valle G, Vergani B, Sacchetto R, Reggiani C, De Rosa E, Maccatrozzo L, Nori A, Villa A, Volpe P. Characterization of fast-twitch and slow-twitch skeletal muscles of calsequestrin 2 (CASQ2)-knock out mice: unexpected adaptive changes of fast-twitch muscles only. J Muscle Res Cell Motil 2017; 37:225-233. [PMID: 28130614 DOI: 10.1007/s10974-016-9463-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/22/2016] [Indexed: 01/02/2023]
Abstract
This study investigates the functional role of calsequestrin 2 (CASQ2) in both fast-twitch and slow-twitch skeletal muscles by using CASQ2-/- mice; CASQ2 is expressed throughout life in slow-twitch muscles, but only in the developmental and neonatal stages in fast-twitch muscles. CASQ2-/- causes increase in calsequestrin 1 (CASQ1) expression, but without functional changes in both muscle types. CASQ2-/- mice have ultrastructural changes in fast-twitch muscles only, i.e., formation of pentads and stacks in the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Giorgia Valle
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Barbara Vergani
- Consorzio MIA (Microscopy Image Analysis), Università di Milano-Bicocca, 20052, Monza, Italy
| | - Roberta Sacchetto
- Dipartimento di Biomedicina Comparata ed Alimentazione dell'Università di Padova, Padova, Italy
| | - Carlo Reggiani
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Edith De Rosa
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Lisa Maccatrozzo
- Dipartimento di Biomedicina Comparata ed Alimentazione dell'Università di Padova, Padova, Italy
| | - Alessandra Nori
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Antonello Villa
- Consorzio MIA (Microscopy Image Analysis), Università di Milano-Bicocca, 20052, Monza, Italy
| | - Pompeo Volpe
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy.
| |
Collapse
|
18
|
The maintenance ability and Ca 2+ availability of skeletal muscle are enhanced by sildenafil. Exp Mol Med 2016; 48:e278. [PMID: 27932789 PMCID: PMC5192075 DOI: 10.1038/emm.2016.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
Sildenafil relaxes vascular smooth muscle cells and is used to treat pulmonary artery hypertension as well as erectile dysfunction. However, the effectiveness of sildenafil on skeletal muscle and the benefit of its clinical use have been controversial, and most studies focus primarily on tissues and organs from disease models without cellular examination. Here, the effects of sildenafil on skeletal muscle at the cellular level were examined using mouse primary skeletal myoblasts (the proliferative form of skeletal muscle stem cells) and myotubes, along with single-cell Ca2+ imaging experiments and cellular and biochemical studies. The proliferation of skeletal myoblasts was enhanced by sildenafil in a dose-independent manner. In skeletal myotubes, sildenafil enhanced the activity of ryanodine receptor 1, an internal Ca2+ channel, and Ca2+ movement that promotes skeletal muscle contraction, possibly due to an increase in the resting cytosolic Ca2+ level and a unique microscopic shape in the myotube membranes. Therefore, these results suggest that the maintenance ability of skeletal muscle mass and the contractility of skeletal muscle could be improved by sildenafil by enhancing the proliferation of skeletal myoblasts and increasing the Ca2+ availability of skeletal myotubes, respectively.
Collapse
|
19
|
Mitsugumin 53 regulates extracellular Ca 2+ entry and intracellular Ca 2+ release via Orai1 and RyR1 in skeletal muscle. Sci Rep 2016; 6:36909. [PMID: 27841305 PMCID: PMC5107933 DOI: 10.1038/srep36909] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022] Open
Abstract
Mitsugumin 53 (MG53) participates in the membrane repair of various cells, and skeletal muscle is the major tissue that expresses MG53. Except for the regulatory effects of MG53 on SERCA1a, the role(s) of MG53 in the unique functions of skeletal muscle such as muscle contraction have not been well examined. Here, a new MG53-interacting protein, Orai1, is identified in skeletal muscle. To examine the functional relevance of the MG53-Orai1 interaction, MG53 was over-expressed in mouse primary or C2C12 skeletal myotubes and the functional properties of the myotubes were examined using cell physiological and biochemical approaches. The PRY-SPRY region of MG53 binds to Orai1, and MG53 and Orai1 are co-localized in the plasma membrane of skeletal myotubes. MG53-Orai1 interaction enhances extracellular Ca2+ entry via a store-operated Ca2+ entry (SOCE) mechanism in skeletal myotubes. Interestingly, skeletal myotubes over-expressing MG53 or PRY-SPRY display a reduced intracellular Ca2+ release in response to K+-membrane depolarization or caffeine stimulation, suggesting a reduction in RyR1 channel activity. Expressions of TRPC3, TRPC4, and calmodulin 1 are increased in the myotubes, and MG53 directly binds to TRPC3, which suggests a possibility that TRPC3 also participates in the enhanced extracellular Ca2+ entry. Thus, MG53 could participate in regulating extracellular Ca2+ entry via Orai1 during SOCE and also intracellular Ca2+ release via RyR1 during skeletal muscle contraction.
Collapse
|
20
|
Deb BK, Pathak T, Hasan G. Store-independent modulation of Ca(2+) entry through Orai by Septin 7. Nat Commun 2016; 7:11751. [PMID: 27225060 PMCID: PMC4894974 DOI: 10.1038/ncomms11751] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/26/2016] [Indexed: 01/07/2023] Open
Abstract
Orai channels are required for store-operated Ca2+ entry (SOCE) in multiple cell types. Septins are a class of GTP-binding proteins that function as diffusion barriers in cells. Here we show that Septin 7 acts as a ‘molecular brake’ on activation of Orai channels in Drosophila neurons. Lowering Septin 7 levels results in dOrai-mediated Ca2+ entry and higher cytosolic Ca2+ in resting neurons. This Ca2+ entry is independent of depletion of endoplasmic reticulum Ca2+ stores and Ca2+ release through the inositol-1,4,5-trisphosphate receptor. Importantly, store-independent Ca2+ entry through Orai compensates for reduced SOCE in the Drosophila flight circuit. Moreover, overexpression of Septin 7 reduces both SOCE and flight duration, supporting its role as a negative regulator of Orai channel function in vivo. Septin 7 levels in neurons can, therefore, alter neural circuit function by modulating Orai function and Ca2+ homeostasis. Orai channels are well known to mediate store-operated calcium entry. Here authors show that in neurons of the Drosophila flight circuit, Septin 7 acts as a negative regulator of Orai channels, surprisingly, by modulating store-independent calcium entry through Orai.
Collapse
Affiliation(s)
- Bipan Kumar Deb
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Trayambak Pathak
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India.,Manipal University, Manipal, Karnataka 576104, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| |
Collapse
|
21
|
STIM1-dependent Ca(2+) microdomains are required for myofilament remodeling and signaling in the heart. Sci Rep 2016; 6:25372. [PMID: 27150728 PMCID: PMC4858716 DOI: 10.1038/srep25372] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
In non-excitable cells stromal interaction molecule 1 (STIM1) is a key element in the generation of Ca(2+) signals that lead to gene expression, migration and cell proliferation. A growing body of literature suggests that STIM1 plays a key role in the development of pathological cardiac hypertrophy. However, the precise mechanisms involving STIM-dependent Ca(2+) signaling in the heart are not clearly established. Here, we have investigated the STIM1-associated Ca(2+) signals in cardiomyocytes and their relevance to pathological cardiac remodeling. We show that mice with inducible, cardiac-restricted, ablation of STIM1 exhibited left ventricular reduced contractility, which was corroborated by impaired single cell contractility. The spatial properties of STIM1-dependent Ca(2+) signals determine restricted Ca(2+) microdomains that regulate myofilament remodeling and activate spatially segregated pro-hypertrophic factors. Indeed, mice lacking STIM1 showed less adverse structural remodeling in response to pressure overload-induced cardiac hypertrophy. These results highlight how STIM1-dependent Ca(2+) microdomains have a major impact on intracellular Ca(2+) homeostasis, cytoskeletal remodeling and cellular signaling, even when excitation-contraction coupling is present.
Collapse
|
22
|
Organization of junctional sarcoplasmic reticulum proteins in skeletal muscle fibers. J Muscle Res Cell Motil 2015; 36:501-15. [DOI: 10.1007/s10974-015-9421-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 01/24/2023]
|
23
|
Woo JS, Hwang JH, Huang M, Ahn MK, Cho CH, Ma J, Lee EH. Interaction between mitsugumin 29 and TRPC3 participates in regulating Ca(2+) transients in skeletal muscle. Biochem Biophys Res Commun 2015; 464:133-9. [PMID: 26141232 DOI: 10.1016/j.bbrc.2015.06.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 01/03/2023]
Abstract
Mitsugumin 29 (MG29) is related to the fatigue and aging processes of skeletal muscle. To examine the roles of MG29 in conjunction with its binding protein, the canonical-type transient receptor potential cation channel 3 (TRPC3), in skeletal muscle, the binding region of MG29 to TRPC3 was studied along with the functional relevance of the binding in mouse primary skeletal myotubes using co-immunoprecipitation assays and Ca(2+) imaging experiments. The N-terminus and the I-II loop of MG29 constitute the binding region for TRPC3. The myotubes that expressed the MG29 mutant missing the entire TRPC3-binding region showed a disrupted binding between endogenous MG29 and TRPC3 and a reduction in Ca(2+) transients in response to membrane depolarization without affecting ryanodine receptor 1 activity, the resting cytosolic Ca(2+) level, and the amount of releasable Ca(2+) from the sarcoplasmic reticulum. Among the proteins mediating Ca(2+) movements in skeletal muscle, TRPC4 expression was significantly decreased by the MG29 mutant. Therefore, MG29 could be a new factor for regulating Ca(2+) transients during skeletal muscle contraction possibly via a correlation with TRPC3 and TRPC4.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Ji-Hye Hwang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Mei Huang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Mi Kyoung Ahn
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea.
| |
Collapse
|
24
|
Takeshima H, Hoshijima M, Song LS. Ca²⁺ microdomains organized by junctophilins. Cell Calcium 2015; 58:349-56. [PMID: 25659516 PMCID: PMC5159448 DOI: 10.1016/j.ceca.2015.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/21/2022]
Abstract
Excitable cells typically possess junctional membrane complexes (JMCs) constructed by the plasma membrane and the endo/sarcoplasmic reticulum (ER/SR) for channel crosstalk. These JMCs are termed triads in skeletal muscle, dyads in cardiac muscle, peripheral couplings in smooth and developing striated muscles, and subsurface cisterns in neurons. Junctophilin subtypes contribute to the formation and maintenance of JMCs by serving as a physical bridge between the plasma membrane and ER/SR membrane in different cell types. In muscle cells, junctophilin deficiency prevents JMC formation and functional crosstalk between cell-surface Ca2+ channels and ER/SR Ca2+ release channels. Human genetic mutations in junctophilin subtypes are linked to congenital hypertrophic cardiomyopathy and neurodegenerative diseases. Furthermore, growing evidence suggests that dysregulation of junctophilins induces pathological alterations in skeletal and cardiac muscle.
Collapse
Affiliation(s)
- Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Masahiko Hoshijima
- Department of Medicine and Center for Research in Biological Systems, University of California, San Diego, CA 92093, USA.
| | - Long-Sheng Song
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
25
|
Lee KJ, Hyun C, Woo JS, Park CS, Kim DH, Lee EH. Stromal interaction molecule 1 (STIM1) regulates sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase 1a (SERCA1a) in skeletal muscle. Pflugers Arch 2014; 466:987-1001. [PMID: 24077737 DOI: 10.1007/s00424-013-1361-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/11/2013] [Indexed: 12/31/2022]
Abstract
Stromal interaction molecule 1 (STIM1) mediates Ca2+ movements from the extracellular space to the cytosol through a store-operated Ca2+ entry (SOCE) mechanism in various cells including skeletal muscle cells. In the present study, to reveal the unidentified functional role of the STIM1 C terminus from 449 to 671 amino acids in skeletal muscle, binding assays and quadrupole time-of-flight mass spectrometry were used to identify proteins binding in this region along with proteins that mediate skeletal muscle contraction and relaxation. STIM1 binds to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a (SERCA1a) via this region (called STIM1-SBR). The binding was confirmed in endogenous full-length STIM1 in rabbit skeletal muscle and mouse primary skeletal myotubes via co-immunoprecipitation assay and immunocytochemistry. STIM1 knockdown in mouse primary skeletal myotubes decreased Ca2+ uptake from the cytosol to the sarcoplasmic reticulum (SR) through SERCA1a only at micromolar cytosolic Ca2+ concentrations, suggesting that STIM1 could be required for the full activity of SERCA1a possibly during the relaxation of skeletal muscle. Various Ca2+ imaging experiments using myotubes expressing STIM1-SBR suggest that STIM1 is involved in intracellular Ca2+ distributions between the SR and the cytosol via regulating SERCA1a activity without affecting SOCE. Therefore, in skeletal muscle, STIM1 could play an important role in regulating Ca2+ movements between the SR and the cytosol.
Collapse
|
26
|
Nakada T, Yamada M. Molecular mechanism of junctional membrane-targeting of cardiac and skeletal muscle L-type calcium channels. Nihon Yakurigaku Zasshi 2014; 144:217-21. [PMID: 25381890 DOI: 10.1254/fpj.144.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Landstrom AP, Beavers DL, Wehrens XHT. The junctophilin family of proteins: from bench to bedside. Trends Mol Med 2014; 20:353-62. [PMID: 24636942 PMCID: PMC4041816 DOI: 10.1016/j.molmed.2014.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 12/25/2022]
Abstract
Excitable tissues rely on junctional membrane complexes to couple cell surface signals to intracellular channels. The junctophilins have emerged as a family of proteins critical in coordinating the maturation and maintenance of this cellular ultrastructure. Within skeletal and cardiac muscle, junctophilin 1 and junctophilin 2, respectively, couple sarcolemmal and intracellular calcium channels. In neuronal tissue, junctophilin 3 and junctophilin 4 may have an emerging role in coupling membrane neurotransmitter receptors and intracellular calcium channels. These important physiological roles are highlighted by the pathophysiology which results when these proteins are perturbed, and a growing body of literature has associated junctophilins with the pathogenesis of human disease.
Collapse
Affiliation(s)
- Andrew P Landstrom
- Department of Pediatrics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - David L Beavers
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine (Cardiology), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Woo JS, Lee KJ, Huang M, Cho CH, Lee EH. Heteromeric TRPC3 with TRPC1 formed via its ankyrin repeats regulates the resting cytosolic Ca2+ levels in skeletal muscle. Biochem Biophys Res Commun 2014; 446:454-9. [PMID: 24613381 DOI: 10.1016/j.bbrc.2014.02.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 02/26/2014] [Indexed: 01/05/2023]
Abstract
The main tasks of skeletal muscle are muscle contraction and relaxation, which are mediated by changes in cytosolic Ca(2+) levels. Canonical-type transient receptor potential 3 (TRPC3) contains an ankyrin repeat (AR) region at the N-terminus (38-188 amino acids) and forms extracellular Ca(2+)-entry channels by homo or heteromerization with other TRP subtypes in various cells including skeletal myotubes. However, previous research has not determined which region(s) of TRPC3 is responsible for the heteromerization, whether the AR region participates in the heteromerizations, or what is the role of heteromeric TRPC3s in skeletal muscle. In the present study, the heteromerization of TRPC3 with TRPC1 was first examined by GST pull-down assays of TRPC3 portions with TRPC1. The portion containing the AR region of TRPC3 was bound to the TRPC1, but the binding was inhibited by the very end sub-region of the TRPC3 (1-37 amino acids). In-silico studies have suggested that the very end sub-region possibly induces a structural change in the AR region. Second, the very end sub-region of TRPC3 was expressed in mouse primary skeletal myotubes, resulting in a dominant-negative inhibition of heteromeric TRPC3/1 formation. In addition, the skeletal myotubes expressing the very end sub-region showed a decrease in resting cytosolic Ca(2+) levels. These results suggest that the AR region of TRPC3 could mediate the heteromeric TRPC3/1 formation, and the heteromeric TRPC3/1 could participate in regulating the resting cytosolic Ca(2+) levels in skeletal muscle.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Mei Huang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology and Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| |
Collapse
|
29
|
STIM1 negatively regulates Ca²⁺ release from the sarcoplasmic reticulum in skeletal myotubes. Biochem J 2013; 453:187-200. [PMID: 23668188 DOI: 10.1042/bj20130178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
STIM1 (stromal interaction molecule 1) mediates SOCE (store-operated Ca²⁺ entry) in skeletal muscle. However, the direct role(s) of STIM1 in skeletal muscle, such as Ca²⁺ release from the SR (sarcoplasmic reticulum) for muscle contraction, have not been identified. The times required for the maximal expression of endogenous STIM1 or Orai1, or for the appearance of puncta during the differentiation of mouse primary skeletal myoblasts to myotubes, were all different, and the formation of puncta was detected with no stimulus during differentiation, suggesting that, in skeletal muscle, the formation of puncta is a part of the differentiation. Wild-type STIM1 and two STIM1 mutants (Triple mutant, missing Ca²⁺-sensing residues but possessing the intact C-terminus; and E136X, missing the C-terminus) were overexpressed in the myotubes. The wild-type STIM1 increased SOCE, whereas neither mutant had an effect on SOCE. It was interesting that increases in the formation of puncta were observed in the Triple mutant as well as in wild-type STIM1, suggesting that SOCE-irrelevant puncta could exist in skeletal muscle. On the other hand, overexpression of wild-type or Triple mutant, but not E136X, attenuated Ca²⁺ releases from the SR in response to KCl [evoking ECC (excitation-contraction coupling) via activating DHPR (dihydropyridine receptor)] in a dominant-negative manner. The attenuation was removed by STIM1 knockdown, and STIM1 was co-immunoprecipitated with DHRP in a Ca²⁺-independent manner. These results suggest that STIM1 negatively regulates Ca²⁺ release from the SR through the direct interaction of the STIM1 C-terminus with DHPR, and that STIM1 is involved in both ECC and SOCE in skeletal muscle.
Collapse
|
30
|
Lee EH, Woo JS, Hwang JH, Park JH, Cho CH. Angiopoietin 1 enhances the proliferation and differentiation of skeletal myoblasts. J Cell Physiol 2013; 228:1038-44. [PMID: 23041942 DOI: 10.1002/jcp.24251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/26/2012] [Indexed: 01/23/2023]
Abstract
Angiopoietin 1 (Ang1) plays an important role in various endothelial functions, such as vascular integrity and angiogenesis; however, less is known about its function outside of the endothelium. In this study, we examined whether Ang1 has direct effects on skeletal muscle cells. We found that Ang1 exhibited myogenic potential, as it promoted the proliferation, migration, and differentiation of mouse primary skeletal myoblasts. The positive effect of Ang1 on myoblast proliferation could have been mediated by the α7 and β1 integrins. We also found that Ang1 potentiated cellular Ca(2+) movements in differentiated myotubes in response to stimuli, possibly through the increased expression of two Ca(2+) -related proteins, namely, Orai1 and calmodulin. Ang1 also increased Orai1 and calmodulin expression in mouse hearts in vivo. These results provide an insight into the molecular mechanisms by which Ang1 directly affects the myogenesis of striated muscle.
Collapse
Affiliation(s)
- Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
31
|
Schmid E, Bhandaru M, Nurbaeva MK, Yang W, Szteyn K, Russo A, Leibrock C, Tyan L, Pearce D, Shumilina E, Lang F. SGK3 regulates Ca(2+) entry and migration of dendritic cells. Cell Physiol Biochem 2012; 30:1423-35. [PMID: 23171960 DOI: 10.1159/000343330] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/AIMS Dendritic cells (DCs) are antigen-presenting cells linking innate and adaptive immunity. DC maturation and migration are governed by alterations of cytosolic Ca(2+) concentrations ([Ca(2+)](i)). Ca(2+) entry is in part accomplished by store-operated Ca(2+) (SOC) channels consisting of the membrane pore-forming subunit Orai and the ER Ca(2+) sensing subunit STIM. Moreover, DC functions are under powerful regulation of the phosphatidylinositol-3-kinase (PI3K) pathway, which suppresses proinflammatory cytokine production but supports DC migration. Downstream targets of PI3K include serum- and glucocorticoid-inducible kinase isoform SGK3. The present study explored, whether SGK3 participates in the regulation of [Ca(2+)](i) and Ca(2+)-dependent functions of DCs, such as maturation and migration. METHODS/RESULTS Experiments were performed with bone marrow derived DCs from gene targeted mice lacking SGK3 (sgk3(-/-)) and DCs from their wild type littermates (sgk3(+/+)). Maturation, phagocytosis and cytokine production were similar in sgk3(-/-) and sgk3(+/+) DCs. However, SOC entry triggered by intracellular Ca(2+) store depletion with the endosomal Ca(2+) ATPase inhibitor thapsigargin (1 µM) was significantly reduced in sgk3(-/-) compared to sgk3(+/+) DCs. Similarly, bacterial lipopolysaccharide (LPS, 1 µg/ml)- and chemokine CXCL12 (300 ng/ml)- induced increase in [Ca(2+)](i) was impaired in sgk3(-/-) DCs. Moreover, currents through SOC channels were reduced in sgk3(-/-) DCs. STIM2 transcript levels and protein abundance were significantly lower in sgk3(-/-) DCs than in sgk3(+/+) DCs, whereas Orai1, Orai2, STIM1 and TRPC1 transcript levels and/or protein abundance were similar in sgk3-/- and sgk3(+/+) DCs. Migration of both, immature DCs towards CXCL12 and LPS-matured DCs towards CCL21 was reduced in sgk3(-/-) as compared to sgk3(+/+) DCs. Migration of sgk3(+/+) DCs was further sensitive to SOC channel inhibitor 2-APB (50 µM) and to STIM1/STIM2 knock-down. CONCLUSION SGK3 contributes to the regulation of store-operated Ca(2+) entry into and migration of dendritic cells, effects at least partially mediated through SGK3-dependent upregulation of STIM2 expression.
Collapse
Affiliation(s)
- Evi Schmid
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mitsugumin 53 attenuates the activity of sarcoplasmic reticulum Ca(2+)-ATPase 1a (SERCA1a) in skeletal muscle. Biochem Biophys Res Commun 2012; 428:383-8. [PMID: 23103543 DOI: 10.1016/j.bbrc.2012.10.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/16/2012] [Indexed: 11/22/2022]
Abstract
Mitsugumin 53 (MG53) is a member of the membrane repair system in skeletal muscle. However, the roles of MG53 in the unique functions of skeletal muscle have not been addressed, although it is known that MG53 is expressed only in skeletal and cardiac muscle. In the present study, MG53-binding proteins were examined along with proteins that mediate skeletal muscle contraction and relaxation using the binding assays of various MG53 domains and quadrupole time-of-flight mass spectrometry. MG53 binds to sarcoplasmic reticulum Ca(2+)-ATPase 1a (SERCA1a) via its tripartite motif (TRIM) and PRY domains. The binding was confirmed in rabbit skeletal muscle and mouse primary skeletal myotubes by co-immunoprecipitation and immunocytochemistry. MG53 knockdown in mouse primary skeletal myotubes increased Ca(2+)-uptake through SERCA1a (more than 35%) at micromolar Ca(2+) but not at nanomolar Ca(2+), suggesting that MG53 attenuates SERCA1a activity possibly during skeletal muscle contraction or relaxation but not during the resting state of skeletal muscle. Therefore MG53 could be a new candidate for the diagnosis and treatment of patients with Brody syndrome, which is not related to the mutations in the gene coding for SERCA1a, but still accompanies exercise-induced muscle stiffness and delayed muscle relaxation due to a reduction in SERCA1a activity.
Collapse
|