1
|
Krukenberg S, Möckl F, Weiß M, Dekiert P, Hofmann M, Gerlach F, Winterberg KJ, Kovacevic D, Khansahib I, Troost B, Hinrichs M, Granato V, Nawrocki M, Hub T, Tsvilovskyy V, Medert R, Woelk LM, Förster F, Li H, Werner R, Altfeld M, Huber S, Clarke OB, Freichel M, Diercks BP, Meier C, Guse AH. MASTER-NAADP: a membrane permeable precursor of the Ca 2+ mobilizing second messenger NAADP. Nat Commun 2024; 15:8008. [PMID: 39271671 PMCID: PMC11399135 DOI: 10.1038/s41467-024-52024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Upon stimulation of membrane receptors, nicotinic acid adenine dinucleotide phosphate (NAADP) is formed as second messenger within seconds and evokes Ca2+ signaling in many different cell types. Here, to directly stimulate NAADP signaling, MASTER-NAADP, a Membrane permeAble, STabilized, bio-rEversibly pRotected precursor of NAADP is synthesized and release of its active NAADP mimetic, benzoic acid C-nucleoside, 2'-phospho-3'F-adenosine-diphosphate, by esterase digestion is confirmed. In the presence of NAADP receptor HN1L/JPT2 (hematological and neurological expressed 1-like protein, HN1L, also known as Jupiter microtubule-associated homolog 2, JPT2), this active NAADP mimetic releases Ca2+ and increases the open probability of type 1 ryanodine receptor. When added to intact cells, MASTER-NAADP initially evokes single local Ca2+ signals of low amplitude. Subsequently, also global Ca2+ signaling is observed in T cells, natural killer cells, and Neuro2A cells. In contrast, control compound MASTER-NADP does not stimulate Ca2+ signaling. Likewise, in cells devoid of HN1L/JPT2, MASTER-NAADP does not affect Ca2+ signaling, confirming that the product released from MASTER-NAADP is a bona fide NAADP mimetic.
Collapse
Affiliation(s)
- Sarah Krukenberg
- Organic Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Franziska Möckl
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Mariella Weiß
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Patrick Dekiert
- Organic Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Melanie Hofmann
- Organic Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Fynn Gerlach
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kai J Winterberg
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Dejan Kovacevic
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Imrankhan Khansahib
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Berit Troost
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Macarena Hinrichs
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Viviana Granato
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Mikolaj Nawrocki
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tobis Hub
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Rebekka Medert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lena-Marie Woelk
- Department of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Fritz Förster
- Department of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Huan Li
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - René Werner
- Department of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Marcus Altfeld
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Oliver Biggs Clarke
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Chris Meier
- Organic Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Zhang Y, Guan Z, Gadient JN, Kumar S, Gunaratne G, Walseth TF, Marchant JS, Wall KA, Slama JT. Diazirine-AIOC-NAADP, a Clickable-Photoactive NAADP Analog for Sea Urchin NAADP Binding Proteins. ACS Chem Biol 2024; 19:1842-1849. [PMID: 39092791 PMCID: PMC11539956 DOI: 10.1021/acschembio.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Calcium ions (Ca2+) play a vital role as intracellular messengers, regulating essential cellular processes. Nicotinic acid adenine dinucleotide phosphate (NAADP) serves as a potent second messenger, responsible for releasing Ca2+ in both mammals and echinoderms. Despite identification of two human NAADP receptor proteins, their counterparts in sea urchins remain elusive. Sea urchin NAADP binding proteins are important due to their unique identities and NAADP binding properties which may illuminate new signaling modalities in other species. Consequently, the development of new photoactive and clickable NAADP analogs with specificity for binding targets in sea urchin egg homogenates is a priority. We designed and synthesized diazirine-AIOC-NAADP, a photoactive and "clickable" NAADP analog, to specifically label and identify sea urchin NAADP receptors. This analog, synthesized using a chemo-enzymatic approach, induced Ca2+ release from sea urchin egg homogenates at low-micromolar concentrations. The ability of diazirine-AIOC-NAADP to mobilize Ca2+ in cultured human cells was investigated by microinjection of the probe into U2OS cells. Microinjected NAADP elicited a robust Ca2+ release, but even 6000-fold higher concentrations of diazirine-AIOC-NAADP were unable to release Ca2+. Our results indicate that our new probe is specifically recognized at low concentration by sea urchin egg NAADP receptors but not by the NAADP receptors in a human cultured cell line.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, Ohio 43614, USA
| | - Zhong Guan
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, Ohio 43614, USA
| | - Jennifer N. Gadient
- Instrumentation Center, College of Natural Sciences and Mathematics, University of Toledo, 2801 W. Bancroft St, Toledo, Ohio. 43606, USA
| | - Sushil Kumar
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Gihan Gunaratne
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Timothy F. Walseth
- Department of Pharmacology, University of Minnesota Medical School, 312 Church St, Minneapolis, Minnesota 55455, USA
- Deceased, March 2, 2024
| | - Jonathan S. Marchant
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Katherine A. Wall
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, Ohio 43614, USA
| | - James T. Slama
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, Ohio 43614, USA
| |
Collapse
|
3
|
Gunaratne GS, Brailoiu E, Kumar S, Yuan Y, Slama JT, Walseth TF, Patel S, Marchant JS. Convergent activation of two-pore channels mediated by the NAADP-binding proteins JPT2 and LSM12. Sci Signal 2023; 16:eadg0485. [PMID: 37607218 PMCID: PMC10639087 DOI: 10.1126/scisignal.adg0485] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
The second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) evokes calcium ion (Ca2+) release from endosomes and lysosomes by activating two-pore channels (TPCs) on these organelles. Rather than directly binding to TPCs, NAADP associates with proteins that indirectly confer NAADP sensitivity to the TPC complex. We investigated whether and how the NAADP-binding proteins Jupiter microtubule-associated homolog 2 (JPT2) and like-Sm protein 12 (LSM12) contributed to NAADP-TPC-Ca2+ signaling in human cells. Biochemical and functional analyses revealed that recombinant JPT2 and LSM12 both bound to NAADP with high affinity and that endogenous JPT2 and LSM12 independently associated with TPC1 and TPC2. On the basis of knockout and rescue analyses, both NAADP-binding proteins were required to support NAADP-evoked Ca2+ signaling and contributed to endolysosomal trafficking of pseudotyped coronavirus particles. These data reveal that the NAADP-binding proteins JPT2 and LSM12 convergently regulate NAADP-evoked Ca2+ release and function through TPCs.
Collapse
Affiliation(s)
- Gihan S. Gunaratne
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Eugen Brailoiu
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Sushil Kumar
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Yu Yuan
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - James T. Slama
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Timothy F. Walseth
- Department of Pharmacology, University of Minnesota Medical School, 312 Church St., Minneapolis, MN 55455, USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jonathan S. Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Saito R, Mu Q, Yuan Y, Rubio-Alarcón M, Eznarriaga M, Zhao P, Gunaratne G, Kumar S, Keller M, Bracher F, Grimm C, Brailoiu E, Marchant JS, Rahman T, Patel S. Convergent activation of Ca 2+ permeability in two-pore channel 2 through distinct molecular routes. Sci Signal 2023; 16:eadg0661. [PMID: 37607219 PMCID: PMC10639088 DOI: 10.1126/scisignal.adg0661] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
TPC2 is a pathophysiologically relevant lysosomal ion channel that is activated directly by the phosphoinositide PI(3,5)P2 and indirectly by the calcium ion (Ca2+)-mobilizing molecule NAADP through accessory proteins that associate with the channel. TPC2 toggles between PI(3,5)P2-induced, sodium ion (Na+)-selective and NAADP-induced, Ca2+-permeable states in response to these cues. To address the molecular basis of polymodal gating and ion-selectivity switching, we investigated the mechanism by which NAADP and its synthetic functional agonist, TPC2-A1-N, induced Ca2+ release through TPC2 in human cells. Whereas NAADP required the NAADP-binding proteins JPT2 and LSM12 to evoke endogenous calcium ion signals, TPC2-A1-N did not. Residues in TPC2 that bind to PI(3,5)P2 were required for channel activation by NAADP but not for activation by TPC2-A1-N. The cryptic voltage-sensing region of TPC2 was required for the actions of TPC2-A1-N and PI(3,5)P2 but not for those of NAADP. These data mechanistically distinguish natural and synthetic agonist action at TPC2 despite convergent effects on Ca2+ permeability and delineate a route for pharmacologically correcting impaired NAADP-evoked Ca2+ signals.
Collapse
Affiliation(s)
- Ryo Saito
- Department of Cell and Developmental Biology, University
College London, Gower Street, London WC1E 6BT, UK
- Department of Dermatology, Graduate School of Biomedical
and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Qianru Mu
- Department of Cell and Developmental Biology, University
College London, Gower Street, London WC1E 6BT, UK
| | - Yu Yuan
- Department of Cell and Developmental Biology, University
College London, Gower Street, London WC1E 6BT, UK
| | | | - Maria Eznarriaga
- Department of Pharmacology, University of Cambridge,
Cambridge, UK
| | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of
Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Gihan Gunaratne
- Department of Cell Biology, Neurobiology and Anatomy,
Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226,
USA
| | - Sushil Kumar
- Department of Cell Biology, Neurobiology and Anatomy,
Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226,
USA
| | - Marco Keller
- Department of Pharmacy—Center for Drug Research,
Ludwig-Maximilian University, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy—Center for Drug Research,
Ludwig-Maximilian University, Munich, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology,
Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of
Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jonathan S. Marchant
- Department of Cell Biology, Neurobiology and Anatomy,
Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226,
USA
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge,
Cambridge, UK
| | - Sandip Patel
- Department of Cell and Developmental Biology, University
College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
5
|
Steiner P, Arlt E, Boekhoff I, Gudermann T, Zierler S. TPC Functions in the Immune System. Handb Exp Pharmacol 2023; 278:71-92. [PMID: 36639434 DOI: 10.1007/164_2022_634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Two-pore channels (TPCs) are novel intracellular cation channels, which play a key role in numerous (patho-)physiological and immunological processes. In this chapter, we focus on their function in immune cells and immune reactions. Therefore, we first give an overview of the cellular immune response and the partaking immune cells. Second, we concentrate on ion channels which in the past have been shown to play an important role in the regulation of immune cells. The main focus is then directed to TPCs, which are primarily located in the membranes of acidic organelles, such as lysosomes or endolysosomes but also certain other vesicles. They regulate Ca2+ homeostasis and thus Ca2+ signaling in immune cells. Due to this important functional role, TPCs are enjoying increasing attention within the field of immunology in the last few decades but are also becoming more pertinent as pharmacological targets for the treatment of pro-inflammatory diseases such as allergic hypersensitivity. However, to uncover the precise molecular mechanism of TPCs in immune cell responses, further molecular, genetic, and ultrastructural investigations on TPCs are necessary, which then may pave the way to develop novel therapeutic strategies to treat diseases such as anaphylaxis more specifically.
Collapse
Affiliation(s)
- Philip Steiner
- Institute of Pharmacology, Faculty of Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Elisabeth Arlt
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanna Zierler
- Institute of Pharmacology, Faculty of Medicine, Johannes Kepler University Linz, Linz, Austria.
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
6
|
Rautenberg S, Keller M, Leser C, Chen CC, Bracher F, Grimm C. Expanding the Toolbox: Novel Modulators of Endolysosomal Cation Channels. Handb Exp Pharmacol 2023; 278:249-276. [PMID: 35902436 DOI: 10.1007/164_2022_605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Functional characterization of endolysosomal ion channels is challenging due to their intracellular location. With recent advances in endolysosomal patch clamp technology, it has become possible to directly measure ion channel currents across endolysosomal membranes. Members of the transient receptor potential (TRP) cation channel family, namely the endolysosomal TRPML channels (TRPML1-3), also called mucolipins, as well as the distantly related two-pore channels (TPCs) have recently been characterized in more detail with endolysosomal patch clamp techniques. However, answers to many physiological questions require work in intact cells or animal models. One major obstacle thereby is that the known endogenous ligands of TRPMLs and TPCs are anionic in nature and thus impermeable for cell membranes. Microinjection, on the other hand, is technically demanding. There is also a risk of losing essential co-factors for channel activation or inhibition in isolated preparations. Therefore, lipophilic, membrane-permeable small-molecule activators and inhibitors for TRPMLs and TPCs are urgently needed. Here, we describe and discuss the currently available small-molecule modulators of TRPMLs and TPCs.
Collapse
Affiliation(s)
- Susanne Rautenberg
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Marco Keller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Charlotte Leser
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Cheng-Chang Chen
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany.
| | - Christian Grimm
- Department of Pharmacology and Toxicology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
7
|
Wang Q, Zhu MX. NAADP-Dependent TPC Current. Handb Exp Pharmacol 2023; 278:35-56. [PMID: 35902437 DOI: 10.1007/164_2022_606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Two-pore channels, TPC1 and TPC2, are Ca2+- and Na+-permeable cation channels expressed on the membranes of endosomes and lysosomes in nearly all mammalian cells. These channels have been implicated in Ca2+ signaling initiated from the endolysosomes, vesicular trafficking, cellular metabolism, macropinocytosis, and viral infection. Although TPCs have been shown to mediate Ca2+ release from acidic organelles in response to NAADP (nicotinic acid adenine dinucleotide phosphate), the most potent Ca2+ mobilizing messenger, questions remain whether NAADP is a direct ligand of these channels. In whole-endolysosomal patch clamp recordings, it has been difficult to detect NAADP-evoked currents in vacuoles that expressed TPC1 or TPC2, while PI(3,5)P2 (phosphatidylinositol 3,5-bisphosphate) activated a highly Na+-selective current under the same experimental configuration. In this chapter, we summarize recent progress in this area and provide our observations on NAADP-elicited TPC2 currents from enlarged endolysosomes as well as their possible relationships with the currents evoked by PI(3,5)P2. We propose that TPCs are channels dually regulated by PI(3,5)P2 and NAADP in an interdependent manner and the two endogenous ligands may have both distinguished and cooperative roles.
Collapse
Affiliation(s)
- Qiaochu Wang
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
8
|
Patel S, Zissimopoulos S, Marchant JS. Endo-Lysosomal Two-Pore Channels and Their Protein Partners. Handb Exp Pharmacol 2023; 278:199-214. [PMID: 35902438 DOI: 10.1007/164_2022_601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Two-pore channels are ion channels expressed on acidic organelles such as the various vesicles that constitute the endo-lysosomal system. They are permeable to Ca2+ and Na+ and activated by the second messenger NAADP as well as the phosphoinositide, PI(3,5)P2 and/or voltage. Here, we review the proteins that interact with these channels including recently identified NAADP receptors.
Collapse
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Abstract
The discovery of NAADP-evoked Ca2+ release in sea urchin eggs and then as a ubiquitous Ca2+ mobilizing messenger has introduced several novel paradigms to our understanding of Ca2+ signalling, not least in providing a link between cell stimulation and Ca2+ release from lysosomes and other acidic Ca2+ storage organelles. In addition, the hallmark concentration-response relationship of NAADP-mediated Ca2+ release, shaped by striking activation/desensitization mechanisms, influences its actions as an intracellular messenger. There has been recent progress in our understanding of the molecular mechanisms underlying NAADP-evoked Ca2+ release, such as the identification of the endo-lysosomal two-pore channel family of cation channels (TPCs) as their principal target and the identity of NAADP-binding proteins that complex with them. The NAADP/TPC signalling axis has gained recent prominence in pathophysiology for their roles in such disease processes as neurodegeneration, tumorigenesis and cellular viral entry.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lora L Martucci
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | |
Collapse
|
10
|
Guse AH. NAADP-Evoked Ca 2+ Signaling: The DUOX2-HN1L/JPT2-Ryanodine Receptor 1 Axis. Handb Exp Pharmacol 2023; 278:57-70. [PMID: 36443544 DOI: 10.1007/164_2022_623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing second messenger known to date. Major steps elucidating metabolism and Ca2+ mobilizing activity of NAADP are reviewed, with emphasis on a novel redox cycle between the inactive reduced form, NAADPH, and the active oxidized form, NAADP. Oxidation from NAADPH to NAADP is catalyzed in cell free system by (dual) NADPH oxidases NOX5, DUOX1, and DUOX2, whereas reduction from NAADP to NAADPH is catalyzed by glucose 6-phosphate dehydrogenase. Using different knockout models for NOX and DUOX isozymes, DUOX2 was identified as NAADP forming enzyme in early T-cell activation.Recently, receptors or binding proteins for NAADP were identified: hematological and neurological expressed 1-like protein (HN1L)/Jupiter microtubule associated homolog 2 (JPT2) and Lsm12 are small cytosolic proteins that bind NAADP. In addition, they interact with NAADP-sensitive Ca2+ channels, such as ryanodine receptor type 1 (RYR1) or two-pore channels (TPC).Due to its role as Ca2+ mobilizing second messenger in T cells, NAADP's involvement in inflammation is also reviewed. In the central nervous system (CNS), NAADP regulates autoimmunity because NAADP antagonism affects a couple of T-cell migration and re-activation events, e.g. secretion of the pro-inflammatory cytokine interleukin-17. Further, the role of NAADP in transdifferentiation of IL-17-producing Th17 cells into T regulatory type 1 cells in vitro and in vivo is discussed.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
11
|
Patel S, Yuan Y, Chen CC, Jaślan D, Gunaratne G, Grimm C, Rahman T, Marchant JS. Electrophysiology of Endolysosomal Two-Pore Channels: A Current Account. Cells 2022; 11:2368. [PMID: 35954212 PMCID: PMC9368155 DOI: 10.3390/cells11152368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Two-pore channels TPC1 and TPC2 are ubiquitously expressed pathophysiologically relevant proteins that reside on endolysosomal vesicles. Here, we review the electrophysiology of these channels. Direct macroscopic recordings of recombinant TPCs expressed in enlarged lysosomes in mammalian cells or vacuoles in plants and yeast demonstrate gating by the Ca2+-mobilizing messenger NAADP and/or the lipid PI(3,5)P2. TPC currents are regulated by H+, Ca2+, and Mg2+ (luminal and/or cytosolic), as well as protein kinases, and they are impacted by single-nucleotide polymorphisms linked to pigmentation. Bisbenzylisoquinoline alkaloids, flavonoids, and several approved drugs demonstrably block channel activity. Endogenous TPC currents have been recorded from a number of primary cell types and cell lines. Many of the properties of endolysosomal TPCs are recapitulated upon rerouting channels to the cell surface, allowing more facile recording through conventional electrophysiological means. Single-channel analyses have provided high-resolution insight into both monovalent and divalent permeability. The discovery of small-molecule activators of TPC2 that toggle the ion selectivity from a Ca2+-permeable (NAADP-like) state to a Na+-selective (PI(3,5)P2-like) state explains discrepancies in the literature relating to the permeability of TPCs. Identification of binding proteins that confer NAADP-sensitive currents confirm that indirect, remote gating likely underpins the inconsistent observations of channel activation by NAADP.
Collapse
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK;
| | - Yu Yuan
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK;
| | - Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan;
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Dawid Jaślan
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians University, 80336 Munich, Germany; (D.J.); (C.G.)
| | - Gihan Gunaratne
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (G.G.); (J.S.M.)
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians University, 80336 Munich, Germany; (D.J.); (C.G.)
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK;
| | - Jonathan S. Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (G.G.); (J.S.M.)
| |
Collapse
|
12
|
He X, Kang Y, Chen L. Identification of ASPDH as a novel NAADP-binding protein. Biochem Biophys Res Commun 2022; 621:168-175. [DOI: 10.1016/j.bbrc.2022.06.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/02/2022]
|
13
|
Shah KR, Guan X, Yan J. Diversity of two-pore channels and the accessory NAADP receptors in intracellular Ca 2+ signaling. Cell Calcium 2022; 104:102594. [PMID: 35561646 PMCID: PMC9645597 DOI: 10.1016/j.ceca.2022.102594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/10/2022] [Accepted: 05/04/2022] [Indexed: 02/03/2023]
Abstract
Intracellular Ca2+ signaling via changes or oscillation in cytosolic Ca2+ concentration controls almost every aspect of cellular function and physiological processes, such as gene transcription, cell motility and proliferation, muscle contraction, and learning and memory. Two-pore channels (TPCs) are a class of eukaryotic cation channels involved in intracellular Ca2+ signaling, likely present in a multitude of organisms from unicellular organisms to mammals. Accumulated evidence indicates that TPCs play a critical role in Ca2+ mobilization from intracellular stores mediated by the second messenger molecule, nicotinic acid adenine dinucleotide phosphate (NAADP). In recent years, significant progress has been made regarding our understanding of the structures and function of TPCs, including Cryo-EM structure determination of mammalian TPCs and characterization of a plastid TPC in a single-celled parasite.. The recent identification of Lsm12 and JPT2 as NAADP-binding proteins provides a new molecular basis for understanding NAADP-evoked Ca2+ signaling. In this review, we summarize basic structural and functional aspects of TPCs and highlight the most recent studies on the newly discovered TPC in a parasitic protozoan and the NAADP-binding proteins LSM12 and JPT2 as new key players in NAADP signaling.
Collapse
Affiliation(s)
- Kunal R. Shah
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Guan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Neuroscience and Biochemistry and Cell Biology Programs, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA,Corresponding author at: Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., (J. Yan)
| |
Collapse
|
14
|
Steiner P, Arlt E, Boekhoff I, Gudermann T, Zierler S. Two-Pore Channels Regulate Inter-Organellar Ca 2+ Homeostasis in Immune Cells. Cells 2022; 11:1465. [PMID: 35563771 PMCID: PMC9103377 DOI: 10.3390/cells11091465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Two-pore channels (TPCs) are ligand-gated cation-selective ion channels that are preserved in plant and animal cells. In the latter, TPCs are located in membranes of acidic organelles, such as endosomes, lysosomes, and endolysosomes. Here, we focus on the function of these unique ion channels in mast cells, which are leukocytes that mature from myeloid hematopoietic stem cells. The cytoplasm of these innate immune cells contains a large number of granules that comprise messenger substances, such as histamine and heparin. Mast cells, along with basophil granulocytes, play an essential role in anaphylaxis and allergic reactions by releasing inflammatory mediators. Signaling in mast cells is mainly regulated via the release of Ca2+ from the endoplasmic reticulum as well as from acidic compartments, such as endolysosomes. For the crosstalk of these organelles TPCs seem essential. Allergic reactions and anaphylaxis were previously shown to be associated with the endolysosomal two-pore channel TPC1. The release of histamine, controlled by intracellular Ca2+ signals, was increased upon genetic or pharmacologic TPC1 inhibition. Conversely, stimulation of TPC channel activity by one of its endogenous ligands, namely nicotinic adenine dinucleotide phosphate (NAADP) or phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), were found to trigger the release of Ca2+ from the endolysosomes; thereby improving the effect of TPC1 on regulated mast cell degranulation. In this review we discuss the importance of TPC1 for regulating Ca2+ homeostasis in mast cells and the overall potential of TPC1 as a pharmacological target in anti-inflammatory therapy.
Collapse
Affiliation(s)
- Philip Steiner
- Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria;
| | - Elisabeth Arlt
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, Ludwig Maximilians University Munich, 80336 Munich, Germany; (E.A.); (I.B.); (T.G.)
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, Ludwig Maximilians University Munich, 80336 Munich, Germany; (E.A.); (I.B.); (T.G.)
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, Ludwig Maximilians University Munich, 80336 Munich, Germany; (E.A.); (I.B.); (T.G.)
| | - Susanna Zierler
- Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria;
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, Ludwig Maximilians University Munich, 80336 Munich, Germany; (E.A.); (I.B.); (T.G.)
| |
Collapse
|
15
|
Martucci LL, Cancela JM. Neurophysiological functions and pharmacological tools of acidic and non-acidic Ca2+ stores. Cell Calcium 2022; 104:102582. [DOI: 10.1016/j.ceca.2022.102582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
|
16
|
NAADP Signaling: New Kids on the Block. Cells 2022; 11:cells11061054. [PMID: 35326505 PMCID: PMC8947471 DOI: 10.3390/cells11061054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/20/2023] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a universal Ca2+ mobilizing second messenger essential for initiation of Ca2+ signaling. Recently, novel molecular mechanisms of both its rapid formation upon receptor stimulation and its mode of action were discovered. Dual NADPH oxidase 2 (DUOX2) and hematological and neurological expressed 1-like protein (HN1L)/Jupiter microtubule-associated homolog 2 (JPT2) were discovered as NAADP-forming enzyme and NAADP receptor/binding protein—the new kids on the block. These novel aspects are reviewed and integrated into the previous view of NAADP signaling.
Collapse
|
17
|
Gunaratne GS, Marchant JS. The ins and outs of virus trafficking through acidic Ca 2+ stores. Cell Calcium 2022; 102:102528. [PMID: 35033909 PMCID: PMC8860173 DOI: 10.1016/j.ceca.2022.102528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Many viruses exploit host-cell Ca2+ signaling processes throughout their life cycle. This is especially relevant for viruses that translocate through the endolysosomal system, where cellular infection is keyed to the microenvironment of these acidic Ca2+ stores and Ca2+-dependent trafficking pathways. As regulators of the endolysosomal ionic milieu and trafficking dynamics, two families of endolysosomal Ca2+-permeable cation channels - two pore channels (TPCs) and transient receptor potential mucolipins (TRPMLs) - have emerged as important host-cell factors in viral entry. Here, we review: (i) current evidence implicating Ca2+ signaling in viral translocation through the endolysosomal system, (ii) the roles of these ion channels in supporting cellular infection by different viruses, and (iii) areas for future research that will help define the potential of TPC and TRPML ligands as progressible antiviral agents.
Collapse
Affiliation(s)
- Gihan S Gunaratne
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA.
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA
| |
Collapse
|
18
|
Marchant JS, Gunaratne GS, Cai X, Slama JT, Patel S. NAADP-binding proteins find their identity. Trends Biochem Sci 2022; 47:235-249. [PMID: 34810081 PMCID: PMC8840967 DOI: 10.1016/j.tibs.2021.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from endosomes and lysosomes by activating ion channels called two-pore channels (TPCs). However, no NAADP-binding site has been identified on TPCs. Rather, NAADP activates TPCs indirectly by engaging NAADP-binding proteins (NAADP-BPs) that form part of the TPC complex. After a decade of searching, two different NAADP-BPs were recently identified: Jupiter microtubule associated homolog 2 (JPT2) and like-Sm protein 12 (LSM12). These discoveries bridge the gap between NAADP generation and NAADP activation of TPCs, providing new opportunity to understand and manipulate the NAADP-signaling pathway. The unmasking of these NAADP-BPs will catalyze future studies to define the molecular choreography of NAADP action.
Collapse
Affiliation(s)
- Jonathan S. Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA,Correspondence: (J.S. Marchant) and (S. Patel)
| | - Gihan S. Gunaratne
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Xinjiang Cai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James T. Slama
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
19
|
Roles of cADPR and NAADP in pancreatic beta cell signalling. Cell Calcium 2022; 103:102562. [DOI: 10.1016/j.ceca.2022.102562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
|
20
|
Krogsaeter E, Rosato AS, Grimm C. TRPMLs and TPCs: targets for lysosomal storage and neurodegenerative disease therapy? Cell Calcium 2022; 103:102553. [DOI: 10.1016/j.ceca.2022.102553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022]
|
21
|
Activation of endo-lysosomal two-pore channels by NAADP and PI(3,5)P2. Five things to know. Cell Calcium 2022; 103:102543. [PMID: 35123238 PMCID: PMC9552313 DOI: 10.1016/j.ceca.2022.102543] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/31/2022]
Abstract
Two-pore channels are ancient members of the voltage-gated ion channel superfamily that are expressed predominantly on acidic organelles such as endosomes and lysosomes. Here we review recent advances in understanding how TPCs are activated by their ligands and identify five salient features: (1) TPCs are Ca2+-permeable non-selective cation channels gated by NAADP. (2) NAADP activation is indirect through associated NAADP receptors. (3) TPCs are also Na+-selective channels gated by PI(3,5)P2. (4) PI(3,5)P2 activation is direct through a structurally-resolved binding site. (5) TPCs switch their ion selectivity in an agonist-dependent manner.
Collapse
|
22
|
Ion Channels and Pumps in Autophagy: A Reciprocal Relationship. Cells 2021; 10:cells10123537. [PMID: 34944044 PMCID: PMC8700256 DOI: 10.3390/cells10123537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Autophagy, the process of cellular self-degradation, is intrinsically tied to the degradative function of the lysosome. Several diseases have been linked to lysosomal degradative defects, including rare lysosomal storage disorders and neurodegenerative diseases. Ion channels and pumps play a major regulatory role in autophagy. Importantly, calcium signaling produced by TRPML1 (transient receptor potential cation channel, mucolipin subfamily) has been shown to regulate autophagic progression through biogenesis of autophagic-lysosomal organelles, activation of mTORC1 (mechanistic target of rapamycin complex 1) and degradation of autophagic cargo. ER calcium channels such as IP3Rs supply calcium for the lysosome, and lysosomal function is severely disrupted in the absence of lysosomal calcium replenishment by the ER. TRPML1 function is also regulated by LC3 (microtubule-associated protein light chain 3) and mTORC1, two critical components of the autophagic network. Here we provide an overview of the current knowledge about ion channels and pumps-including lysosomal V-ATPase (vacuolar proton-ATPase), which is required for acidification and hence proper enzymatic activity of lysosomal hydrolases-in the regulation of autophagy, and discuss how functional impairment of some of these leads to diseases.
Collapse
|
23
|
Davis LC, Morgan AJ, Galione A. Acidic Ca 2+ stores and immune-cell function. Cell Calcium 2021; 101:102516. [PMID: 34922066 DOI: 10.1016/j.ceca.2021.102516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
Acidic organelles act as intracellular Ca2+ stores; they actively sequester Ca2+ in their lumina and release it to the cytosol upon activation of endo-lysosomal Ca2+ channels. Recent data suggest important roles of endo-lysosomal Ca2+ channels, the Two-Pore Channels (TPCs) and the TRPML channels (mucolipins), in different aspects of immune-cell function, particularly impacting membrane trafficking, vesicle fusion/fission and secretion. Remarkably, different channels on the same acidic vesicles can couple to different downstream physiology. Endo-lysosomal Ca2+ stores can act under different modalities, be they acting alone (via local Ca2+ nanodomains around TPCs/TRPMLs) or in conjunction with the ER Ca2+ store (to either promote or suppress global ER Ca2+ release). These different modalities impinge upon functions as broad as phagocytosis, cell-killing, anaphylaxis, immune memory, thrombostasis, and chemotaxis.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
24
|
Nawrocki M, Lory N, Bedke T, Stumme F, Diercks BP, Guse AH, Meier C, Gagliani N, Mittrücker HW, Huber S. Trans-Ned 19-Mediated Antagonism of Nicotinic Acid Adenine Nucleotide-Mediated Calcium Signaling Regulates Th17 Cell Plasticity in Mice. Cells 2021; 10:3039. [PMID: 34831261 PMCID: PMC8616272 DOI: 10.3390/cells10113039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing agent and its inhibition proved to inhibit T-cell activation. However, the impact of the NAADP signaling on CD4+ T-cell differentiation and plasticity and on the inflammation in tissues other than the central nervous system remains unclear. In this study, we used an antagonist of NAADP signaling, trans-Ned 19, to study the role of NAADP in CD4+ T-cell differentiation and effector function. Partial blockade of NAADP signaling in naïve CD4+ T cells in vitro promoted the differentiation of Th17 cells. Interestingly, trans-Ned 19 also promoted the production of IL-10, co-expression of LAG-3 and CD49b and increased the suppressive capacity of Th17 cells. Moreover, using an IL-17A fate mapping mouse model, we showed that NAADP inhibition promotes conversion of Th17 cells into regulatory T cells in vitro and in vivo. In line with the results, we found that inhibiting NAADP ameliorates disease in a mouse model of intestinal inflammation. Thus, these results reveal a novel function of NAADP in controlling the differentiation and plasticity of CD4+ T cells.
Collapse
Affiliation(s)
- Mikołaj Nawrocki
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.N.); (T.B.); (F.S.); (N.G.)
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
| | - Niels Lory
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Bedke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.N.); (T.B.); (F.S.); (N.G.)
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
| | - Friederike Stumme
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.N.); (T.B.); (F.S.); (N.G.)
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
| | - Björn-Phillip Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.-P.D.); (A.H.G.)
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.-P.D.); (A.H.G.)
| | - Chris Meier
- Institute of Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany;
| | - Nicola Gagliani
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.N.); (T.B.); (F.S.); (N.G.)
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden
| | - Hans-Willi Mittrücker
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.N.); (T.B.); (F.S.); (N.G.)
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
| |
Collapse
|
25
|
Patel S, Gunaratne GS, Marchant JS, Biggin PC, Rahman T. NAADP receptors: A one-two. Cell Calcium 2021; 100:102478. [PMID: 34600271 DOI: 10.1016/j.ceca.2021.102478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom.
| | - Gihan S Gunaratne
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| |
Collapse
|
26
|
Abstract
Nicotinic acid adenine dinucleotide 2'-phosphate (NAADP) is a naturally occurring nucleotide that has been shown to be involved in the release of Ca2+ from intracellular stores in a wide variety of cell types, tissues and organisms. Current evidence suggests that NAADP may function as a trigger to initiate a Ca2+ signal that is then amplified by other Ca2+ release mechanisms. A fundamental question that remains unanswered is the identity of the NAADP receptor. Our recent studies have identified HN1L/JPT2 as a high affinity NAADP binding protein that is essential for the modulation of Ca2+ channels.
Collapse
Affiliation(s)
- Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Jin X, Zhang Y, Alharbi A, Hanbashi A, Alhoshani A, Parrington J. Targeting Two-Pore Channels: Current Progress and Future Challenges. Trends Pharmacol Sci 2021; 41:582-594. [PMID: 32679067 PMCID: PMC7365084 DOI: 10.1016/j.tips.2020.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022]
Abstract
Two-pore channels (TPCs) are cation-permeable channels located on endolysosomal membranes and important mediators of intracellular Ca2+ signalling. TPCs are involved in various pathophysiological processes, including cell growth and development, metabolism, and cancer progression. Most studies of TPCs have used TPC–/– cell or whole-animal models, or Ned-19, an indirect inhibitor. The TPC activation mechanism remains controversial, which has made it difficult to develop selective modulators. Recent studies of TPC structure and their interactomes are aiding the development of direct pharmacological modulators. This process is still in its infancy, but will facilitate future research and TPC targeting for therapeutical purposes. Here, we review the progress of current research into TPCs, including recent insights into their structures, functional roles, mechanisms of activation, and pharmacological modulators. Two-pore channel (TPC)-mediated endolysosomal Ca2+ signalling regulates a variety of processes, including cell proliferation, differentiation, metabolism, viral infection, and cardiac function. Despite the well-established model that TPCs are Ca2+-selective channels indirectly activated by nicotinic acid adenine dinucleotide phosphate (NAADP), it has also been proposed that TPCs as Na+ channels are activated directly by phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2]. 3D structures of mouse TPC1 and human TPC2 were recently determined, which made it possible for structure-based virtual screening methods to identify pharmacological modulators of TPC. Recent identification by high-throughput screens of pharmacological modulators that target TPCs will help reveal the molecular mechanisms underlying the role of endolysosomal Ca2+ signalling in different pathophysiological processes, and to develop new therapeutics.
Collapse
Affiliation(s)
- Xuhui Jin
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yuxuan Zhang
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Abeer Alharbi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Ali Hanbashi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11454, Kingdom of Saudi Arabia
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
28
|
Lsm12 is an NAADP receptor and a two-pore channel regulatory protein required for calcium mobilization from acidic organelles. Nat Commun 2021; 12:4739. [PMID: 34362892 PMCID: PMC8346516 DOI: 10.1038/s41467-021-24735-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/01/2021] [Indexed: 01/19/2023] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+-mobilizing second messenger which uniquely mobilizes Ca2+ from acidic endolysosomal organelles. However, the molecular identity of the NAADP receptor remains unknown. Given the necessity of the endolysosomal two-pore channel (TPC1 or TPC2) in NAADP signaling, we performed affinity purification and quantitative proteomic analysis of the interacting proteins of NAADP and TPCs. We identified a Sm-like protein Lsm12 complexed with NAADP, TPC1, and TPC2. Lsm12 directly binds to NAADP via its Lsm domain, colocalizes with TPC2, and mediates the apparent association of NAADP to isolated TPC2 or TPC2-containing membranes. Lsm12 is essential and immediately participates in NAADP-evoked TPC activation and Ca2+ mobilization from acidic stores. These findings reveal a putative RNA-binding protein to function as an NAADP receptor and a TPC regulatory protein and provides a molecular basis for understanding the mechanisms of NAADP signaling. Nicotinic acid adenine dinucleotide phosphate (NAADP) potent Ca2+ mobilizing second messenger which uniquely triggers Ca2+ release from acidic endolysosomal organelles. Here the authors identify Lsm12 as an NAADP receptor essential for NAADP-evoked Ca2+ release from lysosomes via NAADP binding on its Lsm domain.
Collapse
|
29
|
Hu W, Zhao F, Chen L, Ni J, Jiang Y. NAADP-induced intracellular calcium ion is mediated by the TPCs (two-pore channels) in hypoxia-induced pulmonary arterial hypertension. J Cell Mol Med 2021; 25:7485-7499. [PMID: 34263977 PMCID: PMC8335677 DOI: 10.1111/jcmm.16783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a form of obstructive vascular disease. Chronic hypoxic exposure leads to excessive proliferation of pulmonary arterial smooth muscle cells and pulmonary arterial endothelial cells. This condition can potentially be aggravated by [Ca2+] i mobilization. In the present study, hypoxia exposure of rat's model was established. Two‐pore segment channels (TPCs) silencing was achieved in rats' models by injecting Lsh‐TPC1 or Lsh‐TPC2. The effects of TPC1/2 silencing on PAH were evaluated by H&E staining detecting pulmonary artery wall thickness and ELISA assay kit detecting NAADP concentrations in lung tissues. TPC1/2 silencing was achieved in PASMCs and PAECs, and cell proliferation was detected by MTT and BrdU incorporation assays. As the results shown, NAADP‐activated [Ca2+]i shows to be mediated via two‐pore segment channels (TPCs) in PASMCs, with TPC1 being the dominant subtype. NAADP generation and TPC1/2 mRNA and protein levels were elevated in the hypoxia‐induced rat PAH model; NAADP was positively correlated with TPC1 and TPC2 expression, respectively. In vivo, Lsh‐TPC1 or Lsh‐TPC2 infection significantly improved the mean pulmonary artery pressure and PAH morphology. In vitro, TPC1 silencing inhibited NAADP‐AM‐induced PASMC proliferation and [Ca2+]i in PASMCs, whereas TPC2 silencing had minor effects during this process; TPC2 silencing attenuated NAADP‐AM‐ induced [Ca2+]i and ECM in endothelial cells, whereas TPC1 silencing barely ensued any physiological changes. In conclusion, TPC1/2 might provide a unifying mechanism within pulmonary arterial hypertension, which can potentially be regarded as a therapeutic target.
Collapse
Affiliation(s)
- Wen Hu
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, China
| | - Fei Zhao
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, China
| | - Ling Chen
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, China
| | - Jiamin Ni
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, China
| | - Yongliang Jiang
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, China
| |
Collapse
|
30
|
Krogsaeter E, Tang R, Grimm C. JPT2: The missing link between intracellular Ca 2+ release channels and NAADP? Cell Calcium 2021; 97:102405. [PMID: 33873071 DOI: 10.1016/j.ceca.2021.102405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
NAADP (nicotinic acid adenine dinucleotide phosphate) is a potent second messenger releasing Ca2+ from endolysosomes through two-pore channels (TPCs) and from the endoplasmic reticulum (ER) through type 1 ryanodine receptors (RyR1). How NAADP activates these channels, whether directly or indirectly, has been a matter of debate for more than a decade. Now a protein has emerged possibly providing the missing link between TPCs/RyR1 and NAADP.
Collapse
Affiliation(s)
- Einar Krogsaeter
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Rachel Tang
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
31
|
Gunaratne GS, Brailoiu E, He S, Unterwald EM, Patel S, Slama JT, Walseth TF, Marchant JS. Essential requirement for JPT2 in NAADP-evoked Ca 2+ signaling. Sci Signal 2021; 14:14/675/eabd5605. [PMID: 33758061 DOI: 10.1126/scisignal.abd5605] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from acidic organelles through the activation of two-pore channels (TPCs) to regulate endolysosomal trafficking events. NAADP action is mediated by NAADP-binding protein(s) of unknown identity that confer NAADP sensitivity to TPCs. Here, we used a "clickable" NAADP-based photoprobe to isolate human NAADP-binding proteins and identified Jupiter microtubule-associated homolog 2 (JPT2) as a TPC accessory protein required for endogenous NAADP-evoked Ca2+ signaling. JPT2 was also required for the translocation of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus through the endolysosomal system. Thus, JPT2 is a component of the NAADP receptor complex that is essential for TPC-dependent Ca2+ signaling and control of coronaviral entry.
Collapse
Affiliation(s)
- Gihan S Gunaratne
- Department of Pharmacology, University of Minnesota Medical School, 312 Church Street, Minneapolis, MN 55455, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shijun He
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - James T Slama
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, 312 Church Street, Minneapolis, MN 55455, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
32
|
Roggenkamp HG, Khansahib I, Hernandez C LC, Zhang Y, Lodygin D, Krüger A, Gu F, Möckl F, Löhndorf A, Wolters V, Woike D, Rosche A, Bauche A, Schetelig D, Werner R, Schlüter H, Failla AV, Meier C, Fliegert R, Walseth TF, Flügel A, Diercks BP, Guse AH. HN1L/JPT2: A signaling protein that connects NAADP generation to Ca 2+ microdomain formation. Sci Signal 2021; 14:14/675/eabd5647. [PMID: 33758062 DOI: 10.1126/scisignal.abd5647] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NAADP-evoked Ca2+ release through type 1 ryanodine receptors (RYR1) is a major mechanism underlying the earliest signals in T cell activation, which are the formation of Ca2+ microdomains. In our characterization of the molecular machinery underlying NAADP action, we identified an NAADP-binding protein, called hematological and neurological expressed 1-like protein (HN1L) [also known as Jupiter microtubule-associated homolog 2 (JPT2)]. Gene deletion of Hn1l/Jpt2 in human Jurkat and primary rat T cells resulted in decreased numbers of initial Ca2+ microdomains and delayed the onset and decreased the amplitude of global Ca2+ signaling. Photoaffinity labeling demonstrated direct binding of NAADP to recombinant HN1L/JPT2. T cell receptor/CD3-dependent coprecipitation of HN1L/JPT2 with RYRs and colocalization of these proteins suggest that HN1L/JPT2 connects NAADP formation with the activation of RYR channels within the first seconds of T cell activation. Thus, HN1L/JPT2 enables NAADP to activate Ca2+ release from the endoplasmic reticulum through RYR.
Collapse
Affiliation(s)
- Hannes G Roggenkamp
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Imrankhan Khansahib
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lola C Hernandez C
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Yunpeng Zhang
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dmitri Lodygin
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Aileen Krüger
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Feng Gu
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Franziska Möckl
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anke Löhndorf
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Valerie Wolters
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniel Woike
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anette Rosche
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas Bauche
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniel Schetelig
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - René Werner
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics Group, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Antonio V Failla
- Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Chris Meier
- Organic Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Ralf Fliegert
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455-0217, USA
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Björn-Philipp Diercks
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Andreas H Guse
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
33
|
Zhao Z, Qin P, Huang YW. Lysosomal ion channels involved in cellular entry and uncoating of enveloped viruses: Implications for therapeutic strategies against SARS-CoV-2. Cell Calcium 2021; 94:102360. [PMID: 33516131 PMCID: PMC7825922 DOI: 10.1016/j.ceca.2021.102360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Ion channels are necessary for correct lysosomal function including degradation of cargoes originating from endocytosis. Almost all enveloped viruses, including coronaviruses (CoVs), enter host cells via endocytosis, and do not escape endosomal compartments into the cytoplasm (via fusion with the endolysosomal membrane) unless the virus-encoded envelope proteins are cleaved by lysosomal proteases. With the ongoing outbreak of severe acute respiratory syndrome (SARS)-CoV-2, endolysosomal two-pore channels represent an exciting and emerging target for antiviral therapies. This review focuses on the latest knowledge of the effects of lysosomal ion channels on the cellular entry and uncoating of enveloped viruses, which may aid in development of novel therapies against emerging infectious diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Zhuangzhuang Zhao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Pan Qin
- Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao-Wei Huang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Two-pore and TRPML cation channels: Regulators of phagocytosis, autophagy and lysosomal exocytosis. Pharmacol Ther 2020; 220:107713. [PMID: 33141027 DOI: 10.1016/j.pharmthera.2020.107713] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
The old Greek saying "Panta Rhei" ("everything flows") is true for all life and all living things in general. It also becomes nicely evident when looking closely into cells. There, material from the extracellular space is taken up by endocytic processes and transported to endosomes where it is sorted either for recycling or degradation. Cargo is also packaged for export through exocytosis involving the Golgi network, lysosomes and other organelles. Everything in this system is in constant motion and many proteins are necessary to coordinate transport along the different intracellular pathways to avoid chaos. Among these proteins are ion channels., in particular TRPML channels (mucolipins) and two-pore channels (TPCs) which reside on endosomal and lysosomal membranes to speed up movement between organelles, e.g. by regulating fusion and fission; they help readjust pH and osmolarity changes due to such processes, or they promote exocytosis of export material. Pathophysiologically, these channels are involved in neurodegenerative, metabolic, retinal and infectious diseases, cancer, pigmentation defects, and immune cell function, and thus have been proposed as novel pharmacological targets, e.g. for the treatment of lysosomal storage disorders, Duchenne muscular dystrophy, or different types of cancer. Here, we discuss the similarities but also differences of TPCs and TRPMLs in regulating phagocytosis, autophagy and lysosomal exocytosis, and we address the contradictions and open questions in the field relating to the roles TPCs and TRPMLs play in these different processes.
Collapse
|
35
|
Loss of Two-Pore Channel 2 (TPC2) Expression Increases the Metastatic Traits of Melanoma Cells by a Mechanism Involving the Hippo Signalling Pathway and Store-Operated Calcium Entry. Cancers (Basel) 2020; 12:cancers12092391. [PMID: 32846966 PMCID: PMC7564716 DOI: 10.3390/cancers12092391] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
Melanoma is one of the most aggressive and treatment-resistant human cancers. The two-pore channel 2 (TPC2) is located on late endosomes, lysosomes and melanosomes. Here, we characterized how TPC2 knockout (KO) affected human melanoma cells derived from a metastatic site. TPC2 KO increased these cells’ ability to invade the extracelullar matrix and was associated with the increased expression of mesenchymal markers ZEB-1, Vimentin and N-Cadherin, and the enhanced secretion of MMP9. TPC2 KO also activated genes regulated by YAP/TAZ, which are key regulators of tumourigenesis and metastasis. Expression levels of ORAI1, a component of store-operated Ca2+ entry (SOCE), and PKC-βII, part of the HIPPO pathway that negatively regulates YAP/TAZ activity, were reduced by TPC2 KO and RNA interference knockdown. We propose a cellular mechanism mediated by ORAI1/Ca2+/PKC-βII to explain these findings. Highlighting their potential clinical significance, patients with metastatic tumours showed a reduction in TPC2 expression. Our research indicates a novel role of TPC2 in melanoma. While TPC2 loss may not activate YAP/TAZ target genes in primary melanoma, in metastatic melanoma it could activate such genes and increase cancer aggressiveness. These findings aid the understanding of tumourigenesis mechanisms and could provide new diagnostic and treatment strategies for skin cancer and other metastatic cancers.
Collapse
|
36
|
Moccia F, Zuccolo E, Di Nezza F, Pellavio G, Faris PS, Negri S, De Luca A, Laforenza U, Ambrosone L, Rosti V, Guerra G. Nicotinic acid adenine dinucleotide phosphate activates two-pore channel TPC1 to mediate lysosomal Ca 2+ release in endothelial colony-forming cells. J Cell Physiol 2020; 236:688-705. [PMID: 32583526 DOI: 10.1002/jcp.29896] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most recently discovered Ca2+ -releasing messenger that increases the intracellular Ca2+ concentration by mobilizing the lysosomal Ca2+ store through two-pore channels 1 (TPC1) and 2 (TPC2). NAADP-induced lysosomal Ca2+ release regulates multiple endothelial functions, including nitric oxide release and proliferation. A sizeable acidic Ca2+ pool endowed with TPC1 is also present in human endothelial colony-forming cells (ECFCs), which represent the only known truly endothelial precursors. Herein, we sought to explore the role of the lysosomal Ca2+ store and TPC1 in circulating ECFCs by harnessing Ca2+ imaging and molecular biology techniques. The lysosomotropic agent, Gly-Phe β-naphthylamide, and nigericin, which dissipates the proton gradient which drives Ca2+ sequestration by acidic organelles, caused endogenous Ca2+ release in the presence of a replete inositol-1,4,5-trisphosphate (InsP3 )-sensitive endoplasmic reticulum (ER) Ca2+ pool. Likewise, the amount of ER releasable Ca2+ was reduced by disrupting lysosomal Ca2+ content. Liposomal delivery of NAADP induced a transient Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store and by pharmacological and genetic blockade of TPC1. Pharmacological manipulation revealed that NAADP-induced Ca2+ release also required ER-embedded InsP3 receptors. Finally, NAADP-induced lysosomal Ca2+ release was found to trigger vascular endothelial growth factor-induced intracellular Ca2+ oscillations and proliferation, while it did not contribute to adenosine-5'-trisphosphate-induced Ca2+ signaling. These findings demonstrated that NAADP-induced TPC1-mediated Ca2+ release can selectively be recruited to induce the Ca2+ response to specific cues in circulating ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Estella Zuccolo
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Francesca Di Nezza
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pawan S Faris
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry Biotechnology and Advanced Diagnostic, Myelofibrosis Study Centre, IRCCS Ospedale Policlinico San Matteo, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
37
|
Gerndt S, Krogsaeter E, Patel S, Bracher F, Grimm C. Discovery of lipophilic two‐pore channel agonists. FEBS J 2020; 287:5284-5293. [DOI: 10.1111/febs.15432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Susanne Gerndt
- Department of Pharmacy – Center for Drug Research Ludwig‐Maximilians‐Universität Munich Germany
| | - Einar Krogsaeter
- Walther Straub Institute of Pharmacology and Toxicology Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Germany
| | - Sandip Patel
- Department of Cell and Developmental Biology University College London London UK
| | - Franz Bracher
- Department of Pharmacy – Center for Drug Research Ludwig‐Maximilians‐Universität Munich Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Germany
| |
Collapse
|
38
|
Gerndt S, Chen CC, Chao YK, Yuan Y, Burgstaller S, Scotto Rosato A, Krogsaeter E, Urban N, Jacob K, Nguyen ONP, Miller MT, Keller M, Vollmar AM, Gudermann T, Zierler S, Schredelseker J, Schaefer M, Biel M, Malli R, Wahl-Schott C, Bracher F, Patel S, Grimm C. Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function. eLife 2020; 9:54712. [PMID: 32167471 PMCID: PMC7108868 DOI: 10.7554/elife.54712] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Ion selectivity is a defining feature of a given ion channel and is considered immutable. Here we show that ion selectivity of the lysosomal ion channel TPC2, which is hotly debated (Calcraft et al., 2009; Guo et al., 2017; Jha et al., 2014; Ruas et al., 2015; Wang et al., 2012), depends on the activating ligand. A high-throughput screen identified two structurally distinct TPC2 agonists. One of these evoked robust Ca2+-signals and non-selective cation currents, the other weaker Ca2+-signals and Na+-selective currents. These properties were mirrored by the Ca2+-mobilizing messenger, NAADP and the phosphoinositide, PI(3,5)P2, respectively. Agonist action was differentially inhibited by mutation of a single TPC2 residue and coupled to opposing changes in lysosomal pH and exocytosis. Our findings resolve conflicting reports on the permeability and gating properties of TPC2 and they establish a new paradigm whereby a single ion channel mediates distinct, functionally-relevant ionic signatures on demand.
Collapse
Affiliation(s)
- Susanne Gerndt
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany.,Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Cheng-Chang Chen
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Yu-Kai Chao
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Yu Yuan
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sandra Burgstaller
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Anna Scotto Rosato
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Einar Krogsaeter
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nicole Urban
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Universität Leipzig, Leipzig, Germany
| | - Katharina Jacob
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ong Nam Phuong Nguyen
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Meghan T Miller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany.,Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Marco Keller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Angelika M Vollmar
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Johann Schredelseker
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany.,Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Schaefer
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany.,Rudolf-Boehm-Institute for Pharmacology and Toxicology, Universität Leipzig, Leipzig, Germany
| | - Martin Biel
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | | | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
39
|
Humeres E, Canle M, Lopes CN, Santaballa JA, Debacher NA, Moreira RDFPM, Safin V, Pérez MIF. Photo-immobilization of proteins on carbons. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 202:111675. [PMID: 31733612 DOI: 10.1016/j.jphotobiol.2019.111675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/16/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
The photofunctionalization of three different carbons with two proteins was studied at room temperature. Water solutions of bovine serum albumin, BSA, and α-amylase, AA, were photolyzed at 21 °C in the presence of graphite microparticles (6.20 μm), MPG, graphene oxide, MPGO, and graphene oxide modified with SO2, mMPGO. The insertion of BSA on carbon matrixes occurred with a deoxygenation reaction, most likely due to a dehydration step of a water molecule. XPS, TOC and TGA, showed that the BSA photo-insertion on MPG was highly efficient with 34.9% of the weight of MPG after photolysis, with an initial concentration of 1 g∙L-1 of BSA. A high yield of AA photoinsertion on the carbons was also obtained. The calculated weight of AA inserted on MPG and MPGO after photolysis was 22.30% and 18.08%, respectively, with respect to the initial weight of carbon, when the initial concentration of AA was 60 mg∙L-1. AA immobilized on MPG was active while the enzyme on MPGO showed a smaller activity, within the experimental error. Although a certain extent of denaturalization of both proteins was observed during photolysis, the molecular weight and composition changed very little during the photolysis, which would produce mainly conformational changes and isomerization reactions.
Collapse
Affiliation(s)
- Eduardo Humeres
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Moisés Canle
- Universidade da Coruña, Grupo Reactividade Química e Fotorreactividade (React!), Departamento de Química, Facultade de Ciencias & CICA, E-15071 A Coruña, Spain
| | - Cristiane Nunes Lopes
- Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - J Arturo Santaballa
- Universidade da Coruña, Grupo Reactividade Química e Fotorreactividade (React!), Departamento de Química, Facultade de Ciencias & CICA, E-15071 A Coruña, Spain
| | - Nito Angelo Debacher
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Regina de F P M Moreira
- Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Vladimir Safin
- Universidade da Coruña, Grupo Reactividade Química e Fotorreactividade (React!), Departamento de Química, Facultade de Ciencias & CICA, E-15071 A Coruña, Spain; Department of Chemistry and Technology of Natural Energy Carriers and Carbon Materials, Siberian Federal University, Russia
| | - M Isabel Fernández Pérez
- Universidade da Coruña, Grupo Reactividade Química e Fotorreactividade (React!), Departamento de Química, Facultade de Ciencias & CICA, E-15071 A Coruña, Spain
| |
Collapse
|
40
|
Zhang X, Chen W, Li P, Calvo R, Southall N, Hu X, Bryant-Genevier M, Feng X, Geng Q, Gao C, Yang M, Tang K, Ferrer M, Marugan JJ, Xu H. Agonist-specific voltage-dependent gating of lysosomal two-pore Na + channels. eLife 2019; 8:e51423. [PMID: 31825310 PMCID: PMC6905855 DOI: 10.7554/elife.51423] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022] Open
Abstract
Mammalian two-pore-channels (TPC1, 2; TPCN1, TPCN2) are ubiquitously- expressed, PI(3,5)P2-activated, Na+-selective channels in the endosomes and lysosomes that regulate luminal pH homeostasis, membrane trafficking, and Ebola viral infection. Whereas the channel activity of TPC1 is strongly dependent on membrane voltage, TPC2 lacks such voltage dependence despite the presence of the presumed 'S4 voltage-sensing' domains. By performing high-throughput screening followed by lysosomal electrophysiology, here we identified a class of tricyclic anti-depressants (TCAs) as small-molecule agonists of TPC channels. TCAs activate both TPC1 and TPC2 in a voltage-dependent manner, referred to as Lysosomal Na+ channel Voltage-dependent Activators (LyNa-VAs). We also identified another compound which, like PI(3,5)P2, activates TPC2 independent of voltage, suggesting the existence of agonist-specific gating mechanisms. Our identification of small-molecule TPC agonists should facilitate the studies of the cell biological roles of TPCs and can also readily explain the reported effects of TCAs in the modulation of autophagy and lysosomal functions.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Wei Chen
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Ping Li
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of TechnologyHangzhouChina
| | - Raul Calvo
- National Center for Advancing Translational Sciences (NCATS)Medical Center DriveRockvilleUnited States
| | - Noel Southall
- National Center for Advancing Translational Sciences (NCATS)Medical Center DriveRockvilleUnited States
| | - Xin Hu
- National Center for Advancing Translational Sciences (NCATS)Medical Center DriveRockvilleUnited States
| | - Melanie Bryant-Genevier
- National Center for Advancing Translational Sciences (NCATS)Medical Center DriveRockvilleUnited States
| | - Xinghua Feng
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of TechnologyHangzhouChina
| | - Qi Geng
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Chenlang Gao
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Meimei Yang
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
- Department of NeurologyThe Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Kaiyuan Tang
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS)Medical Center DriveRockvilleUnited States
| | - Juan Jose Marugan
- National Center for Advancing Translational Sciences (NCATS)Medical Center DriveRockvilleUnited States
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
41
|
Galione A, Chuang KT. Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1131:371-394. [PMID: 31646518 DOI: 10.1007/978-3-030-12457-1_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ca2+ signals are probably the most common intracellular signaling cellular events, controlling an extensive range of responses in virtually all cells. Many cellular stimuli, often acting at cell surface receptors, evoke Ca2+ signals by mobilizing Ca2+ from intracellular stores. Inositol trisphosphate (IP3) was the first messenger shown to link events at the plasma membrane to release Ca2+ from the endoplasmic reticulum (ER), through the activation of IP3-gated Ca2+ release channels (IP3 receptors). Subsequently, two additional Ca2+ mobilizing messengers were discovered, cADPR and NAADP. Both are metabolites of pyridine nucleotides, and may be produced by the same class of enzymes, ADP-ribosyl cyclases, such as CD38. Whilst cADPR mobilizes Ca2+ from the ER by activation of ryanodine receptors (RyRs), NAADP releases Ca2+ from acidic stores by a mechanism involving the activation of two pore channels (TPCs). In addition, other pyridine nucleotides have emerged as intracellular messengers. ADP-ribose and 2'-deoxy-ADPR both activate TRPM2 channels which are expressed at the plasma membrane and in lysosomes.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Kai-Ting Chuang
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Asfaha TY, Gunaratne GS, Johns ME, Marchant JS, Walseth TF, Slama JT. The synthesis and characterization of a clickable-photoactive NAADP analog active in human cells. Cell Calcium 2019; 83:102060. [PMID: 31442840 DOI: 10.1016/j.ceca.2019.102060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing second messenger which triggers Ca2+ release in both sea urchin egg homogenates and in mammalian cells. The NAADP binding protein has not been identified and the regulation of NAADP mediated Ca2+ release remains controversial. To address this issue, we have synthesized an NAADP analog in which 3-azido-5-azidomethylbenzoic acid is attached to the amino group of 5-(3-aminopropyl)-NAADP to produce an NAADP analog which is both a photoaffinity label and clickable. This 'all-in-one-clickable' NAADP (AIOC-NAADP) elicited Ca2+ release when microinjected into cultured human SKBR3 cells at low concentrations. In contrast, it displayed little activity in sea urchin egg homogenates where very high concentrations were required to elicit Ca2+ release. In mammalian cell homogenates, incubation with low concentrations of [32P]AIOC-NAADP followed by irradiation with UV light resulted in labeling 23 kDa protein(s). Competition between [32P]AIOC-NAADP and increasing concentrations of NAADP demonstrated that the labeling was selective. We show that this label recognizes and selectively photodervatizes the 23 kDa NAADP binding protein(s) in cultured human cells identified in previous studies using [32P]5-N3-NAADP.
Collapse
Affiliation(s)
- Timnit Yosef Asfaha
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue, Toledo, OH, 43614, United States
| | - Gihan S Gunaratne
- Department of Pharmacology, University of Minnesota Medical School, 312 Church St., Minneapolis, MN, 55455-0217, United States
| | - Malcolm E Johns
- Department of Pharmacology, University of Minnesota Medical School, 312 Church St., Minneapolis, MN, 55455-0217, United States
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226-0509, United States
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, 312 Church St., Minneapolis, MN, 55455-0217, United States.
| | - James T Slama
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue, Toledo, OH, 43614, United States.
| |
Collapse
|
43
|
Penny CJ, Vassileva K, Jha A, Yuan Y, Chee X, Yates E, Mazzon M, Kilpatrick BS, Muallem S, Marsh M, Rahman T, Patel S. Mining of Ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1151-1161. [PMID: 30408544 PMCID: PMC7114365 DOI: 10.1016/j.bbamcr.2018.10.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/04/2023]
Abstract
Two-pore channels (TPCs) are Ca2+-permeable ion channels localised to the endo-lysosomal system where they regulate trafficking of various cargoes including viruses. As a result, TPCs are emerging as important drug targets. However, their pharmacology is ill-defined. There are no approved drugs to target them. And their mechanism of ligand activation is largely unknown. Here, we identify a number of FDA-approved drugs as TPC pore blockers. Using a model of the pore of human TPC2 based on recent structures of mammalian TPCs, we virtually screened a database of ~1500 approved drugs. Because TPCs have recently emerged as novel host factors for Ebola virus entry, we reasoned that Ebola virus entry inhibitors may exert their effects through inhibition of TPCs. Cross-referencing hits from the TPC virtual screen with two recent high throughput anti-Ebola screens yielded approved drugs targeting dopamine and estrogen receptors as common hits. These compounds inhibited endogenous NAADP-evoked Ca2+ release from sea urchin egg homogenates, NAADP-mediated channel activity of TPC2 re-routed to the plasma membrane, and PI(3,5)P2-mediated channel activity of TPC2 expressed in enlarged lysosomes. Mechanistically, single channel analyses showed that the drugs reduced mean open time consistent with a direct action on the pore. Functionally, drug potency in blocking TPC2 activity correlated with inhibition of Ebola virus-like particle entry. Our results expand TPC pharmacology through the identification of approved drugs as novel blockers, support a role for TPCs in Ebola virus entry, and provide insight into the mechanisms underlying channel regulation. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Christopher J Penny
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Kristin Vassileva
- Department of Cell and Developmental Biology, University College London, London, UK; MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Archana Jha
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yu Yuan
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Xavier Chee
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Elizabeth Yates
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Michela Mazzon
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Bethan S Kilpatrick
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
44
|
Yuan Y, Gunaratne GS, Marchant JS, Patel S. Probing Ca 2+ release mechanisms using sea urchin egg homogenates. Methods Cell Biol 2019; 151:445-458. [PMID: 30948025 DOI: 10.1016/bs.mcb.2018.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sea urchin eggs have been extensively used to study Ca2+ release through intracellular Ca2+-permeable channels. Their amenability to homogenization yields a robust, cell-free preparation that was central to establishing the Ca2+ mobilizing actions of cyclic ADP-ribose and NAADP. Egg homogenates have continued to provide insight into the basic properties and pharmacology of intracellular Ca2+ release channels. In this chapter, we describe methods for the preparation of egg homogenates and monitoring Ca2+ release using fluorimetry and radiotracer flux.
Collapse
Affiliation(s)
- Yu Yuan
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Gihan S Gunaratne
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Jonathan S Marchant
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
45
|
Li P, Gu M, Xu H. Lysosomal Ion Channels as Decoders of Cellular Signals. Trends Biochem Sci 2019; 44:110-124. [PMID: 30424907 PMCID: PMC6340733 DOI: 10.1016/j.tibs.2018.10.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023]
Abstract
Lysosomes, the degradation center of the cell, are filled with acidic hydrolases. Lysosomes generate nutrient-sensitive signals to regulate the import of H+, hydrolases, and endocytic and autophagic cargos, as well as the export of their degradation products (catabolites). In response to environmental and cellular signals, lysosomes change their positioning, number, morphology, size, composition, and activity within minutes to hours to meet the changing cellular needs. Ion channels in the lysosome are essential transducers that mediate signal-initiated Ca2+/Fe2+/Zn2+ release and H+/Na+/K+-dependent changes of membrane potential across the perimeter membrane. Dysregulation of lysosomal ion flux impairs lysosome movement, membrane trafficking, nutrient sensing, membrane repair, organelle membrane contact, and lysosome biogenesis and adaptation. Hence, activation and inhibition of lysosomal channels by synthetic modulators may tune lysosome function to maintain cellular health and promote cellular clearance in lysosome storage disorders.
Collapse
Affiliation(s)
- Ping Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; These authors contributed equally to this work
| | - Mingxue Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; These authors contributed equally to this work
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
Adenine nucleotides as paracrine mediators and intracellular second messengers in immunity and inflammation. Biochem Soc Trans 2019; 47:329-337. [PMID: 30674608 DOI: 10.1042/bst20180419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
Adenine nucleotides (AdNs) play important roles in immunity and inflammation. Extracellular AdNs, such as adenosine triphosphate (ATP) or nicotinamide adenine dinucleotide (NAD) and their metabolites, act as paracrine messengers by fine-tuning both pro- and anti-inflammatory processes. Moreover, intracellular AdNs derived from ATP or NAD play important roles in many cells of the immune system, including T lymphocytes, macrophages, neutrophils and others. These intracellular AdNs are signaling molecules that transduce incoming signals into meaningful cellular responses, e.g. activation of immune responses against pathogens.
Collapse
|
47
|
Endolysosomal Ca 2+ Signalling and Cancer Hallmarks: Two-Pore Channels on the Move, TRPML1 Lags Behind! Cancers (Basel) 2018; 11:cancers11010027. [PMID: 30591696 PMCID: PMC6356888 DOI: 10.3390/cancers11010027] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
The acidic vesicles of the endolysosomal (EL) system are emerging as an intracellular Ca2+ store implicated in the regulation of multiple cellular functions. The EL Ca2+ store releases Ca2+ through a variety of Ca2+-permeable channels, including Transient Receptor Potential (TRP) Mucolipin 1-3 (TRPML1-3) and two-pore channels 1-2 (TPC1-2), whereas EL Ca2+ refilling is sustained by the proton gradient across the EL membrane and/or by the endoplasmic reticulum (ER). EL Ca2+ signals may be either spatially restricted to control vesicle trafficking, autophagy and membrane repair or may be amplified into a global Ca2+ signal through the Ca2+-dependent recruitment of ER-embedded channels. Emerging evidence suggested that nicotinic acid adenine dinucleotide phosphate (NAADP)-gated TPCs sustain multiple cancer hallmarks, such as migration, invasiveness and angiogenesis. Herein, we first survey the EL Ca2+ refilling and release mechanisms and then focus on the oncogenic role of EL Ca2+ signaling. While the evidence in favor of TRPML1 involvement in neoplastic transformation is yet to be clearly provided, TPCs are emerging as an alternative target for anticancer therapies.
Collapse
|
48
|
The emerging interrelation between ROCO and related kinases, intracellular Ca 2+ signaling, and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1054-1067. [PMID: 30582936 DOI: 10.1016/j.bbamcr.2018.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
ROCO kinases form a family of proteins characterized by kinase activity in addition to the presence of the so-called ROC (Ras of complex proteins)/COR (C-terminal of ROC) domains having a role in their GTPase activity. These are the death-associated protein kinase (DAPK) 1 and the leucine-rich repeat kinases (LRRK) 1 and 2. These kinases all play roles in cellular life and death decisions and in autophagy in particular. Related to the ROCO kinases is DAPK 2 that however cannot be classified as a ROCO protein due to the absence of the ROC/COR domains. This review aims to bring together what is known about the relation between these proteins and intracellular Ca2+ signals in the induction and regulation of autophagy. Interestingly, DAPK 1 and 2 and LRRK2 are all linked to Ca2+ signaling in their effects on autophagy, though in various ways. Present evidence supports an upstream role for LRRK2 that via lysosomal and endoplasmic reticulum Ca2+ release can trigger autophagy induction. In contrast herewith, DAPK1 and 2 react on existing Ca2+ signals to stimulate the autophagic pathway. Further research will be needed for obtaining a full understanding of the role of these various kinases in autophagy and to assess their exact relation with intracellular Ca2+ signaling as this would be helpful in the development of novel therapeutic strategies against neurodegenerative disorders, cancer and auto-immune diseases. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
49
|
5-Azido-8-ethynyl-NAADP: A bifunctional, clickable photoaffinity probe for the identification of NAADP receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1180-1188. [PMID: 30521871 DOI: 10.1016/j.bbamcr.2018.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate is an evolutionarily conserved second messenger, which mobilizes Ca2+ from acidic stores. The molecular identity of the NAADP receptor has yet to be defined. In pursuit of isolating and identifying NAADP-binding proteins, we synthesized and characterized a bifunctional probe that incorporates both a photoactivatable crosslinking azido moiety at the 5-position of the nicotinic ring and a 'clickable' ethynyl moiety to the 8-adenosyl position in NAADP. Microinjection of this 5N3-8-ethynyl-NAADP into cultured U2OS cells induced robust Ca2+ responses. Higher concentrations of 5N3-8-ethynyl were required to elicit Ca2+ release or displace 32P-NAADP in radioligand binding experiments in sea urchin egg homogenates. In human cell extracts, incubation of 32P-5N3-8-ethynyl-NAADP followed by UV irradiation resulted in selective labeling of 23 kDa and 35 kDa proteins and photolabeling of these proteins was prevented when incubated in the presence of unlabeled NAADP. Compared to the monofunctional 32P-5N3-NAADP, the clickable 32P-5N3-8-ethynyl-NAADP demonstrated less labeling of the 23 kDa and 35 kDa proteins (~3-fold) but provided an opportunity for further enrichment through the 'clickable' ethynyl moiety. No proteins were specifically labeled by 32P-5N3-8-ethynyl-NAADP in sea urchin egg homogenate. These experiments demonstrate that 5N3-8-ethynyl-NAADP is biologically active and selectively labels putative NAADP-binding proteins in mammalian systems, evidencing a 'bifunctional' probe with utility for isolating NAADP-binding proteins.
Collapse
|
50
|
The Trans Golgi Region is a Labile Intracellular Ca 2+ Store Sensitive to Emetine. Sci Rep 2018; 8:17143. [PMID: 30464185 PMCID: PMC6249204 DOI: 10.1038/s41598-018-35280-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/10/2018] [Indexed: 01/22/2023] Open
Abstract
The Golgi apparatus (GA) is a bona fide Ca2+ store; however, there is a lack of GA-specific Ca2+ mobilizing agents. Here, we report that emetine specifically releases Ca2+ from GA in HeLa and HL-1 atrial myocytes. Additionally, it has become evident that the trans-Golgi is a labile Ca2+ store that requires a continuous source of Ca2+ from either the external milieu or from the ER, to enable it to produce a detectable transient increase in cytosolic Ca2+. Our data indicates that the emetine-sensitive Ca2+ mobilizing mechanism is different from the two classical Ca2+ release mechanisms, i.e. IP3 and ryanodine receptors. This newly discovered ability of emetine to release Ca2+ from the GA may explain why chronic consumption of ipecac syrup has muscle side effects.
Collapse
|