1
|
Sanyal A, Scanavachi G, Somerville E, Saminathan A, Nair A, Bango Da Cunha Correia RF, Aylan B, Sitarska E, Oikonomou A, Hatzakis NS, Kirchhausen T. Neuronal constitutive endolysosomal perforations enable α-synuclein aggregation by internalized PFFs. J Cell Biol 2025; 224:e202401136. [PMID: 39714357 DOI: 10.1083/jcb.202401136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Endocytosis, required for the uptake of receptors and their ligands, can also introduce pathological aggregates such as α-synuclein (α-syn) in Parkinson's Disease. We show here the unexpected presence of intrinsically perforated endolysosomes in neurons, suggesting involvement in the genesis of toxic α-syn aggregates induced by internalized preformed fibrils (PFFs). Aggregation of endogenous α-syn in late endosomes and lysosomes of human iPSC-derived neurons (iNs), seeded by internalized α-syn PFFs, caused the death of the iNs but not of the parental iPSCs and non-neuronal cells. Live-cell imaging of iNs showed constitutive perforations in ∼5% of their endolysosomes. These perforations, identified by 3D electron microscopy in iNs and CA1 pyramidal neurons and absent in non-neuronal cells, may facilitate cytosolic access of endogenous α-syn to PFFs in the lumen of endolysosomes, triggering aggregation. Inhibiting the PIKfyve phosphoinositol kinase reduced α-syn aggregation and associated iN death, even with ongoing PFF endolysosomal entry, suggesting that maintaining endolysosomal integrity might afford a therapeutic strategy to counteract synucleinopathies.
Collapse
Affiliation(s)
- Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Elliott Somerville
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Anand Saminathan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Athul Nair
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Ricardo F Bango Da Cunha Correia
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Beren Aylan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Ewa Sitarska
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | | | - Nikos S Hatzakis
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Song X, Liu T, Yu L, Ji Q, Guo X, Zong R, Li Y, Huang G, Xue Q, Fu Q, Liu B, Zheng Y, Chen L, Gao C, Liu H. OTUD5 Protects Dopaminergic Neurons by Promoting the Degradation of α-Synuclein in Parkinson's Disease Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406700. [PMID: 39721018 DOI: 10.1002/advs.202406700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Defective clearance and accumulation of α-synuclein (α-Syn) is the key pathogenic factor in Parkinson's disease (PD). Recent studies emphasize the importance of E3 ligases in regulating the degradation of α-Syn. However, the molecular mechanisms by which deubiquitinases regulate α-Syn degradation are scarcely studied. In this study, it is found that the protein levels of α-Syn are negatively regulated by ovarian tumor protease deubiquitinase 5 (OTUD5) which protects dopaminergic (DA) neurons in the PD model. Mechanistically, OTUD5 promotes K63-linked polyubiquitination of α-Syn independent of its deubiquitinating enzyme activity and mediates its endolysosomal degradation by recruiting the E3 ligase neural precursor cell expressed developmentally downregulated 4 (NEDD4). Furthermore, OTUD5 conditional knockout in DA neurons results in more severe α-Syn related pathology and dyskinesia after injection of α-Syn preformed fibrils (PFF). Overall, the data unveil a novel mechanism to regulate the degradation of α-Syn and provide a new therapeutic strategy to alleviate DA neurodegeneration.
Collapse
Affiliation(s)
- Xiaomeng Song
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Tengfei Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Lu Yu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Qiuran Ji
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Xin Guo
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Runzhe Zong
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Yiquan Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Gan Huang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Qidi Xue
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Qingyi Fu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Lin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Rehabilitation Medicine, The Second Hospital, Shandong University, Jinan, Shandong, 250012, P. R. China
| |
Collapse
|
3
|
Bellini G, D'Antongiovanni V, Palermo G, Antonioli L, Fornai M, Ceravolo R, Bernardini N, Derkinderen P, Pellegrini C. α-Synuclein in Parkinson's Disease: From Bench to Bedside. Med Res Rev 2024. [PMID: 39704040 DOI: 10.1002/med.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/24/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
α-Synuclein (α-syn), a pathological hallmark of PD, is emerging as a bridging element at the crossroads between neuro/immune-inflammatory responses and neurodegeneration in PD. Several evidence show that pathological α-syn accumulates in neuronal and non-neuronal cells (i.e., neurons, microglia, macrophages, skin cells, and intestinal cells) in central and peripheral tissues since the prodromal phase of the disease, contributing to brain pathology. Indeed, pathological α-syn deposition can promote neurogenic/immune-inflammatory responses that contribute to systemic and central neuroinflammation associated with PD. After providing an overview of the structure and functions of physiological α-syn as well as its pathological forms, we review current studies about the role of neuronal and non-neuronal α-syn at the crossroads between neuroinflammation and neurodegeneration in PD. In addition, we provide an overview of the correlation between the accumulation of α-syn in central and peripheral tissues and PD, related symptoms, and neuroinflammation. Special attention was paid to discussing whether targeting α-syn can represent a suitable therapeutical approach for PD.
Collapse
Affiliation(s)
- Gabriele Bellini
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Neurology, The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone Health, New York City, New York, USA
| | - Vanessa D'Antongiovanni
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pascal Derkinderen
- Department of Neurology, Nantes Université, CHU Nantes, INSERM, Nantes, France
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Dey M, Gupta A, Badmalia MD, Ashish, Sharma D. Visualizing gaussian-chain like structural models of human α-synuclein in monomeric pre-fibrillar state: Solution SAXS data and modeling analysis. Int J Biol Macromol 2024; 288:138614. [PMID: 39674478 DOI: 10.1016/j.ijbiomac.2024.138614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Here, using small angle X-ray scattering (SAXS) data profile as reference, we attempted to visualize conformational ensemble accessible prefibrillar monomeric state of α-synuclein in solution. In agreement with previous reports, our analysis also confirmed that α-synuclein molecules adopted disordered shape profile under non-associating conditions. Chain-ensemble modeling protocol with dummy residues provided two weighted averaged clusters of semi-extended shapes. Further, Ensemble Optimization Method (EOM) computed mole fractions of semi-extended "twisted" conformations which might co-exist in solution. Since these were only Cα traces of the models, ALPHAFOLD2 server was used to search for all-atom models. Comparison with experimental data showed all predicted models disagreed equally, as individuals. Finally, we employed molecular dynamics simulations and normal mode analysis-based search coupled with SAXS data to seek better agreeing models. Overall, our analysis concludes that a shifting equilibrium of curved models with low α-helical content best-represents non-associating monomeric α-synuclein.
Collapse
Affiliation(s)
- Madhumita Dey
- CSIR - Institute of Microbial Technology, Chandigarh, India
| | - Arpit Gupta
- CSIR - Institute of Microbial Technology, Chandigarh, India
| | | | - Ashish
- CSIR - Institute of Microbial Technology, Chandigarh, India.
| | - Deepak Sharma
- CSIR - Institute of Microbial Technology, Chandigarh, India.
| |
Collapse
|
5
|
Mekala S, Wu Y, Li YM. Strategies of positron emission tomography (PET) tracer development for imaging of tau and α-synuclein in neurodegenerative disorders. RSC Med Chem 2024:d4md00576g. [PMID: 39678127 PMCID: PMC11638850 DOI: 10.1039/d4md00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by the presence of extracellular amyloid plaques consisting of β-amyloid peptides (Aβ) and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau (pTau) protein in the brain. Genetic and animal studies strongly indicate that Aβ, tau and neuroinflammation play important roles in the pathogenesis of AD. Several staging models showed that NFTs correlated well with the disease progression. Positron emission tomography (PET) imaging has become a widely used non-invasive technique to image NFTs for early diagnosis of AD. Despite the remarkable progress made over the past few years, tau PET imaging is still challenging due to the nature of tau pathology and the technical aspects of PET imaging. Tau pathology often coexists with other proteinopathies, such as Aβ plaques and α-synuclein aggregates. Distinguishing tau-specific signals from other overlapping pathologies is difficult, especially in the context of AD, where multiple protein aggregates are present, as well as the spectrum of different tau isoforms (3R and 4R) and conformations. Moreover, tracers should ideally have optimal pharmacokinetic properties to penetrate the blood-brain barrier (BBB) while maintaining specificity, low toxicity, low non-specific binding, rapid uptake and clearance from the brain, and formation of no radiolabeled metabolites in the brain. On the other hand, Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by the abnormal accumulations of α-synuclein in neurons. Heterogeneity and the unclear pathogenesis of PD hinder early and accurate diagnosis of the disease for therapeutic development in clinical use. In this review, while referring to existing reviews, we focus on the design strategies and current progress in tau (NFTs) targeting new PET tracers for AD; evolution of non-AD tau targeting PET tracers for applications including progressive supranuclear paralysis (PSP) and corticobasal degeneration (CBD); new PET tracer development for α-synuclein aggregate imaging in PD and giving an outlook for future PET tracer development.
Collapse
Affiliation(s)
- Shekar Mekala
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue New York New York 10065 USA
| | - You Wu
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue New York New York 10065 USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue New York New York 10065 USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| |
Collapse
|
6
|
Román-Vendrell C, Wallace JN, Watson AH, Celikag M, Bartels T, Morgan JR. Acute introduction of monomeric or multimeric α-synuclein induces distinct impacts on synaptic vesicle trafficking at lamprey giant synapses. J Physiol 2024. [PMID: 39530449 DOI: 10.1113/jp286281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Synaptic aggregation of α-synuclein often occurs in Parkinson's disease (PD), dementia with Lewy bodies (DLB) and other synucleinopathies and is associated with cognitive deficits and dementia. Thus, it is important to understand how accumulation of α-synuclein affects synapse structure and function. Native, physiological α-synuclein comprises a mixture of tetramers and related physiological oligomers (60-100 kDa) in equilibrium with monomeric α-synuclein. We previously demonstrated that acutely increasing the levels of physiological α-synuclein impaired intracellular synaptic vesicle trafficking and produced a pleiotropic phenotype, raising questions about which aspects of the synaptic phenotype were due to multimeric versus monomeric α-synuclein. Here, we address this by taking advantage of the unique features of the lamprey giant reticulospinal (RS) synapse, a vertebrate synapse that is amenable to acute perturbations of presynaptic processes via microinjection of purified proteins. α-Synuclein monomers and multimers were purified from HEK cells and separately introduced to lamprey synapses. Ultrastructural analysis revealed that both multimeric and monomeric α-synuclein impaired intracellular vesicle trafficking, leading to a loss of synaptic vesicles and buildup of endosomes. However, while monomeric α-synuclein additionally induced atypical fusion/fission at the active zone and impaired clathrin-mediated endocytosis, multimeric α-synuclein did not. Conversely, multimeric α-synuclein led to a decrease in synaptic vesicle docking, which was not observed with monomeric α-synuclein. These data provide further evidence that different molecular species of α-synuclein produce distinct and complex impacts on synaptic vesicle trafficking and reveal important insights into the cell biological processes that are affected in PD and DLB. KEY POINTS: α-Synuclein accumulation at synapses is associated with cognitive decline and dementia in Parkinson's disease and other synucleinopathies. We previously showed that acute introduction of excess human brain-derived α-synuclein to lamprey giant synapses caused pleiotropic phenotypes on synaptic vesicle trafficking, probably due to the mixture of molecular species of α-synuclein. Here, we dissected which aspects of the synaptic phenotypes were caused by monomeric (14 kDa) or multimeric (60-100 kDa) α-synuclein by purifying each molecular species and introducing each one separately to synapses via axonal microinjection. While monomeric α-synuclein inhibited clathrin-mediated synaptic vesicle endocytosis, multimeric α-synuclein primarily impaired endosomal trafficking. These findings reveal that different molecular species of α-synuclein have distinct impacts on synapses, suggesting different cellular and molecular targets.
Collapse
Affiliation(s)
- Cristina Román-Vendrell
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Jaqulin N Wallace
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | | | - Meral Celikag
- UK Dementia Research Institute, University College London, London, UK
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London, UK
| | - Jennifer R Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
7
|
Ho HH, Wing SS. α-Synuclein ubiquitination - functions in proteostasis and development of Lewy bodies. Front Mol Neurosci 2024; 17:1498459. [PMID: 39600913 PMCID: PMC11588729 DOI: 10.3389/fnmol.2024.1498459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Synucleinopathies are neurodegenerative disorders characterized by the accumulation of α-synuclein containing Lewy bodies. Ubiquitination, a key post-translational modification, has been recognized as a pivotal regulator of α-synuclein's cellular dynamics, influencing its degradation, aggregation, and associated neurotoxicity. This review examines comprehensively the current understanding of α-synuclein ubiquitination and its role in the pathogenesis of synucleinopathies, particularly in the context of Parkinson's disease. We explore the molecular mechanisms responsible for α-synuclein ubiquitination, with a focus on the roles of E3 ligases and deubiquitinases implicated in the degradation process which occurs primarily through the endosomal lysosomal pathway. The review further discusses how the dysregulation of these mechanisms contributes to α-synuclein aggregation and LB formation and offers suggestions for future investigations into the role of α-synuclein ubiquitination. Understanding these processes may shed light on potential therapeutic avenues that can modulate α-synuclein ubiquitination to alleviate its pathological impact in synucleinopathies.
Collapse
Affiliation(s)
- Hung-Hsiang Ho
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Simon S. Wing
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Yang Y, Chen S, Zhang L, Zhang G, Liu Y, Li Y, Zou L, Meng L, Tian Y, Dai L, Xiong M, Pan L, Xiong J, Chen L, Hou H, Yu Z, Zhang Z. The PM20D1-NADA pathway protects against Parkinson's disease. Cell Death Differ 2024; 31:1545-1560. [PMID: 39174646 PMCID: PMC11519464 DOI: 10.1038/s41418-024-01356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein (α-Syn) aggregates. However, the molecular mechanisms regulating α-Syn aggregation and neuronal degeneration remain poorly understood. The peptidase M20 domain containing 1 (PM20D1) gene lies within the PARK16 locus genetically linked to PD. Single nucleotide polymorphisms regulating PM20D1 expression are associated with changed risk of PD. Dopamine (DA) metabolism and DA metabolites have been reported to regulate α-Syn pathology. Here we report that PM20D1 catalyzes the conversion of DA to N-arachidonoyl dopamine (NADA), which interacts with α-Syn and inhibits its aggregation. Simultaneously, NADA competes with α-Syn fibrils to regulate TRPV4-mediated calcium influx and downstream phosphatases, thus alleviating α-Syn phosphorylation. The expression of PM20D1 decreases during aging. Overexpression of PM20D1 or the administration of NADA in a mouse model of synucleinopathy alleviated α-Syn pathology, dopaminergic neurodegeneration, and motor impairments. These observations support the protective effect of the PM20D1-NADA pathway against the progression of α-Syn pathology in PD.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sichun Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Liu
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Hua Hou
- Department of Polymer Science, College of Chemistry and Molecular Sciences of Wuhan University, Wuhan, 430060, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
9
|
Bhattacharya S, Xu L, Arrué L, Bartels T, Thompson D. Conformational Selection of α-Synuclein Tetramers at Biological Interfaces. J Chem Inf Model 2024; 64:8010-8023. [PMID: 39377660 PMCID: PMC11523075 DOI: 10.1021/acs.jcim.4c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Controlling the polymorphic assemblies of α-synuclein (αS) oligomers is crucial to reroute toxic protein aggregation implicated in Parkinson's disease (PD). One potential mediator is the interaction of αS tetramers with cell membranes, which may regulate the dynamic balance between aggregation-prone disordered monomers and aggregation-resistant helical tetramers. Here, we model diverse tetramer-cell interactions and compare the structure-function relations at the supramolecular-biological interface with available experimental data. The models predict preferential interaction of compact αS tetramers with highly charged membrane surfaces, which may further stabilize this aggregation-resistant conformer. On moderately charged membranes, extended structures are preferred. In addition to surface charge, curvature influences tetramer thermodynamic stability and aggregation, with potential for selective isolation of tetramers via regio-specific interactions with strongly negatively charged micelles that screen further aggregation. Our modeling data set highlights diverse beneficial nano-bio interactions to redirect biomolecule assembly, supporting new therapeutic approaches for PD based on lipid-mediated conformational selection and inhibition.
Collapse
Affiliation(s)
- Shayon Bhattacharya
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Liang Xu
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Lily Arrué
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Tim Bartels
- UK
Dementia Research Institute, University
College London, London WC1E6BT, U.K.
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
10
|
Gatzemeier LM, Meyer F, Outeiro TF. Synthesis and Semi-Synthesis of Alpha-Synuclein: Insight into the Chemical Complexity of Synucleinopathies. Chembiochem 2024; 25:e202400253. [PMID: 38965889 DOI: 10.1002/cbic.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The chemical rules governing protein folding have intrigued generations of researchers for decades. With the advent of artificial intelligence (AI), prediction of protein structure has improved tremendously. However, there is still a level of analysis that is only possible through wet laboratory experiments, especially in respect to the investigation of the pathological effect of mutations and posttranslational modifications (PTMs) on proteins of interest. This requires the availability of pure peptides and proteins in sufficient quantities for biophysical, biochemical, and functional studies. In this context, chemical protein synthesis and semi-synthesis are powerful tools in protein research, which help to enlighten the role of protein modification in the physiology and pathology of proteins. A protein of high interest in the field of biomedicine is alpha-synuclein (aSyn), a protein deeply associated with several devastating neurodegenerative disorders such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), or multiple systems atrophy (MSA). Here, we describe several methods and pathways to synthesize native or modified aSyn, and discuss how these approaches enable us to address pathological mechanisms that may open novel perspectives for therapeutic intervention.
Collapse
Affiliation(s)
- Luisa Maria Gatzemeier
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Straße 3, 37075, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von Siebold-Straße 3a, 37075, Göttingen, Germany
| |
Collapse
|
11
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
12
|
Zalon AJ, Quiriconi DJ, Pitcairn C, Mazzulli JR. α-Synuclein: Multiple pathogenic roles in trafficking and proteostasis pathways in Parkinson's disease. Neuroscientist 2024; 30:612-635. [PMID: 38420922 PMCID: PMC11358363 DOI: 10.1177/10738584241232963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the midbrain. A hallmark of both familial and sporadic PD is the presence of Lewy body inclusions composed mainly of aggregated α-synuclein (α-syn), a presynaptic protein encoded by the SNCA gene. The mechanisms driving the relationship between α-syn accumulation and neurodegeneration are not completely understood, although recent evidence indicates that multiple branches of the proteostasis pathway are simultaneously perturbed when α-syn aberrantly accumulates within neurons. Studies from patient-derived midbrain cultures that develop α-syn pathology through the endogenous expression of PD-causing mutations show that proteostasis disruption occurs at the level of synthesis/folding in the endoplasmic reticulum (ER), downstream ER-Golgi trafficking, and autophagic-lysosomal clearance. Here, we review the fundamentals of protein transport, highlighting the specific steps where α-syn accumulation may intervene and the downstream effects on proteostasis. Current therapeutic efforts are focused on targeting single pathways or proteins, but the multifaceted pathogenic role of α-syn throughout the proteostasis pathway suggests that manipulating several targets simultaneously will provide more effective disease-modifying therapies for PD and other synucleinopathies.
Collapse
Affiliation(s)
- Annie J Zalon
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Drew J Quiriconi
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Caleb Pitcairn
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Wang Q, Gu X, Yang L, Jiang Y, Zhang J, He J. Emerging perspectives on precision therapy for Parkinson's disease: multidimensional evidence leading to a new breakthrough in personalized medicine. Front Aging Neurosci 2024; 16:1417515. [PMID: 39026991 PMCID: PMC11254646 DOI: 10.3389/fnagi.2024.1417515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
PD is a prevalent and progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Genes play a significant role in the onset and progression of the disease. While the complexity and pleiotropy of gene expression networks have posed challenges for gene-targeted therapies, numerous pathways of gene variant expression show promise as therapeutic targets in preclinical studies, with some already in clinical trials. With the recognition of the numerous genes and complex pathways that can influence PD, it may be possible to take a novel approach to choose a treatment for the condition. This approach would be based on the symptoms, genomics, and underlying mechanisms of the disease. We discuss the utilization of emerging genetic and pathological knowledge of PD patients to categorize the disease into subgroups. Our long-term objective is to generate new insights for the therapeutic approach to the disease, aiming to delay and treat it more effectively, and ultimately reduce the burden on individuals and society.
Collapse
Affiliation(s)
- Qiaoli Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuan Gu
- Department of Trauma center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, The People’s Hospital of Jilin Province, Changchun, China
| | - Yan Jiang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiao Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
de Boni L, Wallis A, Hays Watson A, Ruiz-Riquelme A, Leyland LA, Bourinaris T, Hannaway N, Wüllner U, Peters O, Priller J, Falkenburger BH, Wiltfang J, Bähr M, Zerr I, Bürger K, Perneczky R, Teipel S, Löhle M, Hermann W, Schott BH, Brockmann K, Spottke A, Haustein K, Breuer P, Houlden H, Weil RS, Bartels T. Aggregation-resistant alpha-synuclein tetramers are reduced in the blood of Parkinson's patients. EMBO Mol Med 2024; 16:1657-1674. [PMID: 38839930 PMCID: PMC11250827 DOI: 10.1038/s44321-024-00083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Synucleinopathies such as Parkinson's disease (PD) are defined by the accumulation and aggregation of the α-synuclein protein in neurons, glia and other tissues. We have previously shown that destabilization of α-synuclein tetramers is associated with familial PD due to SNCA mutations and demonstrated brain-region specific alterations of α-synuclein multimers in sporadic PD patients following the classical Braak spreading theory. In this study, we assessed relative levels of disordered and higher-ordered multimeric forms of cytosolic α-synuclein in blood from familial PD with G51D mutations and sporadic PD patients. We used an adapted in vitro-cross-linking protocol for human EDTA-whole blood. The relative levels of higher-ordered α-synuclein tetramers were diminished in blood from familial PD and sporadic PD patients compared to controls. Interestingly, the relative amount of α-synuclein tetramers was already decreased in asymptomatic G51D carriers, supporting the hypothesis that α-synuclein multimer destabilization precedes the development of clinical PD. Our data, therefore suggest that measuring α-synuclein tetramers in blood may have potential as a facile biomarker assay for early detection and quantitative tracking of PD progression.
Collapse
Affiliation(s)
- Laura de Boni
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147, Cologne, Germany
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Amber Wallis
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Aurelia Hays Watson
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | | | - Louise-Ann Leyland
- Dementia Research Center, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Thomas Bourinaris
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Naomi Hannaway
- Dementia Research Center, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Ullrich Wüllner
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
- Departments of Neurology and Neurodegenerative Diseases, University Bonn, 53127, Bonn, Germany
| | - Oliver Peters
- Institute of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117, Berlin, Germany
- University of Edinburgh and UK DRI, Edinburgh, EH16 4SB, UK
- School of Medicine, Technical University of Munich, Department of Psychiatry and Psychotherapy, 81675, Munich, Germany
| | - Björn H Falkenburger
- German Center for Neurodegenerative Diseases (DZNE), 01307, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307, Dresden, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg August University, 37075, Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mathias Bähr
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Department of Neurology, University Medical Center, Georg August University, 37075, Göttingen, Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Inga Zerr
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Department of Neurology, University Medical Center, Georg August University, 37075, Göttingen, Germany
| | - Katharina Bürger
- German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, 81377, Munich, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, W6 8RP, UK
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, 17489, Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, 18147, Rostock, Germany
| | - Matthias Löhle
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, 17489, Rostock, Germany
- Department of Neurology, University of Rostock, 18057, Rostock, Germany
| | - Wiebke Hermann
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, 17489, Rostock, Germany
- Department of Neurology, University of Rostock, 18057, Rostock, Germany
| | - Björn-Hendrik Schott
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Göttingen, Georg August University, 37075, Göttingen, Germany
| | - Kathrin Brockmann
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, 72076, Tübingen, Germany
| | - Annika Spottke
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Katrin Haustein
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Peter Breuer
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Rimona S Weil
- Dementia Research Center, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK.
| |
Collapse
|
15
|
Calis S, Gevaert K. The role of Nα-terminal acetylation in protein conformation. FEBS J 2024. [PMID: 38923676 DOI: 10.1111/febs.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Especially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex having thousands of possible substrates, researchers are now trying to decipher the functional outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional consequence of Nα-terminal protein acetylation; its effect on protein folding. Using selected examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, here, we discuss the sometimes contradictory findings of the effects of Nα-terminal protein acetylation on protein (mis)folding and aggregation.
Collapse
Affiliation(s)
- Sam Calis
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| |
Collapse
|
16
|
Amagai R, Otomo R, Yoshioka S, Nagano H, Hashimoto N, Sakakibara R, Tanaka T, Okado-Matsumoto A. C-terminal truncation is a prominent post-translational modification of human erythrocyte α-synuclein. J Biochem 2024; 175:649-658. [PMID: 38308089 DOI: 10.1093/jb/mvae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
α-Synuclein (α-Syn) is a protein related to synucleinopathies with high expression in the central nervous system and erythrocytes which are a major source of peripheral α-Syn. Recent reports have suggested the presence of α-Syn within extracellular vesicles (EVs) derived from erythrocytes, potentially contributing to the pathogenesis of synucleinopathies. While Lewy bodies, intracellular inclusions containing aggregated α-Syn, are prominently observed within the brain, their occurrence in peripheral neurons implies the dissemination of synucleinopathy pathology throughout the body via the propagation of α-Syn. In this study, we found erythrocytes and circulating EVs obtained from plasma contained α-Syn, which was separated into four major forms using high-resolution clear native-PAGE and isoelectric focusing. Notably, erythrocyte α-Syn was classified into full-length and C-terminal truncated forms, with truncation observed between Y133 and Q134 as determined by LC-MS/MS analysis. Our finding revealed that C-terminally truncated α-Syn, which was previously reported to exist solely within the brain, was also present in erythrocytes and circulating EVs obtained from plasma.
Collapse
Affiliation(s)
- Ryosuke Amagai
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Riki Otomo
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Sakura Yoshioka
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Naoko Hashimoto
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Ryuji Sakakibara
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Chiba 285-8741, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Ayako Okado-Matsumoto
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
17
|
Anastasiadi AT, Arvaniti VZ, Hudson KE, Kriebardis AG, Stathopoulos C, D’Alessandro A, Spitalnik SL, Tzounakas VL. Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein Cell 2024; 15:315-330. [PMID: 38270470 PMCID: PMC11074998 DOI: 10.1093/procel/pwae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Alkmini T Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 13001 Aurora, CO, USA
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Vassilis L Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
18
|
Balana AT, Mahul-Mellier AL, Nguyen BA, Horvath M, Javed A, Hard ER, Jasiqi Y, Singh P, Afrin S, Pedretti R, Singh V, Lee VMY, Luk KC, Saelices L, Lashuel HA, Pratt MR. O-GlcNAc forces an α-synuclein amyloid strain with notably diminished seeding and pathology. Nat Chem Biol 2024; 20:646-655. [PMID: 38347213 PMCID: PMC11062923 DOI: 10.1038/s41589-024-01551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Amyloid-forming proteins such α-synuclein and tau, which are implicated in Alzheimer's and Parkinson's disease, can form different fibril structures or strains with distinct toxic properties, seeding activities and pathology. Understanding the determinants contributing to the formation of different amyloid features could open new avenues for developing disease-specific diagnostics and therapies. Here we report that O-GlcNAc modification of α-synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by cryogenic electron microscopy, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc-modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that posttranslational modifications, such as O-GlcNAc modification, of α-synuclein are key determinants of α-synuclein amyloid strains and pathogenicity.
Collapse
Affiliation(s)
- Aaron T Balana
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Binh A Nguyen
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mian Horvath
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Afraah Javed
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Eldon R Hard
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Preeti Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shumaila Afrin
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rose Pedretti
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Virender Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Virginia M-Y Lee
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelvin C Luk
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorena Saelices
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Department Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Gallagher E, Hou C, Zhu Y, Hsieh CJ, Lee H, Li S, Xu K, Henderson P, Chroneos R, Sheldon M, Riley S, Luk KC, Mach RH, McManus MJ. Positron Emission Tomography with [ 18F]ROStrace Reveals Progressive Elevations in Oxidative Stress in a Mouse Model of Alpha-Synucleinopathy. Int J Mol Sci 2024; 25:4943. [PMID: 38732162 PMCID: PMC11084161 DOI: 10.3390/ijms25094943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The synucleinopathies are a diverse group of neurodegenerative disorders characterized by the accumulation of aggregated alpha-synuclein (aSyn) in vulnerable populations of brain cells. Oxidative stress is both a cause and a consequence of aSyn aggregation in the synucleinopathies; however, noninvasive methods for detecting oxidative stress in living animals have proven elusive. In this study, we used the reactive oxygen species (ROS)-sensitive positron emission tomography (PET) radiotracer [18F]ROStrace to detect increases in oxidative stress in the widely-used A53T mouse model of synucleinopathy. A53T-specific elevations in [18F]ROStrace signal emerged at a relatively early age (6-8 months) and became more widespread within the brain over time, a pattern which paralleled the progressive development of aSyn pathology and oxidative damage in A53T brain tissue. Systemic administration of lipopolysaccharide (LPS) also caused rapid and long-lasting elevations in [18F]ROStrace signal in A53T mice, suggesting that chronic, aSyn-associated oxidative stress may render these animals more vulnerable to further inflammatory insult. Collectively, these results provide novel evidence that oxidative stress is an early and chronic process during the development of synucleinopathy and suggest that PET imaging with [18F]ROStrace holds promise as a means of detecting aSyn-associated oxidative stress noninvasively.
Collapse
Affiliation(s)
- Evan Gallagher
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Catherine Hou
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Yi Zhu
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
| | - Chia-Ju Hsieh
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Hsiaoju Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Shihong Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Kuiying Xu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Patrick Henderson
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
| | - Rea Chroneos
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
| | - Malkah Sheldon
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
| | - Shaipreeah Riley
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
| | - Kelvin C. Luk
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Meagan J. McManus
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
| |
Collapse
|
20
|
Farzam F, Dabirmanesh B. Experimental techniques for detecting and evaluating the amyloid fibrils. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:183-227. [PMID: 38811081 DOI: 10.1016/bs.pmbts.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Amyloid fibrils are insoluble proteins with intricate β-sheet structures associated with various human diseases, including Parkinson's, Alzheimer's, and prion diseases. Proteins can form aggregates when their structure is misfolded, resulting in highly organized amyloid fibrils or amorphous aggregates. The formation of protein aggregates is a promising research field for mitigating diseases and the pharmaceutical and food industries. It is important to monitor and minimize the appearance of aggregates in these protein products. Several methods exist to assess protein aggregation, that includes from basic investigations to advanced biophysical techniques. Physicochemical parameters such as molecular weight, conformation, structure, and dimension are examined to study aggregation. There is an urgent need to develop methods for the detection of protein aggregation and amyloid fibril formation both in vitro and in vivo. This chapter focuses on a comprehensive discussion of the methods used to characterize and evaluate aggregates and amyloid fibrils.
Collapse
Affiliation(s)
- Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
21
|
Monteiro Neto JR, Lima VDA, Follmer C. Fibrillation of α-synuclein triggered by bacterial endotoxin and lipid vesicles is modulated by N-terminal acetylation and familial Parkinson's disease mutations. FEBS J 2024; 291:1151-1167. [PMID: 38069536 DOI: 10.1111/febs.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
It has been hypothesized that --Parkinson's disease (PD) may be initiated in the gastrointestinal tract, before manifesting in the central nervous system. In this respect, it was demonstrated that lipopolysaccharide (LPS), an endotoxin from gram-negative bacteria, accelerates the in vitro formation of α-synuclein (aSyn) fibrils, whose intracellular deposits is a histological hallmark of the degeneration of dopaminergic neurons in PD. Herein, N-terminal acetylation and missense mutations of aSyn (A30P, A53T, E46K, H50Q and G51D) linked to rare, early-onset forms of familial PD were investigated regarding their effect on aSyn aggregation stimulated by either LPS or small unilamellar lipid vesicles (SUVs). Our findings indicated that LPS as well as SUVs induce the fibrillation of N-terminally acetylated wild-type aSyn (Ac-aSyn-WT) more remarkably than the non-acetylated protein, while the LPS-free protein alone did not undergo fibrillation under our assay conditions. In addition, with the exception of A30P, PD mutations increased the fibrillation of Ac-aSyn in the presence of LPS compared with Ac-aSyn-WT. The most pronounced effect of LPS was noticed for A53T, as observed when either Thioflavin-T or JC-1 were used as fluorescent probes for fibrils. Overall, our results suggest for the first time the existence of a synergy between LPS and PD mutations/N-terminal acetylation toward aSyn fibrillation.
Collapse
Affiliation(s)
- José Raphael Monteiro Neto
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Vanderlei de Araújo Lima
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Cristian Follmer
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Nuber S, Zhang X, McCaffery TD, Moors TE, Adom MA, Hahn WN, Martin D, Ericsson M, Tripathi A, Dettmer U, Svenningsson P, Selkoe DJ. Generation of G51D and 3D mice reveals decreased α-synuclein tetramer-monomer ratios promote Parkinson's disease phenotypes. NPJ Parkinsons Dis 2024; 10:47. [PMID: 38424059 PMCID: PMC10904737 DOI: 10.1038/s41531-024-00662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in the α-Synuclein (αS) gene promote αS monomer aggregation that causes neurodegeneration in familial Parkinson's disease (fPD). However, most mouse models expressing single-mutant αS transgenes develop neuronal aggregates very slowly, and few have dopaminergic cell loss, both key characteristics of PD. To accelerate neurotoxic aggregation, we previously generated fPD αS E46K mutant mice with rationally designed triple mutations based on the α-helical repeat motif structure of αS (fPD E46K→3 K). The 3 K variant increased αS membrane association and decreased the physiological tetramer:monomer ratio, causing lipid- and vesicle-rich inclusions and robust tremor-predominant, L-DOPA responsive PD-like phenotypes. Here, we applied an analogous approach to the G51D fPD mutation and its rational amplification (G51D → 3D) to generate mutant mice. In contrast to 3 K mice, G51D and 3D mice accumulate monomers almost exclusively in the cytosol while also showing decreased αS tetramer:monomer ratios. Both 1D and 3D mutant mice gradually accumulate insoluble, higher-molecular weight αS oligomers. Round αS neuronal deposits at 12 mos immunolabel for ubiquitin and pSer129 αS, with limited proteinase K resistance. Both 1D and 3D mice undergo loss of striatal TH+ fibers and midbrain dopaminergic neurons by 12 mos and a bradykinesia responsive to L-DOPA. The 3D αS mice have decreased tetramer:monomer equilibria and recapitulate major features of PD. These fPD G51D and 3D mutant mice should be useful models to study neuronal αS-toxicity associated with bradykinetic motor phenotypes.
Collapse
Affiliation(s)
- Silke Nuber
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Xiaoqun Zhang
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Thomas D McCaffery
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tim E Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Marie-Alexandre Adom
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Wolf N Hahn
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dylan Martin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Maria Ericsson
- Electron Microscopy Laboratory, Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Per Svenningsson
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
23
|
Skou LD, Johansen SK, Okarmus J, Meyer M. Pathogenesis of DJ-1/PARK7-Mediated Parkinson's Disease. Cells 2024; 13:296. [PMID: 38391909 PMCID: PMC10887164 DOI: 10.3390/cells13040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Parkinson's disease (PD) is a common movement disorder associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Mutations in the PD-associated gene PARK7 alter the structure and function of the encoded protein DJ-1, and the resulting autosomal recessively inherited disease increases the risk of developing PD. DJ-1 was first discovered in 1997 as an oncogene and was associated with early-onset PD in 2003. Mutations in DJ-1 account for approximately 1% of all recessively inherited early-onset PD occurrences, and the functions of the protein have been studied extensively. In healthy subjects, DJ-1 acts as an antioxidant and oxidative stress sensor in several neuroprotective mechanisms. It is also involved in mitochondrial homeostasis, regulation of apoptosis, chaperone-mediated autophagy (CMA), and dopamine homeostasis by regulating various signaling pathways, transcription factors, and molecular chaperone functions. While DJ-1 protects neurons against damaging reactive oxygen species, neurotoxins, and mutant α-synuclein, mutations in the protein may lead to inefficient neuroprotection and the progression of PD. As current therapies treat only the symptoms of PD, the development of therapies that directly inhibit oxidative stress-induced neuronal cell death is critical. DJ-1 has been proposed as a potential therapeutic target, while oxidized DJ-1 could operate as a biomarker for PD. In this paper, we review the role of DJ-1 in the pathogenesis of PD by highlighting some of its key neuroprotective functions and the consequences of its dysfunction.
Collapse
Affiliation(s)
- Line Duborg Skou
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
| | - Steffi Krudt Johansen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
24
|
Galkin M, Priss A, Kyriukha Y, Shvadchak V. Navigating α-Synuclein Aggregation Inhibition: Methods, Mechanisms, and Molecular Targets. CHEM REC 2024; 24:e202300282. [PMID: 37919046 DOI: 10.1002/tcr.202300282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease is a yet incurable, age-related neurodegenerative disorder characterized by the aggregation of small neuronal protein α-synuclein into amyloid fibrils. Inhibition of this process is a prospective strategy for developing a disease-modifying treatment. We overview here small molecule, peptide, and protein inhibitors of α-synuclein fibrillization reported to date. Special attention was paid to the specificity of inhibitors and critical analysis of their action mechanisms. Namely, the importance of oxidation of polyphenols and cross-linking of α-synuclein into inhibitory dimers was highlighted. We also compared strategies of targeting monomeric, oligomeric, and fibrillar α-synuclein species, thoroughly discussed the strong and weak sides of different approaches to testing the inhibitors.
Collapse
Affiliation(s)
- Maksym Galkin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Yevhenii Kyriukha
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States
| | - Volodymyr Shvadchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
25
|
Murthy MN, Shyamala BV. Ashwagandha- Withania somnifera (L.) Dunal as a multipotent neuroprotective remedy for genetically induced motor dysfunction and cellular toxicity in human neurodegenerative disease models of Drosophila. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116897. [PMID: 37442493 DOI: 10.1016/j.jep.2023.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ashwagandha-Withania somnifera (L.) Dunal, well known for its multipotent therapeutic properties has been used in Ayurveda for 3000 years. The plant with more than 50 active phytoconstituents is recognised for its anti-cancerous, anti-diabetic, anti-inflammatory, anti-microbial, and neurotherapeutic properties demonstrated in in vitro studies and chemically induced rodent models. Genetically targeted Parkinson's, Alzheimer's and other neurodegenerative disease models have been created in Drosophila and have been used to get mechanistic insight into the in vivo cellular events, and genetic pathways that underlie respective neurodegenerative condition. But hitherto, there aren't enough attempts made to capitalize the genetic potential of these disease models to validate the therapeutic efficacy of different reagents used in traditional medicine, in the context of specific disease-causing genetic mutations. AIM OF THE STUDY Drugs discovered using in vitro platforms might fail in several instances of clinical trials because of the genetic heterogeneity and variability in the physiological context found among the patients. Drosophila by virtue of its genetically regulated experimental potential forms an ideal in vivo model to validate the candidate reagents discovered in in vitro screens for their efficacy under specific genetic situations. Here we have used genetically induced α-synucleinopathy and tauopathy transgenic fly models to study the efficacy of Ashwagandha treatment, assessing cellular and behavioural parameters. METHODS We have expressed the disease-causing human gene mutations in specific cell types of Drosophila using GAL4/UAS targeted expression system to create disease models. Human α-synuclein mutant (A30P) was expressed in dopaminergic neurons using Ddc-GAL4 driver strain to induce dopaminergic neurodegeneration and assayed for motor dysfunction. Human TauE14, mutant protein was expressed in photoreceptor neurons using GMR-GAL4 driver to induce photoreceptor degeneration. Microtubular destability and mitotic arrest in the dividing photoreceptor precursor cells were studied using αPH3 antibody. Lysosomal dysregulation caused necrotic black spots were induced by TauE14 with GMR-GAL4 driver, in a white mutant background. These flies mimicking neurodegenerative conditions were supplemented with different concentrations of Ashwagandha aqueous root extract mixed with regular fly food. The treated flies were analysed for cellular and behaviour parameters. RESULTS Lifespan assay shows that, Ashwagandha-root extract imparts an extended lifespan in male Drosophila flies which are intrinsically less stress resistant. Motor dysfunction caused due to human α-synuclein mutant protein expressed in dopaminergic neurons is greatly brought down. Further, Ashwagandha extract treatment significantly reduces TauE14 induced microtubular destability, mitotic arrest and neuronal death in photoreceptor neurons. Our experiment with tauopathy model in white mutant background exemplify that, Ashwagandha-root extract treatment can bring down lysosomal dysregulation induced necrosis of photoreceptor neurons. CONCLUSION We have carried out a multifaceted study which elucidates that Ashwagandha can serve as a comprehensive, phytotherapeutic formulation to combat neurodegeneration, targeting multiple causative genetically defective conditions.
Collapse
Affiliation(s)
- Mamatha Nagamadhu Murthy
- Developmental Genetics Laboratory, Department of Studies in Zoology, University of Mysore, Mysuru, 570006, India.
| | | |
Collapse
|
26
|
Limanaqi F, Zecchini S, Saulle I, Strizzi S, Vanetti C, Garziano M, Cappelletti G, Parolin D, Caccia S, Trabattoni D, Fenizia C, Clerici M, Biasin M. Alpha-synuclein dynamics bridge Type-I Interferon response and SARS-CoV-2 replication in peripheral cells. Biol Res 2024; 57:2. [PMID: 38191441 PMCID: PMC10775536 DOI: 10.1186/s40659-023-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-β, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy.
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Debora Parolin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 20148, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy.
| |
Collapse
|
27
|
Mahato J, Mukherjee R, Bose A, Mehra S, Gadhe L, Maji SK, Chowdhury A. Sensitized Emission Imaging Allows Nanoscale Surface Polarity Mapping of α-Synuclein Amyloid Fibrils. ACS Chem Neurosci 2024; 15:108-118. [PMID: 38099928 DOI: 10.1021/acschemneuro.3c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
When misfolded, α-Synuclein (α-Syn), a natively disordered protein, aggregates to form amyloid fibrils responsible for the neurodegeneration observed in Parkinson's disease. Structural studies revealed distinct molecular packing of α-Syn in different fibril polymorphs and variations of interprotofilament connections in the fibrillar architecture. Fibril polymorphs have been hypothesized to exhibit diverse surface polarities depending on the folding state of the protein during aggregation; however, the spatial variation of surface polarity in amyloid fibrils remains unexplored. To map the local polarity (or hydrophobicity) along α-Syn fibrils, we visualized the spectral characteristics of two dyes with distinct polarities-hydrophilic Thioflavin T (ThT) and hydrophobic Nile red (NR)─when both are bound to α-Syn fibrils. Dual-channel fluorescence imaging reveals uneven partitioning of ThT and NR along individual fibrils, implying that relatively more polar/hydrophobic patches are spread over a few hundred nanometers. Remarkably, spectrally resolved sensitized emission imaging of α-Syn fibrils provides unambiguous evidence of energy transfer from ThT to NR, implying that dyes of dissimilar polarity are in close proximity. Furthermore, spatially resolved fluorescence spectroscopy of the solvatochromic probe NR allowed us to quantitatively map the range and variation of the polarity parameter ET30 along individual fibrils. Our results suggest the existence of interlaced polar and nonpolar nanoscale domains throughout the fibrils; however, the relative populations of these patches vary considerably over larger length scales likely due to heterogeneous packing of α-Syn during fibrilization and dissimilar exposed polarities of polymorphic segments. The employed method may provide a foundation for imaging modalities of other similar structurally unresolved systems with diverse hydrophobic-hydrophilic topology.
Collapse
Affiliation(s)
- Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Rajat Mukherjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Abhik Bose
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
- Sunita Sanghi Centre of Ageing and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
- Sunita Sanghi Centre of Ageing and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| |
Collapse
|
28
|
Sanyal A, Scanavachi G, Somerville E, Saminathan A, Nair A, Oikonomou A, Hatzakis NS, Kirchhausen T. Constitutive Endolysosomal Perforation in Neurons allows Induction of α-Synuclein Aggregation by Internalized Pre-Formed Fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573738. [PMID: 38260258 PMCID: PMC10802249 DOI: 10.1101/2023.12.30.573738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The endocytic pathway is both an essential route of molecular uptake in cells and a potential entry point for pathology-inducing cargo. The cell-to-cell spread of cytotoxic aggregates, such as those of α-synuclein (α-syn) in Parkinson's Disease (PD), exemplifies this duality. Here we used a human iPSC-derived induced neuronal model (iNs) prone to death mediated by aggregation in late endosomes and lysosomes of endogenous α-syn, seeded by internalized pre-formed fibrils of α-syn (PFFs). This PFF-mediated death was not observed with parental iPSCs or other non-neuronal cells. Using live-cell optical microscopy to visualize the read out of biosensors reporting endo-lysosome wounding, we discovered that up to about 10% of late endosomes and lysosomes in iNs exhibited spontaneous constitutive perforations, regardless of the presence of internalized PFFs. This wounding, absent in parental iPSCs and non-neuronal cells, corresponded to partial damage by nanopores in the limiting membranes of a subset of endolysosomes directly observed by volumetric focused ion beam scanning electron microscopy (FIB-SEM) in iNs and in CA1 pyramidal neurons from mouse brain, and not found in iPSCs or in other non-neuronal cells in culture or in mouse liver and skin. We suggest that the compromised limiting membranes in iNs and neurons in general are the primary conduit for cytosolic α-syn to access PFFs entrapped within endo-lysosomal lumens, initiating PFF-mediated α-syn aggregation. Significantly, eradicating the intrinsic endolysosomal perforations in iNs by inhibiting the endosomal Phosphatidylinositol-3-Phosphate/Phosphatidylinositol 5-Kinase (PIKfyve kinase) using Apilimod or Vacuolin-1 markedly reduced PFF-induced α-syn aggregation, despite PFFs continuing to enter the endolysosomal compartment. Crucially, this intervention also diminished iN death associated with PFF incubation. Our results reveal the surprising presence of intrinsically perforated endo-lysosomes in neurons, underscoring their crucial early involvement in the genesis of toxic α-syn aggregates induced by internalized PFFs. This discovery offers a basis for employing PIKfyve kinase inhibition as a potential therapeutic strategy to counteract synucleinopathies.
Collapse
Affiliation(s)
- Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | - Elliott Somerville
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | - Anand Saminathan
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | - Athul Nair
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | | | - Nikos S. Hatzakis
- Department of Chemistry University of Copenhagen, 2100 Copenhagen, Denmark
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
29
|
Saramowicz K, Siwecka N, Galita G, Kucharska-Lusina A, Rozpędek-Kamińska W, Majsterek I. Alpha-Synuclein Contribution to Neuronal and Glial Damage in Parkinson's Disease. Int J Mol Sci 2023; 25:360. [PMID: 38203531 PMCID: PMC10778752 DOI: 10.3390/ijms25010360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra and the widespread accumulation of alpha-synuclein (αSyn) protein aggregates. αSyn aggregation disrupts critical cellular processes, including synaptic function, mitochondrial integrity, and proteostasis, which culminate in neuronal cell death. Importantly, αSyn pathology extends beyond neurons-it also encompasses spreading throughout the neuronal environment and internalization by microglia and astrocytes. Once internalized, glia can act as neuroprotective scavengers, which limit the spread of αSyn. However, they can also become reactive, thereby contributing to neuroinflammation and the progression of PD. Recent advances in αSyn research have enabled the molecular diagnosis of PD and accelerated the development of targeted therapies. Nevertheless, despite more than two decades of research, the cellular function, aggregation mechanisms, and induction of cellular damage by αSyn remain incompletely understood. Unraveling the interplay between αSyn, neurons, and glia may provide insights into disease initiation and progression, which may bring us closer to exploring new effective therapeutic strategies. Herein, we provide an overview of recent studies emphasizing the multifaceted nature of αSyn and its impact on both neuron and glial cell damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (K.S.); (N.S.); (G.G.); (A.K.-L.); (W.R.-K.)
| |
Collapse
|
30
|
Altay MF, Kumar ST, Burtscher J, Jagannath S, Strand C, Miki Y, Parkkinen L, Holton JL, Lashuel HA. Development and validation of an expanded antibody toolset that captures alpha-synuclein pathological diversity in Lewy body diseases. NPJ Parkinsons Dis 2023; 9:161. [PMID: 38062007 PMCID: PMC10703845 DOI: 10.1038/s41531-023-00604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
The abnormal aggregation and accumulation of alpha-synuclein (aSyn) in the brain is a defining hallmark of synucleinopathies. Various aSyn conformations and post-translationally modified forms accumulate in pathological inclusions and vary in abundance among these disorders. Relying on antibodies that have not been assessed for their ability to detect the diverse forms of aSyn may lead to inaccurate estimations of aSyn pathology in human brains or disease models. To address this challenge, we developed and characterized an expanded antibody panel that targets different sequences and post-translational modifications along the length of aSyn, and that recognizes all monomeric, oligomeric, and fibrillar aSyn conformations. Next, we profiled aSyn pathology across sporadic and familial Lewy body diseases (LBDs) and reveal heterogeneous forms of aSyn pathology, rich in Serine 129 phosphorylation, Tyrosine 39 nitration and N- and C-terminal tyrosine phosphorylations, scattered both to neurons and glia. In addition, we show that aSyn can become hyperphosphorylated during processes of aggregation and inclusion maturation in neuronal and animal models of aSyn seeding and spreading. The validation pipeline we describe for these antibodies paves the way for systematic investigations into aSyn pathological diversity in the human brain, peripheral tissues, as well as in cellular and animal models of synucleinopathies.
Collapse
Affiliation(s)
- Melek Firat Altay
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Senthil T Kumar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Somanath Jagannath
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Catherine Strand
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
| | - Yasuo Miki
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Laura Parkkinen
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland.
| |
Collapse
|
31
|
Kowalski A, Betzer C, Larsen ST, Gregersen E, Newcombe EA, Bermejo MC, Bendtsen VW, Diemer J, Ernstsen CV, Jain S, Bou AE, Langkilde AE, Nejsum LN, Klipp E, Edwards R, Kragelund BB, Jensen PH, Nissen P. Monomeric α-synuclein activates the plasma membrane calcium pump. EMBO J 2023; 42:e111122. [PMID: 37916890 PMCID: PMC10690453 DOI: 10.15252/embj.2022111122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
Alpha-synuclein (aSN) is a membrane-associated and intrinsically disordered protein, well known for pathological aggregation in neurodegeneration. However, the physiological function of aSN is disputed. Pull-down experiments have pointed to plasma membrane Ca2+ -ATPase (PMCA) as a potential interaction partner. From proximity ligation assays, we find that aSN and PMCA colocalize at neuronal synapses, and we show that calcium expulsion is activated by aSN and PMCA. We further show that soluble, monomeric aSN activates PMCA at par with calmodulin, but independent of the autoinhibitory domain of PMCA, and highly dependent on acidic phospholipids and membrane-anchoring properties of aSN. On PMCA, the key site is mapped to the acidic lipid-binding site, located within a disordered PMCA-specific loop connecting the cytosolic A domain and transmembrane segment 3. Our studies point toward a novel physiological role of monomeric aSN as a stimulator of calcium clearance in neurons through activation of PMCA.
Collapse
Affiliation(s)
- Antoni Kowalski
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- REPIN and Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Department of Molecular NeurochemistryMedical University of LodzLodzPoland
- Present address:
ImmunAware ApSHørsholmDenmark
| | - Cristine Betzer
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Present address:
Region Midtjylland, Regionshospitalet GødstrupHerningDenmark
| | - Sigrid Thirup Larsen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
| | - Emil Gregersen
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Present address:
Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Estella A Newcombe
- REPIN and Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Montaña Caballero Bermejo
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- Department Biochemistry and Molecular Biology and Genetics, IBMPUniversity of ExtremaduraBadajozSpain
| | - Viktor Wisniewski Bendtsen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
| | - Jorin Diemer
- Theoretical BiophysicsHumboldt‐Universität zu BerlinBerlinGermany
| | | | - Shweta Jain
- Departments of Neurology and PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Alicia Espiña Bou
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
| | | | - Lene N Nejsum
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Edda Klipp
- Theoretical BiophysicsHumboldt‐Universität zu BerlinBerlinGermany
| | - Robert Edwards
- Departments of Neurology and PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Birthe B Kragelund
- REPIN and Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Poul Nissen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
| |
Collapse
|
32
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
33
|
Spataro S, Maco B, Escrig S, Jensen L, Polerecky L, Knott G, Meibom A, Schneider BL. Stable isotope labeling and ultra-high-resolution NanoSIMS imaging reveal alpha-synuclein-induced changes in neuronal metabolism in vivo. Acta Neuropathol Commun 2023; 11:157. [PMID: 37770947 PMCID: PMC10540389 DOI: 10.1186/s40478-023-01608-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 09/30/2023] Open
Abstract
In Parkinson's disease, pathogenic factors such as the intraneuronal accumulation of the protein α-synuclein affect key metabolic processes. New approaches are required to understand how metabolic dysregulations cause degeneration of vulnerable subtypes of neurons in the brain. Here, we apply correlative electron microscopy and NanoSIMS isotopic imaging to map and quantify 13C enrichments in dopaminergic neurons at the subcellular level after pulse-chase administration of 13C-labeled glucose. To model a condition leading to neurodegeneration in Parkinson's disease, human α-synuclein was unilaterally overexpressed in the substantia nigra of one brain hemisphere in rats. When comparing neurons overexpressing α-synuclein to those located in the control hemisphere, the carbon anabolism and turnover rates revealed metabolic anomalies in specific neuronal compartments and organelles. Overexpression of α-synuclein enhanced the overall carbon turnover in nigral neurons, despite a lower relative incorporation of carbon inside the nucleus. Furthermore, mitochondria and Golgi apparatus showed metabolic defects consistent with the effects of α-synuclein on inter-organellar communication. By revealing changes in the kinetics of carbon anabolism and turnover at the subcellular level, this approach can be used to explore how neurodegeneration unfolds in specific subpopulations of neurons.
Collapse
Affiliation(s)
- Sofia Spataro
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bohumil Maco
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Louise Jensen
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lubos Polerecky
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Graham Knott
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Bioelectron Microscopy Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland.
- EPFL ENAC IIE LGB, Station 2, 1015, Lausanne, Switzerland.
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- EPFL SV PTECH PTBTG, Ch. Des Mines 9, 1202, Geneva, Switzerland.
| |
Collapse
|
34
|
Fazzari M, Di Biase E, Zaccagnini L, Henriques A, Callizot N, Ciampa MG, Mauri L, Carsana EV, Loberto N, Aureli M, Mari L, Civera M, Vasile F, Sonnino S, Bartels T, Chiricozzi E, Lunghi G. GM1 oligosaccharide efficacy against α-synuclein aggregation and toxicity in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159350. [PMID: 37330108 PMCID: PMC10579883 DOI: 10.1016/j.bbalip.2023.159350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Fibrillary aggregated α-synuclein represents the neurologic hallmark of Parkinson's disease and is considered to play a causative role in the disease. Although the causes leading to α-synuclein aggregation are not clear, the GM1 ganglioside interaction is recognized to prevent this process. How GM1 exerts these functions is not completely clear, although a primary role of its soluble oligosaccharide (GM1-OS) is emerging. Indeed, we recently identified GM1-OS as the bioactive moiety responsible for GM1 neurotrophic and neuroprotective properties, specifically reverting the parkinsonian phenotype both in in vitro and in vivo models. Here, we report on GM1-OS efficacy against the α-synuclein aggregation and toxicity in vitro. By amyloid seeding aggregation assay and NMR spectroscopy, we demonstrated that GM1-OS was able to prevent both the spontaneous and the prion-like α-synuclein aggregation. Additionally, circular dichroism spectroscopy of recombinant monomeric α-synuclein showed that GM1-OS did not induce any change in α-synuclein secondary structure. Importantly, GM1-OS significantly increased neuronal survival and preserved neurite networks of dopaminergic neurons affected by α-synuclein oligomers, together with a reduction of microglia activation. These data further demonstrate that the ganglioside GM1 acts through its oligosaccharide also in preventing the α-synuclein pathogenic aggregation in Parkinson's disease, opening a perspective window for GM1-OS as drug candidate.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | | | | | - Noëlle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, 13120 Gardanne, France
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Luigi Mari
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Monica Civera
- Department of Chemistry, University of Milano, Milan, Italy
| | | | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy.
| | - Tim Bartels
- UK Dementia Research Institute at UCL, London, UK
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy.
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| |
Collapse
|
35
|
Lomeli-Lepe AK, Castañeda-Cabral JL, López-Pérez SJ. Synucleinopathies: Intrinsic and Extrinsic Factors. Cell Biochem Biophys 2023; 81:427-442. [PMID: 37526884 DOI: 10.1007/s12013-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
α-Synucleinopathies are a group of neurodegenerative disorders characterized by alterations in α-synuclein (α-syn), a protein associated with membrane phospholipids, whose precise function in normal cells is still unknown. These kinds of diseases are caused by multiple factors, but the regulation of the α-syn gene is believed to play a central role in the pathology of these disorders; therefore, the α-syn gene is one of the most studied genes. α-Synucleinopathies are complex disorders that derive from the interaction between genetic and environmental factors. Here, we offer an update on the landscape of the epigenetic regulation of α-syn gene expression that has been linked with α-synucleinopathies. We also delve into the reciprocal influence between epigenetic modifications and other factors related to these disorders, such as posttranslational modifications, microbiota participation, interactions with lipids, neuroinflammation and oxidative stress, to promote α-syn aggregation by acting on the transcription and/or translation of the α-syn gene.
Collapse
Affiliation(s)
- Alma Karen Lomeli-Lepe
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | - Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | | |
Collapse
|
36
|
Battis K, Xiang W, Winkler J. The Bidirectional Interplay of α-Synuclein with Lipids in the Central Nervous System and Its Implications for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:13270. [PMID: 37686080 PMCID: PMC10487772 DOI: 10.3390/ijms241713270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The alteration and aggregation of alpha-synuclein (α-syn) play a crucial role in neurodegenerative diseases collectively termed as synucleinopathies, including Parkinson's disease (PD). The bidirectional interaction of α-syn with lipids and biomembranes impacts not only α-syn aggregation but also lipid homeostasis. Indeed, lipid composition and metabolism are severely perturbed in PD. One explanation for lipid-associated alterations may involve structural changes in α-syn, caused, for example, by missense mutations in the lipid-binding region of α-syn as well as post-translational modifications such as phosphorylation, acetylation, nitration, ubiquitination, truncation, glycosylation, and glycation. Notably, different strategies targeting the α-syn-lipid interaction have been identified and are able to reduce α-syn pathology. These approaches include the modulation of post-translational modifications aiming to reduce the aggregation of α-syn and modify its binding properties to lipid membranes. Furthermore, targeting enzymes involved in various steps of lipid metabolism and exploring the neuroprotective potential of lipids themselves have emerged as novel therapeutic approaches. Taken together, this review focuses on the bidirectional crosstalk of α-syn and lipids and how alterations of this interaction affect PD and thereby open a window for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.B.); (W.X.)
| |
Collapse
|
37
|
Heesink G, Marseille MJ, Fakhree MAA, Driver MD, van Leijenhorst-Groener KA, Onck PR, Blum C, Claessens MM. Exploring Intra- and Inter-Regional Interactions in the IDP α-Synuclein Using smFRET and MD Simulations. Biomacromolecules 2023; 24:3680-3688. [PMID: 37407505 PMCID: PMC10428166 DOI: 10.1021/acs.biomac.3c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Theoretical concepts from polymer physics are often used to describe intrinsically disordered proteins (IDPs). However, amino acid interactions within and between regions of the protein can lead to deviations from typical polymer scaling behavior and even to short-lived secondary structures. To investigate the key interactions in the dynamic IDP α-synuclein (αS) at the amino acid level, we conducted single-molecule fluorescence resonance energy transfer (smFRET) experiments and coarse-grained molecular dynamics (CG-MD) simulations. We find excellent agreement between experiments and simulations. Our results show that a physiological salt solution is a good solvent for αS and that the protein is highly dynamic throughout its entire chain, with local intra- and inter-regional interactions leading to deviations from global scaling. Specifically, we observe expansion in the C-terminal region, compaction in the NAC region, and a slightly smaller distance between the C- and N-termini than expected. Our simulations indicate that the compaction in the NAC region results from hydrophobic aliphatic contacts, mostly between valine and alanine residues, and cation-π interactions between lysine and tyrosine. In addition, hydrogen bonds also seem to contribute to the compaction of the NAC region. The expansion of the C-terminal region is due to intraregional electrostatic repulsion and increased chain stiffness from several prolines. Overall, our study demonstrates the effectiveness of combining smFRET experiments with CG-MD simulations to investigate the key interactions in highly dynamic IDPs at the amino acid level.
Collapse
Affiliation(s)
- Gobert Heesink
- Nanobiophysics,
Faculty of Science and Technology, MESA + Institute for Nanotechnology
and Technical Medical Centre, University
of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Mirjam J. Marseille
- Nanobiophysics,
Faculty of Science and Technology, MESA + Institute for Nanotechnology
and Technical Medical Centre, University
of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Mohammad A. A. Fakhree
- Nanobiophysics,
Faculty of Science and Technology, MESA + Institute for Nanotechnology
and Technical Medical Centre, University
of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Mark D. Driver
- Micromechanics,
Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Kirsten A. van Leijenhorst-Groener
- Nanobiophysics,
Faculty of Science and Technology, MESA + Institute for Nanotechnology
and Technical Medical Centre, University
of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Patrick R. Onck
- Micromechanics,
Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Christian Blum
- Nanobiophysics,
Faculty of Science and Technology, MESA + Institute for Nanotechnology
and Technical Medical Centre, University
of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Mireille M.A.E. Claessens
- Nanobiophysics,
Faculty of Science and Technology, MESA + Institute for Nanotechnology
and Technical Medical Centre, University
of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
38
|
Ohgita T, Kono H, Morita I, Oyama H, Shimanouchi T, Kobayashi N, Saito H. Intramolecular interaction kinetically regulates fibril formation by human and mouse α-synuclein. Sci Rep 2023; 13:10885. [PMID: 37407638 DOI: 10.1038/s41598-023-38070-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023] Open
Abstract
Regulation of α-synuclein (αS) fibril formation is a potent therapeutic strategy for αS-related neurodegenerative disorders. αS, an intrinsically disordered 140-residue intraneural protein, comprises positively charged N-terminal, hydrophobic non-amyloid β component (NAC), and negatively charged C-terminal regions. Although mouse and human αS share 95% sequence identity, mouse αS forms amyloid fibrils faster than human αS. To evaluate the kinetic regulation of αS fibrillation, we examined the effects of mismatched residues in human and mouse αS on fibril formation and intramolecular interactions. Thioflavin T fluorescence assay using domain-swapped or C-terminal-truncated αS variants revealed that mouse αS exhibited higher nucleation and fibril elongation than human αS. In mouse αS, S87N substitution in the NAC region rather than A53T substitution is dominant for enhanced fibril formation. Fӧrester resonance energy transfer analysis demonstrated that the intramolecular interaction of the C-terminal region with the N-terminal and NAC regions observed in human αS is perturbed in mouse αS. In mouse αS, S87N substitution is responsible for the perturbed interaction. These results indicate that the interaction of the C-terminal region with the N-terminal and NAC regions suppresses αS fibril formation and that the human-to-mouse S87N substitution in the NAC region accelerates αS fibril formation by perturbing intramolecular interaction.
Collapse
Affiliation(s)
- Takashi Ohgita
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Hiroki Kono
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Izumi Morita
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Oyama
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Norihiro Kobayashi
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Saito
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| |
Collapse
|
39
|
Ladouce R, Combes GF, Trajković K, Drmić Hofman I, Merćep M. Oxime blot: A novel method for reliable and sensitive detection of carbonylated proteins in diverse biological systems. Redox Biol 2023; 63:102743. [PMID: 37207613 DOI: 10.1016/j.redox.2023.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Oxidative stress and oxidative protein damage occur in various biological processes and diseases. The carbonyl group on amino acid side chains is the most widely used protein oxidation biomarker. Carbonyl groups are commonly detected indirectly through their reaction with 2,4-dinitrophenylhydrazine (DNPH) and subsequent labeling with an anti-DNP antibody. However, the DNPH immunoblotting method lacks protocol standardization, exhibits technical bias, and has low reliability. To overcome these shortcomings, we have developed a new blotting method in which the carbonyl group reacts with the biotin-aminooxy probe to form a chemically stable oxime bond. The reaction speed and the extent of the carbonyl group derivatization are increased by adding a p-phenylenediamine (pPDA) catalyst under neutral pH conditions. These improvements are crucial since they ensure that the carbonyl derivatization reaction reaches a plateau within hours and increases the sensitivity and robustness of protein carbonyl detection. Furthermore, derivatization under pH-neutral conditions facilitates a good SDS-PAGE protein migration pattern, avoids protein loss by acidic precipitation, and is directly compatible with protein immunoprecipitation. This work describes the new Oxime blot method and demonstrates its use in detecting protein carbonylation in complex matrices from diverse biological samples.
Collapse
Affiliation(s)
- Romain Ladouce
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia
| | - Guillaume Fabien Combes
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000, Split, Croatia.
| | - Katarina Trajković
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000, Split, Croatia
| | - Irena Drmić Hofman
- University Department of Health Studies, University of Split, 21000, Split, Croatia; School of Medicine, University of Split, 21000, Split, Croatia
| | - Mladen Merćep
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia; Zora Foundation, Ruđera Boškovića 21, 21000, Split, Croatia.
| |
Collapse
|
40
|
Lau HHC, Martinez-Valbuena I, So RWL, Mehra S, Silver NRG, Mao A, Stuart E, Schmitt-Ulms C, Hyman BT, Ingelsson M, Kovacs GG, Watts JC. The G51D SNCA mutation generates a slowly progressive α-synuclein strain in early-onset Parkinson's disease. Acta Neuropathol Commun 2023; 11:72. [PMID: 37138318 PMCID: PMC10155462 DOI: 10.1186/s40478-023-01570-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023] Open
Abstract
Unique strains of α-synuclein aggregates have been postulated to underlie the spectrum of clinical and pathological presentations seen across the synucleinopathies. Whereas multiple system atrophy (MSA) is associated with a predominance of oligodendroglial α-synuclein inclusions, α-synuclein aggregates in Parkinson's disease (PD) preferentially accumulate in neurons. The G51D mutation in the SNCA gene encoding α-synuclein causes an aggressive, early-onset form of PD that exhibits clinical and neuropathological traits reminiscent of both PD and MSA. To assess the strain characteristics of G51D PD α-synuclein aggregates, we performed propagation studies in M83 transgenic mice by intracerebrally inoculating patient brain extracts. The properties of the induced α-synuclein aggregates in the brains of injected mice were examined using immunohistochemistry, a conformational stability assay, and by performing α-synuclein seed amplification assays. Unlike MSA-injected mice, which developed a progressive motor phenotype, G51D PD-inoculated animals remained free of overt neurological illness for up to 18 months post-inoculation. However, a subclinical synucleinopathy was present in G51D PD-inoculated mice, characterized by the accumulation of α-synuclein aggregates in restricted regions of the brain. The induced α-synuclein aggregates in G51D PD-injected mice exhibited distinct properties in a seed amplification assay and were much more stable than those present in mice injected with MSA extract, which mirrored the differences observed between human MSA and G51D PD brain samples. These results suggest that the G51D SNCA mutation specifies the formation of a slowly propagating α-synuclein strain that more closely resembles α-synuclein aggregates associated with PD than MSA.
Collapse
Affiliation(s)
- Heather H C Lau
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
| | - Raphaella W L So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
| | - Nicholas R G Silver
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Alison Mao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
| | - Cian Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Martin Ingelsson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
41
|
Nuber S, Selkoe DJ. The Parkinson-Associated Toxin Paraquat Shifts Physiological α-Synuclein Tetramers toward Monomers That Can Be Calpain-Truncated and Form Oligomers. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:520-531. [PMID: 36773784 PMCID: PMC10155269 DOI: 10.1016/j.ajpath.2023.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
Abnormal aggregation of α-synuclein (αS) is thought to initiate neuronal dysfunction and death in Parkinson disease (PD). In addition to higher-molecular-weight, oligomeric, and polymeric forms of αS associated with neurotoxicity and disease, recent findings indicate the occurrence of physiological tetrameric assemblies in healthy neurons in culture and in brain. Herein, the PD-associated neurotoxin paraquat reduced physiological tetramers and led to calpain-truncated monomers and an approximately 70-kDa apparent oligomer different in size from physiological αS multimers. These truncated and oligomeric forms could also be generated by calpain cleavage of pure, recombinant human αS in vitro. Moreover, they were detected in the brains of tetramer-abrogating, E46K-amplified (3K) mice that model PD. These results indicate that paraquat triggers membrane damage and aberrant calpain activity that can induce a pathologic shift of tetramers toward an excess of full-length and truncated monomers, the accumulation of αS oligomers, and insoluble cytoplasmic αS puncta. The findings suggest that an environmental precipitant of PD can alter αS tetramer/monomer equilibrium, as already shown for several genetically caused forms of PD.
Collapse
Affiliation(s)
- Silke Nuber
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Mass General Brigham, Harvard Medical School, Boston, Massachusetts.
| | - Dennis J Selkoe
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Zamel J, Chen J, Zaer S, Harris PD, Drori P, Lebendiker M, Kalisman N, Dokholyan NV, Lerner E. Structural and dynamic insights into α-synuclein dimer conformations. Structure 2023; 31:411-423.e6. [PMID: 36809765 PMCID: PMC10081966 DOI: 10.1016/j.str.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
Parkinson disease is associated with the aggregation of the protein α-synuclein. While α-synuclein can exist in multiple oligomeric states, the dimer has been a subject of extensive debates. Here, using an array of biophysical approaches, we demonstrate that α-synuclein in vitro exhibits primarily a monomer-dimer equilibrium in nanomolar concentrations and up to a few micromolars. We then use spatial information from hetero-isotopic cross-linking mass spectrometry experiments as restrains in discrete molecular dynamics simulations to obtain the ensemble structure of dimeric species. Out of eight structural sub-populations of dimers, we identify one that is compact, stable, abundant, and exhibits partially exposed β-sheet structures. This compact dimer is the only one where the hydroxyls of tyrosine 39 are in proximity that may promote dityrosine covalent linkage upon hydroxyl radicalization, which is implicated in α-synuclein amyloid fibrils. We propose that this α-synuclein dimer features etiological relevance to Parkinson disease.
Collapse
Affiliation(s)
- Joanna Zamel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sofia Zaer
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Paul David Harris
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Paz Drori
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Mario Lebendiker
- Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Nir Kalisman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA; Departments of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
43
|
Amagai R, Yoshioka S, Otomo R, Nagano H, Hashimoto N, Sakakibara R, Tanaka T, Okado-Matsumoto A. Post-translational modification of lysine residues in erythrocyte α-synuclein. J Biochem 2023; 173:177-184. [PMID: 36469357 DOI: 10.1093/jb/mvac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
α-Synuclein is a protein linked to various synuclein-associated diseases ('synucleinopathies'), including Parkinson's disease, dementia with Lewy Bodies and multiple system atrophy, and is highly expressed in the central nervous system and in erythrocytes. Moreover, α-synuclein-containing erythrocyte-derived extracellular vesicles may be involved in the pathogenesis of synucleinopathies and their progression across the blood-brain barrier. Several post-translational modifications of α-synuclein have been reported in brain inclusions, including S129 phosphorylation, but fewer have been found in erythrocytes. In this study, we analysed the post-translational modifications of erythrocyte α-synuclein using liquid chromatography-mass spectrometry. We found that all lysine residues in the α-synuclein protein could be modified by acetylation, glycation, ubiquitination or SUMOylation but that phosphorylation, nitration and acylation were uncommon minor post-translational modifications in erythrocytes. Since the post-translational modification of lysine residues has been implicated in both membrane association and protein clearance, our findings provide new insight into how synucleinopathies may progress and suggest possible therapeutic strategies designed to target α-synuclein.
Collapse
Key Words
- Parkinson’s disease
- erythrocyte
- post-translational modification
- synucleinopathy
- α-synuclein.Abbreviations: aa, amino acids; AGE, advanced glycation end product; BBB, blood–brain barrier; CML, Nε-(1-carboxymethyl)-L-lysine; CNS, central nervous system; EVs, extracellular vesicles; IP, immunoprecipitation; LC–MS/MS, liquid chromatography–mass spectrometry; PBS, phosphate buffered saline; PD, Parkinson’s disease; PTM, post-translational modification; SUMO, small ubiquitin-related modifier
Collapse
Affiliation(s)
- Ryosuke Amagai
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Sakura Yoshioka
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Riki Otomo
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Naoko Hashimoto
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Ryuji Sakakibara
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Chiba 285-8741, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Ayako Okado-Matsumoto
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
44
|
Shahpasand-Kroner H, Siddique I, Malik R, Linares GR, Ivanova MI, Ichida J, Weil T, Münch J, Sanchez-Garcia E, Klärner FG, Schrader T, Bitan G. Molecular Tweezers: Supramolecular Hosts with Broad-Spectrum Biological Applications. Pharmacol Rev 2023; 75:263-308. [PMID: 36549866 PMCID: PMC9976797 DOI: 10.1124/pharmrev.122.000654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.
Collapse
Affiliation(s)
- Hedieh Shahpasand-Kroner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ravinder Malik
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gabriel R Linares
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Magdalena I Ivanova
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Justin Ichida
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Tatjana Weil
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Jan Münch
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Elsa Sanchez-Garcia
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Frank-Gerrit Klärner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Thomas Schrader
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
So RWL, Watts JC. α-Synuclein Conformational Strains as Drivers of Phenotypic Heterogeneity in Neurodegenerative Diseases. J Mol Biol 2023:168011. [PMID: 36792008 DOI: 10.1016/j.jmb.2023.168011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
The synucleinopathies, which include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are a class of human neurodegenerative disorders unified by the presence of α-synuclein aggregates in the brain. Considerable clinical and pathological heterogeneity exists within and among the individual synucleinopathies. A potential explanation for this variability is the existence of distinct conformational strains of α-synuclein aggregates that cause different disease manifestations. Like prion strains, α-synuclein strains can be delineated based on their structural architecture, with structural differences among α-synuclein aggregates leading to unique biochemical attributes and neuropathological properties in humans and animal models. Bolstered by recent high-resolution structural data from patient brain-derived material, it has now been firmly established that there are conformational differences among α-synuclein aggregates from different human synucleinopathies. Moreover, recombinant α-synuclein can be polymerized into several structurally distinct aggregates that exhibit unique pathological properties. In this review, we outline the evidence supporting the existence of α-synuclein strains and highlight how they can act as drivers of phenotypic heterogeneity in the human synucleinopathies.
Collapse
Affiliation(s)
- Raphaella W L So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada. https://twitter.com/xsakuraphie
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada. https://twitter.com/JoelWattsLab
| |
Collapse
|
46
|
Sohrabi T, Mirzaei-Behbahani B, Zadali R, Pirhaghi M, Morozova-Roche LA, Meratan AA. Common Mechanisms Underlying α-Synuclein-Induced Mitochondrial Dysfunction in Parkinson's Disease. J Mol Biol 2023:167992. [PMID: 36736886 DOI: 10.1016/j.jmb.2023.167992] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is the most common neurological movement disorder characterized by the selective and irreversible loss of dopaminergic neurons in substantia nigra pars compacta resulting in dopamine deficiency in the striatum. While most cases are sporadic or environmental, about 10% of patients have a positive family history with a genetic cause. The misfolding and aggregation of α-synuclein (α-syn) as a casual factor in the pathogenesis of PD has been supported by a great deal of literature. Extensive studies of mechanisms underpinning degeneration of the dopaminergic neurons induced by α-syn dysfunction suggest a complex process that involves multiple pathways, including mitochondrial dysfunction and increased oxidative stress, impaired calcium homeostasis through membrane permeabilization, synaptic dysfunction, impairment of quality control systems, disruption of microtubule dynamics and axonal transport, endoplasmic reticulum/Golgi dysfunction, nucleus malfunction, and microglia activation leading to neuroinflammation. Among them mitochondrial dysfunction has been considered as the most primary target of α-syn-induced toxicity, leading to neuronal cell death in both sporadic and familial forms of PD. Despite reviewing many aspects of PD pathogenesis related to mitochondrial dysfunction, a systemic study on how α-syn malfunction/aggregation damages mitochondrial functionality and leads to neurodegeneration is missing in the literature. In this review, we give a detailed molecular overview of the proposed mechanisms by which α-syn, directly or indirectly, contributes to mitochondrial dysfunction. This may provide valuable insights for development of new therapeutic approaches in relation to PD. Antioxidant-based therapy as a potential strategy to protect mitochondria against oxidative damage, its challenges, and recent developments in the field are discussed.
Collapse
Affiliation(s)
- Tahereh Sohrabi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Behnaz Mirzaei-Behbahani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Ramin Zadali
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| |
Collapse
|
47
|
Watson MD, Lee JC. Genetically Encoded Aryl Alkyne for Raman Spectral Imaging of Intracellular α-Synuclein Fibrils. J Mol Biol 2023; 435:167716. [PMID: 35792158 PMCID: PMC9805477 DOI: 10.1016/j.jmb.2022.167716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023]
Abstract
α-Synuclein (α-syn) is an intrinsically disordered protein involved in a group of diseases collectively termed synucleinopathies, characterized by the aggregation of α-syn to form insoluble, β-sheet-rich amyloid fibrils. Amyloid fibrils are thought to contribute to disease progression through cell-to-cell transmission, templating and propagating intracellular amyloid formation. Raman spectral imaging offers a direct characterization of protein secondary structure via the amide-I backbone vibration; however, specific detection of α-syn conformational changes against the background of other cellular components presents a challenge. Here, we demonstrate the ability to unambiguously identify cellularly internalized α-syn fibrils by coupling Raman spectral imaging with the use of a genetically encoded aryl alkyne, 4-ethynyl-l-phenylalanine (FCC), through amber codon suppression. The alkyne stretch (CC) of FCC provides a spectrally unique molecular vibration without interference from native biomolecules. Cellular uptake of FCC-α-syn fibrils formed in vitro was visualized in cultured human SH-SY5Y neuroblastoma cells by Raman spectral imaging. Fibrils appear as discrete cytosolic clusters of varying sizes, found often at the cellular periphery. Raman spectra of internalized fibrils exhibit frequency shifts and spectral narrowing relative to in vitro fibrils, highlighting the environmental sensitivity of the alkyne vibration. Interestingly, spectral analysis reveals variations in lipid and protein recruitment to these aggregates, and in some cases, secondary structural changes in the fibrils are observed. This work sets the groundwork for future Raman spectroscopic investigations using a similar approach of an evolved aminoacyl-tRNA synthetase/tRNA pair to incorporate FCC into endogenous amyloidogenic proteins to monitor their aggregation in cells.
Collapse
Affiliation(s)
- Matthew D Watson
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
48
|
Zhao Q, Tao Y, Zhao K, Ma Y, Xu Q, Liu C, Zhang S, Li D. Structural Insights of Fe 3+ Induced α-synuclein Fibrillation in Parkinson's Disease. J Mol Biol 2023; 435:167680. [PMID: 35690099 DOI: 10.1016/j.jmb.2022.167680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023]
Abstract
Amyloid aggregation of α-synuclein (α-syn) in Lewy bodies (LBs) is the pathological hallmark of Parkinson's disease (PD). Iron, especially Fe3+, is accumulated in substantia nigra of PD patients and co-deposited with α-syn in LBs. However, how Fe3+ modulates α-syn fibrillation at molecular level remains unclear. In this study, we found that Fe3+ can promote α-syn fibrillation at low concentration while inhibit its fibrillation at high concentration. NMR titration study shows poor interaction between α-syn monomer and Fe3+. Instead, we found that Fe3+ binds to α-syn fibrils. By using cryo-electron microscopy (cryo-EM), we further determined the atomic structure of α-syn fibril in complex with Fe3+ at the resolution of 2.7 Å. Strikingly, two extra electron densities adjacent to His50 and Glu57 were observed as putative binding sites of Fe3+ and water molecules, suggesting that Fe3+ binds to the negative cleft of the fibril and stabilizes the fibril structure for promoting α-syn aggregation. Further mutagenesis study shows mutation of His50 abolishes the Fe3+-facilitated fibrillation of α-syn. Our work illuminates the structural basis of the interaction of Fe3+ and α-syn in both monomeric and fibrillar forms, and sheds light on understanding the pathological role of Fe3+ in α-syn aggregation in PD.
Collapse
Affiliation(s)
- Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qianhui Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
49
|
Smith JK, Mellick GD, Sykes AM. The role of the endolysosomal pathway in α-synuclein pathogenesis in Parkinson's disease. Front Cell Neurosci 2023; 16:1081426. [PMID: 36704248 PMCID: PMC9871505 DOI: 10.3389/fncel.2022.1081426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease that is characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain (SNpc). Extensive studies into genetic and cellular models of PD implicate protein trafficking as a prominent contributor to the death of these dopaminergic neurons. Considerable evidence also suggests the involvement of α-synuclein as a central component of the characteristic cell death in PD and it is a major structural constituent of proteinaceous inclusion bodies (Lewy bodies; LB). α-synuclein research has been a vital part of PD research in recent years, with newly discovered evidence suggesting that α-synuclein can propagate through the brain via prion-like mechanisms. Healthy cells can internalize toxic α-synuclein species and seed endogenous α-synuclein to form large, pathogenic aggregates and form LBs. A better understanding of how α-synuclein can propagate, enter and be cleared from the cell is vital for therapeutic strategies.
Collapse
|
50
|
Skamris T, Vestergaard B, Madsen KL, Langkilde AE, Foderà V. Identifying Biological and Biophysical Features of Different Maturation States of α-Synuclein Amyloid Fibrils. Methods Mol Biol 2023; 2551:321-344. [PMID: 36310213 DOI: 10.1007/978-1-0716-2597-2_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein aggregates, hereunder amyloid fibrils, can undergo a maturation process, whereby early formed aggregates undergo a structural and physicochemical transition leading to more mature species. In the case of amyloid-related diseases, such maturation confers distinctive biological properties of the aggregates, which may account for a range of diverse pathological subtypes. Here, we present a protocol for the preparation of α-synuclein amyloid fibrils differing in the level of their maturation. We utilize widely accessible biophysical techniques to characterize the structure and morphology and a simple thermal treatment procedure to test their thermodynamic stability. Their biological properties are probed by means of binding to native plasma membrane sheets originating from mammalian cell lines.
Collapse
Affiliation(s)
- Thomas Skamris
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L Madsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Annette E Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Vito Foderà
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|