1
|
Bejan DS, Lacoursiere RE, Pruneda JN, Cohen MS. Ubiquitin is directly linked via an ester to protein-conjugated mono-ADP-ribose. EMBO J 2025:10.1038/s44318-025-00391-7. [PMID: 40000907 DOI: 10.1038/s44318-025-00391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
The prevailing view on post-translational modifications (PTMs) is that a single amino acid is modified with a single PTM at any given time. However, recent work has demonstrated crosstalk between different PTMs, some occurring on the same residue. Such interplay is seen with ADP-ribosylation and ubiquitylation. For example, DELTEX E3 ligases were reported to ubiquitylate a hydroxyl group on free NAD+ and ADP-ribose in vitro, generating a noncanonical ubiquitin ester-linked species. In this report, we show, for the first time, that this dual PTM occurs in cells on mono-ADP-ribosylated (MARylated) PARP10 on Glu/Asp sites to form a MAR ubiquitin ester. We call this process mono-ADP-ribosyl ubiquitylation or MARUbylation. Using chemical and enzymatic treatments, including a newly characterized bacterial deubiquitinase with esterase-specific activity, we discovered that multiple PARPs are MARUbylated and extended with K11-linked polyubiquitin chains when exogenously expressed. Finally, we show that in response to type I interferon stimulation, MARUbylation can occur endogenously on PARP targets. Thus, MARUbylation represents a new dual PTM that broadens our understanding of the function of PARP-mediated ADP-ribosylation in cells.
Collapse
Affiliation(s)
- Daniel S Bejan
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Rachel E Lacoursiere
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jonathan N Pruneda
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
2
|
Kim Y, Min S, Kim S, Lee S, Park YJ, Heo Y, Park S, Park T, Lee JH, Kang H, Ji JH, Cho H. PARP1-TRIM44-MRN loop dictates the response to PARP inhibitors. Nucleic Acids Res 2024; 52:11720-11737. [PMID: 39217466 PMCID: PMC11514498 DOI: 10.1093/nar/gkae756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
PARP inhibitors (PARPi) show selective efficacy in tumors with homologous recombination repair (HRR)-defects but the activation mechanism of HRR pathway in PARPi-treated cells remains enigmatic. To unveil it, we searched for the mediator bridging PARP1 to ATM pathways by screening 211 human ubiquitin-related proteins. We discovered TRIM44 as a crucial mediator that recruits the MRN complex to damaged chromatin, independent of PARP1 activity. TRIM44 binds PARP1 and regulates the ubiquitination-PARylation balance of PARP1, which facilitates timely recruitment of the MRN complex for DSB repair. Upon exposure to PARPi, TRIM44 shifts its binding from PARP1 to the MRN complex via its ZnF UBP domain. Knockdown of TRIM44 in cells significantly enhances the sensitivity to olaparib and overcomes the resistance to olaparib induced by 53BP1 deficiency. These observations emphasize the central role of TRIM44 in tethering PARP1 to the ATM-mediated repair pathway. Suppression of TRIM44 may enhance PARPi effectiveness and broaden their use even to HR-proficient tumors.
Collapse
Affiliation(s)
- Yonghyeon Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sunwoo Min
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soyeon Kim
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seo Yun Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yeon-Ji Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yungyeong Heo
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Soon Sang Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Tae Jun Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jae-Ho Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ho Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, The University of Texas Health San Antonio, TX 78229-3000, USA
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Kelly M, Dietz C, Kasson S, Zhang Y, Holtzman MJ, Kim IK. Deltex family E3 ligases specifically ubiquitinate the terminal ADP-ribose of poly(ADP-ribosyl)ation. Biochem Biophys Res Commun 2024; 720:150101. [PMID: 38749191 PMCID: PMC11219154 DOI: 10.1016/j.bbrc.2024.150101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are critical to regulating cellular activities, such as the response to DNA damage and cell death. PARPs catalyze a reversible post-translational modification (PTM) in the form of mono- or poly(ADP-ribosyl)ation. This type of modification is known to form a ubiquitin-ADP-ribose (Ub-ADPR) conjugate that depends on the actions of Deltex family of E3 ubiquitin ligases (DTXs). In particular, DTXs add ubiquitin to the 3'-OH of adenosine ribose' in ADP-ribose, which effectively sequesters ubiquitin and impedes ubiquitin-dependent signaling. Previous work demonstrates DTX function for ubiquitination of protein-free ADPR, mono-ADP-ribosylated peptides, and ADP-ribosylated nucleic acids. However, the dynamics of DTX-mediated ubiquitination of poly(ADP-ribosyl)ation remains to be defined. Here we show that the ADPR ubiquitination function is not found in other PAR-binding E3 ligases and is conserved across DTX family members. Importantly, DTXs specifically target poly(ADP-ribose) chains for ubiquitination that can be cleaved by PARG, the primary eraser of poly(ADP-ribose), leaving the adenosine-terminal ADPR unit conjugated to ubiquitin. Our collective results demonstrate the DTXs' specific ubiquitination of the adenosine terminus of poly(ADP-ribosyl)ation and suggest the unique Ub-ADPR conjugation process as a basis for PARP-DTX control of cellular activities.
Collapse
Affiliation(s)
- Matthew Kelly
- Division of Biochemistry, Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Chase Dietz
- Division of Biochemistry, Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Samuel Kasson
- Division of Biochemistry, Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - In-Kwon Kim
- Division of Biochemistry, Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA.
| |
Collapse
|
4
|
Bejan DS, Lacoursiere RE, Pruneda JN, Cohen MS. Discovery of ester-linked ubiquitylation of PARP10 mono-ADP-ribosylation in cells: a dual post-translational modification on Glu/Asp side chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600929. [PMID: 38979324 PMCID: PMC11230417 DOI: 10.1101/2024.06.27.600929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The prevailing view on post-translational modifications (PTMs) is that amino acid side chains in proteins are modified with a single PTM at any given time. However, a growing body of work has demonstrated crosstalk between different PTMs, some occurring on the same residue. Such interplay is seen with ADP-ribosylation and ubiquitylation, where specialized E3 ligases ubiquitylate targets for proteasomal degradation in an ADP-ribosylation-dependent manner. More recently, the DELTEX family of E3 ligases was reported to catalyze ubiquitylation of the 3'- hydroxy group of the adenine-proximal ribose of free NAD + and ADP-ribose in vitro , generating a non-canonical ubiquitin ester-linked species. In this report, we show, for the first time, that this dual PTM occurs in cells on mono-ADP-ribosylated (MARylated) PARP10 on Glu/Asp sites to form a MAR ubiquitin ester (MARUbe). We term this process m ono- A DP-ribosyl ub iquit ylation or MARUbylation. Using chemical and enzymatic treatments, including a newly characterized bacterial deubiquitinase with esterase-specific activity, we discovered that PARP10 MARUbylation is extended with K11-linked polyubiquitin chains. Finally, mechanistic studies using proteasomal and ubiquitin-activating enzyme inhibitors demonstrated that PARP10 MARUbylation leads to its proteasomal degradation, providing a functional role for this new PTM in regulating protein turnover.
Collapse
|
5
|
Thakur A, Rana M, Ritika, Mathew J, Nepali S, Pan CH, Liou JP, Nepali K. Small molecule tractable PARP inhibitors: Scaffold construction approaches, mechanistic insights and structure activity relationship. Bioorg Chem 2023; 141:106893. [PMID: 37783100 DOI: 10.1016/j.bioorg.2023.106893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Diverse drug design strategies viz. molecular hybridization, substituent installation, scaffold hopping, isosteric replacement, high-throughput screening, induction and separation of chirality, structure modifications of phytoconstituents and use of structural templates have been exhaustively leveraged in the last decade to load the chemical toolbox of PARP inhibitors. Resultantly, numerous promising scaffolds have been pinpointed that in turn have led to the resuscitation of the credence to PARP inhibitors as cancer therapeutics. This review briefly presents the physiological functions of PARPs, the pharmacokinetics, and pharmacodynamics, and the interaction profiles of FDA-approved PARP inhibitors. Comprehensively covered is the section on the drug design strategies employed by drug discovery enthusiasts for furnishing PARP inhibitors. The impact of structural variations in the template of designed scaffolds on enzymatic and cellular activity (structure-activity relationship studies) has been discussed. The insights gained through the biological evaluation such as profiling of physicochemical properties andin vitroADME properties, PK assessments, and high-dose pharmacology are covered.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Ritika
- College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Sanya Nepali
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Chun-Hsu Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
6
|
Tiruppathi C, Wang DM, Ansari MO, Bano S, Tsukasaki Y, Mukhopadhyay A, Joshi JC, Loch C, Niessen HWM, Malik AB. Ubiquitin ligase CHFR mediated degradation of VE-cadherin through ubiquitylation disrupts endothelial adherens junctions. Nat Commun 2023; 14:6582. [PMID: 37852964 PMCID: PMC10584835 DOI: 10.1038/s41467-023-42225-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Vascular endothelial cadherin (VE-cadherin) expressed at endothelial adherens junctions (AJs) is vital for vascular integrity and endothelial homeostasis. Here we identify the requirement of the ubiquitin E3-ligase CHFR as a key mechanism of ubiquitylation-dependent degradation of VE-cadherin. CHFR was essential for disrupting the endothelium through control of the VE-cadherin protein expression at AJs. We observe augmented expression of VE-cadherin in endothelial cell (EC)-restricted Chfr knockout (ChfrΔEC) mice. We also observe abrogation of LPS-induced degradation of VE-cadherin in ChfrΔEC mice, suggesting the pathophysiological relevance of CHFR in regulating the endothelial junctional barrier in inflammation. Lung endothelial barrier breakdown, inflammatory neutrophil extravasation, and mortality induced by LPS were all suppressed in ChfrΔEC mice. We find that the transcription factor FoxO1 is a key upstream regulator of CHFR expression. These findings demonstrate the requisite role of the endothelial cell-expressed E3-ligase CHFR in regulating the expression of VE-cadherin, and thereby endothelial junctional barrier integrity.
Collapse
Affiliation(s)
- Chinnaswamy Tiruppathi
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA.
| | - Dong-Mei Wang
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Mohammad Owais Ansari
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Shabana Bano
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yoshikazu Tsukasaki
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Amitabha Mukhopadhyay
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jagdish C Joshi
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | | | - Hans W M Niessen
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA.
| |
Collapse
|
7
|
He T, Muhetaer M, Wu J, Wan J, Hu Y, Zhang T, Wang Y, Wang Q, Cai H, Lu Z. Immune Cell Infiltration Analysis Based on Bioinformatics Reveals Novel Biomarkers of Coronary Artery Disease. J Inflamm Res 2023; 16:3169-3184. [PMID: 37525634 PMCID: PMC10387251 DOI: 10.2147/jir.s416329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/08/2023] [Indexed: 08/02/2023] Open
Abstract
Background Coronary artery disease (CAD) is a multifactorial immune disease, but research into the specific immune mechanism is still needed. The present study aimed to identify novel immune-related markers of CAD. Methods Three CAD-related datasets (GSE12288, GSE98583, GSE113079) were downloaded from the Gene Expression Integrated Database. Gene ontology annotation, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and weighted gene co-expression network analysis were performed on the common significantly differentially expressed genes (DEGs) of these three data sets, and the most relevant module genes for CAD obtained. The immune cell infiltration of module genes was evaluated with the CIBERSORT algorithm, and characteristic genes accompanied by their diagnostic effectiveness were screened by the machine-learning algorithm least absolute shrinkage and selection operator (LASSO) regression analysis. The expression levels of characteristic genes were evaluated in the peripheral blood mononuclear cells of CAD patients and healthy controls for verification. Results A total of 204 upregulated and 339 downregulated DEGs were identified, which were mainly enriched in the following pathways: "Apoptosis", "Th17 cell differentiation", "Th1 and Th2 cell differentiation", "Glycerolipid metabolism", and "Fat digestion and absorption". Five characteristic genes, LMAN1L, DOK4, CHFR, CEL and CCDC28A, were identified by LASSO analysis, and the results of the immune cell infiltration analysis indicated that the proportion of immune infiltrating cells (activated CD8 T cells and CD56 DIM natural killer cells) in the CAD group was lower than that in the control group. The expressions of CHFR, CEL and CCDC28A in the peripheral blood of the healthy controls and CAD patients were significantly different. Conclusion We identified CHFR, CEL and CCDC28A as potential biomarkers related to immune infiltration in CAD based on public data sets and clinical samples. This finding will contribute to providing a potential target for early noninvasive diagnosis and immunotherapy of CAD.
Collapse
Affiliation(s)
- Tianwen He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Muheremu Muhetaer
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Jingjing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Yushuang Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Tong Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Yunxiang Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Qiongxin Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
8
|
Yang H, Ai H, Zhang J, Ma J, Liu K, Li Z. UPS: Opportunities and challenges for gastric cancer treatment. Front Oncol 2023; 13:1140452. [PMID: 37077823 PMCID: PMC10106573 DOI: 10.3389/fonc.2023.1140452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Gastric cancer remains the fourth most frequently diagnosed malignancy and the fifth leading cause of cancer-related mortality worldwide owning to the lack of efficient drugs and targets for therapy. Accumulating evidence indicates that UPS, which consists of E1, E2, and E3 enzymes and proteasome, plays an important role in the GC tumorigenesis. The imbalance of UPS impairs the protein homeostasis network during development of GC. Therefore, modulating these enzymes and proteasome may be a promising strategy for GC target therapy. Besides, PROTAC, a strategy using UPS to degrade the target protein, is an emerging tool for drug development. Thus far, more and more PROTAC drugs enter clinical trials for cancer therapy. Here, we will analyze the abnormal expression enzymes in UPS and summarize the E3 enzymes which can be developed in PROTAC so that it can contribute to the development of UPS modulator and PROTAC technology for GC therapy.
Collapse
Affiliation(s)
- Hang Yang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Huihan Ai
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jialin Zhang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jie Ma
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| | - Zhi Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| |
Collapse
|
9
|
Sun X, Tang H, Chen Y, Chen Z, Hu Z, Cui Z, Tao Y, Yuan J, Fu Y, Zhuang Z, He Q, Li Q, Xu X, Wan X, Jiang Y, Mao Z. Loss of the receptors ER, PR and HER2 promotes USP15-dependent stabilization of PARP1 in triple-negative breast cancer. NATURE CANCER 2023; 4:716-733. [PMID: 37012401 DOI: 10.1038/s43018-023-00535-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is essential for the progression of several types of cancers. However, whether and how PARP1 is stabilized to promote genomic stability in triple-negative breast cancer (TNBC) remains unknown. Here, we demonstrated that the deubiquitinase USP15 interacts with and deubiquitinates PARP1 to promote its stability, thereby stimulating DNA repair, genomic stability and TNBC cell proliferation. Two PARP1 mutations found in individuals with breast cancer (E90K and S104R) enhanced the PARP1-USP15 interaction and suppressed PARP1 ubiquitination, thereby elevating the protein level of PARP1. Importantly, we found that estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) inhibited USP15-mediated PARP1 stabilization through different mechanisms. ER bound to the USP15 promoter to suppress its expression, PR suppressed the deubiquitinase activity of USP15, and HER2 abrogated the PARP1-USP15 interaction. The specific absence of these three receptors in TNBC results in high PARP1 levels, leading to increases in base excision repair and female TNBC cell survival.
Collapse
Affiliation(s)
- Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huanyin Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhixi Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiyi Hu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Cui
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaming Tao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jian Yuan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Fu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhigang Zhuang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qizhi He
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianghong Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Tsingtao Advanced Research Institute, Tongji University, Qingdao, China.
| |
Collapse
|
10
|
Association between CHFR and PARP-1, and Their Roles in Regulation of Proliferation and Apoptosis of B Cell Lymphoma. Anal Cell Pathol (Amst) 2023. [DOI: 10.1155/2023/7940316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Background. Aberrant methylation of checkpoint with forkhead and ring finger domains (CHFR) was found in B-cell non-Hodgkin lymphoma (NHL), whereas its role in carcinogenesis is not clear. CHFR can control poly (ADP-ribose) polymerase levels by causing its degradation. The study was aimed to explore the roles and mechanisms of CHFR in the pathogenesis of B-cell NHL. Methods. Short hairpin ribonucleic acid (ShRNAs) targeting CHFR and poly (ADP-ribose) polymerase 1 (PARP-1) were transduced into Raji cells, and real-time polymerase chain reaction (PCR) and western blotting were carried out to determine their expression. Afterwards, the CCK-8 assay and flow cytometry were used to evaluate the cell growth and apoptosis. Tumor size and weight were determined using a xenograft model, and decitabine (5-Aza-dC) was used to further determine the methylation status of CHFR through a methylation specificity-PCR assay. Results. 5-Aza-dC-treatment promoted the expression of CHFR and decreased the expression of PARP-1 at both messenger ribonucleic acid (mRNA) and protein levels. 5-Aza-dC also accelerated Raji-cell apoptosis and restrained its growth in vitro and in vivo (
). These results were contrary to those observed in the shRNA-CHFR group but consistent with those observed in the shRNA-PARP-1 group. The expression profiles of CHFR and PARP-1 in the xenograft model were consistent with those in the cellular model. Treatment with 5-Aza-dC led to demethylation of CHFR in nude mice. Besides, there may be a negative correlation between CHFR and PARP-1 in B-cell NHL cells. Conclusion. Our findings indicated that 5-Aza-dC could lead to the demethylation of the CHFR promoter and suppress Raji cell growth.
Collapse
|
11
|
The regulation loop of MARVELD1 interacting with PARP1 in DNA damage response maintains genome stability and promotes therapy resistance of cancer cells. Cell Death Differ 2023; 30:922-937. [PMID: 36750717 PMCID: PMC10070477 DOI: 10.1038/s41418-023-01118-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 02/09/2023] Open
Abstract
The DNA damage response (DDR) plays crucial roles in cancer prevention and therapy. Poly(ADP-ribose) polymerase 1 (PARP1) mediates multiple signal transduction in the DDR as a master regulator. Uncovering the regulatory factors of PARP1 contributes to a more comprehensive view of tumorigenesis and treatment strategies. Here, we reveal that MARVELD1 acts as a mediator of DDR to perform early events and maintain genome stability. Mechanistically, PARP1 PARylates MARVELD1 at D102, D118 and D130, and in turn, MARVELD1 stabilizes PARP1 by enhancing NAA50-mediated acetylation, thus forming a positive feedback loop. MARVELD1 knockout mice and their embryo fibroblasts exhibit genomic instability and shorter half-life of PARP1. Moreover, MARVELD1 partnering with PARP1 facilitates resistance to genotoxic drugs and disrupts PARP inhibitor (PARPi) effect in PDX model of colorectal cancer (CRC). Overall, our results underline the link between MARVELD1 and PARP1 in therapeutic resistance based on DDR and provide new insights for clinical tumor therapy of PARPi.
Collapse
|
12
|
Chen K, Dai M, Luo Q, Wang Y, Shen W, Liao Y, Zhou Y, Cheng W. PARP1 controls the transcription of CD24 by ADP-ribosylating the RNA helicase DDX5 in pancreatic cancer. Int J Biochem Cell Biol 2023; 155:106358. [PMID: 36584909 DOI: 10.1016/j.biocel.2022.106358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The PARP1 protein plays a key role in DNA damage repair and ADP-ribosylation to regulate gene expression. Strategies to target PARP1 have rapidly been developed for cancer treatment. However, the role of the innate immune response in targeted anti-PARP1 therapy remains poorly understood. In this work, we aimed to elucidate the regulatory mechanism underlying the immunogenicity of PARP1 and explore efficient therapeutic strategies to enhance the antitumor effect of PARP inhibitors. The relationships between PARP1 expression and immunosuppressive factors were examined by qRTPCR and immunoblot analysis. DNA pull-down, chromatin immunoprecipitation-quantitative PCR (ChIPqPCR) and luciferase reporter assays were employed to reveal the mechanism by which the expression of the immune checkpoint regulator CD24 is regulated by PARP1. Phagocytosis assays and pancreatic cancer animal models were applied to evaluate the therapeutic effect of simultaneous disruption of PARP1 and the antiphagocytic factor CD24. Upregulation of the innate immunosuppressive factor CD24 was observed in pancreatic cancer during PARP1 inhibition. The activating effect of targeting CD24 on macrophage phagocytosis was verified. Then, we showed that PARP1 attenuated the transcription of CD24 by ADP-ribosylating the transcription factor DDX5 in pancreatic cancer. Combined blockade of PARP1 and the antiphagocytic factor CD24 elicited a synergetic antitumor effect in pancreatic cancer. Our research provided evidence that combination treatment with PARP inhibitors and CD24 blocking monoclonal antibodies (mAbs) could be an effective strategy to improve the clinical therapeutic response in pancreatic cancer.
Collapse
Affiliation(s)
- Kang Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China; Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Manxiong Dai
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China; Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Quanneng Luo
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China; Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Yi Wang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China; Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Weitao Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yan Liao
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China; Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Yiying Zhou
- Department of Clinical Pathology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China; Xiangyue Hospital Affiliated to Hunan Institute of Parasitic Diseases, National Clinical Center for Schistosomiasis Treatment, Yueyang 414000, Hunan Province, China; Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, Hunan Province, China.
| |
Collapse
|
13
|
Bleiler M, Cyr A, Wright DL, Giardina C. Incorporation of 53BP1 into phase-separated bodies in cancer cells during aberrant mitosis. J Cell Sci 2023; 136:jcs260027. [PMID: 36606487 PMCID: PMC10112977 DOI: 10.1242/jcs.260027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/25/2022] [Indexed: 01/07/2023] Open
Abstract
53BP1 (also known as TP53BP1) is a key mediator of the non-homologous end joining (NHEJ) DNA repair pathway, which is the primary repair pathway in interphase cells. However, the mitotic functions of 53BP1 are less well understood. Here, we describe 53BP1 mitotic stress bodies (MSBs) formed in cancer cell lines in response to delayed mitosis. These bodies displayed liquid-liquid phase separation characteristics, were close to centromeres, and included lamin A/C and the DNA repair protein RIF1. After release from mitotic arrest, 53BP1 MSBs decreased in number and moved away from the chromatin. Using GFP fusion constructs, we found that the 53BP1 oligomerization domain region was required for MSB formation, and that inclusion of the 53BP1 N terminus increased MSB size. Exogenous expression of 53BP1 did not increase MSB size or number but did increase levels of MSB-free 53BP1. This was associated with slower mitotic progression, elevated levels of DNA damage and increased apoptosis, which is consistent with MSBs suppressing a mitotic surveillance by 53BP1 through sequestration. The 53BP1 MSBs, which were also found spontaneously in a subset of normally dividing cancer cells but not in non-transformed cells (ARPE-19), might facilitate the survival of cancer cells following aberrant mitoses. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marina Bleiler
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Aiyana Cyr
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Dennis L. Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Zhang D, Lai W, Liu Y, Wan R, Shen Y. Chaperone-mediated autophagy attenuates H 2 O 2 -induced cardiomyocyte apoptosis by targeting poly (ADP-ribose) polymerase 1 (PARP1) for lysosomal degradation. Cell Biol Int 2022; 46:1915-1926. [PMID: 35924992 DOI: 10.1002/cbin.11871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/14/2022] [Indexed: 11/07/2022]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a typical representative of the PARP enzyme family and is mainly related to DNA repair, gene transcription regulation, inflammation, and oxidative stress. Studies have found that PARP1 is involved in the pathophysiological processes of a variety of cardiovascular diseases. Chaperone-mediated autophagy (CMA) is involved in the molecular regulation of various diseases, including cardiovascular diseases, and plays a critical role in maintaining intracellular metabolism balance. However, the link between PARP1 and CMA in cardiomyocytes remains unclear. Therefore, the aims of this study were to investigate whether CMA is involved in PARP1 regulation and to further clarify the specific molecular mechanisms. Earle's balanced salt solution (EBSS)-induced activation of autophagy reduced PARP1 expression, whereas the autophagy lysosomal inhibitor CQ had the opposite effect. Correspondingly, treatment with the autophagy inhibitor 3-methyladenine did not abolish the autophagy-inducing effects of EBSS. Additionally, PARP1 binds to heat shock cognate protein 70 and lysosome-associated membrane protein 2A (LAMP2A). Moreover, adenovirus-mediated LAMP2A overexpression to activate the CMA signaling pathway in cardiomyocytes reduces PARP1 (cleaved) expression and further decreases cardiomyocyte apoptosis caused by oxidative stress. In contrast, downregulation of LAMP2A increased PARP1 (cleaved) expression and the degree of apoptosis. More importantly, we report that appropriate concentrations of H2 O2 triggered the nuclear translocation of PARP1, which subsequently promoted the degradation of PARP1 through the CMA pathway. In summary, our data are the first to reveal that CMA targeted PARP1 for lysosomal degradation in cardiomyocytes, which ultimately inhibited apoptosis by promoting the degradation of the PARP1 protein.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Lai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Genetic Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Giansanti C, Manzini V, Dickmanns A, Dickmanns A, Palumbieri MD, Sanchi A, Kienle SM, Rieth S, Scheffner M, Lopes M, Dobbelstein M. MDM2 binds and ubiquitinates PARP1 to enhance DNA replication fork progression. Cell Rep 2022; 39:110879. [PMID: 35649362 DOI: 10.1016/j.celrep.2022.110879] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022] Open
Abstract
The MDM2 oncoprotein antagonizes the tumor suppressor p53 by physical interaction and ubiquitination. However, it also sustains the progression of DNA replication forks, even in the absence of functional p53. Here, we show that MDM2 binds, inhibits, ubiquitinates, and destabilizes poly(ADP-ribose) polymerase 1 (PARP1). When cellular MDM2 levels are increased, this leads to accelerated progression of DNA replication forks, much like pharmacological inhibition of PARP1. Conversely, overexpressed PARP1 restores normal fork progression despite elevated MDM2. Strikingly, MDM2 profoundly reduces the frequency of fork reversal, revealed as four-way junctions through electron microscopy. Depletion of RECQ1 or the primase/polymerase (PRIMPOL) reverses the MDM2-mediated acceleration of the nascent DNA elongation rate. MDM2 also increases the occurrence of micronuclei, and it exacerbates camptothecin-induced cell death. In conclusion, high MDM2 levels phenocopy PARP inhibition in modulation of fork restart, representing a potential vulnerability of cancer cells.
Collapse
Affiliation(s)
- Celeste Giansanti
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Valentina Manzini
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute of Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Maria Dilia Palumbieri
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrea Sanchi
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - Sonja Rieth
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
16
|
Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther 2022; 30:529-547. [PMID: 35393571 DOI: 10.1038/s41417-022-00464-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Posttranslational modifications (PTMs) of proteins, the major mechanism of protein function regulation, play important roles in regulating a variety of cellular physiological and pathological processes. Although the classical PTMs, such as phosphorylation, acetylation, ubiquitination and methylation, have been well studied, the emergence of many new modifications, such as succinylation, hydroxybutyrylation, and lactylation, introduces a new layer to protein regulation, leaving much more to be explored and wide application prospects. In this review, we will provide a broad overview of the significant roles of PTMs in regulating human cancer hallmarks through selecting a diverse set of examples, and update the current advances in the therapeutic implications of these PTMs in human cancer.
Collapse
Affiliation(s)
- Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China. .,Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
17
|
Chen X, Lin J, Chen Q, Liao X, Wang T, Li S, Mao L, Li Z. Identification of a Novel Epigenetic Signature CHFR as a Potential Prognostic Gene Involved in Metastatic Clear Cell Renal Cell Carcinoma. Front Genet 2021; 12:720979. [PMID: 34539751 PMCID: PMC8440929 DOI: 10.3389/fgene.2021.720979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Metastasis is the main cause of clear cell renal cell carcinoma (ccRCC) treatment failure, and the key genes involved in ccRCC metastasis remain largely unknown. We analyzed the ccRCC datasets in The Cancer Genome Atlas database, comparing primary and metastatic ccRCC tumor records in search of tumor metastasis-associated genes, and then carried out overall survival, Cox regression, and receiver operating characteristic (ROC) analyses to obtain potential prognostic markers. Comprehensive bioinformatics analysis was performed to verify that the checkpoint with forkhead associated and ring finger domains (CHFR) gene is a reliable candidate oncogene, which is overexpressed in ccRCC metastatic tumor tissue, and that high expression levels of CHFR indicate a poor prognosis. A detailed analysis of the methylation of CHFR in ccRCC tumors showed that three sites within 200 bp of the transcription initiation site were significantly associated with prognosis and that hypomethylation was associated with increased CHFR gene expression levels. Knockdown of CHFR in ccRCC cells inhibited cell proliferation, colony formation, and migration ability. In summary, our findings suggest that the epigenetic signature on CHFR gene is a novel prognostic feature; furthermore, our findings offer theoretical support for the study of metastasis-related genes in ccRCC and provided new insights for the clinical treatment of the disease.
Collapse
Affiliation(s)
- Xiangling Chen
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiatian Lin
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | | | - Ximian Liao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Tongyu Wang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Shi Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Longyi Mao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| |
Collapse
|
18
|
Wu W, Zhao J, Xiao J, Wu W, Xie L, Xie X, Yang C, Yin D, Hu K. CHFR-mediated degradation of RNF126 confers sensitivity to PARP inhibitors in triple-negative breast cancer cells. Biochem Biophys Res Commun 2021; 573:62-68. [PMID: 34388456 DOI: 10.1016/j.bbrc.2021.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Ring-finger protein 126 (RNF126), an E3 ubiquitin ligase, plays crucial roles in various biological processes, including cell proliferation, DNA damage repair, and intracellular vesicle trafficking. Whether RNF126 is modulated by posttranslational modifications is poorly understood. Here, we show that PARP1 interacts with and poly(ADP)ribosylates RNF126, which then recruits the PAR-binding E3 ubiquitin ligase CHFR to promote ubiquitination and degradation of RNF126. Moreover, RNF126 is required for the activation of ATR-Chk1 signaling induced by either irradiation (IR) or a PARP inhibitor (PARPi), and depletion of RNF126 increases the sensitivity of triple-negative breast cancer (TNBC) cells to PARPi treatment. Our findings suggest that PARPi-mediated upregulation of RNF126 protein stability contributes to TNBC cell resistance to PARPi. Therefore, targeting the E3 ubiquitin ligase RNF126 may be a novel treatment for overcoming the resistance of TNBC cells to PARPi in clinical trials.
Collapse
Affiliation(s)
- Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianli Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianhong Xiao
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Radiotherapy of the First Affiliated Hospital, University of South China, Hengyang, 421001, China
| | - Limin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaojuan Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chaoye Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
19
|
Jeong KY, Park M. Poly adenosine diphosphate-ribosylation, a promising target for colorectal cancer treatment. World J Gastrointest Oncol 2021. [PMID: 34163574 DOI: 10.4251/wjgo.v13.i6.574.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of colorectal cancer (CRC) can result from changes in a variety of cellular systems within the tumor microenvironment. Particularly, it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression. Based on this background, the potential to focus on poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP)-1 and poly-ADP ribosylation (PARylation) as the main causes of malignant formation of CRC may be considered. One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid (DNA) repair function, which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide. PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes. Given the high importance of these processes in CRC, it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles; furthermore, it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC. This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC, which may present the potential to identify various research topics that can be challenged both non-clinically and clinically.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea.
| | - Minhee Park
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| |
Collapse
|
20
|
Jeong KY, Park M. Poly adenosine diphosphate-ribosylation, a promising target for colorectal cancer treatment. World J Gastrointest Oncol 2021; 13:574-588. [PMID: 34163574 PMCID: PMC8204356 DOI: 10.4251/wjgo.v13.i6.574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
The development of colorectal cancer (CRC) can result from changes in a variety of cellular systems within the tumor microenvironment. Particularly, it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression. Based on this background, the potential to focus on poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP)-1 and poly-ADP ribosylation (PARylation) as the main causes of malignant formation of CRC may be considered. One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid (DNA) repair function, which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide. PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes. Given the high importance of these processes in CRC, it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles; furthermore, it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC. This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC, which may present the potential to identify various research topics that can be challenged both non-clinically and clinically.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| | - Minhee Park
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| |
Collapse
|
21
|
The Ubiquitin Ligase TRIP12 Limits PARP1 Trapping and Constrains PARP Inhibitor Efficiency. Cell Rep 2021; 32:107985. [PMID: 32755579 PMCID: PMC7408484 DOI: 10.1016/j.celrep.2020.107985] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/22/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
PARP inhibitors (PARPi) cause synthetic lethality in BRCA-deficient tumors. Whether specific vulnerabilities to PARPi exist beyond BRCA mutations and related defects in homology-directed repair (HDR) is not well understood. Here, we identify the ubiquitin E3 ligase TRIP12 as negative regulator of PARPi sensitivity. We show that TRIP12 controls steady-state PARP1 levels and limits PARPi-induced cytotoxic PARP1 trapping. Upon loss of TRIP12, elevated PARPi-induced PARP1 trapping causes increased DNA replication stress, DNA damage, cell cycle arrest, and cell death. Mechanistically, we demonstrate that TRIP12 binds PARP1 via a central PAR-binding WWE domain and, using its carboxy-terminal HECT domain, catalyzes polyubiquitylation of PARP1, triggering proteasomal degradation and preventing supra-physiological PARP1 accumulation. Further, in cohorts of breast and ovarian cancer patients, PARP1 abundance is negatively correlated with TRIP12 expression. We thus propose TRIP12 as regulator of PARP1 stability and PARPi-induced PARP trapping, with potential implications for PARPi sensitivity and resistance.
Collapse
|
22
|
Maluchenko NV, Koshkina DO, Feofanov AV, Studitsky VM, Kirpichnikov MP. Poly(ADP-Ribosyl) Code Functions. Acta Naturae 2021; 13:58-69. [PMID: 34377556 PMCID: PMC8327145 DOI: 10.32607/actanaturae.11089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/10/2020] [Indexed: 01/14/2023] Open
Abstract
Poly(ADP-ribosyl)ation plays a key role in cellular metabolism. Covalent poly(ADP-ribosyl)ation affects the activity of the proteins engaged in DNA repair, chromatin structure regulation, gene expression, RNA processing, ribosome biogenesis, and protein translation. Non-covalent PAR-dependent interactions are involved in the various types of cellular response to stress and viral infection, such as inflammation, hormonal signaling, and the immune response. The review discusses how structurally different poly(ADP-ribose) (PAR) molecules composed of identical monomers can differentially participate in various cellular processes acting as the so-called "PAR code." The article describes the ability of PAR polymers to form functional biomolecular clusters through a phase-separation in response to various signals. This phase-separation contributes to rapid spatial segregation of biochemical processes and effective recruitment of the necessary components. The cellular PAR level is tightly controlled by a network of regulatory proteins: PAR code writers, readers, and erasers. Impaired PAR metabolism is associated with the development of pathological processes causing oncological, cardiovascular, and neurodegenerative diseases. Pharmacological correction of the PAR level may represent a new approach to the treatment of various diseases.
Collapse
Affiliation(s)
- N. V. Maluchenko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - D. O. Koshkina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - A. V. Feofanov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - V. M. Studitsky
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Fox Chase Cancer Center, Philadelphia, PA, 19111-2497 USA
| | - M. P. Kirpichnikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
23
|
Ilić N, Tao Y, Boutros-Suleiman S, Kadali VN, Emanuelli A, Levy-Cohen G, Blank M. SMURF2-mediated ubiquitin signaling plays an essential role in the regulation of PARP1 PARylating activity, molecular interactions, and functions in mammalian cells. FASEB J 2021; 35:e21436. [PMID: 33734501 DOI: 10.1096/fj.202001759r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 11/11/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a key molecular stress sensor and response mediator implicated in multiple cellular functions in health and diseases. Despite its importance and intrinsic involvement in pivotal molecular and cellular processes, including DNA repair, transcription regulation, chromatin organization, and cell death, the regulatory mechanisms of PARP1 are poorly understood. In this study, we show that SMURF2, a HECT-type E3 ubiquitin ligase and suggested tumor suppressor, physically interacts with PARP1 in different cellular settings, directly ubiquitinates it in vitro and stimulates its PARylation activity in cells, the phenomenon that required SMURF2 E3 ubiquitin ligase function. Intriguingly, in the cellular environment SMURF2 was found to regulate the dynamic exchange of ubiquitin moieties on PARP1, mostly decreasing its monoubiquitination. Through the set of systematic mass spectrometry analyses conducted on SMURF2-modified cells, we identified on PARP1 18 lysine residues (out of 126 present in PARP1) as sites which ubiquitination was considerably affected by SMURF2. Subsequent site-directed mutagenesis coupled with in cellula ubiquitination and PARylation assays unveiled K222 as a critical site enabling a cross talk between SMURF2-modulated monoubiquitination of PARP1 and its activity, and pointed to K498, S507, and a KTR triad (K498/K521/K524) as the main auto-PARylation sites affected by SMURF2. The results also uncovered that SMURF2 controls PARP1 interactome, influencing its functions and expression in a context-dependent manner. Taken together, these findings suggest that SMURF2-mediated ubiquitin signaling plays an essential role in PARP1 regulation, beyond the regulation of its protein expression.
Collapse
Affiliation(s)
- Nataša Ilić
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yulei Tao
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sandy Boutros-Suleiman
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Venkata Narasimha Kadali
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Andrea Emanuelli
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
24
|
Kupczyk P, Simiczyjew A, Marczuk J, Dratkiewicz E, Beberok A, Rok J, Pieniazek M, Biecek P, Nevozhay D, Slowikowski B, Chodaczek G, Wrzesniok D, Nowak D, Donizy P. PARP1 as a Marker of an Aggressive Clinical Phenotype in Cutaneous Melanoma-A Clinical and an In Vitro Study. Cells 2021; 10:286. [PMID: 33572647 PMCID: PMC7911865 DOI: 10.3390/cells10020286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 01/12/2023] Open
Abstract
(1) Background: Poly(ADP-ribose) polymerase 1) (PARP1) is a pleiotropic enzyme involved in several cellular processes, e.g., DNA damage repair, regulation of mitosis, and immune response. Little is known about the role of PARP1 in melanoma development and progression. We aimed to investigate the prognostic significance of PARP1 expression in cutaneous melanoma through evaluation of mRNA and protein levels of PARP1 in normal melanocytes and melanoma cell lines, as well as in patients' tissue material from surgical resections. (2) Methods: An in vitro model was based on two types of normal human melanocytes (HEMn-DP and HEMn-LP) and four melanoma cell lines (A375, WM1341D, Hs294T, and WM9). PARP1 mRNA gene expression was estimated using real-time polymerase chain reaction (RT-PCR), whereas the protein level of PARP1 was evaluated by fluorescence confocal microscopy and then confirmed by Western Blotting analysis. The expression of PARP1 was also assessed by immunohistochemistry in formalin-fixed paraffin-embedded tissues of 128 primary cutaneous melanoma patients and correlated with follow-up and clinicopathologic features. (3) Results: The in vitro study showed that melanoma cells exhibited significantly higher PARP1 expression at mRNA and protein levels than normal melanocytes. High PARP1 expression was also associated with the invasiveness of tumor cells. Elevated nuclear PARP1 expression in patients without nodal metastases strongly correlated with significantly shorter disease-free survival (p = 0.0015) and revealed a trend with shorter cancer-specific overall survival (p = 0.05). High PARP1 immunoreactivity in the lymph node-negative group of patients was significantly associated with higher Breslow tumor thickness, presence of ulceration, and a higher mitotic index (p = 0.0016, p = 0.023, and p < 0.001, respectively). In patients with nodal metastases, high PARP1 expression significantly correlated with the presence of microsatellitosis (p = 0.034), but we did not confirm the prognostic significance of PARP1 expression in these patients. In the entire analyzed group of patients (with and without nodal metastases at the time of diagnosis), PARP1 expression was associated with a high mitotic index (p = 0.001) and the presence of ulceration (p = 0.036). Moreover, in patients with elevated PARP1 expression, melanoma was more frequently located in the skin of the head and neck region (p = 0.015). In multivariate analysis, high PARP1 expression was an independent unfavorable prognosticator in lymph node-negative cutaneous melanoma patients. (4) Conclusions: In vitro molecular biology approaches demonstrated enhanced PARP1 expression in cutaneous melanoma. These results were confirmed by the immunohistochemical study with clinical parameter analysis, which showed that a high level of PARP1 correlated with unfavorable clinical outcome. These observations raise the potential role of PARP1 inhibitor-based therapy in cutaneous melanoma.
Collapse
Affiliation(s)
- Piotr Kupczyk
- Department of Pathomorphology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Jakub Marczuk
- Department of Dermatology, Research and Development Center, Regional Specialized Hospital, 51-124 Wroclaw, Poland;
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (J.R.); (D.W.)
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (J.R.); (D.W.)
| | - Malgorzata Pieniazek
- Department of Clinical Oncology, Tadeusz Koszarowski Regional Oncology Centre, 45-061 Opole, Poland;
| | - Przemyslaw Biecek
- Faculty of Mathemathics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland;
| | - Dmitry Nevozhay
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- School of Biomedicine, Far Eastern Federal University, 690950 Vladivostok, Russia
| | - Bartosz Slowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Grzegorz Chodaczek
- Laboratory of Bioimaging, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland;
| | - Dorota Wrzesniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (J.R.); (D.W.)
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
25
|
Chung WC, Lee S, Kim Y, Seo JB, Song MJ. Kaposi's sarcoma-associated herpesvirus processivity factor (PF-8) recruits cellular E3 ubiquitin ligase CHFR to promote PARP1 degradation and lytic replication. PLoS Pathog 2021; 17:e1009261. [PMID: 33508027 PMCID: PMC7872283 DOI: 10.1371/journal.ppat.1009261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/09/2021] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
Kaposi’s sarcoma–associated herpesvirus (KSHV), which belongs to the gammaherpesvirus subfamily, is associated with the pathogenesis of various tumors. Nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) catalyzes the polymerization of ADP-ribose units on target proteins. In KSHV-infected cells, PARP1 inhibits replication and transcription activator (RTA), a molecular switch that initiates lytic replication, through direct interaction. Thus, for efficient replication, KSHV has to overcome the molecular barrier in the form of PARP1. Previously, we have demonstrated that KSHV downregulates the expression of PARP1 through PF-8, a viral processivity factor. PF-8 induces ubiquitin–proteasome system–mediated degradation of PARP1 via direct physical association and enhances RTA transactivation activity. Here, we showed that dimerization domains of PF-8 are crucial not only for PARP1 interaction and degradation but also for enhancement of the RTA transactivation activity. PF-8 recruited CHFR for the PARP1 degradation. A knockdown of CHFR attenuated the PF-8–induced PARP1 degradation and enhancement of the RTA transactivation activity, leading to reduced KSHV lytic replication. These findings reveal a mechanism by which KSHV PF-8 recruits a cellular E3 ligase to curtail the inhibitory effect of PARP1 on KSHV lytic replication. Kaposi’s sarcoma–associated herpesvirus (KSHV), a member of the gammaherpesvirus subfamily, is associated with the pathogenesis of various tumors. Poly(ADP-ribose) polymerase 1 (PARP1), which is involved in various cellular functions, restricts lytic replication of oncogenic gammaherpesviruses by inhibiting replication and transcription activator (RTA), a molecular switch that activates the viral lytic replication. To abrogate the inhibitory effect of PARP1, reactivated KSHV promotes PARP1 degradation via direct interaction between PARP1 and PF-8, a viral processivity factor. Dimerization domains of PF-8 were found to be critical for PARP1 interaction and degradation and for enhancing the RTA transactivation activity. Furthermore, we found that CHFR, an E3 ubiquitin ligase, is required for PF-8–induced PARP1 degradation and efficient lytic replication of KSHV. This is the first study to show the role of CHFR in viral replication or pathogenicity. This study revealed a molecular mechanism via which gammaherpesviruses overcome the PARP1-mediated inhibitory effect on viral replication: by means of PF-8, which recruits a cellular E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Woo-Chang Chung
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seungrae Lee
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yejin Kim
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jong Bok Seo
- Metabolome Analysis Team, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
26
|
Mathavarajah S, VanIderstine C, Dellaire G, Huber RJ. Cancer and the breakdown of multicellularity: What Dictyostelium discoideum, a social amoeba, can teach us. Bioessays 2021; 43:e2000156. [PMID: 33448043 DOI: 10.1002/bies.202000156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/01/2023]
Abstract
Ancient pathways promoting unicellularity and multicellularity are associated with cancer, the former being pro-oncogenic and the latter acting to suppress oncogenesis. However, there are only a limited number of non-vertebrate models for studying these pathways. Here, we review Dictyostelium discoideum and describe how it can be used to understand these gene networks. D. discoideum has a unicellular and multicellular life cycle, making it possible to study orthologs of cancer-associated genes in both phases. During development, differentiated amoebae form a fruiting body composed of a mass of spores that are supported atop a stalk. A portion of the cells sacrifice themselves to become non-reproductive stalk cells. Cheating disrupts the principles of multicellularity, as cheater cells alter their cell fate to preferentially become spores. Importantly, D. discoideum has gene networks and several strategies for maintaining multicellularity. Therefore, D. discoideum can help us better understand how conserved genes and pathways involved in multicellularity also influence cancer development, potentially identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Sabateeshan Mathavarajah
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carter VanIderstine
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
27
|
Wang H, Lu Y, Wang M, Wu Y, Wang X, Li Y. Roles of E3 ubiquitin ligases in gastric cancer carcinogenesis and their effects on cisplatin resistance. J Mol Med (Berl) 2021; 99:193-212. [PMID: 33392633 DOI: 10.1007/s00109-020-02015-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
Although gastric cancer (GC) is one of the most common cancers with high incidence and mortality rates, its pathogenesis is still not elucidated. GC carcinogenesis is complicated and involved in the activation of oncoproteins and inactivation of tumor suppressors. The ubiquitin-proteasome system (UPS) is crucial for protein degradation and regulation of physiological and pathological processes. E3 ubiquitin ligases are pivotal enzymes in UPS, containing various subfamily proteins. Previous studies report that some E3 ligases, including SKP2, CUL1, and MDM2, act as oncoproteins in GC carcinogenesis. On the other hand, FBXW7, FBXL5, FBXO31, RNF43, and RNF180 exert as tumor suppressors in GC carcinogenesis. Moreover, E3 ligases modulate cell growth, cell apoptosis, and cell cycle; thus, it is complicated to confer cisplatin resistance/sensitivity in GC cells. The intrinsic and acquired cisplatin resistance limits its clinical application against GC. In this review, we explore oncogenic and tumor suppressive roles of E3 ligases in GC carcinogenesis and focus on the effects of E3 ligases on cisplatin resistance in GC cells, which will provide novel therapeutic targets for GC therapy, especially for cisplatin-resistant patients.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yida Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingliang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Youliang Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaodong Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
28
|
Lemjabbar-Alaoui H, Peto CJ, Yang YW, Jablons DM. AMXI-5001, a novel dual parp1/2 and microtubule polymerization inhibitor for the treatment of human cancers. Am J Cancer Res 2020; 10:2649-2676. [PMID: 32905466 PMCID: PMC7471353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) has recently emerged as a central mediator in cancer resistance against numerous anticancer agents to include chemotherapeutic agents such as microtubule targeting agents and DNA damaging agents. Here, we describe AMXI-5001, a novel, highly potent dual PARP1/2 and microtubule polymerization inhibitor with favorable metabolic stability, oral bioavailability, and pharmacokinetic properties. The potency and selectivity of AMXI-5001 were determined by biochemical assays. Anticancer activity either as a single-agent or in combination with other antitumor agents was evaluated in vitro. In vivo antitumor activity as a single-agent was assessed in a triple-negative breast cancer (TNBC) model. AMXI-5001 demonstrates comparable IC50 inhibition against PARP and microtubule polymerization as clinical PARP inhibitors (Olaparib, Rucaparib, Niraparib, and Talazoparib) and the potent polymerization inhibitor (Vinblastine), respectively. In vitro, AMXI-5001 exhibited selective antitumor cytotoxicity across a wide variety of human cancer cells with much lower IC50s than existing clinical PARP1/2 inhibitors. AMXI-5001 is highly active in both BRCA mutated and wild type cancers. AMXI-5001 is orally bioavailable. AMXI-5001 elicited a remarkable In vivo preclinical anti-tumor activity in a BRCA mutated TNBC model. Oral administration of AMXI-5001 induced complete regression of established tumors, including exceedingly large tumors. AMXI-5001 resulted in superior anti-tumor effects compared to either single agent (PARP or microtubule) inhibitor or combination with both agents. AMXI-5001 will enter clinical trial testing soon and represents a promising, novel first in class dual PARP1/2 and microtubule polymerization inhibitor that delivers continuous and synchronous one-two punch cancer therapy with one molecule.
Collapse
Affiliation(s)
- Hassan Lemjabbar-Alaoui
- Department of Surgery, Thoracic Oncology Program, University of California San Francisco 94143, USA
| | - Csaba J Peto
- Department of Surgery, Thoracic Oncology Program, University of California San Francisco 94143, USA
| | - Yi-Wei Yang
- Department of Surgery, Thoracic Oncology Program, University of California San Francisco 94143, USA
| | - David M Jablons
- Department of Surgery, Thoracic Oncology Program, University of California San Francisco 94143, USA
| |
Collapse
|
29
|
Wang M, Dai W, Ke Z, Li Y. Functional roles of E3 ubiquitin ligases in gastric cancer. Oncol Lett 2020; 20:22. [PMID: 32774495 PMCID: PMC7405480 DOI: 10.3892/ol.2020.11883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
To date, >650 E3 ubiquitin ligases have been described in humans, including >600 really interesting new genes (RINGs), 28 homologous to E6-associated protein C-terminus (HECTs) and several RING-in-between-RINGs. They are considered key regulators and therapeutic targets of many types of human cancers, including gastric cancer (GC). Among them, some RING and HECT E3 ligases are closely related to the proliferation, infiltration and prognosis of GC. During the past few years, abnormal expressions and functions of many E3 ligases have been identified in GC. However, the functional roles of E3 ligases in GC have not been fully elucidated. The present article focuses on the functional roles of E3 ligases related to the proteasome in GC. In this comprehensive review, the latest research progress on E3 ligases involved in GC and elaborate their structure, classification, functional roles and therapeutic value in GC was summarized. Finally, 30 E3 ligases that serve essential roles in regulating the development of GC were described. Some of these ligases may serve as oncogenes or tumor suppressors in GC, whereas the pathological mechanism of others needs further study; for example, constitutive photomorphogenic 1. In conclusion, the present review demonstrated that E3 ligases are crucial tumor regulatory factors and potential therapeutic targets in GC. Therefore, more studies should focus on the therapeutic targeting of E3 ligases in GC.
Collapse
Affiliation(s)
- Mingliang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei Dai
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhangyan Ke
- Department of Geriatric Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
30
|
Up-Regulation of PARP1 Expression Significantly Correlated with Poor Survival in Mucosal Melanomas. Cells 2020; 9:cells9051135. [PMID: 32380691 PMCID: PMC7290913 DOI: 10.3390/cells9051135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction: Mucosal melanoma is rare and associated with poorer prognosis in comparison to conventional melanoma subtypes. Little is known about the prognostic significance as well as possible associations between PARP1 and immunologic response in mucosal melanoma. Methods: PARP1, PD-L1 and IDO1 immunostains were performed on 192 mucosal melanomas including 86 vulvar, 89 sinonasal, and 17 anorectal melanomas. Results: By Kaplan–Meier analyses, high PARP1 expression correlated with worse overall and melanoma-specific survival (log-rank p values = 0.026 and 0.047, respectively). Tumors with combined PARP1 and IDO1 high expression correlated with worse overall and melanoma-specific survival (p = 0.015, 0.0034 respectively). By multivariate analyses, high PARP1 expression remained a predictor of worse survival independent of stage. By Fisher’s exact test, high PARP1 expression correlated with highly mitogenic tumors (p = 0.02). High tumoral PD-L1 and IDO1 expression were associated with ulcerated primary tumors (p = 0.019, 0.0019, respectively). By linear regression analyses, correlations between PARP1 expression versus IDO1 expression (p = 0.0001) and mitotic index (p = 0.0052) were observed. Conclusion: Increased expression of PARP1 is an independent negative prognostic marker in mucosal melanomas. The association between PARP1 and IDO1 and their combined adverse prognostic role raise the potential of combined therapy in mucosal melanoma.
Collapse
|
31
|
Kobayashi M, Ishizaki Y, Owaki M, Matsumoto Y, Kakiyama Y, Hoshino S, Tagawa R, Sudo Y, Okita N, Akimoto K, Higami Y. Nutlin-3a suppresses poly (ADP-ribose) polymerase 1 by mechanisms different from conventional PARP1 suppressors in a human breast cancer cell line. Oncotarget 2020; 11:1653-1665. [PMID: 32405340 PMCID: PMC7210013 DOI: 10.18632/oncotarget.27581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) plays important roles in single strand DNA repair. PARP1 inhibitors enhance the effects of DNA damaging drugs in homologous recombination-deficient tumors including tumors with breast cancer susceptibility gene (BRCA1) mutation. Nutlin-3a, an analog of cis-imidazoline, inhibits degradation of murine double minute 2 (MDM2) and stabilizes p53. We previously reported that nutlin-3a induces PARP1 degradation in p53-dependent manner in mouse fibroblasts, suggesting nutlin-3a may be a PARP1 suppressor. Here, we investigated the effects of nutlin-3a on PARP1 in MCF-7, a human breast cancer cell line. Consistent with our previous results, nutlin-3a reduced PARP1 levels in dose- and time-dependent manners in MCF-7 cells, but this reduction was suppressed in p53 knockdown cells. RITA, a p53 stabilizer that binds to p53 itself, failed to reduce PARP1 protein levels. Moreover, transient MDM2 knockdown repressed nutlin-3a-mediated PARP1 reduction. The MG132 proteasome inhibitor, and knockdown of checkpoint with forkhead and ring finger domains (CHFR) and ring finger protein 146 (RNF146), E3 ubiquitin ligases targeting PARP1, suppressed nutlin-3a-induced PARP1 reduction. Short-term nutlin-3a treatment elevated the levels of PARylated PARP1, suggesting nutlin-3a promoted PARylation of PARP1, thereby inducing its proteasomal degradation. Furthermore, nutlin-3a-induced PARP1 degradation enhanced DNA-damaging effects of cisplatin in BRCA1 knockdown cells. Our study revealed that nutlin-3a is a PARP1 suppressor that induces PARP1 proteasomal degradation by binding to MDM2 and promoting autoPARylation of PARP1. Further analysis of the mechanisms in nutlin-3a-induced PARP1 degradation may lead to the development of novel PARP1 suppressors applicable for cancers with BRCA1 mutation.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Co-first authors
| | - Yuka Ishizaki
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Co-first authors
| | - Mika Owaki
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Co-first authors
| | - Yoko Matsumoto
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuri Kakiyama
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shunsuke Hoshino
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ryoma Tagawa
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuka Sudo
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Naoyuki Okita
- Division of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-onoda, Yamaguchi 756-0884, Japan
| | - Kazunori Akimoto
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Laboratory of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
32
|
Kim DS, Challa S, Jones A, Kraus WL. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes Dev 2020; 34:302-320. [PMID: 32029452 PMCID: PMC7050490 DOI: 10.1101/gad.334433.119] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, Kim et al. discuss the importance of PARP family members and ADPRylation in gene regulation, mRNA processing, and protein abundance. ADP-ribosylation (ADPRylation) is a posttranslational modification of proteins discovered nearly six decades ago, but many important questions remain regarding its molecular functions and biological roles, as well as the activity of the ADP-ribose (ADPR) transferase enzymes (PARP family members) that catalyze it. Growing evidence indicates that PARP-mediated ADPRylation events are key regulators of the protein biosynthetic pathway, leading from rDNA transcription and ribosome biogenesis to mRNA synthesis, processing, and translation. In this review we describe the role of PARP proteins and ADPRylation in all facets of this pathway. PARP-1 and its enzymatic activity are key regulators of rDNA transcription, which is a critical step in ribosome biogenesis. An emerging role of PARPs in alternative splicing of mRNAs, as well as direct ADPRylation of mRNAs, highlight the role of PARP members in RNA processing. Furthermore, PARP activity, stimulated by cellular stresses, such as viral infections and ER stress, leads to the regulation of mRNA stability and protein synthesis through posttranscriptional mechanisms. Dysregulation of PARP activity in these processes can promote disease states. Collectively, these results highlight the importance of PARP family members and ADPRylation in gene regulation, mRNA processing, and protein abundance. Future studies in these areas will yield new insights into the fundamental mechanisms and a broader utility for PARP-targeted therapeutic agents.
Collapse
Affiliation(s)
- Dae-Seok Kim
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Aarin Jones
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
33
|
Koliadenko V, Wilanowski T. Additional functions of selected proteins involved in DNA repair. Free Radic Biol Med 2020; 146:1-15. [PMID: 31639437 DOI: 10.1016/j.freeradbiomed.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Protein moonlighting is a phenomenon in which a single polypeptide chain can perform a number of different unrelated functions. Here we present our analysis of moonlighting in the case of selected DNA repair proteins which include G:T mismatch-specific thymine DNA glycosylase (TDG), methyl-CpG-binding domain protein 4 (MBD4), apurinic/apyrimidinic endonuclease 1 (APE1), AlkB homologs, poly (ADP-ribose) polymerase 1 (PARP-1) and single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1). Most of their additional functions are not accidental and clear patterns are emerging. Participation in RNA metabolism is not surprising as bases occurring in RNA are the same or very similar to those in DNA. Other common additional function involves regulation of transcription. This is not unexpected as these proteins bind to specific DNA regions for DNA repair, hence they can also be recruited to regulate transcription. Participation in demethylation and replication of DNA appears logical as well. Some of the multifunctional DNA repair proteins play major roles in many diseases, including cancer. However, their moonlighting might prove a major difficulty in the development of new therapies because it will not be trivial to target a single protein function without affecting its other functions that are not related to the disease.
Collapse
Affiliation(s)
- Vlada Koliadenko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
34
|
The Enigmatic Function of PARP1: From PARylation Activity to PAR Readers. Cells 2019; 8:cells8121625. [PMID: 31842403 PMCID: PMC6953017 DOI: 10.3390/cells8121625] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is catalysed by poly(ADP-ribose) polymerases (PARPs, also known as ARTDs) and then rapidly removed by degrading enzymes. Poly(ADP-ribose) (PAR) is produced from PARylation and provides a delicate and spatiotemporal interaction scaffold for numerous target proteins. The PARylation system, consisting of PAR synthesizers and erasers and PAR itself and readers, plays diverse roles in the DNA damage response (DDR), DNA repair, transcription, replication, chromatin remodeling, metabolism, and cell death. Despite great efforts by scientists in biochemistry, cell and molecular biology, genetics, and pharmacology over the last five decades, the biology of PARPs and PARylation remains enigmatic. In this review, we summarize the current understanding of the biological function of PARP1 (ARTD1), the founding member of the PARP family, focusing on the inter-dependent or -independent nature of different functional domains of the PARP1 protein. We also discuss the readers of PAR, whose function may transduce signals and coordinate the cellular processes, which has recently emerged as a new research avenue for PARP biology. We aim to provide some perspective on how future research might disentangle the biology of PARylation by dissecting the structural and functional relationship of PARP1, a major effector of the PARPs family.
Collapse
|
35
|
Zhang L, Li DQ. MORC2 regulates DNA damage response through a PARP1-dependent pathway. Nucleic Acids Res 2019; 47:8502-8520. [PMID: 31616951 PMCID: PMC6895267 DOI: 10.1093/nar/gkz545] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 01/25/2023] Open
Abstract
Microrchidia family CW-type zinc finger 2 (MORC2) is a newly identified chromatin remodeling enzyme with an emerging role in DNA damage response (DDR), but the underlying mechanism remains largely unknown. Here, we show that poly(ADP-ribose) polymerase 1 (PARP1), a key chromatin-associated enzyme responsible for the synthesis of poly(ADP-ribose) (PAR) polymers in mammalian cells, interacts with and PARylates MORC2 at two residues within its conserved CW-type zinc finger domain. Following DNA damage, PARP1 recruits MORC2 to DNA damage sites and catalyzes MORC2 PARylation, which stimulates its ATPase and chromatin remodeling activities. Mutation of PARylation residues in MORC2 results in reduced cell survival after DNA damage. MORC2, in turn, stabilizes PARP1 through enhancing acetyltransferase NAT10-mediated acetylation of PARP1 at lysine 949, which blocks its ubiquitination at the same residue and subsequent degradation by E3 ubiquitin ligase CHFR. Consequently, depletion of MORC2 or expression of an acetylation-defective PARP1 mutant impairs DNA damage-induced PAR production and PAR-dependent recruitment of DNA repair proteins to DNA lesions, leading to enhanced sensitivity to genotoxic stress. Collectively, these findings uncover a previously unrecognized mechanistic link between MORC2 and PARP1 in the regulation of cellular response to DNA damage.
Collapse
Affiliation(s)
- Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
36
|
Li Y, Shi Y, Wang X, Yu X, Wu C, Ding S. Silencing of CHFR Sensitizes Gastric Carcinoma to PARP Inhibitor Treatment. Transl Oncol 2019; 13:113-121. [PMID: 31812083 PMCID: PMC6909066 DOI: 10.1016/j.tranon.2019.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 01/11/2023] Open
Abstract
CHFR is a tumor suppressor that not only recognizes poly(ADP-ribosylation) (PARylation) signals at the sites of DNA damage but also is downregulated in many types of cancer. However, the underlying mechanism linking its role in PARylation-mediated DNA damage repair and tumor suppression is unclear. Here, we examined a panel of gastric cancer cell lines as well as primary tissue samples from gastric cancer patients, and found that CHFR expression was silenced by DNA hypermethylation in gastric cancer including 38.46% of primary gastric cancers. DNMT1 was associated with aberrant methylation of CHFR, and the expression of CHFR was restored by DNMT1 inhibitor 5-aza-2-deoxycytidine (5-aza-CdR) treatment. Moreover, we found that loss of CHFR abolished DNA damage repair and sensitized gastric tumor cells to PARP inhibitor treatment. Thus, our study reveals a potential therapeutic approach for treating gastric cancer with PARP inhibitor and lacking CHFR can serve as a biomarker for predicting the efficacy of PARP inhibitor on the gastric tumor treatment in future.
Collapse
Affiliation(s)
- Yuan Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 10091, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiumin Wang
- College of Life Sciences, Hebei University, Baoding, 071000, Hebei, PR China
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| | - Chen Wu
- College of Life Sciences, Hebei University, Baoding, 071000, Hebei, PR China.
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 10091, China.
| |
Collapse
|
37
|
Abstract
Mitosis ensures accurate segregation of duplicated DNA through tight regulation of chromosome condensation, bipolar spindle assembly, chromosome alignment in the metaphase plate, chromosome segregation and cytokinesis. Poly(ADP-ribose) polymerases (PARPs), in particular PARP1, PARP2, PARP3, PARP5a (TNKS1), as well as poly(ADP-ribose) glycohydrolase (PARG), regulate different mitotic functions, including centrosome function, mitotic spindle assembly, mitotic checkpoints, telomere length and telomere cohesion. PARP depletion or inhibition give rise to various mitotic defects such as centrosome amplification, multipolar spindles, chromosome misalignment, premature loss of cohesion, metaphase arrest, anaphase DNA bridges, lagging chromosomes, and micronuclei. As the mechanisms of PARP1/2 inhibitor-mediated cell death are being progressively elucidated, it is becoming clear that mitotic defects caused by PARP1/2 inhibition arise due to replication stress and DNA damage in S phase. As it stands, entrapment of inactive PARP1/2 on DNA phenocopies replication stress through accumulation of unresolved replication intermediates, double-stranded DNA breaks (DSBs) and incorrectly repaired DSBs, which can be transmitted from S phase to mitosis and instigate various mitotic defects, giving rise to both numerical and structural chromosomal aberrations. Cancer cells have increased levels of replication stress, which makes them particularly susceptible to a combination of agents that compromise replication fork stability. Indeed, combining PARP1/2 inhibitors with genetic deficiencies in DNA repair pathways, DNA-damaging agents, ATR and other cell cycle checkpoint inhibitors has yielded synergistic effects in killing cancer cells. Here I provide a comprehensive overview of the mitotic functions of PARPs and PARG, mitotic phenotypes induced by their depletion or inhibition, as well as the therapeutic relevance of targeting mitotic cells by directly interfering with mitotic functions or indirectly through replication stress.
Collapse
Affiliation(s)
- Dea Slade
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
38
|
Grimaldi G, Catara G, Palazzo L, Corteggio A, Valente C, Corda D. PARPs and PAR as novel pharmacological targets for the treatment of stress granule-associated disorders. Biochem Pharmacol 2019; 167:64-75. [PMID: 31102582 DOI: 10.1016/j.bcp.2019.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Among the post-translational modifications, ADP-ribosylation has been for long time the least integrated in the scheme of the structural protein modifications affecting physiological functions. In spite of the original findings on bacterial-dependent ADP-ribosylation catalysed by toxins such as cholera and pertussis toxin, only with the discovery of the poly-ADP-ribosyl polymerase (PARP) family the field has finally expanded and the role of ADP-ribosylation has been recognised in both physiological and pathological processes, including cancer, infectious and neurodegenerative diseases. This is now a rapidly expanding field of investigation, centred on the role of the different PARPs and their substrates in various diseases, and on the potential of PARP inhibitors as novel pharmacological tools to be employed in relevant pathological context. In this review we analyse the role that members of the PARP family and poly-ADP-ribose (PAR; the product of PARP1 and PARP5a activity) play in the processes following the exposure of cells to different stresses. The cell response that arises following conditions such as heat, osmotic, oxidative stresses or viral infection relies on the formation of stress granules, which are transient cytoplasmic membrane-less structures, that include untranslated mRNA, specific proteins and PAR, this last one serving as the "collector" of all components (that bind to it in a non-covalent manner). The resulting phenotypes are cells in which translation, intracellular transport or pro-apoptotic pathways are reversibly inhibited, for the time the given stress holds. Interestingly, the formation of defective stress granules has been detected in diverse pathological conditions including neurological disorders and cancer. Analysing the molecular details of stress granule formation under these conditions offers a novel view on the pathogenesis of these diseases and, as a consequence, the possibility of identifying novel drug targets for their treatment.
Collapse
Affiliation(s)
- Giovanna Grimaldi
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy.
| | - Giuliana Catara
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Luca Palazzo
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Annunziata Corteggio
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy.
| |
Collapse
|
39
|
Sun Q, Gatie MI, Kelly GM. Serum-dependent and -independent regulation of PARP2. Biochem Cell Biol 2019; 97:600-611. [PMID: 30880404 DOI: 10.1139/bcb-2018-0345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PARP2 belongs to a family of proteins involved in cell differentiation, DNA damage repair, cellular energy expenditure, and chromatin modeling. In addition to these overlapping functions with PARP1, PARP2 participates in spermatogenesis, T-cell maturation, extra-embryonic endoderm formation, adipogenesis, lipid metabolism, and cholesterol homeostasis. Knowledge of the functions of PARP2 is far from complete, and the mechanism(s) by which the gene and protein are regulated are unknown. In this study, we found that two different mechanisms are used in vitro to regulate PARP2 levels. In the presence of serum, PARP2 is degraded through the ubiquitin-proteasome pathway; however, when serum is removed or dialyzed with a 3.5 kDa molecular cut membrane, PARP2 rapidly becomes sodium dodecyl sulphate- and urea-insoluble. Despite the presence of a putative serum response element in the PARP2 gene, transcription is not affected by serum deprivation, and PARP2 levels are restored when serum is replaced. The loss of PARP2 affects cell differentiation and gene expression linked to cholesterol and lipid metabolism. These observations highlight the critical roles that PARP2 plays under different physiological conditions, and reveal that PARP2 is tightly regulated by distinct pathways.
Collapse
Affiliation(s)
- Qizhi Sun
- Department of Biology, Molecular Genetics Unit, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Mohamed I Gatie
- Department of Biology, Molecular Genetics Unit, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Gregory M Kelly
- Department of Biology, Molecular Genetics Unit, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada.,Departments of Physiology, Pharmacology, and Paediatrics, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada.,Child Health Research Institute, 800 Commissioners Road East, London, ON N6C 2B5, Canada.,Ontario Institute for Regenerative Medicine, MaRS Centre, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada
| |
Collapse
|
40
|
Carter RJ, Nickson CM, Thompson JM, Kacperek A, Hill MA, Parsons JL. Characterisation of Deubiquitylating Enzymes in the Cellular Response to High-LET Ionizing Radiation and Complex DNA Damage. Int J Radiat Oncol Biol Phys 2019; 104:656-665. [PMID: 30851349 PMCID: PMC6542414 DOI: 10.1016/j.ijrobp.2019.02.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/31/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Ionizing radiation, particular high-linear energy transfer (LET) radiation, can induce complex DNA damage (CDD) wherein 2 or more DNA lesions are induced in close proximity, which contributes significantly to the cell killing effects. However, knowledge of the enzymes and mechanisms involved in coordinating the recognition and processing of CDD in cellular DNA are currently lacking. METHODS AND MATERIALS A small interfering RNA screen of deubiquitylation enzymes was conducted in HeLa cells irradiated with high-LET α-particles or protons, versus low-LET protons and x-rays, and cell survival was monitored by clonogenic assays. Candidates whose depletion led to decreased cell survival specifically in response to high-LET radiation were validated in both HeLa and oropharyngeal squamous cell carcinoma (UMSCC74A) cells, and the association with CDD repair was confirmed using an enzyme modified neutral comet assay. RESULTS Depletion of USP6 decreased cell survival specifically after high-LET α-particles and protons, but not low-LET protons or x-rays. USP6 depletion caused cell cycle arrest and a deficiency in CDD repair mediated through instability of poly(ADP-ribose) polymerase-1 (PARP-1) protein. Increased radiosensitivity of cells to high-LET protons as a consequence of defective CDD repair was furthermore mimicked using the PARP inhibitor olaparib, and through PARP-1 small interfering RNA. CONCLUSIONS USP6 controls cell survival in response to high-LET radiation by stabilizing PARP-1 protein levels, which is essential for CDD repair. We also describe synergy between CDD induced by high-LET protons and PARP inhibition, or PARP-1 depletion, in effective cancer cell killing.
Collapse
Affiliation(s)
- Rachel J Carter
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Catherine M Nickson
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - James M Thompson
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, Oxford, United Kingdom
| | - Andrzej Kacperek
- The National Eye Proton Therapy Centre, The Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom
| | - Mark A Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, Oxford, United Kingdom
| | - Jason L Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
41
|
Cullati SN, Gould KL. Spatiotemporal regulation of the Dma1-mediated mitotic checkpoint coordinates mitosis with cytokinesis. Curr Genet 2019; 65:663-668. [PMID: 30600396 DOI: 10.1007/s00294-018-0921-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/26/2022]
Abstract
During cell division, the timing of mitosis and cytokinesis must be ordered to ensure that each daughter cell receives a complete, undamaged copy of the genome. In fission yeast, the septation initiation network (SIN) is responsible for this coordination, and a mitotic checkpoint dependent on the E3 ubiquitin ligase Dma1 and the protein kinase CK1 controls SIN signaling to delay cytokinesis when there are errors in mitosis. The participation of kinases and ubiquitin ligases in cell cycle checkpoints that maintain genome integrity is conserved from yeast to human, making fission yeast an excellent model system in which to study checkpoint mechanisms. In this review, we highlight recent advances and remaining questions related to checkpoint regulation, which requires the synchronized modulation of protein ubiquitination, phosphorylation, and subcellular localization.
Collapse
|
42
|
Cha Y, Kim SY, Yeo HY, Baek JY, Choi MK, Jung KH, Dong SM, Chang HJ. Association of CHFR Promoter Methylation with Treatment Outcomes of Irinotecan-Based Chemotherapy in Metastatic Colorectal Cancer. Neoplasia 2018; 21:146-155. [PMID: 30562637 PMCID: PMC6297269 DOI: 10.1016/j.neo.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023] Open
Abstract
Aberrant promoter methylation plays a vital role in colorectal carcinogenesis. However, its role in treatment responses is unclear, especially for metastatic disease. Here, we investigated the association between promoter methylation and treatment outcomes of irinotecan-based chemotherapy in 102 patients with metastatic colorectal cancer. Promoter methylation was examined by methylation-specific polymerase chain reaction for three loci (CHFR, WRN, and SULF2) associated with chemotherapy response and five CpG island methylator phenotype (CIMP)–specific markers (CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1). Association between CHFR methylation and in vitro sensitivity to irinotecan was also evaluated. Promoter methylation of CHFR, WRN, and SULF2 was identified in 16 (15.7%), 24 (23.5%), and 33 (32.4%) patients, respectively. CIMP status was positive in 22 (21.6%) patients. CHFR methylation was associated with a significantly longer time to progression (TTP) (median: 8.77 vs. 4.43 months, P = .019), with trends favoring higher overall survival (OS) (median: 22.83 vs. 20.17 months, P = .300) and response rates (31.3% vs. 17.4%, P = .300). For patients with unmethylated CHFR, TTP (median: 5.60 vs. 3.53, P = .020) and OS (median: 20.57 vs. 9.23, P = .006) were significantly different according to CIMP status. Colorectal cancer cell lines with CHFR methylation demonstrated increased sensitivity to irinotecan. Both CHFR overexpression and combination with 5-aza-2′-deoxycytidine reversed irinotecan sensitivity in CHFR-methylated cell lines, whereas CHFR knockdown in unmethylated cells restored sensitivity to irinotecan. These data suggest that CHFR methylation may be associated with favorable treatment outcomes of irinotecan-based chemotherapy in patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Yongjun Cha
- Center for Colorectal Cancer, National Cancer Center, Goyang, Korea; Precision Medicine Branch, Division of Precision Medicine, Research Institute of National Cancer Center, Goyang, Korea
| | - Sun Young Kim
- Center for Colorectal Cancer, National Cancer Center, Goyang, Korea
| | - Hyun Yang Yeo
- Precision Medicine Branch, Division of Precision Medicine, Research Institute of National Cancer Center, Goyang, Korea
| | - Ji Yeon Baek
- Center for Colorectal Cancer, National Cancer Center, Goyang, Korea; Translational Research Branch, Division of Translational Science, Research Institute of National Cancer Center, Goyang, Korea
| | - Moon Ki Choi
- Center for Colorectal Cancer, National Cancer Center, Goyang, Korea
| | - Kyung Hae Jung
- Center for Colorectal Cancer, National Cancer Center, Goyang, Korea
| | - Seung Myung Dong
- Molecular Epidemiology Branch, Division of Cancer Epidemiology and Prevention, Research Institute of National Cancer Center, Goyang, Korea.
| | - Hee Jin Chang
- Center for Colorectal Cancer, National Cancer Center, Goyang, Korea; Precision Medicine Branch, Division of Precision Medicine, Research Institute of National Cancer Center, Goyang, Korea.
| |
Collapse
|
43
|
Ding L, Chen X, Xu X, Qian Y, Liang G, Yao F, Yao Z, Wu H, Zhang J, He Q, Yang B. PARP1 Suppresses the Transcription of PD-L1 by Poly(ADP-Ribosyl)ating STAT3. Cancer Immunol Res 2018; 7:136-149. [PMID: 30401677 DOI: 10.1158/2326-6066.cir-18-0071] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/10/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022]
Abstract
Studies have pointed to a role of PARP1 in regulating gene expression through poly(ADP-ribosyl)ating, sequence-specific, DNA-binding transcription factors. However, few examples exist that link this role of PARP1 to the immunogenicity of cancer cells. Here, we report that PARP1 poly(ADP-ribosyl)ates STAT3 and subsequently promotes STAT3 dephosphorylation, resulting in reduced transcriptional activity of STAT3 and expression of PD-L1. In this study, we showed that PARP1 silencing or pharmacologic inhibition enhanced the transcription of PD-L1 in cancer cells, which was accompanied by the upregulation of PD-L1 protein expression, both in the cytoplasm and on the cell surface. This induction of PD-L1 was attenuated in the absence of the transcription factor STAT3. Cell-based studies indicated that PARP1 interacted directly with STAT3 and caused STAT3 poly(ADP-ribosyl)ation. STAT3's activation of PD-L1 transcription was abolished by the overexpression of wild-type PARP1 but not mutant PARP1, which lacks catalytic activity. PARP1 downregulation or catalytic inhibition enhanced the phosphorylation of STAT3, which was reversed by the ectopic expression of wild-type PARP1 but not by mutated PARP1. An inverse correlation between PARP1 and PD-L1 was also observed in clinical ovarian cancer samples. Overall, our study revealed PARP1-mediated poly(ADP-ribosyl)ation of STAT3 as a key step in inhibiting the transcription of PD-L1, and this mechanism exists in a variety of cancer cells.
Collapse
Affiliation(s)
- Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaqing Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuli Qian
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guikai Liang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fengqi Yao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhangting Yao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jieqiong Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
44
|
Carter-O’Connell I, Vermehren-Schmaedick A, Jin H, Morgan RK, David LL, Cohen MS. Combining Chemical Genetics with Proximity-Dependent Labeling Reveals Cellular Targets of Poly(ADP-ribose) Polymerase 14 (PARP14). ACS Chem Biol 2018; 13:2841-2848. [PMID: 30247868 DOI: 10.1021/acschembio.8b00567] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Poly(ADP-ribose) polymerase 14 (PARP14) is a member of the PARP family of enzymes that transfer ADP-ribose from NAD+ to nucleophilic amino acids on target proteins, a process known as mono-ADP-ribosylation (MARylation). PARP14 is involved in normal immune function through the IL-4 signaling pathway and is a prosurvival factor in multiple myeloma and hepatocellular carcinoma. A mechanistic understanding of the physiological and pathophysiological roles of PARP14 has been limited by the dearth of PARP14-specific MARylation targets. Herein we engineered a PARP14 variant that uses an NAD+ analog that is orthogonal to wild-type PARPs for identifying PARP14-specific MARylation targets. Combining this chemical genetics approach with a BioID approach for proximity-dependent labeling of PARP14 interactors, we identified 114 PARP14-specific protein substrates, several of which are RNA regulatory proteins. One of these targets is PARP13, a protein known to play a role in regulating RNA stability. PARP14 MARylates PARP13 on several acidic amino acids. This study not only reveals crosstalk among PARP family members but also highlights the advantage of using disparate approaches for identifying the direct targets of individual PARP family members.
Collapse
Affiliation(s)
- Ian Carter-O’Connell
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97210, United States
| | - Anke Vermehren-Schmaedick
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97210, United States
| | - Haihong Jin
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97210, United States
| | - Rory K. Morgan
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97210, United States
| | - Larry L. David
- Department of Biochemistry, Oregon Health and Science University, Portland, Oregon 97210, United States
| | - Michael S. Cohen
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97210, United States
| |
Collapse
|
45
|
Jubin T, Kadam A, Saran S, Begum R. Crucial role of poly (ADP‐ribose) polymerase (PARP‐1) in cellular proliferation of
Dictyostelium discoideum. J Cell Physiol 2018; 234:7539-7547. [DOI: 10.1002/jcp.27514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 09/10/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Tina Jubin
- Department of Biochemistry, Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara India
| | - Shweta Saran
- School of Life Sciences, Jawaharlal Nehru University New Delhi India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara India
| |
Collapse
|
46
|
Austria T, Marion C, Yu V, Widschwendter M, Hinton DR, Dubeau L. Mechanism of cytokinesis failure in ovarian cystadenomas with defective BRCA1 and P53 pathways. Int J Cancer 2018; 143:2932-2942. [PMID: 29978915 DOI: 10.1002/ijc.31659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/23/2018] [Accepted: 06/07/2018] [Indexed: 11/09/2022]
Abstract
We previously described an in vitro model in which serous ovarian cystadenomas were transfected with SV40 large T antigen, resulting in loss of RB and P53 functions and thus mimicking genetic defects present in early high-grade serous extra-uterine Müllerian (traditionally called high-grade serous ovarian) carcinomas including those associated with the BRCA1 mutation carrier state. We showed that replicative aging in this cell culture model leads to a mitotic arrest at the spindle assembly checkpoint. Here we show that this arrest is due to a reduction in microtubule anchoring that coincides with decreased expression of the BUB1 kinase and of the phosphorylated form of its substrate, BUB3. The ensuing prolonged mitotic arrest leads to cohesion fatigue resulting in cell death or, in cells that recover from this arrest, in cytokinesis failure and polyploidy. Down-regulation of BRCA1 to levels similar to those present in BRCA1 mutation carriers leads to increased and uncontrolled microtubule anchoring to the kinetochore resulting in overcoming the spindle assembly checkpoint. Progression to anaphase under those conditions is associated with formation of chromatin bridges between chromosomal plates due to abnormal attachments to the kinetochore, significantly increasing the risk of cytokinesis failure. The dependence of this scenario on accelerated replicative aging can, at least in part, account for the site specificity of the cancers associated with the BRCA1 mutation carrier state, as epithelia of the mammary gland and of the reproductive tract are targets of cell-nonautonomous consequences of this carrier state on cellular proliferation associated with menstrual cycle progressions.
Collapse
Affiliation(s)
- Theresa Austria
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Christine Marion
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Vanessa Yu
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Martin Widschwendter
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - David R Hinton
- Department of Pathology and Ophthalmology, Roski Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Louis Dubeau
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
47
|
McCann KE, Hurvitz SA. Advances in the use of PARP inhibitor therapy for breast cancer. Drugs Context 2018; 7:212540. [PMID: 30116283 PMCID: PMC6089618 DOI: 10.7573/dic.212540] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022] Open
Abstract
Poly-ADP-ribose polymerase 1 (PARP-1) and PARP-2 are DNA damage sensors that are most active during S-phase of the cell cycle and that have wider-reaching roles in DNA repair than originally described. BRCA1 and BRCA2 (Breast Cancer) proteins are involved in homologous recombination repair (HRR), which requires a homologous chromosome or sister chromatid as a template to faithfully repair DNA double-strand breaks. The small-molecule NAD+ mimetics, olaparib, niraparib, rucaparib, veliparib, and talazoparib, inhibit the catalytic activity of PARP-1 and PARP-2 and are currently being studied in later-stage clinical trials. PARP inhibitor clinical trials have predominantly focused on patients with breast and ovarian cancer with deleterious germline BRCA1 and BRCA2 mutations (gBRCA1/2+) but are now expanding to include cancers with known, suspected, or more-likely-than-not defects in homologous recombination repair. In ovarian cancer, this group also includes women whose cancers are responsive to platinum therapy. Olaparib was FDA-approved in January 2018 for the treatment of gBRCA1/2+ metastatic breast cancers. gBRCA1+ predisposes women to develop triple-negative breast cancers, while women with gBRCA2+ tend to develop hormone-receptor-positive, human epidermal growth factor receptor 2 negative breast cancers. Although PARP inhibitor monotherapy strategies seem most effective in cancers with homologous recombination repair defects, combination strategies may allow expansion into a wider range of cancers. By interfering with DNA repair, PARP inhibitors essentially sensitize cells to DNA-damaging chemotherapies and radiation therapy. Certainly, one could also consider expanding the utility of PARP inhibitors beyond gBRCA1/2+ cancers by causing DNA damage with cytotoxic agents in the presence of a DNA repair inhibitor. Unfortunately, in numerous phase I clinical trials utilizing a combination of cytotoxic chemotherapy at standard doses with dose-escalation of PARP inhibitors, there has generally been failure to reach monotherapy dosages of PARP inhibitors due to myelosuppressive toxicities. Strategies utilizing angiogenesis inhibitors and immune checkpoint inhibitors are generally not hindered by additive toxicities, though the utility of combining PARP inhibitors with treatments that have not been particularly effective in breast cancers somewhat tempers enthusiasm. Finally, there are combination strategies that may serve to mitigate resistance to PARP inhibitors, namely, upregulation of the intracellular PhosphoInositide-3-kinase, AK thymoma (protein kinase B), mechanistic target of rapamycin (PI3K-AKT-mTOR) pathway, or perhaps are more simply meant to interfere with a cell growth pathway heavily implicated in breast cancers while administering relatively well-tolerated PARP inhibitor therapy.
Collapse
Affiliation(s)
- Kelly E McCann
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Sara A Hurvitz
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
48
|
Novel poly-ADP-ribose polymerase inhibitor combination strategies in ovarian cancer. Curr Opin Obstet Gynecol 2018; 30:7-16. [DOI: 10.1097/gco.0000000000000428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Kukolj E, Kaufmann T, Dick AE, Zeillinger R, Gerlich DW, Slade D. PARP inhibition causes premature loss of cohesion in cancer cells. Oncotarget 2017; 8:103931-103951. [PMID: 29262611 PMCID: PMC5732777 DOI: 10.18632/oncotarget.21879] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) regulate various aspects of cellular function including mitotic progression. Although PARP inhibitors have been undergoing various clinical trials and the PARP1/2 inhibitor olaparib was approved as monotherapy for BRCA-mutated ovarian cancer, their mode of action in killing tumour cells is not fully understood. We investigated the effect of PARP inhibition on mitosis in cancerous (cervical, ovary, breast and osteosarcoma) and non-cancerous cells by live-cell imaging. The clinically relevant inhibitor olaparib induced strong perturbations in mitosis, including problems with chromosome alignment at the metaphase plate, anaphase delay, and premature loss of cohesion (cohesion fatigue) after a prolonged metaphase arrest, resulting in sister chromatid scattering. PARP1 and PARP2 depletion suppressed the phenotype while PARP2 overexpression enhanced it, suggesting that olaparib-bound PARP1 and PARP2 rather than the lack of catalytic activity causes this phenotype. Olaparib-induced mitotic chromatid scattering was observed in various cancer cell lines with increased protein levels of PARP1 and PARP2, but not in non-cancer or cancer cell lines that expressed lower levels of PARP1 or PARP2. Interestingly, the sister chromatid scattering phenotype occurred only when olaparib was added during the S-phase preceding mitosis, suggesting that PARP1 and PARP2 entrapment at replication forks impairs sister chromatid cohesion. Clinically relevant DNA-damaging agents that impair replication progression such as topoisomerase inhibitors and cisplatin were also found to induce sister chromatid scattering and metaphase plate alignment problems, suggesting that these mitotic phenotypes are a common outcome of replication perturbation.
Collapse
Affiliation(s)
- Eva Kukolj
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Tanja Kaufmann
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Amalie E Dick
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Dea Slade
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| |
Collapse
|
50
|
RBR-type E3 ubiquitin ligase RNF144A targets PARP1 for ubiquitin-dependent degradation and regulates PARP inhibitor sensitivity in breast cancer cells. Oncotarget 2017; 8:94505-94518. [PMID: 29212245 PMCID: PMC5706891 DOI: 10.18632/oncotarget.21784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/23/2017] [Indexed: 01/06/2023] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1), a critical DNA repair protein, is frequently upregulated in breast tumors with a key role in breast cancer progression. Consequently, PARP inhibitors have emerged as promising therapeutics for breast cancers with DNA repair deficiencies. However, relatively little is known about the regulatory mechanism of PARP1 expression and the determinants of PARP inhibitor sensitivity in breast cancer cells. Here, we report that ring finger protein 144A (RNF144A), a RING-between-RING (RBR)-type E3 ubiquitin ligase with an unexplored functional role in human cancers, interacts with PARP1 through its carboxy-terminal region containing the transmembrane domain, and targets PARP1 for ubiquitination and subsequent proteasomal degradation. Moreover, induced expression of RNF144A decreases PARP1 protein levels and renders breast cancer cells resistant to the clinical-grade PARP inhibitor olaparib. Conversely, knockdown of endogenous RNF144A increases PARP1 protein levels and enhances cellular sensitivity to olaparib. Together, these findings define RNF144A as a novel regulator of PARP1 protein abundance and a potential determinant of PARP inhibitor sensitivity in breast cancer cells, which may eventually guide the optimal use of PARP inhibitors in the clinic.
Collapse
|