1
|
Guo DZ, Chen Y, Meng Y, Bian JJ, Wang Y, Wang JF. Bidirectional Interaction of Sepsis and Sleep Disorders: The Underlying Mechanisms and Clinical Implications. Nat Sci Sleep 2024; 16:1665-1678. [PMID: 39444661 PMCID: PMC11498039 DOI: 10.2147/nss.s485920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
Sepsis is defined as life-threatening organ injury induced by infection, with high incidence and mortality. Sleep disorder is prevalent in septic patients and approximately 50% of patients with sepsis may develop atypical sleep patterns, but many of them may have been underdiagnosed by physicians. Sleep disorders and sepsis exhibit a close bidirectional relationship, with each condition significantly influencing the other. Conversely, sleep deprivation, sleep dysrhythmia and sleep fragmentation have been shown to impact the outcome of sepsis. This review endeavors to offer a comprehensive understanding of the intricate mechanisms that underpin the interplay between sepsis and sleep disorders, in addition to exploring potential clinical intervention strategies that could enhance outcomes for patients suffering from sepsis.
Collapse
Affiliation(s)
- De-Zhi Guo
- School of Basic Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Yu Chen
- School of Basic Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Yan Meng
- Department of Intensive Care, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jin-Jun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Zhang S, Guo Y, Zhang S, Wang Z, Zhang Y, Zuo S. Targeting the deubiquitinase USP2 for malignant tumor therapy (Review). Oncol Rep 2023; 50:176. [PMID: 37594087 PMCID: PMC10463009 DOI: 10.3892/or.2023.8613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The ubiquitin‑proteasome system is a major degradation pathway for >80% of proteins in vivo. Deubiquitylases, which remove ubiquitinated tags to stabilize substrate proteins, are important components involved in regulating the degradation of ubiquitinated proteins. In addition, they serve multiple roles in tumor development by participating in physiological processes such as protein metabolism, cell cycle regulation, DNA damage repair and gene transcription. The present review systematically summarized the role of ubiquitin‑specific protease 2 (USP2) in malignant tumors and the specific molecular mechanisms underlying the involvement of USP2 in tumor‑associated pathways. USP2 reverses ubiquitin‑mediated degradation of proteins and is involved in aberrant proliferation, migration, invasion, apoptosis and drug resistance of tumors. Additionally, the present review summarized studies reporting on the use of USP2 as a therapeutic target for malignancies such as breast, liver, ovarian, colorectal, bladder and prostate cancers and glioblastoma and highlights the current status of pharmacological research on USP2. The clinical significance of USP2 as a therapeutic target for malignant tumors warrants further investigation.
Collapse
Affiliation(s)
- Shilong Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yi Guo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shenjie Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zhi Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yewei Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
3
|
Jiang H, Wang X, Ma J, Xu G. The fine-tuned crosstalk between lysine acetylation and the circadian rhythm. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194958. [PMID: 37453648 DOI: 10.1016/j.bbagrm.2023.194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Circadian rhythm is a roughly 24-h wake and sleep cycle that almost all of the organisms on the earth follow when they execute their biological functions and physiological activities. The circadian clock is mainly regulated by the transcription-translation feedback loop (TTFL), consisting of the core clock proteins, including BMAL1, CLOCK, PERs, CRYs, and a series of accessory factors. The circadian clock and the downstream gene expression are not only controlled at the transcriptional and translational levels but also precisely regulated at the post-translational modification level. Recently, it has been discovered that CLOCK exhibits lysine acetyltransferase activities and could acetylate protein substrates. Core clock proteins are also acetylated, thereby altering their biological functions in the regulation of the expression of downstream genes. Studies have revealed that many protein acetylation events exhibit oscillation behavior. However, the biological function of acetylation on circadian rhythm has only begun to explore. This review will briefly introduce the acetylation and deacetylation of the core clock proteins and summarize the proteins whose acetylation is regulated by CLOCK and circadian rhythm. Then, we will also discuss the crosstalk between lysine acetylation and the circadian clock or other post-translational modifications. Finally, we will briefly describe the possible future perspectives in the field.
Collapse
Affiliation(s)
- Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
4
|
Zhu M, Wang H, Ding Y, Yang Y, Xu Z, Shi L, Zhang N. Ribonucleotide reductase holoenzyme inhibitor COH29 interacts with deubiquitinase ubiquitin-specific protease 2 and downregulates its substrate protein cyclin D1. FASEB J 2022; 36:e22329. [PMID: 35476303 DOI: 10.1096/fj.202101914rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/11/2022]
Abstract
USP2 contributes to the quality control of multiple oncogenic proteins including cyclin D1, Mdm2, Aurora-A, etc., and it is a potential target for anti-cancer drug development. However, currently only a few inhibitors with moderate inhibition activities against USP2 have been discovered. USP2-targeted active compounds with either new scaffolds or enhanced activities are in need. Here in this study, Ub-AMC hydrolysis assay-based screening against ~4000 commercially available drugs and drug candidates was performed to identify USP2-targeted inhibitors. COH29, which was originally developed as an anti-cancer agent by blocking the function of human ribonucleotide reductase (RNR, IC50 = 16 µM), was found to exhibit an inhibition activity against USP2 with the IC50 value at 2.02 ± 0.16 µM. The following conducted biophysical and biochemical experiments demonstrated that COH29 could specifically interact with USP2 and inhibit its enzymatic activity in a noncompetitive inhibition mode (Ki = 1.73 ± 0.14 µM). Since COH29 shows similar inhibitory potencies against RNR (RRM2) and USP2, USP2 inhibition-dependent cellular consequences of COH29 are expected. The results of cellular assays confirmed that the application of COH29 could downregulate the level of cyclin D1 by enhancing its degradation via ubiquitin-proteasome system (UPS), and the modulation effect of COH29 on cyclin D1 is independent of RRM2. Since cyclin D1 acts as an oncogenic driver in human cancer, our findings suggest that USP2 might be a promising therapeutic target for cyclin D1-addicted cancers, and COH29 could serve as a starting compound for high selectivity inhibitor development against USP2.
Collapse
Affiliation(s)
- Mengying Zhu
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yiluan Ding
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Yang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhuo Xu
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Shi
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Cheng CP, Liu ST, Chiu YL, Huang SM, Ho CL. The Inhibitory Effects of 6-Thioguanine and 6-Mercaptopurine on the USP2a Target Fatty Acid Synthase in Human Submaxillary Carcinoma Cells. Front Oncol 2021; 11:749661. [PMID: 34956872 PMCID: PMC8702617 DOI: 10.3389/fonc.2021.749661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022] Open
Abstract
Overexpression of the deubiquitinase USP2a leads to stabilization of fatty acid synthase (FAS), the levels of which are often elevated in aggressive human cancers. Consequently, there is an urgent need for inhibitors to suppress the deubiquitination activity of USP2a so as to upregulate FAS protein degradation. We first analyzed the relationship between the expression level of USP2a and survival using The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (HNSC) data collection. Our results suggested survival rates were lower among HNSC patients expressing higher levels of USP2a. We then investigated two thiopurine drugs, 6-thioguanine (6-TG) and 6-mercaptopurine (6-MP), to determine whether they could potentially serve as inhibitors of USP2a. Western blot analysis showed that levels of two USP2a target proteins, FAS and Mdm2, were dose-dependently decreased in A253 submaxillary carcinoma cells treated with 6-TG or 6‐MP. Responding to the degradation of Mdm2, levels of p53 were increased. We found that 6-TG and 6-MP also suppressed levels of both USP2a mRNA and protein, suggesting these two thiopurines do not act solely through direct inhibition of USP2a. The effects of 6-TG and 6-MP were not cell type-specific, as they elicited similar decreases in FAS protein in leukemia, prostate and cervical cancer cell lines. 6-TG and 6-MP had effects on several cell cycle proteins, including another USP2a target protein, cyclin D1. The populations of cells in subG1 and S phase were increased by 6-TG and 6-MP, which was accompanied by reductions in G1 phase cells. In untreated cells, USP2a transfection increased FAS and cyclin D1 levels compared to an enzyme-dead USP2a C276A mutant, which lacked deubiquitinating activity. However, USP2a transfection failed to reverse the suppressive effects of 6‐TG and 6-MP on FAS levels. In summary, these findings suggest 6-TG and 6-MP reduce the stability of some USP2a targets, including FAS and Mdm2, by inhibiting USP2a-catalyzed deubiquitination in some cancer cells. Our work also provides repurposing evidence supporting 6‐TG and 6-MP as target therapeutic drugs, such as USP2a/FAS in this study.
Collapse
Affiliation(s)
- Chiao-Pei Cheng
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Ching-Liang Ho
- Division of Hematology and Oncology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
6
|
Xu D, Wu J, Chen J, Jiang L, Chen J, Bao W, Chen X, Yang Q, Zhang X, Yao L, Su H, Liu J. Cullin 2-RBX1 E3 ligase and USP2 regulate antithrombin ubiquitination and stability. FASEB J 2021; 35:e21800. [PMID: 34324733 DOI: 10.1096/fj.202001146rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 11/11/2022]
Abstract
Hemophilia A and B are congenital bleeding disorders caused by a deficiency in pro-coagulant factor VIII or IX that is treated by downregulation of antithrombin. However, the molecular mechanisms that regulate antithrombin expression remain poorly understood. Here, we identified Cullin 2 and USP2 (ubiquitin-specific peptidase-2) as novel regulators of antithrombin expression that act by modulating antithrombin ubiquitination. Inhibition of the proteasome caused accumulation of antithrombin and its ubiquitinated forms in HepG2 and SMMC7721 cells. Notably, inhibition of neddylation with MLN4924 suppressed both ubiquitination and degradation of antithrombin, which is recapitulated by silencing of the neddylation enzymes, NAE1, UBA3, and UBE2M, with small interfering RNA (siRNA). We identified Cullin 2 as the interaction partner of antithrombin, and siRNA-mediated Cullin 2 knockdown reduced antithrombin ubiquitination and increased antithrombin protein. We further found that USP2 interacted with antithrombin and regulated antithrombin expression, showing that overexpression of USP2 inhibits the ubiquitination and proteasomal clearance of antithrombin, whereas pharmacological inhibition or siRNA-mediated knockdown of USP2 downregulates antithrombin. Collectively, these results suggest that Cullin 2 E3 ubiquitin ligase and USP2 coordinately regulate antithrombin ubiquitination and degradation. Thus, targeting Cullin 2 and USP2 could be a potential strategy for treatment of hemophilia.
Collapse
Affiliation(s)
- Dacai Xu
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiawen Wu
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinghong Chen
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liling Jiang
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juan Chen
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhao Bao
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianqian Yang
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Leyi Yao
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Behavioral phenotyping of mice lacking the deubiquitinase USP2. PLoS One 2021; 16:e0241403. [PMID: 33621249 PMCID: PMC7901773 DOI: 10.1371/journal.pone.0241403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/08/2021] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin specific peptidase 2 (USP2) is a deubiquitinating enzyme expressed almost ubiquitously in the body, including in multiple brain regions. We previously showed that mice lacking USP2 present altered locomotor activity rhythms and response of the clock to light. However, the possible implication of USP2 in regulating other behaviors has yet to be tested. To address this, we ran a battery of behavioral tests on Usp2 KO mice. Firstly, we confirmed our prior findings of increased daily activity and reduced activity fragmentation in Usp2 KO mice. Further, mice lacking USP2 showed impaired motor coordination and equilibrium, a decrease in anxiety-like behavior, a deficit in working memory and in sensorimotor gating. On the other hand, no effects of Usp2 gene deletion were found on spatial memory. Hence, our data uncover the implication of USP2 in different behaviors and expands the range of the known functions of this deubiquitinase.
Collapse
|
8
|
Srikanta SB, Cermakian N. To Ub or not to Ub: Regulation of circadian clocks by ubiquitination and deubiquitination. J Neurochem 2020; 157:11-30. [PMID: 32717140 DOI: 10.1111/jnc.15132] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
Circadian clocks are internal timing systems that enable organisms to adjust their behavioral and physiological rhythms to the daily changes of their environment. These clocks generate self-sustained oscillations at the cellular, tissue, and behavioral level. The rhythm-generating mechanism is based on a gene expression network with a delayed negative feedback loop that causes the transcripts to oscillate with a period of approximately 24 hr. This oscillatory nature of the proteins involved in this network necessitates that they are intrinsically unstable, with a short half-life. Hence, post-translational modifications (PTMs) are important to precisely time the presence, absence, and interactions of these proteins at appropriate times of the day. Ubiquitination and deubiquitination are counter-balancing PTMs which play a key role in this regulatory process. In this review, we take a comprehensive look at the roles played by the processes of ubiquitination and deubiquitination in the clock machinery of the most commonly studied eukaryotic models of the circadian clock: plants, fungi, fruit flies, and mammals. We present the effects exerted by ubiquitinating and deubiquitinating enzymes on the stability, but also the activity, localization, and interactions of clock proteins. Overall, these PTMs have key roles in regulating not only the pace of the circadian clocks but also their response to external cues and their control of cellular functions.
Collapse
Affiliation(s)
- Shashank Bangalore Srikanta
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.,Laboratory of Molecular Chronobiology, Douglas Research Centre, Montréal, QC, Canada
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Research Centre, Montréal, QC, Canada.,Department of Psychiatry, McGill University, Montréal, QC, Canada
| |
Collapse
|
9
|
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020; 5:90. [PMID: 32532965 PMCID: PMC7293209 DOI: 10.1038/s41392-020-0196-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor genes cooperate with each other in tumors. Three important tumor suppressor proteins, retinoblastoma (Rb), p53, phosphatase, and tensin homolog deleted on chromosome ten (PTEN) are functionally associated and they regulated by post-translational modification (PTMs) as well. PTMs include phosphorylation, SUMOylation, acetylation, and other novel modifications becoming growing appreciated. Because most of PTMs are reversible, normal cells use them as a switch to control the state of cells being the resting or proliferating, and PTMs also involve in cell survival and cell cycle, which may lead to abnormal proliferation and tumorigenesis. Although a lot of studies focus on the importance of each kind of PTM, further discoveries shows that tumor suppressor genes (TSGs) form a complex "network" by the interaction of modification. Recently, there are several promising strategies for TSGs for they change more frequently than carcinogenic genes in cancers. We here review the necessity, characteristics, and mechanisms of each kind of post-translational modification on Rb, p53, PTEN, and its influence on the precise and selective function. We also discuss the current antitumoral therapies of Rb, p53 and PTEN as predictive, prognostic, and therapeutic target in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
10
|
Tong X, Zhang D, Shabandri O, Oh J, Jin E, Stamper K, Yang M, Zhao Z, Yin L. DDB1 E3 ligase controls dietary fructose-induced ChREBPα stabilization and liver steatosis via CRY1. Metabolism 2020; 107:154222. [PMID: 32246987 PMCID: PMC7282961 DOI: 10.1016/j.metabol.2020.154222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Fructose over-consumption contributes to the development of liver steatosis in part by stimulating ChREBPα-driven de novo lipogenesis. However, the mechanisms by which fructose activates ChREBP pathway remain largely undefined. Here we performed affinity purification of ChREBPα followed by mass spectrometry and identified DDB1 as a novel interaction protein of ChREBPα in the presence of fructose. Depletion and overexpression of Ddb1 showed opposite effects on the ChREBPα stability in hepatocytes. We next tested the impact of hepatic Ddb1 deficiency on the fructose-induced ChREBP pathway. After 3-week high-fructose diet feeding, both Ddb1 liver-specific knockout and AAV-TBG-Cre-injected Ddb1flox/flox mice showed significantly reduced ChREBPα, lipogenic enzymes, as well as triglycerides in the liver. Mechanistically, DDB1 stabilizes ChREBPα through CRY1, a known ubiquitination target of DDB1 E3 ligase. Finally, overexpression of a degradation-resistant CRY1 mutant (CRY1-585KA) reduces ChREBPα and its target genes in the mouse liver following high-fructose diet feeding. Our data revealed DDB1 as an intracellular sensor of fructose intake to promote hepatic de novo lipogenesis and liver steatosis by stabilizing ChREBPα in a CRY1-dependent manner.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 1137 Catherine Street, Med Sci II 7712, Ann Arbor, MI 48109, USA
| | - Deqiang Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 1137 Catherine Street, Med Sci II 7712, Ann Arbor, MI 48109, USA
| | - Omar Shabandri
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 1137 Catherine Street, Med Sci II 7712, Ann Arbor, MI 48109, USA
| | - Joon Oh
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 1137 Catherine Street, Med Sci II 7712, Ann Arbor, MI 48109, USA
| | - Ethan Jin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 1137 Catherine Street, Med Sci II 7712, Ann Arbor, MI 48109, USA
| | - Kenneth Stamper
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 1137 Catherine Street, Med Sci II 7712, Ann Arbor, MI 48109, USA
| | - Meichan Yang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 1137 Catherine Street, Med Sci II 7712, Ann Arbor, MI 48109, USA; Department of Infectious Diseases, The Second Xianya Hospital, Central South University, Changsha City 410083, Hunan Province, PR China
| | - Zifeng Zhao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 1137 Catherine Street, Med Sci II 7712, Ann Arbor, MI 48109, USA; Department of Pharmacology of Chinese Materia, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing City 211198, PR China
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 1137 Catherine Street, Med Sci II 7712, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Hergenhan S, Holtkamp S, Scheiermann C. Molecular Interactions Between Components of the Circadian Clock and the Immune System. J Mol Biol 2020; 432:3700-3713. [PMID: 31931006 PMCID: PMC7322557 DOI: 10.1016/j.jmb.2019.12.044] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/30/2023]
Abstract
The immune system is under control of the circadian clock. Many of the circadian rhythms observed in the immune system originate in direct interactions between components of the circadian clock and components of the immune system. The main means of circadian control over the immune system is by direct control of circadian clock proteins acting as transcription factors driving the expression or repression of immune genes. A second circadian control of immunity lies in the acetylation or methylation of histones to regulate gene transcription or inflammatory proteins. Furthermore, circadian clock proteins can engage in direct physical interactions with components of key inflammatory pathways such as members of the NFκB protein family. This regulation is transcription independent and allows the immune system to also reciprocally exert control over circadian clock function. Thus, the molecular interactions between the circadian clock and the immune system are manifold. We highlight and discuss here the recent findings with respect to the molecular mechanisms that control time-of-day-dependent immunity. This review provides a structured overview focusing on the key circadian clock proteins and discusses their reciprocal interactions with the immune system. The immune system is under control of the circadian clock. Circadian clock proteins act as transcription factors controlling genes of the immune system. Circadian clock proteins engage in direct physical interactions with inflammatory proteins. Immune factors also reciprocally exert control over circadian clock function.
Collapse
Affiliation(s)
- Sophia Hergenhan
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Munich, Germany
| | - Stephan Holtkamp
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Munich, Germany
| | - Christoph Scheiermann
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Munich, Germany; University of Geneva, Centre Médical Universitaire (CMU), Department of Pathology and Immunology, Geneva, Switzerland.
| |
Collapse
|
12
|
Pan X, Mota S, Zhang B. Circadian Clock Regulation on Lipid Metabolism and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:53-66. [PMID: 32705594 PMCID: PMC8593891 DOI: 10.1007/978-981-15-6082-8_5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The basic helix-loop-helix-PAS transcription factor (CLOCK, Circadian locomotor output cycles protein kaput) was discovered in 1994 as a circadian clock. Soon after its discovery, the circadian clock, Aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL, also call BMAL1), was shown to regulate adiposity and body weight by controlling on the brain hypothalamic suprachiasmatic nucleus (SCN). Farther, circadian clock genes were determined to exert several of lipid metabolic and diabetes effects, overall indicating that CLOCK and BMAL1 act as a central master circadian clock. A master circadian clock acts through the neurons and hormones, with expression in the intestine, liver, kidney, lung, heart, SCN of brain, and other various cell types of the organization. Among circadian clock genes, numerous metabolic syndromes are the most important in the regulation of food intake (via regulation of circadian clock genes or clock-controlled genes in peripheral tissue), which lead to a variation in plasma phospholipids and tissue phospholipids. Circadian clock genes affect the regulation of transporters and proteins included in the regulation of phospholipid metabolism. These genes have recently received increasing recognition because a pharmacological target of circadian clock genes may be of therapeutic worth to make better resistance against insulin, diabetes, obesity, metabolism syndrome, atherosclerosis, and brain diseases. In this book chapter, we focus on the regulation of circadian clock and summarize its phospholipid effect as well as discuss the chemical, physiology, and molecular value of circadian clock pathway regulation for the treatment of plasma lipids and atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA.
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY, USA.
| | - Samantha Mota
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY, USA
| | - Boyang Zhang
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY, USA
| |
Collapse
|
13
|
Li HX. The role of circadian clock genes in tumors. Onco Targets Ther 2019; 12:3645-3660. [PMID: 31190867 PMCID: PMC6526167 DOI: 10.2147/ott.s203144] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Circadian rhythms are generated via variations in the expression of clock genes that are organized into a complex transcriptional–translational autoregulatory network and regulate the diverse physiological and behavioral activities that are required to adapt to periodic environmental changes. Aberrant clock gene expression is associated with a heightened risk of diseases that affect all aspects of human health, including cancers. Within the past several years, a number of studies have indicated that clock genes contribute to carcinogenesis by altering the expression of clock-controlled and tumor-related genes downstream of many cellular pathways. This review comprehensively summarizes how clock genes affect the development of tumors and their prognosis. In addition, the review provides a full description of the current state of oral cancer research that aims to optimize cancer diagnosis and treatment modalities.
Collapse
Affiliation(s)
- Han-Xue Li
- Department of Preventive Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing 400015, People's Republic of China
| |
Collapse
|
14
|
Kim SY, Baek KH. TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci 2019; 76:653-665. [PMID: 30349992 PMCID: PMC11105597 DOI: 10.1007/s00018-018-2949-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
Ubiquitination is a reversible cellular process mediated by ubiquitin-conjugating enzymes, whereas deubiquitinating enzymes (DUBs) detach the covalently conjugated ubiquitin from target substrates to counter ubiquitination. DUBs play a crucial role in regulating various signal transduction pathways and biological processes including apoptosis, cell proliferation, DNA damage repair, metastasis, differentiation, etc. Since the transforming growth factor-β (TGF-β) signaling pathway participates in various cellular functions such as inflammation, metastasis and embryogenesis, aberrant regulation of TGF-β signaling induces abnormal cellular functions resulting in numerous diseases. This review focuses on DUBs regulating the TGF-β signaling pathway. We discuss the molecular mechanisms of DUBs involved in TGF-β signaling pathway, and biological and therapeutic implications for various diseases.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
15
|
Chen S, Yang J, Yang L, Zhang Y, Zhou L, Liu Q, Duan C, Mieres CA, Zhou G, Xu G. Ubiquitin ligase
TRAF
2 attenuates the transcriptional activity of the core clock protein
BMAL
1 and affects the maximal
Per1
mRNA
level of the circadian clock in cells. FEBS J 2018; 285:2987-3001. [DOI: 10.1111/febs.14595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Suping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Lu Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Chunyan Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Crystal A. Mieres
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
- Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| | - Guanghai Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
- Institute of Cardiovascular Endocrinology Key Laboratory of Atherosclerosis in Universities of Shandong Taishan Medical University Tai'an Shandong China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| |
Collapse
|
16
|
Chen S, Yang J, Zhang Y, Duan C, Liu Q, Huang Z, Xu Y, Zhou L, Xu G. Ubiquitin-conjugating enzyme UBE2O regulates cellular clock function by promoting the degradation of the transcription factor BMAL1. J Biol Chem 2018; 293:11296-11309. [PMID: 29871923 DOI: 10.1074/jbc.ra117.001432] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
Dysregulation of the circadian rhythm is associated with many diseases, including diabetes, obesity, and cancer. Aryl hydrocarbon receptor nuclear translocator-like protein 1 (Arntl or Bmal1) is the only clock gene whose loss disrupts circadian locomotor behavior in constant darkness. BMAL1 levels are affected by proteasomal inhibition and by several enzymes in the ubiquitin-proteasome system, but the exact molecular mechanism remains unclear. Here, using immunoprecipitation and MS analyses, we discovered an interaction between BMAL1 and ubiquitin-conjugating enzyme E2 O (UBE2O), an E3-independent E2 ubiquitin-conjugating enzyme (i.e. hybrid E2/E3 enzyme). Biochemical experiments with cell lines and animal tissues validated this specific interaction and uncovered that UBE2O expression reduces BMAL1 levels by promoting its ubiquitination and degradation. Moreover, UBE2O expression/knockdown diminished/increased, respectively, BMAL1-mediated transcriptional activity but did not affect BMAL1 gene expression. Bioluminescence experiments disclosed that UBE2O knockdown elevates the amplitude of the circadian clock in human osteosarcoma U2OS cells. Furthermore, mapping of the BMAL1-interacting domain in UBE2O and analyses of BMAL1 stability and ubiquitination revealed that the conserved region 2 (CR2) in UBE2O significantly enhances BMAL1 ubiquitination and decreases BMAL1 protein levels. A Cys-to-Ser substitution experiment identified the critical Cys residue in the CR2 domain responsible for BMAL1 ubiquitination. This work identifies UBE2O as a critical regulator in the ubiquitin-proteasome system, which modulates BMAL1 transcriptional activity and circadian function by promoting BMAL1 ubiquitination and degradation under normal physiological conditions.
Collapse
Affiliation(s)
- Suping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Chunyan Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zhengyun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
17
|
Zhang Y, Duan C, Yang J, Chen S, Liu Q, Zhou L, Huang Z, Xu Y, Xu G. Deubiquitinating enzyme USP9X regulates cellular clock function by modulating the ubiquitination and degradation of a core circadian protein BMAL1. Biochem J 2018; 475:1507-1522. [PMID: 29626158 DOI: 10.1042/bcj20180005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/12/2023]
Abstract
Living organisms on the earth maintain a roughly 24 h circadian rhythm, which is regulated by circadian clock genes and their protein products. Post-translational modifications of core clock proteins could affect the circadian behavior. Although ubiquitination of core clock proteins was studied extensively, the reverse process, deubiquitination, has only begun to unfold and the role of this regulation on circadian function is not completely understood. Here, we use affinity purification and mass spectrometry analysis to identify probable ubiquitin carboxyl-terminal hydrolase FAF-X (USP9X) as an interacting protein of the core clock protein aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL or BMAL1). Through biochemical experiments, we discover that USP9X reduces BMAL1 ubiquitination, enhances its stability, and increases its protein level, leading to the elevated transcriptional activity. Bioluminescence measurement reveals that USP9X knockdown decreases the amplitude of the cellular circadian rhythm but the period and phase are not affected. Our experiments find a new regulator for circadian clock at the post-translational level and demonstrate a different regulatory function for the circadian clock through the deubiquitination and the up-regulation of the core clock protein BMAL1 in the positive limb of the transcription-translation feedback loop.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Chunyan Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Suping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zhengyun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
18
|
Tomala MD, Magiera-Mularz K, Kubica K, Krzanik S, Zieba B, Musielak B, Pustula M, Popowicz GM, Sattler M, Dubin G, Skalniak L, Holak TA. Identification of small-molecule inhibitors of USP2a. Eur J Med Chem 2018. [PMID: 29529503 DOI: 10.1016/j.ejmech.2018.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
USP2a is a deubiquitinating protease that rescues its target proteins from destruction by the proteasome by reversing the process of protein ubiquitination. USP2a shows oncogenic properties in vivo and has been found to be a specific activator of cyclin D1. Many types of cancers are addicted to cyclin D1 expression. Targeting USP2a is a promising strategy for cancer therapy but little progress has been made in the field of inhibition of USP2a. Using NMR-based fragment screening and biophysical binding assays, we have discovered small molecules that bind to USP2a. Iterations of fragment combination and structure-driven design identified two 5-(2-thienyl)-3-isoxazoles as the inhibitors of the USP2a-ubiquitin protein-protein interaction. The affinity of these molecules for the catalytic domain of USP2a parallels their ability to interfere with USP2a binding to ubiquitin in vitro. Altogether, our results establish the 5-(2-thienyl)-3-isoxazole pharmacophore as an attractive starting point for lead optimization.
Collapse
Affiliation(s)
- Marcin D Tomala
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | | | - Katarzyna Kubica
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Sylwia Krzanik
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Bartosz Zieba
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Bogdan Musielak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Marcin Pustula
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Grzegorz Dubin
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Lukasz Skalniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Tad A Holak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| |
Collapse
|
19
|
Zhu HQ, Gao FH. The Molecular Mechanisms of Regulation on USP2's Alternative Splicing and the Significance of Its Products. Int J Biol Sci 2017; 13:1489-1496. [PMID: 29230097 PMCID: PMC5723915 DOI: 10.7150/ijbs.21637] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/10/2017] [Indexed: 01/06/2023] Open
Abstract
Ubiquitin-specific protease 2 (USP2) has a regulatory function in cell growth or death and is involved in the pathogenesis of various diseases. USP2 gene can generate 7 splicing variants through alternative splicing, and 5 variants respectively as USP2-201, USP2-202, USP2-204, USP2-205, USP2-206 can encode proteins. The influence of circadian rhythm, nutrition and androgen on specific signaling molecules or cytokines can regulate the alternative splicing of USP2. Specifically, PKC activator, IL-1β, TNF-α, PDGF-BB, TGF-β1 are all regulatory factors for USP2's alternative splicing. USP2-201 plays a crucial role in cell cycle progression, and is also of great significance in EGFR recycling. USP2-202 can activate apoptosis signaling pathway to participate in cell apoptosis, and USP2-204 can induce cell anti-virus reaction to decrease. In general, we collect and summarize the factors involved in the alternative splicing of USP2 in this review to further understand the mechanism behind the USP2's alternative splicing.
Collapse
Affiliation(s)
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai, China
| |
Collapse
|
20
|
Tong X, Zhang D, Charney N, Jin E, VanDommelen K, Stamper K, Gupta N, Saldate J, Yin L. DDB1-Mediated CRY1 Degradation Promotes FOXO1-Driven Gluconeogenesis in Liver. Diabetes 2017; 66:2571-2582. [PMID: 28790135 PMCID: PMC5606320 DOI: 10.2337/db16-1600] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Targeted protein degradation through ubiquitination is an important step in the regulation of glucose metabolism. Here, we present evidence that the DDB1-CUL4A ubiquitin E3 ligase functions as a novel metabolic regulator that promotes FOXO1-driven hepatic gluconeogenesis. In vivo, hepatocyte-specific Ddb1 deletion leads to impaired hepatic gluconeogenesis in the mouse liver but protects mice from high-fat diet-induced hyperglycemia. Lack of Ddb1 downregulates FOXO1 protein expression and impairs FOXO1-driven gluconeogenic response. Mechanistically, we discovered that DDB1 enhances FOXO1 protein stability via degrading the circadian protein cryptochrome 1 (CRY1), a known target of DDB1 E3 ligase. In the Cry1 depletion condition, insulin fails to reduce the nuclear FOXO1 abundance and suppress gluconeogenic gene expression. Chronic depletion of Cry1 in the mouse liver not only increases FOXO1 protein but also enhances hepatic gluconeogenesis. Thus, we have identified the DDB1-mediated CRY1 degradation as an important target of insulin action on glucose homeostasis.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Nicholas Charney
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Ethan Jin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Kyle VanDommelen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Kenneth Stamper
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Neil Gupta
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Johnny Saldate
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
21
|
Yang Z, Kim H, Ali A, Zheng Z, Zhang K. Interaction between stress responses and circadian metabolism in metabolic disease. LIVER RESEARCH 2017; 1:156-162. [PMID: 29430321 PMCID: PMC5805151 DOI: 10.1016/j.livres.2017.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circadian rhythms play crucial roles in orchestrating diverse physiological processes that are critical for health and disease. Dysregulated circadian rhythms are closely associated with various human metabolic diseases, including type 2 diabetes, cardiovascular disease, and non-alcoholic fatty liver disease. Modern lifestyles are frequently associated with an irregular circadian rhythm, which poses a significant risk to public health. While the central clock has a set periodicity, circadian oscillators in peripheral organs, particularly in the liver, can be entrained by metabolic alterations or stress cues. At the molecular level, the signal transduction pathways that mediate stress responses interact with, and are often integrated with, the key determinants of circadian oscillation, to maintain metabolic homeostasis under physiological or pathological conditions. In the liver, a number of nuclear receptors or transcriptional regulators, which are regulated by metabolites, hormones, the circadian clock, or environmental stressors, serve as direct links between stress responses and circadian metabolism. In this review, we summarize recent advances in the understanding of the interactions between stress responses (the endoplasmic reticulum (ER) stress response, the oxidative stress response, and the inflammatory response) and circadian metabolism, and the role of these interactions in the development of metabolic diseases.
Collapse
Affiliation(s)
- Zhao Yang
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA
| | - Arushana Ali
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA
| | - Ze Zheng
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA,Department of Microbiology, Immunology, and Biochemistry, Wayne State University, MI, USA,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA,Corresponding author. Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. (K. Zhang)
| |
Collapse
|
22
|
Wang Z, Xie W, Zhu M, Zhou H. Development of a highly reliable assay for ubiquitin-specific protease 2 inhibitors. Bioorg Med Chem Lett 2017; 27:4015-4018. [PMID: 28778469 DOI: 10.1016/j.bmcl.2017.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
Abstract
The dynamic modification of proteins with ubiquitin plays crucial roles in major celluar functions, and is associated with a number of pathological conditions. Ubiquitin-specific proteases (USPs) cleave ubiquitin from substrate proteins, and rescue them from proteasomal degradation. Among them, USP2 is overexpressed and plays important roles in various cancers including prostate cancer. Thus, it represents an attractive target for drug discovery. In order to develop potent and selective USP2 inhibitors, a highly reliable assay is needed for in-depth structure-activity relationship study. We report the cloning, expression, and purification of USP2 and UBA52, and the development of a highly reliable assay based on readily available SDS-PAGE-Coomassie systeme using UBA52 as the substrate protein. A number of effective USP2 inhibitors were also identified using this assay.
Collapse
Affiliation(s)
- Zhongli Wang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjuan Xie
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyan Zhu
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
23
|
Labaronne E, Pinteur C, Vega N, Pesenti S, Julien B, Meugnier-Fouilloux E, Vidal H, Naville D, Le Magueresse-Battistoni B. Low-dose pollutant mixture triggers metabolic disturbances in female mice leading to common and specific features as compared to a high-fat diet. J Nutr Biochem 2017; 45:83-93. [PMID: 28433925 DOI: 10.1016/j.jnutbio.2017.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/02/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
Environmental pollutants are potential etiologic factors of obesity and diabetes that reach epidemic proportions worldwide. However, it is important to determine if pollutants could exert metabolic defects without directly inducing obesity. The metabolic disturbances triggered in nonobese mice lifelong exposed to a mixture of low-dose pollutants (2,3,7,8-tetrachlorodibenzo-p-dioxine, polychlorinated biphenyl 153, diethylhexyl-phthalate, and bisphenol A) were compared with changes provoked by a high-fat high-sucrose (HFHS) diet not containing the pollutant mixture. Interestingly, females exposed to pollutants exhibited modifications in lipid homeostasis including a significant increase of hepatic triglycerides but also distinct features from those observed in diet-induced obese mice. For example, they did not gain weight nor was glucose tolerance impacted. To get more insight, a transcriptomic analysis was performed in liver for comparison. We observed that in addition to the xenobiotic/drug metabolism pathway, analysis of the hepatic signature illustrated that the steroid/cholesterol, fatty acid/lipid and circadian clock metabolic pathways were targeted in response to pollutants as observed in the diet-induced obese mice. However, the specific sets of dysregulated annotated genes (>1300) did not overlap more than 40% between both challenges with some genes specifically altered only in response to pollutant exposure. Collectively, results show that pollutants and HFHS affect common metabolic pathways, but by different, albeit overlapping, mechanisms. This is highly relevant for understanding the synergistic effects between pollutants and the obesogenic diet reported in the literature.
Collapse
Affiliation(s)
- Emmanuel Labaronne
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Claudie Pinteur
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Nathalie Vega
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Sandra Pesenti
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Benoit Julien
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Emmanuelle Meugnier-Fouilloux
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Hubert Vidal
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Danielle Naville
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Brigitte Le Magueresse-Battistoni
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France.
| |
Collapse
|
24
|
Mendoza-Viveros L, Bouchard-Cannon P, Hegazi S, Cheng AH, Pastore S, Cheng HYM. Molecular modulators of the circadian clock: lessons from flies and mice. Cell Mol Life Sci 2017; 74:1035-1059. [PMID: 27689221 PMCID: PMC11107503 DOI: 10.1007/s00018-016-2378-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/03/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
Circadian timekeeping is a ubiquitous mechanism that enables organisms to maintain temporal coordination between internal biological processes and time of the local environment. The molecular basis of circadian rhythms lies in a set of transcription-translation feedback loops (TTFLs) that drives the rhythmic transcription of core clock genes, whose level and phase of expression serve as the marker of circadian time. However, it has become increasingly evident that additional regulatory mechanisms impinge upon the TTFLs to govern the properties and behavior of the circadian clock. Such mechanisms include changes in chromatin architecture, interactions with other transcription factor networks, post-transcriptional control by RNA modifications, alternative splicing and microRNAs, and post-translational regulation of subcellular trafficking and protein degradation. In this review, we will summarize the current knowledge of circadian clock regulation-from transcriptional to post-translational-drawing from literature pertaining to the Drosophila and murine circadian systems.
Collapse
Affiliation(s)
- Lucia Mendoza-Viveros
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Pascale Bouchard-Cannon
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Sara Hegazi
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Arthur H Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Stephen Pastore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
25
|
Hirano A, Fu YH, Ptáček LJ. The intricate dance of post-translational modifications in the rhythm of life. Nat Struct Mol Biol 2016; 23:1053-1060. [DOI: 10.1038/nsmb.3326] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/14/2016] [Indexed: 12/26/2022]
|
26
|
Russo L, Ghadieh HE, Ghanem SS, Al-Share QY, Smiley ZN, Gatto-Weis C, Esakov EL, McInerney MF, Heinrich G, Tong X, Yin L, Najjar SM. Role for hepatic CEACAM1 in regulating fatty acid metabolism along the adipocyte-hepatocyte axis. J Lipid Res 2016; 57:2163-2175. [PMID: 27777319 DOI: 10.1194/jlr.m072066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/17/2016] [Indexed: 12/15/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance and mediating suppression of fatty acid synthase activity. Feeding C57BL/6J male mice with a high-fat (HF) diet for 3-4 weeks triggered a >60% decrease in hepatic CEACAM1 levels to subsequently impair insulin clearance and cause systemic insulin resistance and hepatic steatosis. This study aimed at investigating whether lipolysis drives reduction in hepatic CEACAM1 and whether this constitutes a key mechanism leading to diet-induced metabolic abnormalities. Blocking lipolysis with a daily intraperitoneal injection of nicotinic acid in the last two days of a 30-day HF feeding regimen demonstrated that white adipose tissue (WAT)-derived fatty acids repressed hepatic CEACAM1-dependent regulation of insulin and lipid metabolism in 3-month-old male C57BL/6J mice. Adenoviral-mediated CEACAM1 redelivery countered the adverse metabolic effect of the HF diet on insulin resistance, hepatic steatosis, visceral obesity, and energy expenditure. It also reversed the effect of HF diet on inflammation and fibrosis in WAT and liver. This assigns a causative role for lipolysis-driven decrease in hepatic CEACAM1 level and its regulation of insulin and lipid metabolism in sustaining systemic insulin resistance, hepatic steatosis, and other abnormalities associated with excessive energy supply.
Collapse
Affiliation(s)
- Lucia Russo
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Qusai Y Al-Share
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Zachary N Smiley
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Cara Gatto-Weis
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614
| | - Emily L Esakov
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Medicinal and Biological Chemistry at the College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Marcia F McInerney
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Medicinal and Biological Chemistry at the College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Garrett Heinrich
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| | - Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614 .,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| |
Collapse
|
27
|
Davis MI, Pragani R, Fox JT, Shen M, Parmar K, Gaudiano EF, Liu L, Tanega C, McGee L, Hall MD, McKnight C, Shinn P, Nelson H, Chattopadhyay D, D'Andrea AD, Auld DS, DeLucas LJ, Li Z, Boxer MB, Simeonov A. Small Molecule Inhibition of the Ubiquitin-specific Protease USP2 Accelerates cyclin D1 Degradation and Leads to Cell Cycle Arrest in Colorectal Cancer and Mantle Cell Lymphoma Models. J Biol Chem 2016; 291:24628-24640. [PMID: 27681596 DOI: 10.1074/jbc.m116.738567] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/04/2016] [Indexed: 12/11/2022] Open
Abstract
Deubiquitinases are important components of the protein degradation regulatory network. We report the discovery of ML364, a small molecule inhibitor of the deubiquitinase USP2 and its use to interrogate the biology of USP2 and its putative substrate cyclin D1. ML364 has an IC50 of 1.1 μm in a biochemical assay using an internally quenched fluorescent di-ubiquitin substrate. Direct binding of ML364 to USP2 was demonstrated using microscale thermophoresis. ML364 induced an increase in cellular cyclin D1 degradation and caused cell cycle arrest as shown in Western blottings and flow cytometry assays utilizing both Mino and HCT116 cancer cell lines. ML364, and not the inactive analog 2, was antiproliferative in cancer cell lines. Consistent with the role of cyclin D1 in DNA damage response, ML364 also caused a decrease in homologous recombination-mediated DNA repair. These effects by a small molecule inhibitor support a key role for USP2 as a regulator of cell cycle, DNA repair, and tumor cell growth.
Collapse
Affiliation(s)
- Mindy I Davis
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Rajan Pragani
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Jennifer T Fox
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Min Shen
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Kalindi Parmar
- the Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, and
| | - Emily F Gaudiano
- the Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, and
| | - Li Liu
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Cordelle Tanega
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Lauren McGee
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Matthew D Hall
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Crystal McKnight
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Paul Shinn
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Henrike Nelson
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Debasish Chattopadhyay
- the Center for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Alan D D'Andrea
- the Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, and
| | - Douglas S Auld
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Larry J DeLucas
- the Center for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Zhuyin Li
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Matthew B Boxer
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892,.
| | - Anton Simeonov
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892,.
| |
Collapse
|
28
|
Tong X, Li P, Zhang D, VanDommelen K, Gupta N, Rui L, Omary MB, Yin L. E4BP4 is an insulin-induced stabilizer of nuclear SREBP-1c and promotes SREBP-1c-mediated lipogenesis. J Lipid Res 2016; 57:1219-30. [PMID: 27252523 DOI: 10.1194/jlr.m067181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 12/16/2022] Open
Abstract
Upon food intake, insulin stimulates de novo lipogenesis (DNL) in hepatocytes via the AKT-mTORC1-sterol regulatory element-binding protein (SREBP)-1c pathway. How insulin maintains the maximal SREBP-1c activities during the entire feeding state remains elusive. We previously reported that insulin induced b-ZIP transcription factor, E4-binding protein 4 (E4BP4), in hepatocytes. In the current study, we show that insulin injection increases hepatic E4bp4 expression by activating the AKT-mTORC1-SREBP-1c pathway in hepatocytes. E4bp4-deficient hepatocytes not only fail to maintain robust DNL but also become resistant to SREBP-1c-induced lipogenesis. In vivo, acute depletion of E4bp4 in the liver by adenoviral shRNA reduces the expression of lipogenic enzymes and results in reduced levels of serum triglycerides and cholesterol during the postprandial phase. In hepatocytes, E4BP4 interacts with nuclear SREBP-1c to preserve its acetylation, and subsequently protects it from ubiquitination-dependent degradation. In conclusion, the current studies uncover a novel positive feedback pathway mediated by E4BP4 to augment SREBP-1c-mediated DNL in the liver during the fed state.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Pei Li
- Xiangya School of Medicine, Central South University, Changsha 410013, People's Republic of China
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Kyle VanDommelen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Neil Gupta
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| |
Collapse
|
29
|
Hirano A, Nakagawa T, Yoshitane H, Oyama M, Kozuka-Hata H, Lanjakornsiripan D, Fukada Y. USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock. PLoS One 2016; 11:e0154263. [PMID: 27123980 PMCID: PMC4849774 DOI: 10.1371/journal.pone.0154263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/11/2016] [Indexed: 12/24/2022] Open
Abstract
Mammalian Cryptochromes, CRY1 and CRY2, function as principal regulators of a transcription-translation-based negative feedback loop underlying the mammalian circadian clockwork. An F-box protein, FBXL3, promotes ubiquitination and degradation of CRYs, while FBXL21, the closest paralog of FBXL3, ubiquitinates CRYs but leads to stabilization of CRYs. Fbxl3 knockout extremely lengthened the circadian period, and deletion of Fbxl21 gene in Fbxl3-deficient mice partially rescued the period-lengthening phenotype, suggesting a key role of CRY protein stability for maintenance of the circadian periodicity. Here, we employed a proteomics strategy to explore regulators for the protein stability of CRYs. We found that ubiquitin-specific protease 7 (USP7 also known as HAUSP) associates with CRY1 and CRY2 and stabilizes CRYs through deubiquitination. Treatment with USP7-specific inhibitor or Usp7 knockdown shortened the circadian period of the cellular rhythm. We identified another CRYs-interacting protein, TAR DNA binding protein 43 (TDP-43), an RNA-binding protein. TDP-43 stabilized CRY1 and CRY2, and its knockdown also shortened the circadian period in cultured cells. The present study identified USP7 and TDP-43 as the regulators of CRY1 and CRY2, underscoring the significance of the stability control process of CRY proteins for period determination in the mammalian circadian clockwork.
Collapse
Affiliation(s)
- Arisa Hirano
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Tomoki Nakagawa
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
| | - Darin Lanjakornsiripan
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–0033, Japan
- * E-mail:
| |
Collapse
|
30
|
Tong X, Zhang D, Guha A, Arthurs B, Cazares V, Gupta N, Yin L. CUL4-DDB1-CDT2 E3 Ligase Regulates the Molecular Clock Activity by Promoting Ubiquitination-Dependent Degradation of the Mammalian CRY1. PLoS One 2015; 10:e0139725. [PMID: 26431207 PMCID: PMC4592254 DOI: 10.1371/journal.pone.0139725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/16/2015] [Indexed: 01/06/2023] Open
Abstract
The CUL4-DDB1 E3 ligase complex serves as a critical regulator in various cellular processes, including cell proliferation, DNA damage repair, and cell cycle progression. However, whether this E3 ligase complex regulates clock protein turnover and the molecular clock activity in mammalian cells is unknown. Here we show that CUL4-DDB1-CDT2 E3 ligase ubiquitinates CRY1 and promotes its degradation both in vitro and in vivo. Depletion of the major components of this E3 ligase complex, including Ddb1, Cdt2, and Cdt2-cofactor Pcna, leads to CRY1 stabilization in cultured cells or in the mouse liver. CUL4A-DDB1-CDT2 E3 ligase targets lysine 585 within the C-terminal region of CRY1 protein, shown by the CRY1 585KA mutant’s resistance to ubiquitination and degradation mediated by the CUL4A-DDB1 complex. Surprisingly, both depletion of Ddb1 and over-expression of Cry1-585KA mutant enhance the oscillatory amplitude of the Bmal1 promoter activity without altering its period length, suggesting that CUL4A-DDB1-CDT2 E3 targets CRY1 for degradation and reduces the circadian amplitude. All together, we uncovered a novel biological role for CUL4A-DDB1-CDT2 E3 ligase that regulates molecular circadian behaviors via promoting ubiquitination-dependent degradation of CRY1.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Deqiang Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Anirvan Guha
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Blake Arthurs
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Victor Cazares
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Neil Gupta
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
31
|
Yang Y, Duguay D, Fahrenkrug J, Cermakian N, Wing SS. USP2 regulates the intracellular localization of PER1 and circadian gene expression. J Biol Rhythms 2015; 29:243-56. [PMID: 25238854 DOI: 10.1177/0748730414544741] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endogenous 24-h rhythms in physiology are driven by a network of circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Posttranslational modifications, including ubiquitination, are important for regulating the clock feedback mechanism. Recently, we showed that the deubiquitinating enzyme ubiquitin-specific peptidase 2 (USP2) associates with clock proteins and deubiquitinates PERIOD1 (PER1) but does not affect its overall stability. Mice devoid of USP2 display defects in clock function. Here, we show that USP2 regulates nucleocytoplasmic shuttling and nuclear retention of PER1 and its repressive role on the clock transcription factors CLOCK and BMAL1. The rhythm of nuclear entry of PER1 in Usp2 knockout mouse embryonic fibroblasts (MEFs) was advanced but with reduced nuclear accumulation of PER1. Although Per1 mRNA expression rhythm remained intact in the Usp2 KO MEFs, the expression profiles of other core clock genes were altered. This was also true for the expression of clock-controlled genes (e.g., Dbp, Tef, Hlf, E4bp4). A similar phase advance of PER1 nuclear localization rhythm and alteration of clock gene expression profiles were also observed in livers of Usp2 KO mice. Taken together, our results demonstrate a novel function of USP2 in the molecular clock in which it regulates PER1 function by gating its nuclear entry and accumulation.
Collapse
Affiliation(s)
- Yaoming Yang
- Polypeptide Laboratory, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montréal, Québec, Canada
| | - David Duguay
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Montréal, Québec, Canada Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Montréal, Québec, Canada Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Simon S Wing
- Polypeptide Laboratory, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montréal, Québec, Canada
| |
Collapse
|
32
|
Vriend J, Reiter RJ. Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res 2015; 58:1-11. [PMID: 25369242 DOI: 10.1111/jpi.12189] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022]
Abstract
The expression of 'clock' genes occurs in all tissues, but especially in the suprachiasmatic nuclei (SCN) of the hypothalamus, groups of neurons in the brain that regulate circadian rhythms. Melatonin is secreted by the pineal gland in a circadian manner as influenced by the SCN. There is also considerable evidence that melatonin, in turn, acts on the SCN directly influencing the circadian 'clock' mechanisms. The most direct route by which melatonin could reach the SCN would be via the cerebrospinal fluid of the third ventricle. Melatonin could also reach the pars tuberalis (PT) of the pituitary, another melatonin-sensitive tissue, via this route. The major 'clock' genes include the period genes, Per1 and Per2, the cryptochrome genes, Cry1 and Cry2, the clock (circadian locomotor output cycles kaput) gene, and the Bmal1 (aryl hydrocarbon receptor nuclear translocator-like) gene. Clock and Bmal1 heterodimers act on E-box components of the promoters of the Per and Cry genes to stimulate transcription. A negative feedback loop between the cryptochrome proteins and the nucleus allows the Cry and Per proteins to regulate their own transcription. A cycle of ubiquitination and deubiquitination controls the levels of CRY protein degraded by the proteasome and, hence, the amount of protein available for feedback. Thus, it provides a post-translational component to the circadian clock mechanism. BMAL1 also stimulates transcription of REV-ERBα and, in turn, is also partially regulated by negative feedback by REV-ERBα. In the 'black widow' model of transcription, proteasomes destroy transcription factors that are needed only for a particular period of time. In the model proposed herein, the interaction of melatonin and the proteasome is required to adjust the SCN clock to changes in the environmental photoperiod. In particular, we predict that melatonin inhibition of the proteasome interferes with negative feedback loops (CRY/PER and REV-ERBα) on Bmal1 transcription genes in both the SCN and PT. Melatonin inhibition of the proteasome would also tend to stabilize BMAL1 protein itself in the SCN, particularly at night when melatonin is naturally elevated. Melatonin inhibition of the proteasome could account for the effects of melatonin on circadian rhythms associated with molecular timing genes. The interaction of melatonin with the proteasome in the hypothalamus also provides a model for explaining the dramatic 'time of day' effect of melatonin injections on reproductive status of seasonal breeders. Finally, the model predicts that a proteasome inhibitor such as bortezomib would modify circadian rhythms in a manner similar to melatonin.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
33
|
Ohayon S, Refua M, Hendler A, Aharoni A, Brik A. Harnessing the Oxidation Susceptibility of Deubiquitinases for Inhibition with Small Molecules. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Ohayon S, Refua M, Hendler A, Aharoni A, Brik A. Harnessing the oxidation susceptibility of deubiquitinases for inhibition with small molecules. Angew Chem Int Ed Engl 2014; 54:599-603. [PMID: 25327786 DOI: 10.1002/anie.201408411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 01/08/2023]
Abstract
Deubiquitinases (DUBs) counteract ubiquitination by removing or trimming ubiquitin chains to alter the signal. Their diverse role in biological processes and involvement in diseases have recently attracted great interest with regard to their mechanism and inhibition. It has been shown that some DUBs are regulated by reactive oxygen species (ROS) in which the catalytic Cys residue undergoes reversible oxidation, hence modulating DUBs activity under oxidative stress. Reported herein for the first time, the observation that small molecules, which are capable of generating ROS efficiently, inhibit DUBs by selective and nonreversible oxidation of the catalytic Cys residue. Interestingly, the small molecule beta-lapachone, which is currently in clinical trials for cancer, is among the potent inhibitors, thus suggesting possible new cellular targets for its therapeutic effects. Our study describes a novel mechanism of DUBs inhibition and opens new opportunities in exploiting them for cancer therapy.
Collapse
Affiliation(s)
- Shimrit Ohayon
- Department of Chemistry, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501 (Israel)
| | | | | | | | | |
Collapse
|
35
|
Stojkovic K, Wing SS, Cermakian N. A central role for ubiquitination within a circadian clock protein modification code. Front Mol Neurosci 2014; 7:69. [PMID: 25147498 PMCID: PMC4124793 DOI: 10.3389/fnmol.2014.00069] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
Circadian rhythms, endogenous cycles of about 24 h in physiology, are generated by a master clock located in the suprachiasmatic nucleus of the hypothalamus and other clocks located in the brain and peripheral tissues. Circadian disruption is known to increase the incidence of various illnesses, such as mental disorders, metabolic syndrome, and cancer. At the molecular level, periodicity is established by a set of clock genes via autoregulatory translation–transcription feedback loops. This clock mechanism is regulated by post-translational modifications such as phosphorylation and ubiquitination, which set the pace of the clock. Ubiquitination in particular has been found to regulate the stability of core clock components but also other clock protein functions. Mutation of genes encoding ubiquitin ligases can cause either elongation or shortening of the endogenous circadian period. Recent research has also started to uncover roles for deubiquitination in the molecular clockwork. Here, we review the role of the ubiquitin pathway in regulating the circadian clock and we propose that ubiquitination is a key element in a clock protein modification code that orchestrates clock mechanisms and circadian behavior over the daily cycle.
Collapse
Affiliation(s)
- Katarina Stojkovic
- Douglas Mental Health University Institute, McGill University, Montréal, QC Canada
| | - Simon S Wing
- Polypeptide Laboratory, Department of Medicine-McGill University Health Centre Research Institute, McGill University, Montréal, QC Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, McGill University, Montréal, QC Canada
| |
Collapse
|
36
|
Robinson I, Reddy AB. Molecular mechanisms of the circadian clockwork in mammals. FEBS Lett 2014; 588:2477-83. [PMID: 24911207 DOI: 10.1016/j.febslet.2014.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 01/14/2023]
Abstract
Circadian rhythms enable organisms to co-ordinate biological processes with the predictable 24 h cycle of day and night. Given that molecular clocks that coordinate such biological timing have evolved in almost all organisms, it is clear that being synchronous with the external environment confers competitive advantage. Conversely, it is apparent that being out of phase is detrimental, resulting in a number of clinical conditions, many of which are linked to metabolic dysfunction. The canonical clockwork involves a core set of genes that negatively regulate themselves through a so-called transcription translation feedback loop. However, recent studies describing evolutionarily conserved oscillations in redox reactions link circadian rhythms to metabolic processes, and in particular, redox pathways. In this review we describe the evidence for the interaction between transcriptional loops, redox and metabolism in mammals and suggest the clock may be potential target for the treatment of disease.
Collapse
Affiliation(s)
- I Robinson
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Biomedical Research Centre, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - A B Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Biomedical Research Centre, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
37
|
Abstract
Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment.
Collapse
Affiliation(s)
- Nicole M Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/ Children's Nutrition Research Center, Baylor College of Medicine , Houston, TX , USA
| | | | | |
Collapse
|
38
|
Basic VT, Jacobsen A, Sirsjö A, Abdel-Halim SM. TNF stimulation induces VHL overexpression and impairs angiogenic potential in skeletal muscle myocytes. Int J Mol Med 2014; 34:228-36. [PMID: 24820910 DOI: 10.3892/ijmm.2014.1776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/24/2014] [Indexed: 11/06/2022] Open
Abstract
Decreased skeletal muscle capillarization is considered to significantly contribute to the development of pulmonary cachexia syndrome (PCS) and progressive muscle wasting in several chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). It is unclear to which extent the concurrent presence of systemic inflammation contributes to decreased skeletal muscle capillarization under these conditions. The present study was designed to examine in vitro the effects of the pro-inflammatory cytokine, tumor necrosis factor (TNF), on the regulation of hypoxia-angiogenesis signal transduction and capillarization in skeletal muscles. For this purpose, fully differentiated C2C12 skeletal muscle myocytes were stimulated with TNF and maintained under normoxic or hypoxic conditions. The expression levels of the putative elements of the hypoxia-angiogenesis signaling cascade were examined using qPCR, western blot analysis and immunofluorescence. Under normoxic conditinos, TNF stimulation increased the protein expression of anti-angiogenic von-Hippel Lindau (VHL), prolyl hydroxylase (PHD)2 and ubiquitin conjugating enzyme 2D1 (Ube2D1), as well as the total ubiquitin content in the skeletal muscle myocytes. By contrast, the expression levels of hypoxia-inducible factor 1‑α (HIF1-α) and those of its transcriptional targets, vascular endothelial growth factor (VEGF)A and glucose transporter 1 (Glut1), were markedly reduced. In addition, hypoxia increased the expression of the VHL transcript and further elevated the VHL protein expression levels in C2C12 myocytes following TNF stimulation. Consequently, an impaired angiogenic potential was observed in the TNF-stimulated myocytes during hypoxia. In conclusion, TNF increases VHL expression and disturbs hypoxia-angiogenesis signal transduction in skeletal muscle myocytes. The current findings provide a mechanism linking systemic inflammation and impaired angiogenesis in skeletal muscle. This is particularly relevant to further understanding the mechanisms mediating muscle wasting and cachexia in patients with chronic inflammatory diseases, such as COPD.
Collapse
Affiliation(s)
- Vladimir T Basic
- Department of Clinical Medicine, Örebro University, Örebro, Sweden
| | - Annette Jacobsen
- Department of Clinical Medicine, Örebro University, Örebro, Sweden
| | - Allan Sirsjö
- Department of Clinical Medicine, Örebro University, Örebro, Sweden
| | - Samy M Abdel-Halim
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
39
|
Circadian Clocks and Inflammation: Reciprocal Regulation and Shared Mediators. Arch Immunol Ther Exp (Warsz) 2014; 62:303-18. [DOI: 10.1007/s00005-014-0286-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
|
40
|
Fernández AI, Barragán C, Fernández A, Rodríguez MC, Villanueva B. Copy number variants in a highly inbred Iberian porcine strain. Anim Genet 2014; 45:357-66. [PMID: 24597621 DOI: 10.1111/age.12137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2014] [Indexed: 01/06/2023]
Abstract
We carried out a comprehensive genomic analysis of porcine copy number variants (CNVs) based on whole-genome SNP genotyping data and provided new measures of genomic diversity (number, length and distribution of CNV events) for a highly inbred strain (the Guadyerbas strain). This strain represents one of the most ancient surviving populations of the Iberian breed, and it is currently in serious danger of extinction. CNV detection was conducted on the complete Guadyerbas population, adjusted for genomic waves, and used strict quality criteria, pedigree information and the latest porcine genome annotation. The analysis led to the detection of 65 CNV regions (CNVRs). These regions cover 0.33% of the autosomal genome of this particular strain. Twenty-nine of these CNVRs were identified here for the first time. The relatively low number of detected CNVRs is in line with the low variability and high inbreeding estimated previously for this Iberian strain using pedigree, microsatellite or SNP data. A comparison across different porcine studies has revealed that more than half of these regions overlap with previously identified CNVRs or multicopy regions. Also, a preliminary analysis of CNV detection using whole-genome sequence data for four Guadyerbas pigs showed overlapping for 16 of the CNVRs, supporting their reliability. Some of the identified CNVRs contain relevant functional genes (e.g., the SCD and USP15 genes), which are worth being further investigated because of their importance in determining the quality of Iberian pig products. The CNVR data generated could be useful for improving the porcine genome annotation.
Collapse
Affiliation(s)
- A I Fernández
- Departamento de Mejora Genética Animal, INIA, Ctra. De la Coruña km. 7.5, Madrid, 28040, Spain
| | | | | | | | | |
Collapse
|
41
|
Zeng Z, Wu HX, Zhan N, Huang YB, Wang ZS, Yang GF, Wang P, Fu GH. Prognostic significance of USP10 as a tumor-associated marker in gastric carcinoma. Tumour Biol 2013; 35:3845-53. [PMID: 24343337 DOI: 10.1007/s13277-013-1509-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/03/2013] [Indexed: 01/14/2023] Open
Abstract
Ubiquitin-specific protease 10 (USP10), a novel deubiquitinating enzyme, had been associated with growth of tumor cell. However, the role of USP10 in gastric cancer carcinogenesis had not been elucidated yet. The aim of this study was to investigate the expression level of USP10 in gastric carcinoma (GC) tissues and cell lines, then to evaluate the clinical significance of USP10 in GC patients. USP10, E-cadherin, Ki67 and p53 expressions were detected in 365 GC and 40 non-cancerous mucosa tissues by immunohistochemistry. Western blot for USP10 was performed on additional fresh GC tissues and GC cell lines. The expression level of USP10 in GC tissues was proved lower than that in non-cancerous mucosa tissues (p < 0.05). It was also lower in GC cell lines (AGS, BGC-823 and MKN45 cells) than that in gastric epithelial immortalized cell line (GES-1). Clinicopathological analysis showed that USP10 expression was negatively correlated with gastric wall invasion (p = 0.009), nodal metastasis (p = 0.002), and TNM stage (p = 0.000). In contrast, a positively correlation between the expression of USP10 and E-cadherin was found (p < 0.05), but there was no relationship proved between Ki67, p53 and USP10 (p > 0.05). On the Kaplan-Meier survival curves, we found poor prognosis in GC patients was associated with negative USP10 expression (p < 0.05). Moreover, USP10 expression was an independent prognostic factor for the overall survival in multivariate analysis. Our findings suggested that USP10 was an independent predictor of prognosis of GC patients.
Collapse
Affiliation(s)
- Zhi Zeng
- Pathology Center, Shanghai First People`s Hospital / Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Number 280, South Chong-Qing Road, Shanghai, 200025, China,
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Carrano AC, Bennett EJ. Using the ubiquitin-modified proteome to monitor protein homeostasis function. Mol Cell Proteomics 2013; 12:3521-31. [PMID: 23704779 DOI: 10.1074/mcp.r113.029744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin system is essential for the maintenance of proper protein homeostasis function across eukaryotic species. Although the general enzymatic architecture for adding and removing ubiquitin from substrates is well defined, methods for the comprehensive investigation of cellular ubiquitylation targets have just started to emerge. Recent advances in ubiquitin-modified peptide enrichment have greatly increased the number of identified endogenous ubiquitylation targets, as well as the number of sites of ubiquitin attachment within these substrates. Herein we evaluate current strategies using mass-spectrometry-based proteomics to characterize ubiquitin and ubiquitin-like modifications. Using existing data, we describe the characteristics of the ubiquitin-modified proteome and discuss strategies for the biological interpretation of existing and future ubiquitin-based proteomic studies.
Collapse
Affiliation(s)
- Andrea C Carrano
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | | |
Collapse
|
43
|
Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, Mazzoccoli G. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int 2013; 30:870-88. [PMID: 23697902 DOI: 10.3109/07420528.2013.782315] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various features, components, and functions of the immune system present daily variations. Immunocompetent cell counts and cytokine levels present variations according to the time of day and the sleep-wake cycle. Moreover, different immune cell types, such as macrophages, natural killer cells, and lymphocytes, contain a circadian molecular clockwork. The biological clocks intrinsic to immune cells and lymphoid organs, together with inputs from the central pacemaker of the suprachiasmatic nuclei via humoral and neural pathways, regulate the function of cells of the immune system, including their response to signals and their effector functions. Consequences of this include, for example, the daily variation in the response to an immune challenge (e.g., bacterial endotoxin injection) and the circadian control of allergic reactions. The circadian-immune connection is bidirectional, because in addition to this circadian control of immune functions, immune challenges and immune mediators (e.g., cytokines) were shown to have strong effects on circadian rhythms at the molecular, cellular, and behavioral levels. This tight crosstalk between the circadian and immune systems has wide-ranging implications for disease, as shown by the higher incidence of cancer and the exacerbation of autoimmune symptoms upon circadian disruption.
Collapse
Affiliation(s)
- Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Yoo SH, Mohawk JA, Siepka SM, Shan Y, Huh SK, Hong HK, Kornblum I, Kumar V, Koike N, Xu M, Nussbaum J, Liu X, Chen Z, Chen ZJ, Green CB, Takahashi JS. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 2013; 152:1091-105. [PMID: 23452855 DOI: 10.1016/j.cell.2013.01.055] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/10/2012] [Accepted: 01/30/2013] [Indexed: 12/21/2022]
Abstract
Period determination in the mammalian circadian clock involves the turnover rate of the repressors CRY and PER. We show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss of function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals.
Collapse
Affiliation(s)
- Seung-Hee Yoo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Luo W, Li Y, Tang CHA, Abruzzi KC, Rodriguez J, Pescatore S, Rosbash M. CLOCK deubiquitylation by USP8 inhibits CLK/CYC transcription in Drosophila. Genes Dev 2013; 26:2536-49. [PMID: 23154984 DOI: 10.1101/gad.200584.112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A conserved transcriptional feedback loop underlies animal circadian rhythms. In Drosophila, the transcription factors CLOCK (CLK) and CYCLE (CYC) activate the transcription of direct target genes like period (per) and timeless (tim). They encode the proteins PER and TIM, respectively, which repress CLK/CYC activity. Previous work indicates that repression is due to a direct PER-CLK/CYC interaction as well as CLK/CYC phosphorylation. We describe here the role of ubiquitin-specific protease 8 (USP8) in circadian transcriptional repression as well as the importance of CLK ubiquitylation in CLK/CYC transcription activity. usp8 loss of function (RNAi) or expression of a dominant-negative form of the protein (USP8-DN) enhances CLK/CYC transcriptional activity and alters fly locomotor activity rhythms. Clock protein and mRNA molecular oscillations are virtually absent within circadian neurons of USP8-DN flies. Furthermore, CLK ubiquitylation cycles robustly in wild-type flies and peaks coincident with maximal CLK/CYC transcription. As USP8 interacts with CLK and expression of USP8-DN increases CLK ubiquitylation, the data indicate that USP8 deubiquitylates CLK, which down-regulates CLK/CYC transcriptional activity. Taken together with the facts that usp8 mRNA cycles and that its transcription is activated directly by CLK/CYC, USP8, like PER and TIM, contributes to the transcriptional feedback loop cycle that underlies circadian rhythms.
Collapse
|
46
|
Fu L, Kettner NM. The circadian clock in cancer development and therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:221-82. [PMID: 23899600 PMCID: PMC4103166 DOI: 10.1016/b978-0-12-396971-2.00009-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, with the industrialization of the world, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to an increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function, and aging, which are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism, and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anticancer therapies.
Collapse
Affiliation(s)
- Loning Fu
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Nicole M. Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
47
|
O'Callaghan EK, Anderson ST, Moynagh PN, Coogan AN. Long-lasting effects of sepsis on circadian rhythms in the mouse. PLoS One 2012; 7:e47087. [PMID: 23071720 PMCID: PMC3469504 DOI: 10.1371/journal.pone.0047087] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/07/2012] [Indexed: 12/26/2022] Open
Abstract
Daily patterns of activity and physiology are termed circadian rhythms and are driven primarily by an endogenous biological timekeeping system, with the master clock located in the suprachiasmatic nucleus. Previous studies have indicated reciprocal relationships between the circadian and the immune systems, although to date there have been only limited explorations of the long-term modulation of the circadian system by immune challenge, and it is to this question that we addressed ourselves in the current study. Sepsis was induced by peripheral treatment with lipopolysaccharide (5 mg/kg) and circadian rhythms were monitored following recovery. The basic parameters of circadian rhythmicity (free-running period and rhythm amplitude, entrainment to a light/dark cycle) were unaltered in post-septic animals compared to controls. Animals previously treated with LPS showed accelerated re-entrainment to a 6 hour advance of the light/dark cycle, and showed larger phase advances induced by photic stimulation in the late night phase. Photic induction of the immediate early genes c-FOS, EGR-1 and ARC was not altered, and neither was phase-shifting in response to treatment with the 5-HT-1a/7 agonist 8-OH-DPAT. Circadian expression of the clock gene product PER2 was altered in the suprachiasmatic nucleus of post-septic animals, and PER1 and PER2 expression patterns were altered also in the hippocampus. Examination of the suprachiasmatic nucleus 3 months after treatment with LPS showed persistent upregulation of the microglial markers CD-11b and F4/80, but no changes in the expression of various neuropeptides, cytokines, and intracellular signallers. The effects of sepsis on circadian rhythms does not seem to be driven by cell death, as 24 hours after LPS treatment there was no evidence for apoptosis in the suprachiasmatic nucleus as judged by TUNEL and cleaved-caspase 3 staining. Overall these data provide novel insight into how septic shock exerts chronic effects on the mammalian circadian system.
Collapse
Affiliation(s)
- Emma K. O'Callaghan
- Department of Psychology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
| | - Sean T. Anderson
- Department of Psychology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
| | - Paul N. Moynagh
- Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
| | - Andrew N. Coogan
- Department of Psychology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
- * E-mail:
| |
Collapse
|