1
|
Landis D, Sutter A, Khemka S, Songtanin B, Nichols J, Nugent K. Metformin as adjuvant treatment in hepatitis C virus infections and associated complications. Am J Med Sci 2024; 368:90-98. [PMID: 38701970 DOI: 10.1016/j.amjms.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Hepatitis C virus is an important global cause of hepatitis and subsequently cirrhosis and hepatocellular carcinoma. These infections may also cause extrahepatic manifestations, including insulin resistance and type 2 diabetes mellitus. These two complications can potentially reduce sustained virologic responses (SVR) in some drug regimens for this infection. Metformin has important biochemical effects that can limit viral replication in cellular cultures and can improve the response to antiviral drug therapy based on ribavirin and interferon. Clinical studies comparing treatment regimens with interferon, ribavirin, metformin with these regimens without metformin have demonstrated that metformin increases viral clearance, establishes higher rates of SVRs, and increases insulin sensitivity. Metformin also reduces the frequency of hepatocellular carcinoma in patients who have had SVRs. Larger treatment trials are needed to determine metformin's short-term and long-term treatment effects in patients with diabetes using newer antiviral drugs. In particular, if metformin reduces the frequency of cirrhosis and hepatocellular carcinoma, this would significantly reduce the morbidity and mortality associated with this infection.
Collapse
Affiliation(s)
- Dylan Landis
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Alex Sutter
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Busara Songtanin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jacob Nichols
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| |
Collapse
|
2
|
Chen J, Shi Z, Zhang C, Xiong K, Zhao W, Wang Y. Oroxin A alleviates early brain injury after subarachnoid hemorrhage by regulating ferroptosis and neuroinflammation. J Neuroinflammation 2024; 21:116. [PMID: 38702778 PMCID: PMC11069275 DOI: 10.1186/s12974-024-03099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH), a severe subtype of stroke, is characterized by notably high mortality and morbidity, largely due to the lack of effective therapeutic options. Although the neuroprotective potential of PPARg and Nrf2 has been recognized, investigative efforts into oroxin A (OA), remain limited in preclinical studies. METHODS SAH was modeled in vivo through filament perforation in male C57BL/6 mice and in vitro by exposing HT22 cells to hemin to induce neuronal damage. Following the administration of OA, a series of methods were employed to assess neurological behaviors, brain water content, neuronal damage, cell ferroptosis, and the extent of neuroinflammation. RESULTS The findings indicated that OA treatment markedly improved survival rates, enhanced neurological functions, mitigated neuronal death and brain edema, and attenuated the inflammatory response. These effects of OA were linked to the suppression of microglial activation. Moreover, OA administration was found to diminish ferroptosis in neuronal cells, a critical factor in early brain injury (EBI) following SAH. Further mechanistic investigations uncovered that OA facilitated the translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2) from the cytoplasm to the nucleus, thereby activating the Nrf2/GPX4 pathway. Importantly, OA also upregulated the expression of FSP1, suggesting a significant and parallel protective effect against ferroptosis in EBI following SAH in synergy with GPX4. CONCLUSION In summary, this research indicated that the PPARg activator OA augmented the neurological results in rodent models and diminished neuronal death. This neuroprotection was achieved primarily by suppressing neuronal ferroptosis. The underlying mechanism was associated with the alleviation of cellular death through the Nrf2/GPX4 and FSP1/CoQ10 pathways.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Zhonghua Shi
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China
| | - Chunlei Zhang
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.
| | - Wei Zhao
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China
| | - Yuhai Wang
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China.
| |
Collapse
|
3
|
Kazek G, Głuch-Lutwin M, Mordyl B, Menaszek E, Kubacka M, Jurowska A, Cież D, Trzewik B, Szklarzewicz J, Papież MA. Vanadium Complexes with Thioanilide Derivatives of Amino Acids: Inhibition of Human Phosphatases and Specificity in Various Cell Models of Metabolic Disturbances. Pharmaceuticals (Basel) 2024; 17:229. [PMID: 38399444 PMCID: PMC10892041 DOI: 10.3390/ph17020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In the text, the synthesis and characteristics of the novel ONS-type vanadium (V) complexes with thioanilide derivatives of amino acids are described. They showed the inhibition of human protein tyrosine phosphatases (PTP1B, LAR, SHP1, and SHP2) in the submicromolar range, as well as the inhibition of non-tyrosine phosphatases (CDC25A and PPA2) similar to bis(maltolato)oxidovanadium(IV) (BMOV). The ONS complexes increased [14C]-deoxy-D-glucose transport into C2C12 myocytes, and one of them, VC070, also enhanced this transport in 3T3-L1 adipocytes. These complexes inhibited gluconeogenesis in hepatocytes HepG2, but none of them decreased lipid accumulation in the non-alcoholic fatty liver disease model using the same cells. Compared to the tested ONO-type vanadium complexes with 5-bromosalicylaldehyde and substituted benzhydrazides as Schiff base ligand components, the ONS complexes revealed stronger inhibition of protein tyrosine phosphatases, but the ONO complexes showed greater activity in the cell models in general. Moreover, the majority of the active complexes from both groups showed better effects than VOSO4 and BMOV. Complexes from both groups activated AKT and ERK signaling pathways in hepatocytes to a comparable extent. One of the ONO complexes, VC068, showed activity in all of the above models, including also glucose utilizatiand ONO Complexes are Inhibitors ofon in the myocytes and glucose transport in insulin-resistant hepatocytes. The discussion section explicates the results within the wider scope of the knowledge about vanadium complexes.
Collapse
Affiliation(s)
- Grzegorz Kazek
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Barbara Mordyl
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Elżbieta Menaszek
- Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Kubacka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Anna Jurowska
- Coordination Chemistry Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Dariusz Cież
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Bartosz Trzewik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Janusz Szklarzewicz
- Coordination Chemistry Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Monika A Papież
- Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
4
|
Sun W, Zhang B, Yu X, Zhuang C, Li X, Sun J, Xing Y, Xiu Z, Dong Y. Oroxin A from Oroxylum indicum prevents the progression from prediabetes to diabetes in streptozotocin and high-fat diet induced mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 38:24-34. [PMID: 29425652 DOI: 10.1016/j.phymed.2017.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/03/2017] [Accepted: 10/04/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Oroxylum indicum (L.) Kurz (Bignoniaceae) has been widely used for the treatment of respiratory infections and gastrointestinal disorders. Our previous study showed that an ethanol-water O. indicum seed extract (OISE), when combined with acarbose, reduced the risk of diabetes by 75% and effectively prevented the associated complications. Oroxin A, a major component of OISE, can activate PPARγ and inhibit α-glucosidase and it represents a promising candidate for diabetes intervention. PURPOSE The aim of this study is to investigate the effect of oroxin A from O. indicum on the progression of prediabetes to diabetes and the underlying mechanisms in streptozotocin and high-fat-diet induced prediabetic mice. METHODS Oroxin A was purified from OISE and its PPARγ transcriptional activation was determined in vitro and in vivo. The prediabetic mice were established by high-fat diet and streptozotocin, which was followed by treatment with oroxin A. The effect of oroxin A was determined by analysis of the lipid profiles, oxidative stress, hepatic function and histology. The mechanism of oroxin A was also investigated. RESULTS Oroxin A is a compound with low toxicity that has reduced the relative risk of progression from prediabetes to diabetes by 66.7% without inducing weight gain or hepatotoxicity. Oroxin A also improved the complications of prediabetes, such as lipid metabolism dysfunction and liver injury. Results of mechanism studies suggested that oroxin A is a partial PPARγ agonist that can activate PPARγ transcriptional activation in vitro and in vivo. Oroxin A also exhibited an inhibitory activity against α-glucosidase and an antioxidant capacity. CONCLUSION Oroxin A prevents the progression from prediabetes to diabetes through a multi-pathway intervention mechanism.
Collapse
Affiliation(s)
- Wenlong Sun
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian 116024, Liaoning, China
| | - Bowei Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian 116024, Liaoning, China
| | - Xiaoxia Yu
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian 116024, Liaoning, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xia Li
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian 116024, Liaoning, China
| | - Jin Sun
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian 116024, Liaoning, China
| | - Yan Xing
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian 116024, Liaoning, China
| | - Zhilong Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian 116024, Liaoning, China
| | - Yuesheng Dong
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian 116024, Liaoning, China.
| |
Collapse
|
5
|
Sun W, Zhang B, Zheng H, Zhuang C, Li X, Lu X, Quan C, Dong Y, Zheng Z, Xiu Z. Trivaric acid, a new inhibitor of PTP1b with potent beneficial effect on diabetes. Life Sci 2016; 169:52-64. [PMID: 27871946 DOI: 10.1016/j.lfs.2016.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 11/30/2022]
Abstract
AIM To screen a potential PTP1b inhibitor from the microbial origin-based compound library and to investigate the potential anti-diabetic effects of the inhibitor in vivo and determine its primary anti-diabetic mechanism in vitro and in silico. METHODS PTP1b inhibitory activity was measured using recombination protein as the enzyme and p-NPP as the substrate. The binding of the inhibitor to PTP1b was analysed by docking in silico and confirmed by ITC experiments. The intracellular signalling pathway was detected by Western blot analysis in HepG2 cells. The anti-diabetic effects were evaluated using a diabetic mice model in vivo. RESULTS Among 545 microbial origin-based pure compounds tested, trivaric acid, a tridepside, was selected as a PTP1B inhibitor exhibiting strong inhibitory activity with an IC50 of 173nM. Docking and ITC studies showed that trivaric acid was able to spontaneously bind to PTP1b and may inhibit PTP1b by blocking the catalytic domain of the phosphatase. Trivaric acid also enhanced the ability of insulin to stimulate the IR/IRS/Akt/GLUT2 pathway and increase the glucose consumption in HepG2 cells. In diabetic mice, trivaric acid that had been encapsulated into Eudrgit L100-5.5 showed significant anti-diabetic effects, improving insulin resistance, leptin resistance and lipid profile and weight control at doses of 5mg/kg and 50mg/kg. SIGNIFICANCE Trivaric acid is a potential lead compound in the search for anti-diabetic agents targeting PTP1b.
Collapse
Affiliation(s)
- Wenlong Sun
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Bowei Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Haizhou Zheng
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Shijiazhuang 050015, China
| | - Chunlin Zhuang
- Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xia Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xinhua Lu
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Shijiazhuang 050015, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116024, Liaoning, China
| | - Yuesheng Dong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Zhihui Zheng
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Shijiazhuang 050015, China.
| | - Zhilong Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
6
|
Krüger J, Wellnhofer E, Meyborg H, Stawowy P, Östman A, Kintscher U, Kappert K. Inhibition of Src homology 2 domain-containing phosphatase 1 increases insulin sensitivity in high-fat diet-induced insulin-resistant mice. FEBS Open Bio 2016; 6:179-89. [PMID: 27047746 PMCID: PMC4794785 DOI: 10.1002/2211-5463.12000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 11/13/2022] Open
Abstract
Insulin resistance plays a crucial role in the development of type 2 diabetes. Insulin receptor signalling is antagonized and tightly controlled by protein tyrosine phosphatases (PTPs). However, the precise role of the PTP src homology 2 domain‐containing phosphatase 1 (SHP‐1) in insulin resistance has not been explored. Male C57BL/6J mice were fed a high‐fat diet (HFD, 60% kcal from fat), to induce insulin resistance, or a low‐fat diet (LFD, 10% kcal from fat) for 10 weeks. Afterwards, HFD‐fed mice were pharmacologically treated with the SHP‐1 (Ptpn6) inhibitor sodium stibogluconate and the broad spectrum pan‐PTP inhibitor bis(maltolato)oxovanadium(IV) (BMOV). Both inhibitors ameliorated the metabolic phenotype, as evidenced by reduced body weight, improved insulin sensitivity and glucose tolerance, which was not due to altered PTP gene expression. In parallel, phosphorylation of the insulin receptor and of the insulin signalling key intermediate Akt was enhanced, and both PTP inhibitors and siRNA‐mediated SHP‐1 downregulation resulted in an increased glucose uptake in vitro. Finally, recombinant SHP‐1 was capable of dephosphorylating the ligand‐induced tyrosine‐phosphorylated insulin receptor. These results indicate a central role of SHP‐1 in insulin signalling during obesity, and SHP‐1 inhibition as a potential therapeutic approach in metabolic diseases.
Collapse
Affiliation(s)
- Janine Krüger
- Center for Cardiovascular Research/CCR Institute of Laboratory Medicine Clinical Chemistry and Pathobiochemistry Charité - Universitätsmedizin Germany
| | | | - Heike Meyborg
- Department of Medicine/Cardiology Deutsches Herzzentrum Germany
| | - Philipp Stawowy
- Department of Medicine/Cardiology Deutsches Herzzentrum Germany
| | - Arne Östman
- Cancer Center Karolinska Karolinska Institutet Stockholm Sweden
| | - Ulrich Kintscher
- Center for Cardiovascular Research/CCR Institute of Pharmacology Charité - Universitätsmedizin Berlin Germany
| | - Kai Kappert
- Center for Cardiovascular Research/CCR Institute of Laboratory Medicine Clinical Chemistry and Pathobiochemistry Charité - Universitätsmedizin Germany
| |
Collapse
|
7
|
Amberkar SS, Kaderali L. An integrative approach for a network based meta-analysis of viral RNAi screens. Algorithms Mol Biol 2015; 10:6. [PMID: 25691914 PMCID: PMC4331137 DOI: 10.1186/s13015-015-0035-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/27/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Big data is becoming ubiquitous in biology, and poses significant challenges in data analysis and interpretation. RNAi screening has become a workhorse of functional genomics, and has been applied, for example, to identify host factors involved in infection for a panel of different viruses. However, the analysis of data resulting from such screens is difficult, with often low overlap between hit lists, even when comparing screens targeting the same virus. This makes it a major challenge to select interesting candidates for further detailed, mechanistic experimental characterization. RESULTS To address this problem we propose an integrative bioinformatics pipeline that allows for a network based meta-analysis of viral high-throughput RNAi screens. Initially, we collate a human protein interaction network from various public repositories, which is then subjected to unsupervised clustering to determine functional modules. Modules that are significantly enriched with host dependency factors (HDFs) and/or host restriction factors (HRFs) are then filtered based on network topology and semantic similarity measures. Modules passing all these criteria are finally interpreted for their biological significance using enrichment analysis, and interesting candidate genes can be selected from the modules. CONCLUSIONS We apply our approach to seven screens targeting three different viruses, and compare results with other published meta-analyses of viral RNAi screens. We recover key hit genes, and identify additional candidates from the screens. While we demonstrate the application of the approach using viral RNAi data, the method is generally applicable to identify underlying mechanisms from hit lists derived from high-throughput experimental data, and to select a small number of most promising genes for further mechanistic studies.
Collapse
|
8
|
Hammerstad SS, Grock SF, Lee HJ, Hasham A, Sundaram N, Tomer Y. Diabetes and Hepatitis C: A Two-Way Association. Front Endocrinol (Lausanne) 2015; 6:134. [PMID: 26441826 PMCID: PMC4568414 DOI: 10.3389/fendo.2015.00134] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022] Open
Abstract
Diabetes and hepatitis C infection are both prevalent diseases worldwide, and are associated with increased morbidity and mortality. Most studies, but not all, have shown that patients with chronic hepatitis C are more prone to develop type 2 diabetes (T2D) compared to healthy controls, as well as when compared to patients with other liver diseases, including hepatitis B. Furthermore, epidemiological studies have revealed that patients with T2D may also be at higher risk for worse outcomes of their hepatitis C infection, including reduced rate of sustained virological response, progression to fibrosis and cirrhosis, and higher risk for development of hepatocellular carcinoma. Moreover, hepatitis C infection and mainly its treatment, interferon α, can trigger the development of type 1 diabetes. In this review, we discuss the existing data on this two-way association between diabetes and hepatitis C infection with emphasis on possible mechanisms. It remains to be determined whether the new curative therapies for chronic hepatitis C will improve outcomes in diabetic hepatitis C patients, and conversely whether treatment with Metformin will reduce complications from hepatitis C virus infection. We propose an algorithm for diabetes screening and follow-up in hepatitis C patients.
Collapse
Affiliation(s)
- Sara Salehi Hammerstad
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Oslo University Hospital Ullevål, Oslo, Norway
| | - Shira Frankel Grock
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanna J. Lee
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alia Hasham
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Sundaram
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yaron Tomer
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
- *Correspondence: Yaron Tomer, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, Box 1055, One Gustave L. Levy Place, New York, NY 10029, USA,
| |
Collapse
|
9
|
Fish EN, Platanias LC. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol Cancer Res 2014; 12:1691-703. [PMID: 25217450 DOI: 10.1158/1541-7786.mcr-14-0450] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IFNs are cytokines with important antiproliferative activity and exhibit key roles in immune surveillance against malignancies. Early work initiated over three decades ago led to the discovery of IFN receptor activated Jak-Stat pathways and provided important insights into mechanisms for transcriptional activation of IFN-stimulated genes (ISG) that mediate IFN biologic responses. Since then, additional evidence has established critical roles for other receptor-activated signaling pathways in the induction of IFN activities. These include MAPK pathways, mTOR cascades, and PKC pathways. In addition, specific miRNAs appear to play a significant role in the regulation of IFN signaling responses. This review focuses on the emerging evidence for a model in which IFNs share signaling elements and pathways with growth factors and tumorigenic signals but engage them in a distinctive manner to mediate antiproliferative and antiviral responses.
Collapse
Affiliation(s)
- Eleanor N Fish
- Toronto General Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
10
|
Cappelli AP, Zoppi CC, Barbosa-Sampaio HC, Costa JM, Protzek AO, Morato PN, Boschero AC, Carneiro EM. Taurine-induced insulin signalling improvement of obese malnourished mice is associated with redox balance and protein phosphatases activity modulation. Liver Int 2014; 34:771-83. [PMID: 23998525 DOI: 10.1111/liv.12291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/24/2013] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Obese protein malnourished mice display liver insulin resistance and taurine (TAU) seems to attenuate this effect. The association between early-life malnutrition and hepatic redox balance in diet-induced insulin resistance is unknown. We investigated TAU supplementation effects upon liver redox state and insulin signalling in obese protein malnourished mice. METHODS Weaned male C57BL-6 mice were fed a control (14% protein - C) or a protein-restricted diet (6% protein - R) for 6 weeks. Afterwards, mice received a high-fat diet (34% fat - HFD) for 8 weeks (CH - RH). Half of the HFD-mice were supplemented with TAU (5%) throughout the treatment (CHT - RHT). Body and tissues' weight, respiratory quotient (RQ), glucose tolerance and insulin sensitivity, hepatic oxidant and antioxidant markers and insulin cascade proteins were assessed. RESULTS Protein restriction leads to typical features whereas HFD was able to induce a catch-up growth in RH. HFD-groups showed higher energy intake and adiposity, lower energy expenditure and altered RQ. Glucose tolerance and insulin sensitivity were impaired in HFD-groups and TAU attenuated these effects. H2 O2 content was increased in CHT and RHT despite no differences in antioxidant enzymes and GSH concentration. AKT and PTEN phosphorylation were significantly increased in CHT but not in RHT. CONCLUSION Our data provide evidence for an association between TAU-induced improved glycaemic control because of PTEN inactivation and higher AKT phosphorylation. These effects seem to be related with altered hepatic redox balance in obese mice, and this effect is impaired by protein malnutrition.
Collapse
Affiliation(s)
- Ana P Cappelli
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Burke JD, Platanias LC, Fish EN. Beta interferon regulation of glucose metabolism is PI3K/Akt dependent and important for antiviral activity against coxsackievirus B3. J Virol 2014; 88:3485-95. [PMID: 24403577 PMCID: PMC3957914 DOI: 10.1128/jvi.02649-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/30/2013] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED An effective type I interferon (IFN)-mediated immune response requires the rapid expression of antiviral proteins that are necessary to inhibit viral replication and virus spread. We provide evidence that IFN-β regulates metabolic events important for the induction of a rapid antiviral response: IFN-β decreases the phosphorylation of AMP-activated protein kinase (AMPK), coincident with an increase in intracellular ATP. Our studies reveal a biphasic IFN-β-inducible uptake of glucose by cells, mediated by phosphatidylinositol 3-kinase (PI3K)/Akt, and IFN-β-inducible regulation of GLUT4 translocation to the cell surface. Additionally, we provide evidence that IFN-β-regulated glycolytic metabolism is important for the acute induction of an antiviral response during infection with coxsackievirus B3 (CVB3). Last, we demonstrate that the antidiabetic drug metformin enhances the antiviral potency of IFN-β against CVB3 both in vitro and in vivo. Taken together, these findings highlight an important role for IFN-β in modulating glucose metabolism during a virus infection and suggest that the use of metformin in combination with IFN-β during acute virus infection may result in enhanced antiviral responses. IMPORTANCE Type I interferons (IFN) are critical effectors of an antiviral response. These studies describe for the first time a role for IFN-β in regulating metabolism--glucose uptake and ATP production--to meet the energy requirements of a robust cellular antiviral response. Our data suggest that IFN-β regulates glucose metabolism mediated by signaling effectors similarly to activation by insulin. Interference with IFN-β-inducible glucose metabolism diminishes the antiviral response, whereas treatment with metformin, a drug that increases insulin sensitivity, enhances the antiviral potency of IFN-β.
Collapse
Affiliation(s)
- J. D. Burke
- Toronto General Research Institute, University Health Network, and Department of Immunology, University of Toronto, Toronto, Canada
| | - L. C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, and Division of Hematology-Oncology, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - E. N. Fish
- Toronto General Research Institute, University Health Network, and Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Romero-Gómez M, Del Campo JA. Insulin resistance, telaprevir, and virological response in hepatitis C: the debate must go on. Hepatology 2013; 58:1874-6. [PMID: 23913755 DOI: 10.1002/hep.26642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/01/2013] [Accepted: 07/16/2013] [Indexed: 12/07/2022]
Affiliation(s)
- Manuel Romero-Gómez
- UCM Digestive Diseases and CIBERehd, Valme University Hospital, University of Seville, Sevilla, Spain
| | | |
Collapse
|
13
|
Wiedemann MSF, Wueest S, Item F, Schoenle EJ, Konrad D. Adipose tissue inflammation contributes to short-term high-fat diet-induced hepatic insulin resistance. Am J Physiol Endocrinol Metab 2013; 305:E388-95. [PMID: 23736545 DOI: 10.1152/ajpendo.00179.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-fat feeding for 3-4 days impairs glucose tolerance and hepatic insulin sensitivity. However, it remains unclear whether the evolving hepatic insulin resistance is due to acute lipid overload or the result of induced adipose tissue inflammation and consequent dysfunctional adipose tissue-liver cross-talk. In the present study, feeding C57Bl6/J mice a fat-enriched diet [high-fat diet (HFD)] for 4 days induced glucose intolerance, hepatic insulin resistance (as assessed by hyperinsulinemic euglycemic clamp studies), and hepatic steatosis as well as adipose tissue inflammation (i.e., TNFα expression) compared with standard chow-fed mice. Adipocyte-specific depletion of the antiapoptotic/anti-inflammatory factor Fas (CD95) attenuated adipose tissue inflammation and improved glucose tolerance as well as hepatic insulin sensitivity without altering the level of hepatic steatosis induced by HFD. In summary, our results identify adipose tissue inflammation and resulting dysfunctional adipose tissue-liver cross-talk as an early event in the development of HFD-induced hepatic insulin resistance.
Collapse
Affiliation(s)
- Michael S F Wiedemann
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Jiang Y, Pagadala J, Miller D, Steinle JJ. Reduced insulin receptor signaling in retinal Müller cells cultured in high glucose. Mol Vis 2013; 19:804-11. [PMID: 23592917 PMCID: PMC3626298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 04/03/2013] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To measure key proteins involved in insulin resistance in retinal Müller cells. METHODS Cells known as retinal Müller cells were cultured in normal (5 mM) or high glucose (25 mM) to mimic a diabetic condition. Cells were treated with 50 nM Compound 49b, a novel β-adrenergic receptor agonist. Additional cells were treated with small interfering RNA (siRNA) against protein kinase A or cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB). Western blotting or enzyme-linked immunosorbent assay (ELISA) measurements were made for protein changes in TNFα, suppressor of cytokine signaling 3, insulin receptor substrate 1 (IRS-1), insulin receptor (IR), Akt, and cell death proteins (Fas, fas ligand, cytochrome C, Bax, cleaved caspase 3, and Bcl-xL). RESULTS Hyperglycemia significantly increased TNFα and suppressor of cytokine signaling 3 levels. This was associated with increased phosphorylation of IRS-1(Ser307) and IR(Tyr960), with decreased phosphorylation of IR(Tyr1150/1151) and Akt(Ser473). The reduced insulin receptor and Akt phosphorylation led to a significant increase in proapoptotic proteins. Compound 49b reversed the loss of Akt and IR(Tyr1150/1151) phosphorylation, reducing Müller cell apoptosis. CONCLUSIONS Hyperglycemia-induced TNFα levels promote insulin resistance in retinal Müller cells, noted through increased phosphorylation of IRS-1(Ser307) and IR(Tyr960). The dysfunctional insulin signaling increases apoptosis of retinal Müller cells, which is blocked through treatment with Compound 49b. Taken together, β-adrenergic receptor agonists may protect retinal Müller cells through maintenance of normal insulin receptor signaling.
Collapse
Affiliation(s)
- Youde Jiang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN
| | - Jayaprakash Pagadala
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN
| | - Duane Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN
| | - Jena J. Steinle
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN,Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
15
|
|
16
|
The hepatitis C virus modulates insulin signaling pathway in vitro promoting insulin resistance. PLoS One 2012; 7:e47904. [PMID: 23133528 PMCID: PMC3485021 DOI: 10.1371/journal.pone.0047904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022] Open
Abstract
Insulin is critical for controlling energy functions including glucose and lipid metabolism. Insulin resistance seems to interact with hepatitis C promoting fibrosis progression and impairing sustained virological response to peginterferon and ribavirin. The main aim was to elucidate the direct effect of hepatitis C virus (HCV) infection on insulin signaling both in vitro analyzing gene expression and protein abundance. Huh7.5 cells and JFH-1 viral particles were used for in vitro studies. Experiments were conducted by triplicate in control cells and infected cells. Genes and proteins involved in insulin signaling pathway were modified by HCV infection. Moreover, metformin treatment increased gene expression of PI3K, IRS1, MAP3K, AKT and PTEN more than >1.5 fold. PTP1B, encoding a tyrosin phosphatase, was found highly induced (>3 fold) in infected cells treated with metformin. However, PTP1B protein expression was reduced in metformin treated cells after JFH1 infection. Other proteins related to insulin pathway like Akt, PTEN and phosphorylated MTOR were also found down-regulated. Viral replication was inhibited in vitro by metformin. A strong effect of HCV infection on insulin pathway-related gene and protein expression was found in vitro. These results could lead to the identification of new therapeutic targets in HCV infection and its co-morbidities.
Collapse
|