1
|
Gan X, Dai G, Li Y, Xu L, Liu G. Intricate roles of estrogen and estrogen receptors in digestive system cancers: a systematic review. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0224. [PMID: 39475214 PMCID: PMC11523274 DOI: 10.20892/j.issn.2095-3941.2024.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
Gender disparities are evident across different types of digestive system cancers, which are typically characterized by a lower incidence and mortality rate in females compared to males. This finding suggests a potential protective role of female steroid hormones, particularly estrogen, in the development of these cancers. Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors (ERs), including the classic (ERα and ERβ) and non-traditional ERs [G protein-coupled estrogen receptor (GPER)]. Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers. In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers, including hepatocellular, pancreatic, esophageal, gastric, and colorectal carcinoma. Furthermore, we discuss the potential molecular mechanisms underlying ERα, ERβ, and GPER effects, and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs. The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved. Additionally, deciphering the intricate roles of estrogen, ERs, and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers, eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies.
Collapse
Affiliation(s)
- Xiaoning Gan
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Physiology, Michigan State University, East Lansing 48824, USA
| | - Guanqi Dai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yonghao Li
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Lin Xu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Guolong Liu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
2
|
Jie Z, Hongkun J, Shi Y, Fengxun Y, Xin L, Yijun M, Yu L. The Influence of ESR2 Gene Polymorphisms on Susceptibility to Hepatitis B Virus-Related Chronic Hepatitis, Liver Cirrhosis, and Hepatocellular Carcinoma. Biochem Genet 2024; 62:3946-3960. [PMID: 38245888 DOI: 10.1007/s10528-023-10636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Hepatocellular carcinoma (HCC) represents an estrogen-dependent tumor. The action of estrogen is regulated via estrogen receptor (ER). Polymorphisms in ERα gene, ESR1, are known to be related to HCC susceptibility among people carrying chronic hepatitis B (CHB). But the effect of ERβ on HCC is still largely unclear, and studies about the genetic variability of ESR2 and HCC are rare. For understanding ESR2's effect on HCC, this work tested two polymorphisms in the ESR2 gene promoter as well as the associations with CHB, HCC, and hepatitis B virus (HBV)-related liver cirrhosis (LC) among the Guangxi population. This work enrolled a total of 137 CHB, 136 LC, and 149 HBV-related HCC patients, together with 146 normal subjects. ESR2 polymorphisms rs3020449 and rs2978381 were examined using the SNaPshot genotyping technique. The AG genotype and dominant model of rs3020449 were related to the decreased CHB susceptibility. In both the overall and subgroup analyses, no associations were observed with the remaining models in all patient groups (those with CHB, HBV-related LC, and HCC), but associations were found between the dominant (TC+CC vs TT) and allele models (C vs T) of rs2978381 and increased HBV-related LC and HCC susceptibility, but not CHB. These findings suggest that rs3020449 polymorphism of ESR2 gene makes great contribution to the decreased CHB risk and that rs2978381 significantly contributed to higher risks of HBV-related LC and HCC.
Collapse
Affiliation(s)
- Zeng Jie
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China
| | - Jiang Hongkun
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China
| | - Yang Shi
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China
| | - Yang Fengxun
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China
| | - Liu Xin
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China
| | - Meng Yijun
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China
| | - Lu Yu
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China.
| |
Collapse
|
3
|
Shi Y, Ma J, Li S, Liu C, Liu Y, Chen J, Liu N, Liu S, Huang H. Sex difference in human diseases: mechanistic insights and clinical implications. Signal Transduct Target Ther 2024; 9:238. [PMID: 39256355 PMCID: PMC11387494 DOI: 10.1038/s41392-024-01929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024] Open
Abstract
Sex characteristics exhibit significant disparities in various human diseases, including prevalent cardiovascular diseases, cancers, metabolic disorders, autoimmune diseases, and neurodegenerative diseases. Risk profiles and pathological manifestations of these diseases exhibit notable variations between sexes. The underlying reasons for these sex disparities encompass multifactorial elements, such as physiology, genetics, and environment. Recent studies have shown that human body systems demonstrate sex-specific gene expression during critical developmental stages and gene editing processes. These genes, differentially expressed based on different sex, may be regulated by androgen or estrogen-responsive elements, thereby influencing the incidence and presentation of cardiovascular, oncological, metabolic, immune, and neurological diseases across sexes. However, despite the existence of sex differences in patients with human diseases, treatment guidelines predominantly rely on male data due to the underrepresentation of women in clinical trials. At present, there exists a substantial knowledge gap concerning sex-specific mechanisms and clinical treatments for diverse diseases. Therefore, this review aims to elucidate the advances of sex differences on human diseases by examining epidemiological factors, pathogenesis, and innovative progress of clinical treatments in accordance with the distinctive risk characteristics of each disease and provide a new theoretical and practical basis for further optimizing individualized treatment and improving patient prognosis.
Collapse
Affiliation(s)
- Yuncong Shi
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jianshuai Ma
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Sijin Li
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Chao Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yuning Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jie Chen
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Zhao J, Fang L, Pu R, Liu W, Cai S, Wang R, Shi Y, Li Z, Zhang Z, Li Z, Cao G. Androgen receptor-induced molecules and androgen contribute synergistically to male-predominance of hepatocellular carcinoma. iScience 2024; 27:110519. [PMID: 39156638 PMCID: PMC11326917 DOI: 10.1016/j.isci.2024.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/30/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
We aimed to clarify the mechanisms of male predominance of hepatitis B virus (HBV) -related hepatocellular carcinoma (HCC). Androgen receptor (AR) facilitates HCC cell growth, which was augmented by androgen (dihydrotestosterone [DHT]) and attenuated by anti-androgen (flutamide). AR upregulated the expressions of BIRC7, IGFBP3, and NTSR1 via increasing their promoter activities, which were enhanced by DHT. Wild-type HBV X (WT-HBx) upregulated AR transcription, which depended on DHT; whereas the effect of C-terminal carboxy-truncated HBx on AR transcription was independent of DHT. BIRC7, IGFBP3, and NTSR1 increased the growth of HCC. High expression of BIRC7 and NTSR1 contributes to poor HCC outcomes in male patients, but not in female patients. Downregulation of NTSR1 inhibits tumor growth in male mice rather than in female mice. Conclusively, AR promotes HCC at least partially via upregulating BIRC7, IGFBP3, and NTSR1, which is enhanced by androgen and HBx. BIRC7 and NTSR1 facilitate HCC progression in a male-predominant manner.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai 200433, China
| | - Letian Fang
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai 200433, China
| | - Rui Pu
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai 200433, China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai 200433, China
| | - Shiliang Cai
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai 200433, China
| | - Ruihua Wang
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai 200433, China
| | - Yiwei Shi
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai 200433, China
| | - Zheng Li
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai 200433, China
| | - Zihan Zhang
- Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Zishuai Li
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai 200433, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Barjesteh F, Heidari-Kalvani N, Alipourfard I, Najafi M, Bahreini E. Testosterone, β-estradiol, and hepatocellular carcinoma: stimulation or inhibition? A comparative effect analysis on cell cycle, apoptosis, and Wnt signaling of HepG2 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6121-6133. [PMID: 38421409 DOI: 10.1007/s00210-024-03019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Unlike breast and prostate cancers, which are specifically affected by estrogens or androgens, hepatocellular carcinoma has been reported to be influenced by both sex hormones. Given the coincidental differences of hepatocellular carcinoma in men and women, we investigated the effects of β-estradiol and testosterone on the cell cycle, apoptosis, and Wnt signaling in a model of hepatocellular carcinoma to understand the sex hormone-related etiology. To determine the effective concentration of both hormones, an MTT assay was performed. The effects of β-estradiol and testosterone on cell proliferation and death were evaluated by specific staining and flow cytometry. In addition, gene expression levels of estimated factors involved in GPC3-Wnt survival signaling were analyzed using quantitative real-time polymerase chain reaction. Both hormones inhibited hepatic cell proliferation through arresting the cell cycle at S/G2 and increased the apoptosis rate in HepG2 cells. Both hormones dose-dependently decreased GPC3, Wnt, and DVL expression levels as activators of the Wnt-signaling pathway. In the case of Wnt-signaling inhibitors, the effects of both hormones on WIF were negligible, but they increased DKK1 levels in a dose-dependent manner. In each of the effects mentioned above, β-estradiol was notably more potent than testosterone. In contrast to the primary hypothesis of the project, in which testosterone was considered a stimulating carcinogenic factor in HCC pathogenesis, testosterone inhibited the occurrence of HCC similarly to β-estradiol. However, this inhibitory effect was weaker than that of β-estradiol and requires further study.
Collapse
Affiliation(s)
- Fereshteh Barjesteh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614525, Iran
| | - Nafiseh Heidari-Kalvani
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614525, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614525, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614525, Iran.
| |
Collapse
|
7
|
He W, Wang M, Zhang X, Wang Y, Zhao D, Li W, Lei F, Peng M, Zhang Z, Yuan Y, Huang Z. Estrogen Induces LCAT to Maintain Cholesterol Homeostasis and Suppress Hepatocellular Carcinoma Development. Cancer Res 2024; 84:2417-2431. [PMID: 38718297 DOI: 10.1158/0008-5472.can-23-3966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 05/01/2024] [Indexed: 08/02/2024]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive disease that occurs predominantly in men. Estrogen elicits protective effects against HCC development. Elucidation of the estrogen-regulated biological processes that suppress HCC could lead to improved prevention and treatment strategies. Here, we performed transcriptomic analyses on mouse and human liver cancer and identified lecithin cholesterol acyltransferase (LCAT) as the most highly estrogen-upregulated gene and a biomarker of favorable prognosis. LCAT upregulation inhibited HCC in vitro and in vivo and mediated estrogen-induced suppression of HCC in an ESR1-dependent manner. LCAT facilitated high-density lipoprotein cholesterol production and uptake via the LDLR and SCARB1 pathways. Consistently, high HDL-C levels corresponded to a favorable prognosis in HCC patients. The enhanced HDL-C absorption induced by LCAT impaired SREBP2 maturation, which ultimately suppressed cholesterol biosynthesis and dampened HCC cell proliferation. HDL-C alone inhibited HCC growth comparably to the cholesterol-lowering drug lovastatin, and SREBF2 overexpression abolished the inhibitory activity of LCAT. Clinical observations and cross-analyses of multiple databases confirmed the correlation of elevated LCAT and HDL-C levels to reduced cholesterol synthesis and improved HCC patient prognosis. Furthermore, LCAT deficiency mimicked whereas LCAT overexpression abrogated the tumor growth-promoting effects of ovariectomy in HCC-bearing female mice. Most importantly, HDL-C and LCAT delayed the development of subcutaneous tumors in nude mice, and HDL-C synergized with lenvatinib to eradicate orthotopic liver tumors. Collectively, this study reveals that estrogen upregulates LCAT to maintain cholesterol homeostasis and to dampen hepatocarcinogenesis. LCAT and HDL-C represent potential prognostic and therapeutic biomarkers for targeting cholesterol homeostasis as a strategy for treating HCC. Significance: Estrogen mediates the sex differences in hepatocellular carcinoma development by reducing cholesterol biosynthesis through activation of an LCAT/HDL-C axis, providing strategies for improving liver cancer prevention, prognosis, and treatment.
Collapse
Affiliation(s)
- Wenzhi He
- Hubei Key Laboratory of Cell Homeostasis, Department of Hepatobiliary and Pancreatic Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, PR China
| | - Min Wang
- Hubei Key Laboratory of Cell Homeostasis, Department of Hepatobiliary and Pancreatic Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuechun Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Hepatobiliary and Pancreatic Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yilan Wang
- Hubei Key Laboratory of Cell Homeostasis, Department of Hepatobiliary and Pancreatic Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongli Zhao
- Hubei Key Laboratory of Cell Homeostasis, Department of Hepatobiliary and Pancreatic Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, Department of Hepatobiliary and Pancreatic Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Lei
- School of Basic Medicine, Institute of Model Animal, Wuhan University, Wuhan, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhonglin Zhang
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, PR China
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, PR China
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Zan Huang
- Hubei Key Laboratory of Cell Homeostasis, Department of Hepatobiliary and Pancreatic Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Chen L, Xu T, Lou J, Zhang T, Wu S, Xie R, Xu J. The beneficial roles and mechanisms of estrogens in immune health and infection disease. Steroids 2024; 207:109426. [PMID: 38685461 DOI: 10.1016/j.steroids.2024.109426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/28/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Multiple epidemiologic studies have revealed that gender is considered one of the important factors in the frequency and severity of certain infectious diseases, in which estrogens may play a vital role. There is growing evidence that estrogens as female sex hormone can modulate multiple biological functions outside of the reproductive system, such as in brain and cardiovascular system. However, it is largely unknown about the roles and mechanisms of estrogens/estrogen receptors in immune health and infection disease. Thence, by reading a lot of literature, we summarized the regulatory mechanisms of estrogens/estrogen receptors in immune cells and their roles in certain infectious diseases with gender differences. Therefore, estrogens may have therapeutic potentials to prevent and treat these infectious diseases, which needs further clinical investigation.
Collapse
Affiliation(s)
- Lan Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ting Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Lou
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sheng Wu
- Department of Gastroenterology, Liupanshui People's Hospital, Liupanshui City 553000, Guizhou Province, China
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
9
|
Li Z, Duan D, Li L, Peng D, Ming Y, Ni R, Liu Y. Tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for hepatocellular carcinoma: recent research progress. Front Pharmacol 2024; 15:1382256. [PMID: 38957393 PMCID: PMC11217528 DOI: 10.3389/fphar.2024.1382256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the cancers that seriously threaten human health. Immunotherapy serves as the mainstay of treatment for HCC patients by targeting the programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) axis. However, the effectiveness of anti-PD-1/PD-L1 treatment is limited when HCC becomes drug-resistant. Tumor-associated macrophages (TAMs) are an important factor in the negative regulation of PD-1 antibody targeted therapy in the tumor microenvironment (TME). Therefore, as an emerging direction in cancer immunotherapy research for the treatment of HCC, it is crucial to elucidate the correlations and mechanisms between TAMs and PD-1/PD-L1-mediated immune tolerance. This paper summarizes the effects of TAMs on the pathogenesis and progression of HCC and their impact on HCC anti-PD-1/PD-L1 immunotherapy, and further explores current potential therapeutic strategies that target TAMs in HCC, including eliminating TAMs in the TME, inhibiting TAMs recruitment to tumors and functionally repolarizing M2-TAMs (tumor-supportive) to M1-TAMs (antitumor type).
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Galasso L, Cerrito L, Maccauro V, Termite F, Ainora ME, Gasbarrini A, Zocco MA. Hepatocellular Carcinoma and the Multifaceted Relationship with Its Microenvironment: Attacking the Hepatocellular Carcinoma Defensive Fortress. Cancers (Basel) 2024; 16:1837. [PMID: 38791916 PMCID: PMC11119751 DOI: 10.3390/cancers16101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatocellular carcinoma is a malignant tumor that originates from hepatocytes in an inflammatory substrate due to different degrees of liver fibrosis up to cirrhosis. In recent years, there has been growing interest in the role played by the complex interrelationship between hepatocellular carcinoma and its microenvironment, capable of influencing tumourigenesis, neoplastic growth, and its progression or even inhibition. The microenvironment is made up of an intricate network of mesenchymal cells, immune system cells, extracellular matrix, and growth factors, as well as proinflammatory cytokines and translocated bacterial products coming from the intestinal microenvironment via the enterohepatic circulation. The aim of this paper is to review the role of the HCC microenvironment and describe the possible implications in the choice of the most appropriate therapeutic scheme in the prediction of tumor response or resistance to currently applied treatments and in the possible development of future therapeutic perspectives, in order to circumvent resistance and break down the tumor's defensive fort.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Valeria Maccauro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
11
|
Jin S, Xu M, Gao X, Jiang S, Xiong Y, Zhang W, Qiao H, Wu Y, Fu H. Effects of Alkalinity Exposure on Antioxidant Status, Metabolic Function, and Immune Response in the Hepatopancreas of Macrobrachium nipponense. Antioxidants (Basel) 2024; 13:129. [PMID: 38275654 PMCID: PMC10812643 DOI: 10.3390/antiox13010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The oriental river prawn Macrobrachium nipponense is an important freshwater economic species in China, producing huge economic benefits. However, M. nipponense shows lower alkali tolerance than fish species, thus genetic selection is urgently needed in order to improve alkali tolerance in this species. In the present study, the effects of alkalinity exposure on the hepatopancreas of M. nipponense were measured under the alkali concentrations of 0 (control), 4, 8, and 12 mmol/L with the exposure time of 96 h through histological observations, measurement of antioxidant enzymes, metabolic profiling analysis, and transcriptome profiling analysis. The present study identified that the low concentration of alkali treatment (<4 mmol/L) did not result in morphological changes in the hepatopancreas and activity changes in antioxidant enzymes, while high-alkali treatment (>8 mmol/L) damaged the normal structures of the lumen and vacuoles and significantly stimulated the levels of superoxide dismutase, catalase, and total antioxidant capacity, indicating these antioxidant enzymes play essential roles in the protection of the body from the damage caused by the alkali treatment. Metabolic profiling analysis revealed that the main enriched metabolic pathways of differentially expressed metabolites in the present study were consistent with the metabolic pathways caused by environmental stress in plants and other aquatic animals. Transcriptome profiling analysis revealed that the alkali concentration of <8 mmol/L did not lead to significant changes in gene expression. The main enriched metabolic pathways were selected from the comparison between 0 mmol/L vs. 12 mmol/L, and some significantly up-regulated genes were selected from these metabolic pathways, predicting these selected metabolic pathways and genes are involved in the adaptation to alkali treatment in M. nipponense. The expressions of Ras-like GTP-binding protein, Doublesex and mab-3 related transcription factor 1a, and Hypothetical protein JAY84 are sensitive to changes in alkali concentrations, suggesting these three genes participated in the process of alkali adaptation in M. nipponense. The present study identified the effects of alkalinity exposure on the hepatopancreas of M. nipponense, including the changes in antioxidant status and the expressions of metabolites and genes, contributing to further studies of alkali tolerance in this species.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (S.J.); (Y.X.); (W.Z.); (H.Q.); (Y.W.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.X.); (X.G.)
| | - Mingjia Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.X.); (X.G.)
| | - Xuanbin Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.X.); (X.G.)
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (S.J.); (Y.X.); (W.Z.); (H.Q.); (Y.W.)
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (S.J.); (Y.X.); (W.Z.); (H.Q.); (Y.W.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (S.J.); (Y.X.); (W.Z.); (H.Q.); (Y.W.)
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (S.J.); (Y.X.); (W.Z.); (H.Q.); (Y.W.)
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (S.J.); (Y.X.); (W.Z.); (H.Q.); (Y.W.)
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (S.J.); (Y.X.); (W.Z.); (H.Q.); (Y.W.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.X.); (X.G.)
| |
Collapse
|
12
|
Wu G, Qi G, Liu Y, Gan J, Xie C, Wu Q, Cui W, Wang C, Wang Z. ER-α36 is involved in calycosin inhibition of IL-6 production in macrophages. J Cell Mol Med 2024; 28:e18037. [PMID: 37974543 PMCID: PMC10805506 DOI: 10.1111/jcmm.18037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
The tumour microenvironment (TME) is crucial for tumour development and progression. Tumour-associated macrophages (TAMs) in the TME can promote tumour progression and metastasis by releasing cytokines, such as IL-6. Calycosin, a phytoestrogen that is one of the active compounds in Radix Astragali, has been shown to inhibit tumour growth and metastasis. However, the underlying mechanism by which calycosin inhibits tumour growth remains unclear. Thus, this study aimed to investigate the effect of calycosin on IL-6 production in peripheral blood mononuclear cell (PBMC)- and THP-1-derived macrophages and explore its potential mechanisms using co-immunoprecipitation, western blotting, immunofluorescence, chromatin immunoprecipitation and luciferase assays. We found that calycosin treatment substantially upregulated the expression of ER-α36, a variant of the ER, and reduced IL-6 production in macrophages. Mechanistically, ER-α36 physically interacted with NF-κBp65 and retained p65 in the cytoplasm to attenuate NF-κB function as an IL-6 transcriptional inducer. In conclusion, our result indicated that calycosin inhibited IL-6 production by enhancing ER-α36 expression and its interaction with p65, which attenuated NF-κB function as an IL-6 inducer. Therefore, calycosin can be developed as an effective agent for cancer therapy by targeting TAMs.
Collapse
Affiliation(s)
- Guoli Wu
- Xiangya HospitalCentral South UniversityChangshaChina
| | - Guangying Qi
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Yu Liu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Chichu Xie
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Qi Wu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Wei Cui
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Chunhua Wang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Zhaoyi Wang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| |
Collapse
|
13
|
Smiriglia A, Lorito N, Serra M, Perra A, Morandi A, Kowalik MA. Sex difference in liver diseases: How preclinical models help to dissect the sex-related mechanisms sustaining NAFLD and hepatocellular carcinoma. iScience 2023; 26:108363. [PMID: 38034347 PMCID: PMC10682354 DOI: 10.1016/j.isci.2023.108363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Only a few preclinical findings are confirmed in the clinic, posing a critical issue for clinical development. Therefore, identifying the best preclinical models can help to dissect molecular and mechanistic insights into liver disease pathogenesis while being clinically relevant. In this context, the sex relevance of most preclinical models has been only partially considered. This is particularly significant in NAFLD and HCC, which have a higher prevalence in men when compared to pre-menopause women but not to those in post-menopausal status, suggesting a role for sex hormones in the pathogenesis of the diseases. This review gathers the sex-relevant findings and the available preclinical models focusing on both in vitro and in vivo studies and discusses the potential implications and perspectives of introducing the sex effect in the selection of the best preclinical model. This is a critical aspect that would help to tailor personalized therapies based on sex.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marina Serra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
14
|
Nuermaimaiti A, Chang L, Yan Y, Sun H, Xiao Y, Song S, Feng K, Lu Z, Ji H, Wang L. The role of sex hormones and receptors in HBV infection and development of HBV-related HCC. J Med Virol 2023; 95:e29298. [PMID: 38087447 DOI: 10.1002/jmv.29298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
Gender disparity in hepatitis B virus (HBV)-related diseases has been extensively documented. Epidemiological studies consistently reported that males have a higher prevalence of HBV infection and incidence of hepatocellular carcinoma (HCC). Further investigations have revealed that sex hormone-related signal transductions play a significant role in gender disparity. Sex hormone axes showed significantly different responses to virus entry and replication. The sex hormones axes change the HBV-specific immune responses and antitumor immunity. Additionally, Sex hormone axes showed different effects on the development of HBV-related disease. But the role of sex hormones remains controversial, and researchers have not reached a consensus on the role of sex hormones and the use of hormone therapies in HCC treatment. In this review, we aim to summarize the experimental findings on sex hormones and provide a comprehensive understanding of their roles in the development of HCC and their implications for hormone-related HCC treatment.
Collapse
Affiliation(s)
- Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Zhang X, Yu C, Zhao S, Wang M, Shang L, Zhou J, Ma Y. The role of tumor-associated macrophages in hepatocellular carcinoma progression: A narrative review. Cancer Med 2023; 12:22109-22129. [PMID: 38098217 PMCID: PMC10757104 DOI: 10.1002/cam4.6717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 12/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, with complex etiology and mechanism, and a high mortality rate. Tumor-associated macrophages (TAMs) are an important part of the HCC tumor microenvironment. Studies in recent years have shown that TAMs are involved in multiple stages of HCC and are related to treatment and prognosis in HCC. The specific mechanisms between TAMs and HCC are gradually being revealed. This paper reviews recent advances in the mechanisms associated with TAMs in HCC, concentrating on an overview of effects of TAMs on drug resistance in HCC and the signaling pathways linked with HCC, providing clues for the treatment and prognosis determination of HCC.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Chao Yu
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Siqi Zhao
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Min Wang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Longcheng Shang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jin Zhou
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yong Ma
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
16
|
Hoffmann JP, Liu JA, Seddu K, Klein SL. Sex hormone signaling and regulation of immune function. Immunity 2023; 56:2472-2491. [PMID: 37967530 DOI: 10.1016/j.immuni.2023.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023]
Abstract
Immune responses to antigens, including innocuous, self, tumor, microbial, and vaccine antigens, differ between males and females. The quest to uncover the mechanisms for biological sex differences in the immune system has intensified, with considerable literature pointing toward sex hormonal influences on immune cell function. Sex steroids, including estrogens, androgens, and progestins, have profound effects on immune function. As such, drastic changes in sex steroid concentrations that occur with aging (e.g., after puberty or during the menopause transition) or pregnancy impact immune responses and the pathogenesis of immune-related diseases. The effect of sex steroids on immunity involves both the concentration of the ligand and the density and distribution of genomic and nongenomic receptors that serve as transcriptional regulators of immune cellular responses to affect autoimmunity, allergy, infectious diseases, cancers, and responses to vaccines. The next frontier will be harnessing these effects of sex steroids to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Joseph P Hoffmann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer A Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Oh RK, Hwang S, Song GW, Ahn CS, Moon DB, Ha TY, Jung DH, Park GC, Yoon YI, Kang WH. Donor sex and donor-recipient sex disparity do not affect hepatocellular carcinoma recurrence after living donor liver transplantation. Ann Surg Treat Res 2023; 105:133-140. [PMID: 37693289 PMCID: PMC10485355 DOI: 10.4174/astr.2023.105.3.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose Studies have yielded contradictory results on whether donor sex and donor-recipient sex disparity affect hepatocellular carcinoma (HCC) recurrence after living donor liver transplantation (LDLT). The present study assessed whether donor sex or donor-recipient sex disparity affects HCC recurrence after LDLT at a high-volume center. Methods This study included 772 HCC patients who underwent LDLT between January 2006 and December 2015 at Asan Medical Center. Patients were divided into 4 groups based on the sex of the donor and recipient: male-to-male (n = 490, 63.5%), male-to-female (n = 75, 9.7%), female-to-male (n = 170, 22.0%), and female-to-female (n = 37, 4.8%). Results Disease-free survival (DFS; P = 0.372) and overall survival (OS; P = 0.591) did not differ significantly among the 4 groups. DFS also did not differ significantly between LDLT recipients with male and female donors (P = 0.792) or between male and female recipients (P = 0.084). After patient matching with an α-FP/des-γ-carboxy prothrombin/tumor volume score cutoff of 5logs, donor-recipient sex disparity did not significantly affect DFS (P = 0.598) or OS (P = 0.777). There were also no differences in DFS in matched LDLT recipients with male and female donors (P = 0.312) or between male and female recipients (P = 0.374). Conclusion Neither donor sex nor donor-recipient sex disparity significantly affected posttransplant HCC recurrence.
Collapse
Affiliation(s)
- Rak Kyun Oh
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shin Hwang
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gi-Won Song
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chul-Soo Ahn
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Deok-Bog Moon
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae-Yong Ha
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Hwan Jung
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gil-Chun Park
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-In Yoon
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woo-Hyoung Kang
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Saber S, Al-Qawasmeh RA, Abu-Qatouseh L, Shtaiwi A, Khanfar MA, Al-Soud YA. Novel hybrid motifs of 4-nitroimidazole-piperazinyl tagged 1,2,3-triazoles: Synthesis, crystal structure, anticancer evaluations, and molecular docking study. Heliyon 2023; 9:e19327. [PMID: 37681149 PMCID: PMC10480608 DOI: 10.1016/j.heliyon.2023.e19327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
4-((4-(1-benzyl-2-methyl-4-nitro-1H-imidazole-5-yl)piperazine-1-yl)methyl)-1-substituted-1H-1,2,3-triazole motifs are designed and synthesized via click chemistry. The reaction of 1-(N1-benzyl- 2-methyl-4-nitro-1H-imidazole- 5-yl)-4-(prop-2-yn-1-yl) piperazine 5 as new scaffold with diverse primary azides to selectively produce 1,4-disubstituted-1,2,3-triazoles 9a-k, 10a-c and 11a-q. Physicochemical methods: when 1H NMR, 13C NMR, and HRMS are utilized to fully characterize all synthesized compounds. X-ray structural determination and analysis for compound 9a is also performed. The newly designed chromophores are assessed for their anti-proliferative potency against three selected human cancer cell lines (MCF-7, HepG2, and PC3), and one normal cell line (Dermal/Fibroblast). Compounds 9g and 9k have shown potent activities against the MCF-7 cell line with IC50 values of (2.00 ± 0.03 μM) and (5.00 ± 0.01 μM) respectively. ADMET studies and Molecular docking investigations are performed on the most active hybrid nitroimidazole derivatives 9g and 9k with 4-hydroxytamoxifen (4-OHT) at the human estrogen receptor alpha (hER) during binding active sites to study the ligand-protein interactions and free binding energies at atomic levels. The triazole ring in the 9g derivative forms a hydrogen bond with Asp58 with distance 3.2 Å. And it is found that polar contact with His231 amino acid residue. In silico assessment of the compounds showed very good pharmacokinetic properties based on their physicochemical values, also the ADMET criteria of the most active hybrid systems are within the acceptable range.
Collapse
Affiliation(s)
- SadeekahO.W. Saber
- Department of chemistry, School of Science, The University of Jordan, 11942, Amman, Jordan
- Faculty of Pharmacy, Jerash University, Amman-Irbid international highway, Jerash, 26150, Jordan
| | - Raed A. Al-Qawasmeh
- Department of chemistry, School of Science, The University of Jordan, 11942, Amman, Jordan
- Pure and Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | | | - Amneh Shtaiwi
- Faculty of Pharmacy, Middle East University, Queen Alia Airport Street, 11610, Amman, Jordan
| | - Monther A. Khanfar
- Department of chemistry, School of Science, The University of Jordan, 11942, Amman, Jordan
- Pure and Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Yaseen A. Al-Soud
- Chemistry Department, Faculty of Science, University of Al al-Bayt, Al-Mafraq, Jordan
| |
Collapse
|
19
|
Nevola R, Tortorella G, Rosato V, Rinaldi L, Imbriani S, Perillo P, Mastrocinque D, La Montagna M, Russo A, Di Lorenzo G, Alfano M, Rocco M, Ricozzi C, Gjeloshi K, Sasso FC, Marfella R, Marrone A, Kondili LA, Esposito N, Claar E, Cozzolino D. Gender Differences in the Pathogenesis and Risk Factors of Hepatocellular Carcinoma. BIOLOGY 2023; 12:984. [PMID: 37508414 PMCID: PMC10376683 DOI: 10.3390/biology12070984] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Several chronic liver diseases are characterized by a clear gender disparity. Among them, hepatocellular carcinoma (HCC) shows significantly higher incidence rates in men than in women. The different epidemiological distribution of risk factors for liver disease and HCC only partially accounts for these gender differences. In fact, the liver is an organ with recognized sexual dysmorphism and is extremely sensitive to the action of androgens and estrogens. Sex hormones act by modulating the risk of developing HCC and influencing its aggressiveness, response to treatments, and prognosis. Furthermore, androgens and estrogens are able to modulate the action of other factors and cofactors of liver damage (e.g., chronic HBV infection, obesity), significantly influencing their carcinogenic power. The purpose of this review is to examine the factors related to the different gender distribution in the incidence of HCC as well as the pathophysiological mechanisms involved, with particular reference to the central role played by sex hormones.
Collapse
Affiliation(s)
- Riccardo Nevola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Klodian Gjeloshi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
20
|
Sim JH, Kim KW, Ko Y, Kwon HM, Moon YJ, Jun IG, Kim SH, Kim S, Song JG, Hwang GS. Association of sex-specific donor skeletal muscle index with surgical outcomes in living donor liver transplantation recipients. Liver Int 2023; 43:684-694. [PMID: 36377561 DOI: 10.1111/liv.15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND A recent study reported a correlation between the muscle mass of male donors and graft failure in living donor liver transplantation (LDLT) recipients. We investigated the association of sex-specific donor skeletal muscle index (SMI) with mortality and graft failure in LDLT recipients. METHODS We retrospectively analysed 2750 sets of donors and recipients between January 2008 and January 2018. The recipient outcomes were analysed by dividing the data according to donor sex. Cox regression analyses were performed to evaluate the association between donor SMI by sex and 1-year mortality and graft failure in recipients. RESULTS In the male donor group, robust donor (increased SMI) was significantly associated with higher risks for mortality (hazard ratio [HR]: 1.03, 95% confidence interval [CI]: 1.00-1.06, p = .023) and graft failure (HR: 1.04, 95% CI: 1.01-1.06, p = .007) at 1 year. In the female donor group, the robust donor was significantly associated with lower risks for mortality (HR: 0.92, 95% CI: 0.87-0.97, p = .003) and graft failure (HR: 0.95, 95% CI: 0.90-1.00, p = .032) at 1 year. CONCLUSIONS Donor SMI was associated with surgical outcomes in recipients. Robust male and female donors were a significant negative and protective factor for grafts respectively.
Collapse
Affiliation(s)
- Ji-Hoon Sim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung-Won Kim
- Department of Radiology, Asan Image Metrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - YouSun Ko
- Department of Radiology, Asan Image Metrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hye-Mee Kwon
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Jin Moon
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Gu Jun
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seonok Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun-Gol Song
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gyu-Sam Hwang
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
21
|
Zhang L, Wu J, Wu Q, Zhang X, Lin S, Ran W, Zhu L, Tang C, Wang X. Sex steroid axes in determining male predominance in hepatocellular carcinoma. Cancer Lett 2023; 555:216037. [PMID: 36563929 DOI: 10.1016/j.canlet.2022.216037] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death. The mechanisms for male propensity in HCC incidence, prognosis and treatment responses are complicated and remain inconclusive. Sex-biased molecular signatures in carcinogenesis, viral infections and immune responses have been studied predominantly within the context of sex hormones effects. This review integrates current knowledge on the mechanisms through which the hormones regulate HCC development in sexually dimorphic fashion. Firstly, the androgen/androgen receptor (AR) accelerate cell proliferation and virus infection, especially during the initial stage of HCC, while estrogen/estrogen receptor (ER) function in an opposite way to induce cell apoptosis and immune responses. Interestingly, the controversial effects of AR in late stage of HCC metastasis are summarized and the reasons are attributed to inconsistent cancer grading or experimental models between the studies. In addition, the new insights into these intricate cellular and molecular mechanisms underlying sexual dimorphism are fully discussed. A detailed understanding of sex hormones-associated regulation to male predominance in HCC may help to develop personalized therapeutic strategies in high-risk populations.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - JinFeng Wu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - QiuMei Wu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - XiangJuan Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - ShuaiCai Lin
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - WanLi Ran
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Li Zhu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - ChengYan Tang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xing Wang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
22
|
Chen C, Wang Z, Ding Y, Qin Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol 2023; 14:1133308. [PMID: 36845131 PMCID: PMC9950271 DOI: 10.3389/fimmu.2023.1133308] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the third leading cause of tumor-related mortality worldwide. In recent years, the emergency of immune checkpoint inhibitor (ICI) has revolutionized the management of HCC. Especially, the combination of atezolizumab (anti-PD1) and bevacizumab (anti-VEGF) has been approved by the FDA as the first-line treatment for advanced HCC. Despite great breakthrough in systemic therapy, HCC continues to portend a poor prognosis owing to drug resistance and frequent recurrence. The tumor microenvironment (TME) of HCC is a complex and structured mixture characterized by abnormal angiogenesis, chronic inflammation, and dysregulated extracellular matrix (ECM) remodeling, collectively contributing to the immunosuppressive milieu that in turn prompts HCC proliferation, invasion, and metastasis. The tumor microenvironment coexists and interacts with various immune cells to maintain the development of HCC. It is widely accepted that a dysfunctional tumor-immune ecosystem can lead to the failure of immune surveillance. The immunosuppressive TME is an external cause for immune evasion in HCC consisting of 1) immunosuppressive cells; 2) co-inhibitory signals; 3) soluble cytokines and signaling cascades; 4) metabolically hostile tumor microenvironment; 5) the gut microbiota that affects the immune microenvironment. Importantly, the effectiveness of immunotherapy largely depends on the tumor immune microenvironment (TIME). Also, the gut microbiota and metabolism profoundly affect the immune microenvironment. Understanding how TME affects HCC development and progression will contribute to better preventing HCC-specific immune evasion and overcoming resistance to already developed therapies. In this review, we mainly introduce immune evasion of HCC underlying the role of immune microenvironment, describe the dynamic interaction of immune microenvironment with dysfunctional metabolism and the gut microbiome, and propose therapeutic strategies to manipulate the TME in favor of more effective immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Chakraborty B, Byemerwa J, Krebs T, Lim F, Chang CY, McDonnell DP. Estrogen Receptor Signaling in the Immune System. Endocr Rev 2023; 44:117-141. [PMID: 35709009 DOI: 10.1210/endrev/bnac017] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The immune system functions in a sexually dimorphic manner, with females exhibiting more robust immune responses than males. However, how female sex hormones affect immune function in normal homeostasis and in autoimmunity is poorly understood. In this review, we discuss how estrogens affect innate and adaptive immune cell activity and how dysregulation of estrogen signaling underlies the pathobiology of some autoimmune diseases and cancers. The potential roles of the major circulating estrogens, and each of the 3 estrogen receptors (ERα, ERβ, and G-protein coupled receptor) in the regulation of the activity of different immune cells are considered. This provides the framework for a discussion of the impact of ER modulators (aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor downregulators) on immunity. Synthesis of this information is timely given the considerable interest of late in defining the mechanistic basis of sex-biased responses/outcomes in patients with different cancers treated with immune checkpoint blockade. It will also be instructive with respect to the further development of ER modulators that modulate immunity in a therapeutically useful manner.
Collapse
Affiliation(s)
- Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jovita Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Taylor Krebs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.,Known Medicine, Salt Lake City, UT 84108, USA
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
24
|
(4-Picolylamino)-17β-Estradiol derivative and analogues induce apoptosis with death receptor trail R2/DR5 in MCF-7. Chem Biol Interact 2023; 369:110286. [PMID: 36460128 DOI: 10.1016/j.cbi.2022.110286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
In order to discover more effective and less toxic drugs in the field of anti-tumor, the backbone structure of 17β-estradiol was modified, and 11 target compounds were synthesized. Compounds 5 and 10, which exhibited better anti-tumor activity and higher selectivity (more than 10-fold), were chosen for further biological investigation. Flow cytometry results indicated that 5 and 10 could arrest MCF-7 cells in the G2 phase and induce apoptosis. Immunohistochemical analysis revealed that 5 and 10 could bind to the estradiol receptor alpha in MCF-7 cells. Western blotting and real-time PCR assays were performed to detect the effects of compounds on apoptosis-related targets at the protein and gene levels. These results showed that both 5 and 10 could dosed-dependently increase the expression of Apaf-1, Bax, caspase-3,8,9 and reduce the expression levels of the anti-apoptotic factors Bcl-2 and Bcl-xL. Besides, the Human apoptosis array assay demonstrated the expression level of death receptor Trail R2/DR5 was upregulated obviously while the expression of TNF R1, IAPs and Hsp27/60/70 were downregulated. On the whole, 5 induced MCF-7 cell death through the endogenous pathway in mitochondria and the exogenous pathway with death receptor Trail R2/DR5.
Collapse
|
25
|
Abdel-Hamid MS, Mansour AM, Hassan MH, Abdelhady R, Elsadek BEM, El-Sayed ESM, Salama SA. Estrogen Attenuates Diethylnitrosamine-Induced Hepatocellular Carcinoma in Female Rats via Modulation of Estrogen Receptor/FASN/CD36/IL-6 Axis. Biol Pharm Bull 2023; 46:1558-1568. [PMID: 37914358 DOI: 10.1248/bpb.b23-00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
This study was designed to evaluate the potential protective impact of estrogen and estrogen receptor against diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. The levels of liver injury serum biomarkers, liver content of interleukin-6 (IL-6), relative liver weight and distortion of liver histological pictures were significantly increased in ovariectomized (OVX) rats and SHAM rats that received DEN alone and were further exaggerated when DEN was combined with fulvestrant (F) compared to non-DEN treated rats. The OVX rats showed higher insults than SHAM rats. The tapering impact on these parameters was clear in OVX rats that received estradiol benzoate (EB), silymarin (S) or orlistat (ORS). The immunohistochemistry and/or Western blot analysis of liver tissues showed a prominent increase in fatty acid synthase (FASN) and cluster of differentiation 36 (CD36) expressions in OVX and SHAM rats who received DEN and/ or F compared to SHAM rats. In contrast to S, treatment of OVX rats with EB mitigated DEN-induced expression of FASN and CD36 in liver tissue, while ORS improved DEN-induced expression of FASN. In conclusion, the protective effect against HCC was mediated via estrogen receptor alpha (ER-α) which abrogates its downstream genes involved in lipid metabolism namely FASN and CD36 depriving the tumor from survival vital energy source. In addition, ORS induced similar mitigating effect against DEN-induced HCC which could be attributed to FASN inhibition and anti-inflammatory effect. Furthermore, S alleviated DEN-induced HCC, independent of its estrogenic effect.
Collapse
Affiliation(s)
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University
| | - Memy H Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University
| | - Rasha Abdelhady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Fayoum University
| | - Bakheet E M Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University
| | - El-Sayed M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University
| | - Salama A Salama
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University
| |
Collapse
|
26
|
Cavalcante LN, Dezan MGF, Paz CLDSL, Lyra AC. RISK FACTORS FOR HEPATOCELLULAR CARCINOMA IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE. ARQUIVOS DE GASTROENTEROLOGIA 2022; 59:540-548. [PMID: 36515349 DOI: 10.1590/s0004-2803.202204000-93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Non-alcoholic fatty liver disease is growing in worldwide prevalence and thus, is expected to have a higher number of NAFLD-related hepatocellular carcinoma (HCC) in the following years. This review describes the risk factors associated with HCC in NAFLD-patients. The presence of liver cirrhosis is the preponderant one. Male gender, PNPLA3 variants, diabetes, and obesity also appear to predispose to the development of HCC, even in non-cirrhotic subjects. Thus far, intensive lifestyle modifications, including glycemic control, and obesity treatment, are effective therapies for NAFLD/ non-alcoholic steatohepatitis and, therefore, probably, also for HCC. Some drugs that aimed at decreasing inflammatory activity and fibrosis, as well as obesity, were studied. Other data have suggested the possibility of HCC chemoprevention. So far, however, there is no definitive evidence for the routine utilization of these drugs. We hope, in the future, to be able to profile patients at higher risk of NAFLD-HCC and outline strategies for early diagnosis and prevention.
Collapse
Affiliation(s)
- Lourianne Nascimento Cavalcante
- Universidade Federal da Bahia, Salvador, BA, Brasil.,Hospital São Rafael, Serviço de Gastro-Hepatologia, Salvador, BA, Brasil
| | | | | | - André Castro Lyra
- Universidade Federal da Bahia, Salvador, BA, Brasil.,Hospital São Rafael, Serviço de Gastro-Hepatologia, Salvador, BA, Brasil
| |
Collapse
|
27
|
Xu L, Yuan Y, Che Z, Tan X, Wu B, Wang C, Xu C, Xiao J. The Hepatoprotective and Hepatotoxic Roles of Sex and Sex-Related Hormones. Front Immunol 2022; 13:939631. [PMID: 35860276 PMCID: PMC9289199 DOI: 10.3389/fimmu.2022.939631] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Most liver diseases, including acute liver injury, drug-induced liver injury, viral hepatitis, metabolic liver diseases, and end-stage liver diseases, are strongly linked with hormonal influences. Thus, delineating the clinical manifestation and underlying mechanisms of the “sexual dimorphism” is critical for providing hints for the prevention, management, and treatment of those diseases. Whether the sex hormones (androgen, estrogen, and progesterone) and sex-related hormones (gonadotrophin-releasing hormone, luteinizing hormone, follicle-stimulating hormone, and prolactin) play protective or toxic roles in the liver depends on the biological sex, disease stage, precipitating factor, and even the psychiatric status. Lifestyle factors, such as obesity, alcohol drinking, and smoking, also drastically affect the involving mechanisms of those hormones in liver diseases. Hormones deliver their hepatic regulatory signals primarily via classical and non-classical receptors in different liver cell types. Exogenous sex/sex-related hormone therapy may serve as a novel strategy for metabolic liver disease, cirrhosis, and liver cancer. However, the undesired hormone-induced liver injury should be carefully studied in pre-clinical models and monitored in clinical applications. This issue is particularly important for menopause females with hormone replacement therapy (HRT) and transgender populations who want to receive gender-affirming hormone therapy (GAHT). In conclusion, basic and clinical studies are warranted to depict the detailed hepatoprotective and hepatotoxic mechanisms of sex/sex-related hormones in liver disease. Prolactin holds a promising perspective in treating metabolic and advanced liver diseases.
Collapse
Affiliation(s)
- Linlin Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Yuan
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhaodi Che
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaozhi Tan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Cunchuan Wang
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chengfang Xu, ; Jia Xiao,
| | - Jia Xiao
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Chengfang Xu, ; Jia Xiao,
| |
Collapse
|
28
|
Ahmad MI, Khan MU, Kodali S, Shetty A, Bell SM, Victor D. Hepatocellular Carcinoma Due to Nonalcoholic Fatty Liver Disease: Current Concepts and Future Challenges. J Hepatocell Carcinoma 2022; 9:477-496. [PMID: 35673598 PMCID: PMC9167599 DOI: 10.2147/jhc.s344559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022] Open
Abstract
Obesity has been labeled as the global pandemic of the 21st century, resulting from a sedentary lifestyle and caloric excess. Nonalcoholic fatty liver disease (NAFLD), characterized by excessive hepatic steatosis, is strongly associated with obesity and metabolic syndrome and is estimated to be present in one-quarter of the world population, making it the most common cause of the chronic liver disease (CLD). NAFLD spectrum varies from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. The burden of NAFLD has been predicted to increase in the coming decades resulting in increased rates of decompensated cirrhosis, hepatocellular carcinoma (HCC), and liver-related deaths. In the current review, we describe the pathophysiology of NAFLD and NASH, risk factors associated with disease progression, related complications, and mortality. Later, we have discussed the changing epidemiology of HCC, with NAFLD emerging as the most common cause of CLD and HCC. We have also addressed the risk factors of HCC development in the NAFLD population (including demographic, metabolic, genetic, dietary, and lifestyle factors), presentation of NAFLD-associated HCC, its prognosis, and the issue of HCC development in non-cirrhotic NAFLD. Lastly, the problems related to HCC screening in the NAFLD population, the remaining challenges, and future directions, especially the need to identify the high-risk individuals, will be discussed. We will conclude the review by summarizing the clinical evidence for treating fibrosis and preventing HCC in those at risk with NAFLD-associated HCC.
Collapse
Affiliation(s)
- Muhammad Imran Ahmad
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital Houston, Houston, TX, USA
| | - Muhammad Umair Khan
- Department of Gastroenterology and Hepatology, Hamad Medical Corporation, Doha, Qatar
- ECPE- Executive and Continuing Professional Education, Harvard T.H Chan School of Public Health, Boston, MA, 02115-5810, USA
| | - Sudha Kodali
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital Houston, Houston, TX, USA
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, TX, USA
| | - Akshay Shetty
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital Houston, Houston, TX, USA
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, TX, USA
| | - S Michelle Bell
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, TX, USA
| | - David Victor
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital Houston, Houston, TX, USA
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
29
|
Hu S, Zhang J, Guo G, Zhang L, Dai J, Gao Y. Comprehensive analysis of GSEC/miR-101-3p/SNX16/PAPOLG axis in hepatocellular carcinoma. PLoS One 2022; 17:e0267117. [PMID: 35482720 PMCID: PMC9049542 DOI: 10.1371/journal.pone.0267117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/03/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies. A growing number of studies have shown that competitive endogenous RNA (ceRNA) regulatory networks might play important roles during HCC process. The present study aimed to identify a regulatory axis of the ceRNA network associated with the development of HCC. The roles of SNX16 and PAPOLG in HCC were comprehensively analyzed using bioinformatics tools. Subsequently, the “mRNA-miRNA-lncRNA” model was then used to predict the upstream miRNAs and lncRNAs of SNX16 and PAPOLG using the miRNet database, and the miRNAs with low expression and good prognosis in HCC and the lncRNAs with high expression and poor prognosis in HCC were screened by differential expression and survival analysis. Finally, the risk-prognosis models of ceRNA network axes were constructed by univariate and multifactorial Cox proportional risk analysis, and the immune correlations of ceRNA network axes were analyzed using the TIMER and GEPIA database. In this study, the relevant ceRNA network axis GSEC/miR-101-3p/SNX16/PAPOLG with HCC prognosis was constructed, in which GSEC, SNX16, and PAPOLG were highly expressed in HCC with poor prognosis, while miR-101-3p was lowly expressed in HCC with good prognosis. The risk-prognosis model predicted AUC of 0.691, 0.623, and 0.626 for patient survival at 1, 3, and 5 years, respectively. Immuno-infiltration analysis suggested that the GSEC/miR-101-3p/SNX16/PAPOLG axis might affect macrophage polarization. The GSEC/miR-101-3p/SNX16/PAPOLG axis of the ceRNA network axis might be an important factor associated with HCC prognosis and immune infiltration.
Collapse
Affiliation(s)
- Shangshang Hu
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Jinyan Zhang
- School of Life Science, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Guoqing Guo
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Li Zhang
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Jing Dai
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Yu Gao
- School of Life Science, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
- * E-mail:
| |
Collapse
|
30
|
Liao CY, Lee CY, Wei CY, Chao Y, Huang YH, Hou MC, Su YH, Wu JC, Su CW. Differential prognoses among male and female patients with hepatocellular carcinoma. J Chin Med Assoc 2022; 85:554-565. [PMID: 35385417 DOI: 10.1097/jcma.0000000000000722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The incidence of hepatocellular carcinoma (HCC) is significantly higher in men than women. Nonetheless, the impact of sex disparities on HCC outcomes remains unclear. We aimed to compare the clinical manifestations and prognoses between male and female patients with HCC. METHODS This retrospective study enrolled 5337 consecutive patients (3976 men, 1361 women) who were diagnosed with HCC from 2007 to 2020. The prognostic factors were identified by the Cox proportional hazards model. RESULTS Male patients were younger upon HCC diagnosis (median age 64 vs 69 years; p < 0.001) with more favorable hepatic functional reserves (39.0% vs 35.1% albumin-bilirubin grade 1; p = 0.025) but had greater tumor burdens than the female patients. Furthermore, fewer male patients underwent curative therapies for HCC compared with the female patients (49.0% vs 57.0%; p < 0.001). After a median follow-up of 20.1 months (interquartile range, 5.8-47.3 months), 3133 patients died. The cumulative 5-year overall survival rates were 37.1% and 41.9% for male and female patients, respectively (p < 0.001). From the multivariate analysis, male sex was not an independent factor predictive of poor overall survival in all patients and in the subgroup analysis stratified by treatment modalities. When stratified by age, the female sex was an independent factor associated with lower mortality in younger (≤50 years) patients but not in older patients with HCC. CONCLUSION Sex was not an independent predictor of the outcome of patients with HCC, especially for those aged more than 50 years.
Collapse
Affiliation(s)
- Cheng-Yen Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chun-Yang Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Cheng-Yi Wei
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yee Chao
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Hui Su
- Department of Accounting, School of Business, Soochow University, Taipei, Taiwan, ROC
| | - Jaw-Ching Wu
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chien-Wei Su
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Hospitalist Ward, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| |
Collapse
|
31
|
Taura K, Shimamura T, Akamatsu N, Umeshita K, Fujiyoshi M, Abe H, Morita S, Uemoto S, Eguchi S, Furukawa H, Takada Y, Egawa H, Ohdan H, Hatano E. No Impact of Donor Sex on the Recurrence of Hepatocellular Carcinoma After Liver Transplantation. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2022; 29:570-584. [DOI: 10.1002/jhbp.1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/28/2021] [Accepted: 01/23/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kojiro Taura
- Division of Hepato‐Biliary‐Pancreatic Surgery and Transplantation, Department of Surgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation Hokkaido University Hospital Sapporo Japan
| | - Nobuhisa Akamatsu
- Artificial Organ and Transplantation Surgery Division, Department of Surgery, Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Koji Umeshita
- Department of Gastroenterological Surgery, Graduate School of Medicine Osaka University Osaka Japan
| | - Masato Fujiyoshi
- Division of Organ Transplantation Hokkaido University Hospital Sapporo Japan
| | - Hiroyasu Abe
- Institute for Advancement of Clinical and Translational Science Kyoto University Hospital Kyoto Japan
| | - Satoshi Morita
- Institute for Advancement of Clinical and Translational Science Kyoto University Hospital Kyoto Japan
| | | | - Susumu Eguchi
- Department of Surgery Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Hiroyuki Furukawa
- Division of Gastroenterological Surgery, Department of Surgery Asahikawa Medical University Asahikawa Japan
| | - Yasutsugu Takada
- Department of Hepato‐Pancreatic‐Biliary and Breast Surgery Ehime University Graduate School of Medicine Ehime Japan
| | - Hiroto Egawa
- Department of Surgery Institute of Gastroenterology Tokyo Women’s Medical University
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Etsuro Hatano
- Division of Hepato‐Biliary‐Pancreatic Surgery and Transplantation, Department of Surgery Kyoto University Graduate School of Medicine Kyoto Japan
| | | |
Collapse
|
32
|
Lv T, Zhang Z, Yu H, Ren S, Wang J, Li S, Sun L. Tamoxifen Exerts Anticancer Effects on Pituitary Adenoma Progression via Inducing Cell Apoptosis and Inhibiting Cell Migration. Int J Mol Sci 2022; 23:ijms23052664. [PMID: 35269804 PMCID: PMC8910631 DOI: 10.3390/ijms23052664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Although pituitary adenomas are histologically benign, they are often accompanied by multiple complications, such as cardiovascular disease and metabolic dysfunction. In the present study, we repositioned the Food and Drug Administration -approved immune regulator tamoxifen to target STAT6 based on the genomics analysis of PAs. Tamoxifen inhibited the proliferation of GH3 and AtT-20 cells with respective IC50 values of 9.15 and 7.52 μM and increased their apoptotic rates in a dose-dependent manner. At the molecular level, tamoxifen downregulated phosphorylated PI3K, phosphorylated AKT and the anti-apoptotic protein Bcl-2 and increased the expression of pro-apoptotic proteins p53 and Bax in GH3 and AtT-20 cells. Furthermore, tamoxifen also inhibited the migration of both cell lines by reprogramming tumor-associated macrophages to the M1 phenotype through STAT6 inactivation and inhibition of the macrophage-specific immune checkpoint SHP1/SHP. Finally, administration of tamoxifen (20, 50, 100 mg·kg−1·d−1, for 21 days) inhibited the growth of pituitary adenomas xenografts in nude mice in a dose-dependent manner. Taken together, tamoxifen is likely to be a promising combination therapy for pituitary adenomas and should be investigated further.
Collapse
Affiliation(s)
- Tingting Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zirui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haoying Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuyue Ren
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingrong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Correspondence:
| |
Collapse
|
33
|
Chen XY, Wang C, Huang YZ, Zhang LL. Nonalcoholic fatty liver disease shows significant sex dimorphism. World J Clin Cases 2022; 10:1457-1472. [PMID: 35211584 PMCID: PMC8855265 DOI: 10.12998/wjcc.v10.i5.1457] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), which has been renamed metabolic dysfunction-associated fatty liver disease, is a growing global medical problem. The incidence of NAFLD and its associated end-stage liver disease is increasing each year, and many research advancements have been achieved to date. This review focuses on the current knowledge of the sex differences in NAFLD and does not elaborate on areas without differences. Studies have revealed significant sex differences in the prevalence, influencing factors, pathophysiology, complications and therapies of NAFLD. Men have a higher incidence than women. Compared with women, men exhibit increased visceral fat deposition, are more susceptible to leptin resistance, lack estrogen receptors, and tend to synthesize fatty acids into fat storage. Male patients will experience more severe hepatic fibrosis and a higher incidence of liver cancer. However, once NAFLD occurs, women show a faster progression of liver fibrosis, higher levels of liver cell damage and inflammation and are less likely to undergo liver transplantation than men. In general, men have more risk factors and more severe pathophysiological reactions than women, whereas the development of NAFLD is faster in women, and the treatments for women are more limited than those for men. Thus, whether sex differences should be considered in the individualized prevention and treatment of NAFLD in the future is worth considering.
Collapse
Affiliation(s)
- Xing-Yu Chen
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 404100, China
| | - Cong Wang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 404100, China
| | - Yi-Zhou Huang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 404100, China
| | - Li-Li Zhang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 404100, China
| |
Collapse
|
34
|
Harding AT, Heaton NS. The Impact of Estrogens and Their Receptors on Immunity and Inflammation during Infection. Cancers (Basel) 2022; 14:cancers14040909. [PMID: 35205657 PMCID: PMC8870346 DOI: 10.3390/cancers14040909] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Human health is significantly affected by microbial infections. One of the largest determinants of the outcomes of such infections is the host immune response. Too weak of a response can lead to enhanced spread by the pathogen, while an overstimulated response can lead to immune-induced tissue damage. Thus, to effectively treat infected individuals, it is critical to understand the regulators that control inflammatory responses. Recently, it has become widely accepted that estrogens, a class of sex hormones, are capable of dramatically altering the responses of host cells to microbes. In this review, we discuss how estrogens change the host immune response, as well as how these changes can alter the outcome of the infection for the individual. Abstract Sex hormones, such as estrogen and testosterone, are steroid compounds with well-characterized effects on the coordination and development of vertebrate reproductive systems. Since their discovery, however, it has become clear that these “sex hormones” also regulate/influence a broad range of biological functions. In this review, we will summarize some current findings on how estrogens interact with and regulate inflammation and immunity. Specifically, we will focus on describing the mechanisms by which estrogens alter immune pathway activation, the impact of these changes during infection and the development of long-term immunity, and how different types of estrogens and their respective concentrations mediate these outcomes.
Collapse
Affiliation(s)
- Alfred T. Harding
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA;
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: ; Tel.: +1-919-684-1351; Fax: +1-919-684-2790
| |
Collapse
|
35
|
Tumor-Associated Macrophages in Hepatocellular Carcinoma Pathogenesis, Prognosis and Therapy. Cancers (Basel) 2022; 14:cancers14010226. [PMID: 35008390 PMCID: PMC8749970 DOI: 10.3390/cancers14010226] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) constitutes a major health burden, accounting for >80% of primary liver cancers globally. Inflammation has come into the spotlight as a hallmark of cancer, and it is evident that tumor-associated inflammation drives the involvement of monocytes in tumor growth and metastasis. Tumor-associated macrophages (TAMs) actively participate in tumor-related inflammation, representing the main type of inflammatory cells in the tumor microenvironment, setting the crosstalk between tumor and stromal cells. Infiltrating TAMs exert either anti-tumorigenic (M1) or pro-tumorigenic (M2) functions. In most solid human tumors, increased TAM infiltration has been associated with enhanced tumor growth and metastasis, while other studies showcase that under certain conditions, TAMs exhibit cytotoxic and tumoricidal activity, inhibiting the progression of cancer. In this review, we summarize the current evidence on the role of macrophages in the pathogenesis and progression of HCC and we highlight their potential utilization in HCC prognosis and therapy. Abstract Hepatocellular carcinoma (HCC) constitutes a major health burden globally, and it is caused by intrinsic genetic mutations acting in concert with a multitude of epigenetic and extrinsic risk factors. Cancer induces myelopoiesis in the bone marrow, as well as the mobilization of hematopoietic stem and progenitor cells, which reside in the spleen. Monocytes produced in the bone marrow and the spleen further infiltrate tumors, where they differentiate into tumor-associated macrophages (TAMs). The relationship between chronic inflammation and hepatocarcinogenesis has been thoroughly investigated over the past decade; however, several aspects of the role of TAMs in HCC development are yet to be determined. In response to certain stimuli and signaling, monocytes differentiate into macrophages with antitumor properties, which are classified as M1-like. On the other hand, under different stimuli and signaling, the polarization of macrophages shifts towards an M2-like phenotype with a tumor promoting capacity. M2-like macrophages drive tumor growth both directly and indirectly, via the suppression of cytotoxic cell populations, including CD8+ T cells and NK cells. The tumor microenvironment affects the response to immunotherapies. Therefore, an enhanced understanding of its immunobiology is essential for the development of next-generation immunotherapies. The utilization of various monocyte-centered anticancer treatment modalities has been under clinical investigation, selectively targeting and modulating the processes of monocyte recruitment, activation and migration. This review summarizes the current evidence on the role of TAMs in HCC pathogenesis and progression, as well as in their potential involvement in tumor therapy, shedding light on emerging anticancer treatment methods targeting monocytes.
Collapse
|
36
|
Chen P, Li B, Ou-Yang L. Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 2022; 13:839005. [PMID: 36060947 PMCID: PMC9433670 DOI: 10.3389/fendo.2022.839005] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptors (ERs) regulate multiple complex physiological processes in humans. Abnormal ER signaling may result in various disorders, including reproductive system-related disorders (endometriosis, and breast, ovarian, and prostate cancer), bone-related abnormalities, lung cancer, cardiovascular disease, gastrointestinal disease, urogenital tract disease, neurodegenerative disorders, and cutaneous melanoma. ER alpha (ERα), ER beta (ERβ), and novel G-protein-coupled estrogen receptor 1 (GPER1) have been identified as the most prominent ERs. This review provides an overview of ERα, ERβ, and GPER1, as well as their functions in health and disease. Furthermore, the potential clinical applications and challenges are discussed.
Collapse
Affiliation(s)
| | - Bo Li
- *Correspondence: Bo Li, libo‐‐
| | | |
Collapse
|
37
|
Bhat M, Pasini E, Pastrello C, Angeli M, Baciu C, Abovsky M, Coffee A, Adeyi O, Kotlyar M, Jurisica I. Estrogen Receptor 1 Inhibition of Wnt/β-Catenin Signaling Contributes to Sex Differences in Hepatocarcinogenesis. Front Oncol 2021; 11:777834. [PMID: 34881186 PMCID: PMC8645636 DOI: 10.3389/fonc.2021.777834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Background Hepatocellular Carcinoma (HCC) is a sexually dimorphic cancer, with female sex being independently protective against HCC incidence and progression. The aim of our study was to understand the mechanism of estrogen receptor signaling in driving sex differences in hepatocarcinogenesis. Methods We integrated 1,268 HCC patient sample profiles from publicly available gene expression data to identify the most differentially expressed genes (DEGs). We mapped DEGs into a physical protein interaction network and performed network topology analysis to identify the most important proteins. Experimental validation was performed in vitro on HCC cell lines, in and in vivo, using HCC mouse model. Results We showed that the most central protein, ESR1, is HCC prognostic, as increased ESR1 expression was protective for overall survival, with HR=0.45 (95%CI 0.32-0.64, p=4.4E-06), and was more pronounced in women. Transfection of HCC cell lines with ESR1 and exposure to estradiol affected expression of genes involved in the Wnt/β-catenin signaling pathway. ER-α (protein product of ESR1) agonist treatment in a mouse model of HCC resulted in significantly longer survival and decreased tumor burden (p<0.0001), with inhibition of Wnt/β-Catenin signaling. In vitro experiments confirmed colocalization of β-catenin with ER-α, leading to inhibition of β-catenin-mediated transcription of target genes c-Myc and Cyclin D1. Conclusion Combined, the centrality of ESR1 and its inhibition of the Wnt/β-catenin signaling axis provide a biological rationale for protection against HCC incidence and progression in women.
Collapse
Affiliation(s)
- Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada.,Division of Gastroenterology & Hepatology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Elisa Pasini
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Marc Angeli
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Cristina Baciu
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Mark Abovsky
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Angella Coffee
- Department of Pathology and University of Minnesota Medical Center, University of Minnesota, Minneapolis, MN, United States
| | - Oyedele Adeyi
- Department of Pathology and University of Minnesota Medical Center, University of Minnesota, Minneapolis, MN, United States
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department Computer Science, University of Toronto, Toronto, ON, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
38
|
Romualdo GR, Leroy K, Costa CJS, Prata GB, Vanderborght B, da Silva TC, Barbisan LF, Andraus W, Devisscher L, Câmara NOS, Vinken M, Cogliati B. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers (Basel) 2021; 13:5583. [PMID: 34771745 PMCID: PMC8582701 DOI: 10.3390/cancers13215583] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death globally. HCC is a complex multistep disease and usually emerges in the setting of chronic liver diseases. The molecular pathogenesis of HCC varies according to the etiology, mainly caused by chronic hepatitis B and C virus infections, chronic alcohol consumption, aflatoxin-contaminated food, and non-alcoholic fatty liver disease associated with metabolic syndrome or diabetes mellitus. The establishment of HCC models has become essential for both basic and translational research to improve our understanding of the pathophysiology and unravel new molecular drivers of this disease. The ideal model should recapitulate key events observed during hepatocarcinogenesis and HCC progression in view of establishing effective diagnostic and therapeutic strategies to be translated into clinical practice. Despite considerable efforts currently devoted to liver cancer research, only a few anti-HCC drugs are available, and patient prognosis and survival are still poor. The present paper provides a state-of-the-art overview of in vivo and in vitro models used for translational modeling of HCC with a specific focus on their key molecular hallmarks.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Cícero Júlio Silva Costa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Gabriel Bacil Prata
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
| | - Wellington Andraus
- Department of Gastroenterology, Clinics Hospital, School of Medicine, University of São Paulo (HC-FMUSP), São Paulo 05403-000, Brazil;
| | - Lindsey Devisscher
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| |
Collapse
|
39
|
Cullaro G, Rubin J, Mehta N, Yao F, Verna EC, Lai JC. Sex-based Disparities in Hepatocellular Carcinoma Recurrence After Liver Transplantation. Transplantation 2021; 105:2420-2426. [PMID: 33323764 PMCID: PMC8200371 DOI: 10.1097/tp.0000000000003575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Women with chronic liver disease have lower rates of hepatocellular carcinoma (HCC) as compared to men; it is unknown if there are sex-based differences in HCC recurrence postliver transplant. METHODS We conducted an analysis of patients who underwent liver transplant for HCC in the United Network for Organ Sharing/Organ Procurement and Transplantation Network from January 1, 2012 through December 31, 2017. RESULTS A total of 12 711 patients underwent liver transplant for HCC: 2909 (23%) women and 9802 (73%) men. Women had significantly lower rates of postliver transplant HCC recurrence than men (4.0% versus 5.4%, P = 0.002). A cox-regression analysis for postliver transplant HCC recurrence highlighted that even after accounting for etiology of cirrhosis, alpha-fetoprotein at liver transplant, tumor diameter, tumor pathology, and vascular invasion, female sex was associated with a 25% lower risk of postliver transplant HCC recurrence (95% confidence interval: 0.57-0.99). There were no interactions between female sex and the following variables: age, type of locoregional therapy, alpha-fetoprotein, donor sex, body mass index, or nonalcoholic steatohepatitis etiology (P > 0.05 for each). CONCLUSIONS This study demonstrates an independent effect of sex on risk for HCC recurrence postliver transplant. Our data highlight an opportunity to better understand HCC tumor biology by investigating the drivers of this sex-based difference in HCC recurrence.
Collapse
Affiliation(s)
- Giuseppe Cullaro
- Division of Gastroenterology and Hepatology, Department of
Medicine, University of California-San Francisco, San Francisco, CA
| | - Jessica Rubin
- Division of Gastroenterology and Hepatology, Department of
Medicine, University of California-San Francisco, San Francisco, CA
| | - Neil Mehta
- Division of Gastroenterology and Hepatology, Department of
Medicine, University of California-San Francisco, San Francisco, CA
| | - Francis Yao
- Division of Gastroenterology and Hepatology, Department of
Medicine, University of California-San Francisco, San Francisco, CA
| | - Elizabeth C. Verna
- Center for Liver Disease and Transplantation, Columbia
University, College of Physicians and Surgeons, New York, NY, USA
| | - Jennifer C. Lai
- Division of Gastroenterology and Hepatology, Department of
Medicine, University of California-San Francisco, San Francisco, CA
| |
Collapse
|
40
|
Chemopreventive Effect of Statin on Hepatocellular Carcinoma in Patients With Nonalcoholic Steatohepatitis Cirrhosis. Am J Gastroenterol 2021; 116:2258-2269. [PMID: 34212895 DOI: 10.14309/ajg.0000000000001347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION To estimate the annual incidence of hepatocellular carcinoma (HCC) in patients with nonalcoholic steatohepatitis (NASH) with advanced liver fibrosis, to determine the risk factors for the development of HCC, and to evaluate the chemoprotective effect of statin use stratified by fibrosis stage. METHODS We conducted a retrospective study at 2 US tertiary academic centers, including patients with NASH-related advanced liver fibrosis (bridging fibrosis [F3] and cirrhosis [F4]) followed between July 2002 and June 2016. Patients were followed from the date of diagnosis to the time of last abdominal imaging, liver transplantation, or HCC diagnosis. Multivariable Cox regression analysis was performed to evaluate the risk factors associated with HCC development, stratified by fibrosis stage. RESULTS A total of 1,072 patients were included: 122 patients with F3 fibrosis and 950 patients with cirrhosis. No HCC was observed during 602 person-year follow-up among F3 patients. Among patients with cirrhosis, HCC developed in 82 patients with the annual incidence rate of 1.90 per 100 person-years (95% confidence interval [CI], 1.53-2.35). Multivariable analysis in patients with cirrhosis demonstrated that HCC development was associated with male sex (hazard ratio [HR] 4.06, 95% CI, 2.54-6.51, P < 0.001), older age (HR, 1.05, 95% CI, 1.03-1.08, P < 0.001), and CTP score (HR, 1.38, 95% CI, 1.18-1.60, P < 0.001). Statin use was associated with a lower risk of developing HCC (HR, 0.40, 95% CI, 0.24-0.67, P = 0.001). Each 365 increment in cumulative defined daily dose of statin use reduced HCC risk by 23.6%. DISCUSSION Our findings suggest that patients with NASH and bridging fibrosis have a low risk of HCC. Dose-dependent statin use reduced HCC risk significantly in patients with NASH cirrhosis.
Collapse
|
41
|
Pinyopornpanish K, Khoudari G, Saleh MA, Angkurawaranon C, Pinyopornpanish K, Mansoor E, Dasarathy S, McCullough A. Hepatocellular carcinoma in nonalcoholic fatty liver disease with or without cirrhosis: a population-based study. BMC Gastroenterol 2021; 21:394. [PMID: 34674650 PMCID: PMC8529782 DOI: 10.1186/s12876-021-01978-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023] Open
Abstract
Background There are limited data regarding the factors associated with hepatocellular carcinoma (HCC) in non-alcoholic fatty liver disease (NAFLD) patients without cirrhosis. We sought to determine the prevalence and factors associated with HCC in NAFLD patients with or without cirrhosis.
Methods Adults with NAFLD (June 2015 to May 2020) were identified using the electronic health record database (Explorys Inc, Cleveland, OH) from 26 major integrated US healthcare systems. The prevalence of HCC was calculated. Multivariable analyses adjusting for covariates were performed to evaluate the associated risk factors and the presence of HCC. Results A total of 392,800 NAFLD patients were identified. Among 1110 patients with HCC, 170 (15.3%) had no cirrhosis. The prevalence of HCC in non-cirrhotic and cirrhotic NAFLD patients was 4.6/10,000 persons (95% CI 3.9–5.3), and 374.4/10,000 persons (95% CI 350.9–398.8), respectively. Age > 65 years (adjusted OR; 3.37, 95% CI 2.47–4.59), ever had elevated alanine aminotransferase (2.69; 2.14–3.37), male gender (2.57; 1.88–3.49), smoker (1.75; 1.23–2.49), and diabetes (1.56; 1.15–2.11) were associated with HCC in non-cirrhotic NAFLD (all P < 0.05). The prevalence of HCC in the non-cirrhotic with all five risk factors was 45.5/10,000 persons (95% CI 17.4–73.6). The factors associated with HCC in cirrhotic NAFLD included clinical decompensation, age > 65 years, male gender, Hispanic race, elevated alanine aminotransferase, diabetes and smoker (all P < 0.05). Conclusions These data identified the major risk factors for the development of HCC in NAFLD patients. In the non-cirrhotics, older male patients with smoking history, diabetes and an elevated alanine aminotransferase had highest risk and may need increased judicious monitoring.
Collapse
Affiliation(s)
- Kanokwan Pinyopornpanish
- Department of Gastroenterology and Hepatology, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA.,Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - George Khoudari
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Mohannad Abou Saleh
- Department of Gastroenterology and Hepatology, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chaisiri Angkurawaranon
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sriphum, Muang, Chiang Mai, 50200, Thailand
| | - Kanokporn Pinyopornpanish
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sriphum, Muang, Chiang Mai, 50200, Thailand.
| | - Emad Mansoor
- Department of Gastroenterology and Hepatology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Srinivasan Dasarathy
- Department of Gastroenterology and Hepatology, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Arthur McCullough
- Department of Gastroenterology and Hepatology, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
42
|
Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021; 13:cancers13184661. [PMID: 34572888 PMCID: PMC8467249 DOI: 10.3390/cancers13184661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Macrophages are a type of immune cell which play an important role in the development of cancer. Obesity increases the risk of cancer and obesity also causes disruption to the normal levels of hormones that are produced to coordinate metabolism. Recent research now shows that these metabolic hormones also play important roles in macrophage immune responses and so through macrophages, disrupted metabolic hormone levels may promote cancer. This review article aims to highlight and summarise these recent findings so that the scientific community may better understand how important this new area of research is, and how these findings can be capitalised on for future scientific studies. Abstract Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Collapse
|
43
|
Lin X, Fang Y, Jin X, Zhang M, Shi K. Modulating Repolarization of Tumor-Associated Macrophages with Targeted Therapeutic Nanoparticles as a Potential Strategy for Cancer Therapy. ACS APPLIED BIO MATERIALS 2021; 4:5871-5896. [PMID: 35006894 DOI: 10.1021/acsabm.1c00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are always some components in the tumor microenvironment (TME), such as tumor-associated macrophages (TAMs), that help tumor cells escape the body's immune surveillance. Therefore, this situation can lead to tumor growth, progression, and metastasis, resulting in low response rates for cancer therapy. Macrophages play an important role with strong plasticity and functional diversity. Facing different microenvironmental stimulations, macrophages undergo a dynamic change in phenotype and function into two major macrophage subpopulations, namely classical activation/inflammation (M1) and alternative activation/regeneration (M2) type. Through various signaling pathways, macrophages polarize into complex groups, which can perform different immune functions. In this review, we emphasize the use of nanopreparations for macrophage related immunotherapy based on the pathological knowledge of TAMs phenotype. These macrophages targeted nanoparticles re-edit and re-educate macrophages by attenuating M2 macrophages and reducing aggregation to the TME, thereby relieving or alleviating immunosuppression. Among them, we describe in detail the cellular mechanisms and regulators of several major signaling pathways involved in the plasticity and polarization functions of macrophages. The advantages and challenges of those nanotherapeutics for these pathways have been elucidated, providing the basis and insights for the diagnosis and treatment strategies of various diseases centered on macrophages.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Yan Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Xuechao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Mingming Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Kai Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300350 Tianjin, China
| |
Collapse
|
44
|
Ganoderma lucidum Spore Polysaccharide Inhibits the Growth of Hepatocellular Carcinoma Cells by Altering Macrophage Polarity and Induction of Apoptosis. J Immunol Res 2021; 2021:6696606. [PMID: 33748291 PMCID: PMC7954632 DOI: 10.1155/2021/6696606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Ganoderma lucidum has certain components with known pharmacological effects, including strengthening immunity and anti-inflammatory activity. G. lucidum seeds inherit all its biological characteristics. G. lucidum spore polysaccharide (GLSP) is the main active ingredient to enhance these effects. However, its specific biological mechanisms are not exact. Our research is aimed at revealing the specific biological mechanism of GLSP to enhance immunity and inhibit the growth of H22 hepatocellular carcinoma cells. Methods We extracted primary macrophages (Mø) from BALB/c mice and treated them with GLSP (800 μg/mL, 400 μg/mL, and 200 μg/mL) to observe its effects on macrophage polarization and cytokine secretion. We used GLSP and GLSP-intervened macrophage supernatant to treat H22 tumor cells and observed their effects using MTT and flow cytometry. Moreover, real-time fluorescent quantitative PCR and western blotting were used to observe the effect of GLSP-intervened macrophage supernatant on the PI3K/AKT and mitochondrial apoptosis pathways. Results In this study, GLSP promoted the polarization of primary macrophages to M1 type and the upregulation of some cytokines such as TNF-α, IL-1β, IL-6, and TGF-β1. The MTT assay revealed that GLSP+Mø at 400 μg/mL and 800 μg/mL significantly inhibited H22 cell proliferation in a dose-dependent manner. Flow cytometry analysis revealed that GLSP+Mø induced apoptosis and cell cycle arrest at the G2/M phase, associated with the expression of critical genes and proteins (PI3K, p-AKT, BCL-2, BAX, and caspase-9) that regulate the PI3K/AKT pathway and apoptosis. GLSP reshapes the tumor microenvironment by activating macrophages, promotes the polarization of primary macrophages to M1 type, and promotes the secretion of various inflammatory factors and cytokines. Conclusion Therefore, as a natural nutrient, GLSP is a potential agent in hepatocellular carcinoma cell treatment and induction of apoptosis.
Collapse
|
45
|
Guo Y, Wu G, Yi J, Yang Q, Jiang W, Lin S, Yang X, Cai X, Mao L. Anti-Hepatocellular Carcinoma Effect and Molecular Mechanism of the Estrogen Signaling Pathway. Front Oncol 2021; 11:763539. [PMID: 35096574 PMCID: PMC8789654 DOI: 10.3389/fonc.2021.763539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
There are significant gender differences in the incidence and mortality of hepatocellular carcinoma (HCC). Compared with men, the incidence and mortality of HCC in women are relatively low. The estrogen signaling pathway, composed of estrogen and estrogen receptors, has been postulated to have a protective effect on the occurrence and development of HCC. There have been multiple studies that have supported anti-HCC effects of the estrogen signaling pathways, including direct and indirect pathways such as genomic pathways, rapid transduction pathways, non-coding RNA, tumor microenvironment, estrogen metabolites, and inhibition of hepatitis infection and replication. Based on the evidence of an anti-HCC effect of the estrogen signaling pathway, a number of strategies have been investigated to determine the potential therapeutic effect. These have included estrogen replacement therapy, targeting the estrogen receptor, key molecules, inflammatory mediators, and regulatory pathways of the estrogen signaling pathway. In this review, we have systematically summarized the latest developments in the complex functions and molecular mechanisms of the estrogen signaling pathway in liver cancer. Furthermore, we have highlighted the potential targets of treatment strategies based on the estrogen signaling pathway in the treatment of liver cancer and the principal obstacles currently encountered for future investigation.
Collapse
Affiliation(s)
- Yusheng Guo
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Guohui Wu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Junrong Yi
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qin Yang
- Nephrology Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Wengong Jiang
- Nephrology Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Shaoqiang Lin
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaorong Yang
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Liufeng Mao, ; Xiangsheng Cai, ; Xiaorong Yang,
| | - Xiangsheng Cai
- Center for Medical Experiments, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Liufeng Mao, ; Xiangsheng Cai, ; Xiaorong Yang,
| | - Liufeng Mao
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Liufeng Mao, ; Xiangsheng Cai, ; Xiaorong Yang,
| |
Collapse
|
46
|
Zhang M, Wang Y, Zhu G, Sun C, Wang J. Hepatoprotective effect and possible mechanism of phytoestrogen calycosin on carbon tetrachloride-induced liver fibrosis in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:189-204. [PMID: 32474674 DOI: 10.1007/s00210-020-01891-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/28/2020] [Indexed: 01/02/2023]
Abstract
The study was to explore the hepatoprotective effect and possible mechanism of calycosin on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Hepatic fibrosis was induced by intraperitoneal injection of CCl4 in C57BL/6 male mice. Serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activity, superoxide dismutase (SOD) activity, and hydroxyproline (Hyp) and malondialdehyde (MDA) levels were determined by biochemical assays. Liver histopathology was assessed by H&E and Masson trichrome staining. The mRNA expressions of α-smooth muscle actin (α-SMA), collagen-I (Col-I), Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) were determined using qRT-PCR. The protein levels of α-SMA, Col-I, estrogen receptor α (ERα), estrogen receptor β (ERβ), tissue inhibitor of metalloproteinase-1 (TIMP-1), matrix metalloproteinase-1 (MMP-1), JAK2, phospho-JAK2 (p-JAK2), STAT3, and phospho-STAT3 (p-STAT3) were detected by Western blotting. The levels of α-SMA and ERβ were measured by immunohistochemistry. Calycosin significantly reduced liver index, MDA level, and ALT and AST activity and increased SOD activity. The α-SMA, Col-I, and Hyp of the calycosin group were significantly lower than those of the model group. Calycosin increased MMP-1 and inhibited TIMP-1 expression resulting in the improvement of MMP-1/TIMP-1 ratio. Importantly, calycosin improved ERβ protein expression, JAK2 and STAT3 mRNA expressions, p-JAK2/JAK2, and p-STAT3/STAT3 relative protein expressions. However, ERα, JAK2, and STAT3 protein expressions were relatively unchanged. Calycosin significantly inhibits liver fibrosis in mice, and its mechanism may involve the following: calycosin inhibits oxidative stress; calycosin inhibits collagen synthesis and balances MMP-1/TIMP-1 system; calycosin increases ERβ expression and activates JAK2-STAT3 pathway.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Yaxin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Guannan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Cheng Sun
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Jiajia Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
47
|
Ding S, Guo X, Zhu L, Wang J, Li T, Yu Q, Zhang X. Macrophage-derived netrin-1 contributes to endometriosis-associated pain. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:29. [PMID: 33553322 PMCID: PMC7859736 DOI: 10.21037/atm-20-2161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Endometriosis-associated pain can be considered a type of neuropathic pain. Netrin-1 is an axon guidance cue that regulates axonal attraction or rejection in neural injury and regeneration. However, whether netrin-1 plays a role in endometriosis-associated pain remains unclear. This study aimed to determine the role of netrin-1 in endometriosis-related pain. Methods Peripheral blood, peritoneal fluid, and endometrial tissues were sampled from women with (n=37) and without endometriosis (n=23). Lipopolysaccharide (LPS) and interferon gamma (IFN-γ) were used to stimulate human monocytic cell lines (THP-1) and rat alveolar macrophage-derived cell lines (NR8383) to induce M1 phenotype macrophages. Serum netrin-1 concentrations, endometrial expression levels of netrin-1, and its receptors including deleted in colorectal cancer (DCC), A2B adenosine receptor (A2BAR), uncoordinated B receptor (UNC5B), uncoordinated C receptor (UNC5C) and Down’s syndrome cell adhesion molecule (DSCAM) were assessed. The polarization phenotypes of the peritoneal macrophages were identified by detecting the marker expression of M1/M2 macrophages via flow cytometry. The expression levels of M1 markers and netrin-1 in THP-1/NR8383 cells were determined. Results The expression levels of netrin-1 in serum and endometriotic lesions were significantly higher in women with endometriosis, and were positively correlated with the severity of endometriosis-associated pain. Netrin-1 was co-expressed with CD68 (a macrophage marker) in endometriotic lesions and was synthesized and secreted by THP-1 and NR8383 cells in the process of M1 polarization. In women with endometriosis, peritoneal macrophages were polarized towards the M1 phenotype. In addition, increased expression of DCC and A2BAR, and decreased expression of UNC5B, UNC5C and DSCAM were found in endometriotic lesions. Conclusions These results suggest that netrin-1 production by macrophages in endometriotic lesions may play an important role in endometriosis-associated pain.
Collapse
Affiliation(s)
- Shaojie Ding
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Guo
- Zhejiang University School of Medicine, Hangzhou, China
| | - Libo Zhu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianzhang Wang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Yu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinmei Zhang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Bader J, Carson M, Enos R, Velazquez K, Sougiannis A, Singh U, Becker W, Nagarkatti M, Fan D, Murphy A. High-fat diet-fed ovariectomized mice are susceptible to accelerated subcutaneous tumor growth potentially through adipose tissue inflammation, local insulin-like growth factor release, and tumor associated macrophages. Oncotarget 2020; 11:4554-4569. [PMID: 33346251 PMCID: PMC7733624 DOI: 10.18632/oncotarget.27832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background: The association between obesity and colorectal cancer (CRC) risk has been well established. This relationship appears to be more significant in men than in women, which may be attributable to sex hormones. However, controlled animal studies to substantiate these claims and the mechanisms involved are lacking. Materials and Methods: MC38 murine colon adenocarcinoma cells were injected subcutaneously into high-fat diet (HFD) fed male, female and ovariectomized (OVX) female C57BL/6 mice. Results: HFD increased tumor growth (main effect) that was consistent with metabolic perturbations (P < 0.01). HFD OVX mice exhibited the most significant tumor growth compared to HFD male and female mice (p < 0.05) and this was associated with increased subcutaneous adipose tissue (p < 0.05). Further, the subcutaneous adipose tissue depots within HFD OVX mice exhibited more severe macrophage associated inflammation compared to female (P < 0.01), but not male mice. Conditioned media from subcutaneous adipose tissue of HFD OVX contained higher IGF-1 levels compared to male (P < 0.01), but not female mice. Finally, HFD OVX mice had increased M2-like gene expression in their tumor-associated macrophages (TAMs) compared to female mice (P < 0.01). Conclusions: This work provides evidences suggesting adiposity, adipose specific IGF-1, macrophage associated adipose inflammation, and TAMs as potential mechanisms driving obesity-enhanced CRC in females lacking ovarian hormones.
Collapse
Affiliation(s)
- Jackie Bader
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Meredith Carson
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Reilly Enos
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Kandy Velazquez
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Alexander Sougiannis
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Udai Singh
- Department of Medicine, University of Virginia Health Systems, Charlottesville, VA 22908, USA
| | - William Becker
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Angela Murphy
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| |
Collapse
|
49
|
Zhang W, Liu F, Huang J, Guo X, Dong W, Wei S, Li L, Zhu X, Zhou W, Liu H. Effect of menopausal status on the survival and recurrence of sex-classified hepatocellular carcinoma after liver resection: a case-matched study with propensity score matching. Aging (Albany NY) 2020; 12:25895-25915. [PMID: 33232278 PMCID: PMC7803575 DOI: 10.18632/aging.202155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/24/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate the impact of menopausal status on the prognosis for sex-classified Hepatocellular carcinoma (HCC) and to establish prognostic nomograms for patients after liver resection. RESULTS After propensity score matching (PSM), statistically significant differences in both overall survival (OS) and recurrence-free survival (RFS) were found between men and women HCC patients. Based on Cox regression analysis, these differences were evident in the normal menstruation (N) group expanded with male patients, but not in either the expanded postmenopausal (P) or intermediate (I) groups. Sex disparity was also apparent in the recurrence-free survival (RFS) of the total HCC patients. Integrated with independent factors, nomograms for the OS and RFS of the expanded N group showed higher C-indices of 0.773 and 0.724, respectively, than those of nomograms for the total patients and BCLC stage (P<0.001). CONCLUSION Sex disparity appears to affect both the survival and recurrence of HCC only in normal menstruation women and their matched men. For predicting survival, prognostic nomograms derived from the expanded N group of HCC patients were more accurate for patients with the same clinical conditions. METHODS The patients (390 females and 1920 males), who underwent curative liver resection for HCC during 2008 to 2012, were screened. The 390 women were divided into three groups: normal menstruation, intermediate, and postmenopausal. To overcome selection bias, the three groups of females were matched with males at a ratio of 1:2, using propensity score matching. Based on further Cox regression analysis, independent factors were integrated into nomograms for OS and RFS by R rms. The accuracy and discrimination of the nomograms were evaluated by the C-index, calibration curve, and decision curve analysis.
Collapse
Affiliation(s)
- Wenli Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Jian Huang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Xinggang Guo
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China.,Changhai Hospital, Second Military Medical University, Shanghai 200438, China
| | - Wei Dong
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Shuxun Wei
- The First Department of General Surgery, Changzheng Hospital, Second Military Medical University and Naval Medical University, Shanghai 200438, China
| | - Li Li
- Department of Nephrology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiuli Zhu
- Department of Gastroenterology, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| |
Collapse
|
50
|
Deng S, Ramos-Castaneda M, Velasco WV, Clowers MJ, Gutierrez BA, Noble O, Dong Y, Zarghooni M, Alvarado L, Caetano MS, Yang S, Ostrin EJ, Behrens C, Wistuba II, Stabile LP, Kadara H, Watowich SS, Moghaddam SJ. Interplay between estrogen and Stat3/NF-κB-driven immunomodulation in lung cancer. Carcinogenesis 2020; 41:1529-1542. [PMID: 32603404 PMCID: PMC7896112 DOI: 10.1093/carcin/bgaa064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/30/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
K-ras mutant lung adenocarcinoma (LUAD) is the most common type of lung cancer, displays abysmal prognosis and is tightly linked to tumor-promoting inflammation, which is increasingly recognized as a target for therapeutic intervention. We have recently shown a gender-specific role for epithelial Stat3 signaling in the pathogenesis of K-ras mutant LUAD. The absence of epithelial Stat3 in male K-ras mutant mice (LR/Stat3Δ/Δ mice) promoted tumorigenesis and induced a nuclear factor-kappaB (NF-κB)-driven pro-tumor immune response while reducing tumorigenesis and enhancing anti-tumor immunity in female counterparts. In the present study, we manipulated estrogen and NF-κB signaling to study the mechanisms underlying this intriguing gender-disparity. In LR/Stat3Δ/Δ females, estrogen deprivation by bilateral oophorectomy resulted in higher tumor burden, an induction of NF-κB-driven immunosuppressive response, and reduced anti-tumor cytotoxicity, whereas estrogen replacement reversed these changes. On the other hand, exogenous estrogen in males successfully inhibited tumorigenesis, attenuated NF-κB-driven immunosuppression and boosted anti-tumor immunity. Mechanistically, genetic targeting of epithelial NF-κB activity resulted in reduced tumorigenesis and enhanced the anti-tumor immune response in LR/Stat3Δ/Δ males, but not females. Our data suggest that estrogen exerts a context-specific anti-tumor effect through inhibiting NF-κB-driven tumor-promoting inflammation and provide insights into developing novel personalized therapeutic strategies for K-ras mutant LUAD.
Collapse
Affiliation(s)
- Shanshan Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marco Ramos-Castaneda
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Walter V Velasco
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Berenice A Gutierrez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oscar Noble
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiping Dong
- Department of Oncology Radiotherapy, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Melody Zarghooni
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lucero Alvarado
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mauricio S Caetano
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Edwin J Ostrin
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Humam Kadara
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie S Watowich
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|