1
|
Chen SY, Fang CY, Su BH, Chen HM, Huang SC, Wu PT, Shiau AL, Wu CL. Early Growth Response Protein 1 Exacerbates Murine Inflammatory Bowel Disease by Transcriptional Activation of Matrix Metalloproteinase 12. Biomedicines 2024; 12:780. [PMID: 38672136 PMCID: PMC11047900 DOI: 10.3390/biomedicines12040780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an inflammatory condition affecting the colon and small intestine, with Crohn's disease and ulcerative colitis being the major types. Individuals with long-term IBD are at an increased risk of developing colorectal cancer. Early growth response protein 1 (Egr1) is a nuclear protein that functions as a transcriptional regulator. Egr1 is known to control the expression of numerous genes and play a role in cell growth, proliferation, and differentiation. While IBD has been associated with severe inflammation, the precise mechanisms underlying its pathogenesis remain unclear. This study aimed to investigate the role of Egr1 in the development of IBD. High levels of Egr1 expression were observed in a mouse model of colitis induced by dextran sulfate sodium (DSS), as determined by immunohistochemical (IHC) staining. Chronic DSS treatment showed that Egr1 knockout (KO) mice exhibited resistance to the development of IBD, as determined by changes in their body weight and disease scores. Additionally, enzyme-linked immunosorbent assay (ELISA) and IHC staining demonstrated decreased expression levels of proinflammatory cytokines such as IL-1β, IL-6, and TNF-α, as well as matrix metalloproteinase 12 (MMP12). Putative Egr1 binding sites were identified within the MMP12 promoter region. Through reporter assays and chromatin immunoprecipitation (ChIP) analysis, it was shown that Egr1 binds to the MMP12 promoter and regulates MMP12 expression. In conclusion, we found that Egr1 plays a role in the inflammation process of IBD through transcriptionally activating MMP12.
Collapse
Affiliation(s)
- Shih-Yao Chen
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan 717302, Taiwan;
| | - Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Bing-Hwa Su
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hao-Ming Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Shih-Chi Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Po-Ting Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
- Department of Orthopedics, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 701401, Taiwan
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701401, Taiwan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701401, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| |
Collapse
|
2
|
Miura T, Etani Y, Noguchi T, Hirao M, Takami K, Goshima A, Kurihara T, Fukuda Y, Ochiai N, Kanamoto T, Nakata K, Okada S, Ebina K. Iguratimod suppresses sclerostin and receptor activator of NF-κB ligand production via the extracellular signal-regulated kinase/early growth response protein 1/tumor necrosis factor alpha pathway in osteocytes and ameliorates disuse osteoporosis in mice. Bone 2024; 181:117026. [PMID: 38325651 DOI: 10.1016/j.bone.2024.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Disuse osteoporosis is a prevalent complication among patients afflicted with rheumatoid arthritis (RA). Although reports have shown that the antirheumatic drug iguratimod (IGU) ameliorates osteoporosis in RA patients, details regarding its effects on osteocytes remain unclear. The current study examined the effects of IGU on osteocytes using a mouse model of disuse-induced osteoporosis, the pathology of which crucially involves osteocytes. A reduction in distal femur bone mass was achieved after 3 weeks of hindlimb unloading in mice, which was subsequently reversed by intraperitoneal IGU treatment (30 mg/kg; five times per week). Histology revealed that hindlimb-unloaded (HLU) mice had significantly increased osteoclast number and sclerostin-positive osteocyte rates, which were suppressed by IGU treatment. Moreover, HLU mice exhibited a significant decrease in osteocalcin-positive cells, which was attenuated by IGU treatment. In vitro, IGU suppressed the gene expression of receptor activator of NF-κB ligand (RANKL) and sclerostin in MLO-Y4 and Saos-2 cells, which inhibited osteoclast differentiation of mouse bone marrow cells in cocultures. Although IGU did not affect the nuclear translocation or transcriptional activity of NF-κB, RNA sequencing revealed that IGU downregulated the expression of early growth response protein 1 (EGR1) in osteocytes. HLU mice showed significantly increased EGR1- and tumor necrosis factor alpha (TNFα)-positive osteocyte rates, which were decreased by IGU treatment. EGR1 overexpression enhanced the gene expression of TNFα, RANKL, and sclerostin in osteocytes, which was suppressed by IGU. Contrarily, small interfering RNA-mediated suppression of EGR1 downregulated RANKL and sclerostin gene expression. These findings indicate that IGU inhibits the expression of EGR1, which may downregulate TNFα and consequently RANKL and sclerostin in osteocytes. These mechanisms suggest that IGU could potentially be used as a treatment option for disuse osteoporosis by targeting osteocytes.
Collapse
Affiliation(s)
- Taihei Miura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuki Etani
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takaaki Noguchi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Makoto Hirao
- Department of Orthopaedic Surgery, National Hospital Organization Osaka Minami Medical Center, 2-1 Kidohigashimachi, Kawachinagano, Osaka 586-8521, Japan
| | - Kenji Takami
- Department of Orthopaedic Surgery, Nippon Life Hospital, 2-1-54 Enokojima, Nishi-ku, Osaka, Osaka 550-0006, Japan
| | - Atsushi Goshima
- Department of Orthopaedic Surgery, Osaka Rosai Hospital, 1179-3 Nagasone-cho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Takuya Kurihara
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuji Fukuda
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nagahiro Ochiai
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takashi Kanamoto
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ken Nakata
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kosuke Ebina
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Zuloaga R, Ahumada-Langer L, Aedo JE, Molina A, Valdés JA. 11-Deoxycorticosterone (DOC)'s Action on the Gill Osmoregulation of Juvenile Rainbow Trout ( Oncorhynchus mykiss). BIOLOGY 2024; 13:107. [PMID: 38392325 PMCID: PMC10886319 DOI: 10.3390/biology13020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
In aquaculture, stress can negatively affect fish growth. For years, the cortisol hormone has been thought to play both glucocorticoid and mineralocorticoid functions. Nevertheless, recent research has suggested that 11-deoxycorticosterone (DOC) released during stress could contribute to cortisol actions, though this process is still misunderstood. Here, we evaluated the DOC effects on physiological and early transcriptional responses by RNA-seq. Juvenile rainbow trout were treated with DOC and/or glucocorticoids (mifepristone) or mineralocorticoid (eplerenone) receptor antagonists. Subsequently, plasma was collected, and cDNA libraries were generated from the gills of vehicle (control), DOC, mifepristone, mifepristone with DOC, eplerenone, and eplerenone with DOC groups. Calcium and phosphate levels in plasma were changed. Results revealed 914 differentially expressed transcripts (DETs) induced by DOC compared with control, mainly associated with sodium ion transmembrane transport, gluconeogenesis, negative regulation of transmembrane transport, and activation of innate immune response. DOC versus eplerenone with DOC comparison displayed 444 DETs related to cell-cell junction organization, canonical glycolysis, positive regulation of immune response, and potassium ion transport. Conversely, no DETs were detected in DOC versus mifepristone with DOC comparison. These data suggest that DOC has a relevant role in gill stress response and ion transport, which is differentially regulated by mineralocorticoid receptors.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Luciano Ahumada-Langer
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - Jorge Eduardo Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Alfredo Molina
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Juan Antonio Valdés
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| |
Collapse
|
4
|
Tian J, Chen W, Xiong Y, Li Q, Kong S, Li M, Pang C, Qiu Y, Xu Z, Gong Q, Wei X. Small extracellular vesicles derived from hypoxic preconditioned dental pulp stem cells ameliorate inflammatory osteolysis by modulating macrophage polarization and osteoclastogenesis. Bioact Mater 2022; 22:326-342. [PMID: 36311048 PMCID: PMC9587346 DOI: 10.1016/j.bioactmat.2022.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Extensive macrophage inflammatory responses and osteoclast formation are predominant during inflammatory or infective osteolysis. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEV) have been shown to exert therapeutic effects on bone defects. However, cultured MSCs are typically exposed to normoxia (21% O2) in vitro, which differs largely from the oxygen concentration in vivo under hypoxic conditions. It is largely unknown whether sEV derived from dental pulp stem cells (DPSCs) cultured under hypoxic conditions (Hypo-sEV) exert better therapeutic effects on lipopolysaccharide (LPS)-induced inflammatory osteolysis than those cultured under normoxic conditions (Nor-sEV) by simultaneously inhibiting the macrophage inflammatory response and osteoclastogenesis. In this study, we show that hypoxia significantly induces the release of sEV from DPSCs. Moreover, Hypo-sEV exhibit significantly improved efficacy in promoting M2 macrophage polarization and suppressing osteoclast formation to alleviate LPS-induced inflammatory calvarial bone loss compared with Nor-sEV. Mechanistically, hypoxia preconditioning markedly alters the miRNA profiles of DPSC-sEV. MiR-210-3p is enriched in Hypo-sEV, and can simultaneously induce M2 macrophage generation and inhibit osteoclastogenesis by targeting NF-κB1 p105, which attenuates osteolysis. Our study suggests a promising potential for hypoxia-induced DPSC-sEV to treat inflammatory or infective osteolysis and identifies a novel role of miR-210-3p in concurrently hindering osteoclastogenesis and macrophage inflammatory response by inhibiting NF-kB1 expression. Hypoxia promotes the release of sEV from DPSCs. Hypoxia-induced DPSC-sEV (Hypo-sEV) show increased potential to inhibit inflammatory osteolysis. The miR-210-3p enriched in Hypo-sEV contributes to therapeutic effects of Hypo-sEV. MiR-210-3p concurrently induces M2 macrophage generation and inhibits osteoclastogenesis by targeting NF-κB1. Hypoxia-induced DPSC-sEV represent a promising therapy for inflammatory osteolysis.
Collapse
Affiliation(s)
- Jun Tian
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Weiyang Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Yuhua Xiong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Qianer Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Siyi Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Mengjie Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Chunfeng Pang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Yu Qiu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Zhezhen Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Qimei Gong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China,Corresponding author. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, China.
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China,Corresponding author. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, China.
| |
Collapse
|
5
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
6
|
Abbas A, Vu Manh TP, Valente M, Collinet N, Attaf N, Dong C, Naciri K, Chelbi R, Brelurut G, Cervera-Marzal I, Rauwel B, Davignon JL, Bessou G, Thomas-Chollier M, Thieffry D, Villani AC, Milpied P, Dalod M, Tomasello E. The activation trajectory of plasmacytoid dendritic cells in vivo during a viral infection. Nat Immunol 2020; 21:983-997. [PMID: 32690951 PMCID: PMC7610367 DOI: 10.1038/s41590-020-0731-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are a major source of type I interferon (IFN-I). What other functions pDCs exert in vivo during viral infections is controversial, and more studies are needed to understand their orchestration. In the present study, we characterize in depth and link pDC activation states in animals infected by mouse cytomegalovirus by combining Ifnb1 reporter mice with flow cytometry, single-cell RNA sequencing, confocal microscopy and a cognate CD4 T cell activation assay. We show that IFN-I production and T cell activation were performed by the same pDC, but these occurred sequentially in time and in different micro-anatomical locations. In addition, we show that pDC commitment to IFN-I production was marked early on by their downregulation of leukemia inhibitory factor receptor and was promoted by cell-intrinsic tumor necrosis factor signaling. We propose a new model for how individual pDCs are endowed to exert different functions in vivo during a viral infection, in a manner tightly orchestrated in time and space.
Collapse
Affiliation(s)
- Abdenour Abbas
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.,Institut Curie, PSL Research University, Paris, France
| | - Thien-Phong Vu Manh
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Michael Valente
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Nils Collinet
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Noudjoud Attaf
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Chuang Dong
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Karima Naciri
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Rabie Chelbi
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Geoffray Brelurut
- Institut de Biologie de l'ENS, Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Inaki Cervera-Marzal
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.,Eura Nova, Marseille, France
| | - Benjamin Rauwel
- Centre de Physiopathologie Toulouse Purpan, Toulouse, France
| | | | - Gilles Bessou
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Morgane Thomas-Chollier
- Institut de Biologie de l'ENS, Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'ENS, Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Pierre Milpied
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
7
|
Trametinib alleviates lipopolysaccharide-induced acute lung injury by inhibiting the MEK-ERK-Egr-1 pathway. Int Immunopharmacol 2020; 80:106152. [PMID: 31926447 DOI: 10.1016/j.intimp.2019.106152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/09/2019] [Accepted: 12/22/2019] [Indexed: 01/15/2023]
Abstract
Acute lung injury (ALI) is a devastating clinical disorder with a high mortality rate and for which there is no effective treatment. The main characteristic of ALI is uncontrolled inflammation, and macrophages play a critical role in the development of this disorder. Trametinib, an inhibitor of MAPK/ERK kinase (MEK) activity that possesses anti-inflammatory properties, has been approved for clinical use. Herein, the influence of trametinib and its underlying mechanism were investigated using a lipopolysaccharide (LPS)-induced murine ALI model. We found that trametinib treatment prevented the LPS-facilitated expression of proinflammatory mediators in macrophages, and this anti-inflammatory action was closely correlated with suppression of the MEK-ERK-early growth response (Egr)-1 pathway. Furthermore, trametinib treatment alleviated LPS-induced ALI in mice, and attenuated edema, proinflammatory mediator production, and neutrophil infiltration. Trametinib pretreatment also attenuated the MEK-ERK-Egr-1 pathway in lung tissues. In conclusion, these data demonstrate that trametinib pretreatment suppresses inflammation in LPS-activated macrophages in vitro and protects against murine ALI established by LPS administration in vivo through inhibition of the MEK-ERK-Egr-1 pathway. Therefore, trametinib might have therapeutic potential for ALI.
Collapse
|
8
|
Chu Q, Yan X, Liu L, Xu T. The Inducible microRNA-21 Negatively Modulates the Inflammatory Response in Teleost Fish via Targeting IRAK4. Front Immunol 2019; 10:1623. [PMID: 31379828 PMCID: PMC6648887 DOI: 10.3389/fimmu.2019.01623] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Eradication of bacterial infection requires timely and appropriate immune and inflammatory responses, but excessive induction of inflammatory cytokines can cause acute or chronic inflammatory disorders. Thus, various layers of negative regulators and mechanisms are needed to ensure maintenance of the homeostasis for the immune system. miRNAs are a family of small non-coding RNAs that emerged as significant and versatile regulators involved in regulation of immune responses. Recently, the molecular mechanisms of miRNA in host-pathogen interaction networks have been extensively studied in mammals, whereas the underlying regulatory mechanisms in fish are still poorly understood. In this study, we identify miR-21 as a negative regulator of the teleost inflammatory response. We found that lipopolysaccharide and Vibrio anguillarum significantly upregulated the expression of fish miR-21. Upregulated miR-21 suppresses LPS-induced inflammatory cytokine expression by targeting IL-1 receptor-associated kinase 4 (IRAK4), thereby avoiding excessive inflammatory responses. Furthermore, we demonstrated that miR-21 regulates inflammatory responses through NF-κB signaling pathways. The collective findings indicate that miR-21 plays a regulatory role in host-pathogen interactions through IRAK4-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qing Chu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Lihua Liu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Chu C, Zhang YL, Yu L, Sharma S, Fei ZL, Drevet JR. Epididymal small non-coding RNA studies: progress over the past decade. Andrology 2019; 7:681-689. [PMID: 31044548 DOI: 10.1111/andr.12639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/01/2019] [Accepted: 03/30/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Small non-coding RNAs (sncRNAs) accomplish a huge variety of biological functions. Over the past decade, we have witnessed the substantial progress in the epididymal sncRNA studies. In the Epididymis 7, we had the true privilege of having a whole session to share our findings and exchange ideas on the epididymal sncRNA studies. OBJECTIVES This mini-review attempts to provide an overview of what is known about the sncRNAs in the mammalian epididymis and discuss the future directions in this field. METHODS We surveyed literature regarding the sncRNA studies in the mammalian epididymis, and integrated some of our unpublished findings as well. We focus on the progress in methodology and the advances in our understanding of the expression and functions of epididymal sncRNAs. RESULTS AND DISCUSSION The applications of high-throughput approaches have made great contributions in the discovery of new sncRNA species and profiling their dynamics in the epithelial cells, the passing spermatozoa, and the luminal environment. The diverse classes of epididymal sncRNAs exert important biological functions from the in situ regulation of epididymal gene expression to the epigenetic inheritance in the offspring. CONCLUSION Although still in its infancy, we believe that the research on epididymal sncRNAs will not only lead to a better understanding of their physiological and pathological functions, but also contribute to the whole landscape of the RNA field.
Collapse
Affiliation(s)
- C Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Y L Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - L Yu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - S Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Z L Fei
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - J R Drevet
- Genetics Reproduction & Development Laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
10
|
Yan L, Wang Y, Liang J, Liu Z, Sun X, Cai K. MiR-301b promotes the proliferation, mobility, and epithelial-to-mesenchymal transition of bladder cancer cells by targeting EGR1. Biochem Cell Biol 2017; 95:571-577. [PMID: 28521108 DOI: 10.1139/bcb-2016-0232] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We investigated the role of miR-301b in the modulation of the proliferation, migration, and invasion of bladder cancer (BLCA) cells. The expression of miR-301b and EGR1 (early growth response gene 1) mRNA were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). A dual-luciferase reporter gene system was used to identify the target relationship between miR-301b and EGR1. Cell proliferation, cell cycle, and apoptosis were analyzed by MTT assay, colony-forming assay, and flow cytometry, respectively. Cell motility and invasiveness were assessed by wound healing and Transwell assays. The expression of proteins involved in epithelial-to-mesenchymal transition (EMT) and EGR1 were determined by Western blot. Our results showed that miR-301b was up-regulated while EGR1 was down-regulated in BLCA tissues compared with adjacent normal tissues. The proliferation, migration, and invasiveness of T24 cells (a kind of human BLCA cell) were suppressed by decreasing miR-301b expression or increasing EGR1 expression. In addition, miR-301b promoted EMT signaling by influencing the expression of related proteins. In conclusion, miR-301b promotes the proliferation, migration, and aggressiveness of human BLCA cells by inhibiting the expression of EGR1.
Collapse
Affiliation(s)
- Lei Yan
- a Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Yan Wang
- b Department of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Jun Liang
- a Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Zhixin Liu
- a Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Xiaodong Sun
- a Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Kerui Cai
- a Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| |
Collapse
|
11
|
Severino A, Zara C, Campioni M, Flego D, Angelini G, Pedicino D, Giglio AF, Trotta F, Giubilato S, Pazzano V, Lucci C, Iaconelli A, Ruggio A, Biasucci LM, Crea F, Liuzzo G. Atorvastatin inhibits the immediate-early response gene EGR1 and improves the functional profile of CD4+T-lymphocytes in acute coronary syndromes. Oncotarget 2017; 8:17529-17550. [PMID: 28407684 PMCID: PMC5392205 DOI: 10.18632/oncotarget.15420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/07/2017] [Indexed: 01/03/2023] Open
Abstract
Background- Adaptive immune-response is associated with a worse outcome in acute coronary syndromes. Statins have anti-inflammatory activity beyond lowering lipid levels. We investigated the effects of ex-vivo and in-vivo atorvastatin treatment in acute coronary syndromes on CD4+T-cells, and the underlying molecular mechanisms.Approach and results- Blood samples were collected from 50 statin-naïve acute coronary syndrome patients. We assessed CD4+T-cell activation by flow-cytometry, the expression of 84 T-helper transcription-factors and 84 T-cell related genes by RT-qPCR, and protein expression by Western-blot, before and after 24-hours incubation with increasing doses of atorvastatin: 3-10-26 μg/ml (corresponding to blood levels achieved with doses of 10-40-80 mg, respectively). After incubation, we found a significant decrease in interferon-γ-producing CD4+CD28nullT-cells (P = 0.009) and a significant increase in interleukin-10-producing CD4+CD25highT-cells (P < 0.001). Atorvastatin increased the expression of 2 genes and decreased the expression of 12 genes (in particular, EGR1, FOS,CCR2 and toll like receptor-4; >3-fold changes).The in-vivo effects of atorvastatin were analyzed in 10 statin-free acute coronary syndrome patients at baseline, and after 24h and 48h of atorvastatin therapy (80 mg/daily): EGR1-gene expression decreased at 24h (P = 0.01) and 48h (P = 0.005); EGR1-protein levels decreased at 48h (P = 0.03).Conclusions-In acute coronary syndromes, the effects of atorvastatin on immune system might be partially related to the inhibition of the master regulator gene EGR1. Our finding might offer a causal explanation on why statins improve the early outcome in acute coronary syndromes.
Collapse
Affiliation(s)
- Anna Severino
- Institute of Cardiology, Catholic University, Rome, Italy
| | - Chiara Zara
- Institute of Cardiology, Catholic University, Rome, Italy
| | - Mara Campioni
- Institute of Cardiology, Catholic University, Rome, Italy
| | - Davide Flego
- Institute of Cardiology, Catholic University, Rome, Italy
| | | | | | | | | | | | | | - Claudia Lucci
- Institute of Cardiology, Catholic University, Rome, Italy
| | | | | | | | - Filippo Crea
- Institute of Cardiology, Catholic University, Rome, Italy
| | | |
Collapse
|
12
|
Duclot F, Kabbaj M. The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Front Behav Neurosci 2017; 11:35. [PMID: 28321184 PMCID: PMC5337695 DOI: 10.3389/fnbeh.2017.00035] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
It is now clearly established that complex interactions between genes and environment are involved in multiple aspects of neuropsychiatric disorders, from determining an individual's vulnerability to onset, to influencing its response to therapeutic intervention. In this perspective, it appears crucial to better understand how the organism reacts to environmental stimuli and provide a coordinated and adapted response. In the central nervous system, neuronal plasticity and neurotransmission are among the major processes integrating such complex interactions between genes and environmental stimuli. In particular, immediate early genes (IEGs) are critical components of these interactions as they provide the molecular framework for a rapid and dynamic response to neuronal activity while opening the possibility for a lasting and sustained adaptation through regulation of the expression of a wide range of genes. As a result, IEGs have been tightly associated with neuronal activity as well as a variety of higher order processes within the central nervous system such as learning, memory and sensitivity to reward. The immediate early gene and transcription factor early growth response 1 (EGR1) has thus been revealed as a major mediator and regulator of synaptic plasticity and neuronal activity in both physiological and pathological conditions. In this review article, we will focus on the role of EGR1 in the central nervous system. First, we will summarize the different factors influencing its activity. Then, we will analyze the amount of data, including genome-wide, that has emerged in the recent years describing the wide variety of genes, pathways and biological functions regulated directly or indirectly by EGR1. We will thus be able to gain better insights into the mechanisms underlying EGR1's functions in physiological neuronal activity. Finally, we will discuss and illustrate the role of EGR1 in pathological states with a particular interest in cognitive functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
13
|
Chu Q, Sun Y, Cui J, Xu T. MicroRNA-3570 Modulates the NF-κB Pathway in Teleost Fish by Targeting MyD88. THE JOURNAL OF IMMUNOLOGY 2017; 198:3274-3282. [PMID: 28250156 DOI: 10.4049/jimmunol.1602064] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022]
Abstract
The inflammatory response, a protective process to clear detrimental stimuli, constitutes the defense against infectious pathogens. However, excessive inflammation disrupts immune homeostasis, which may induce autoimmune and inflammatory diseases. In this study, we report that microRNA (miR)-3570 plays a negative role in the bacteria-induced inflammatory response of miiuy croaker. Upregulation of miR-3570 by Vibrio anguillarum and LPS inhibits LPS-induced inflammatory cytokine production, thus avoiding an excessive inflammation response. Evidence showed that miR-3570 targets MyD88 and posttranscriptionally downregulates its expression. Overexpression of miR-3570 in macrophages suppresses the expression of MyD88, as well as its downstream signaling of IL-1R-associated kinases 1 and 4 and TNFR-associated factor 6. These results suggest that miR-3570 plays a regulatory in the bacteria-induced inflammatory response through the MyD88-mediated NF-κB signaling pathway by targeting MyD88.
Collapse
Affiliation(s)
- Qing Chu
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuena Sun
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Junxia Cui
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
14
|
Gao JR, Qin XJ, Jiang H, Wang T, Song JM, Xu SZ. The effects of Qi Teng Xiao Zhuo granules, traditional Chinese medicine, on the expression of genes in chronic glomerulonephritis rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:140-149. [PMID: 27497640 DOI: 10.1016/j.jep.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 07/24/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND AIM Chronic glomerulonephritis (CGN) is a primary glomerular disease that is related to immune-mediated inflammatory diseases. Qi Teng Xiao Zhuo granules have been proposed as a prescription of traditional Chinese medicine for treatment of CGN, but the comprehensive molecular mechanism underlying this therapeutic effect is not clear to date. The aim of this study was to evaluate and analyze the possible roles and molecular mechanisms of Qi Teng Xiao Zhuo granule-mediated treatment of CGN induced by adriamycin in rats. METHODS For gene expression analysis, four samples of glomerular tissue from rats in the Qi Teng Xiao Zhuo granule group and four samples each from the adriamycin treated and control groups were hybridized with Agilent Rat 4×44K whole genome microarrays. KEGG and Gene Ontology (GO) analyses and LIMMA, String and Cytoscape software were used to analyze the functional microarray data and screen differentially expressed genes. Hub genes were identified using Pathway Studio software. Real-time PCR was performed to verify the selected genes. RESULTS Microarray gene expression analysis showed that Pnoc, Cacfd1, Fos, Igll1, Lcn2, and Syk were among the most downregulated genes in the Qi Teng Xiao Zhuo granule group compared with the adriamycin treated group, whereas Cyp2c7, Hsd3b6, Acsm5, and Ugt2b15 were significantly upregulated. Functional analysis demonstrated that metabolism of xenobiotics by cytochrome P450, the B cell receptor signaling pathway, and cytokine-cytokine receptor interaction pathways were significantly downregulated in the Qi Teng Xiao Zhuo granule group and that GO terms related to positive regulation of immune response, immune response-activating signal transduction, cell differentiation, cell cycle, proliferation, and adhesion were significantly affected. Fos and Syk were considered to be potential hub genes. CONCLUSIONS In the adriamycin-induced CGN rat model, comprehensive molecular mechanisms were involved with complex gene expression alterations containing many altered pathways and GO terms. However, how Qi Teng Xiao Zhuo granules regulate these events warrants further investigation.
Collapse
Affiliation(s)
- Jia-Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei 230031, China.
| | - Xiu-Juan Qin
- College of Pharmacy, Anhui university of Chinese Medicine, 103 Meishan Road, Hefei, China
| | - Hui Jiang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei 230031, China
| | - Ting Wang
- College of Pharmacy, Anhui university of Chinese Medicine, 103 Meishan Road, Hefei, China
| | - Jun-Mei Song
- College of Pharmacy, Anhui university of Chinese Medicine, 103 Meishan Road, Hefei, China
| | - Shuang-Zhi Xu
- College of Pharmacy, Anhui university of Chinese Medicine, 103 Meishan Road, Hefei, China
| |
Collapse
|
15
|
Sipilä P, Björkgren I. Segment-specific regulation of epididymal gene expression. Reproduction 2016; 152:R91-9. [DOI: 10.1530/rep-15-0533] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/23/2016] [Indexed: 01/24/2023]
Abstract
The epididymis is necessary for post-testicular sperm maturation. During their epididymal transit, spermatozoa gain ability for progressive movement and fertilization. The epididymis is composed of several segments that have distinct gene expression profiles that enable the establishment of the changing luminal environment required for sperm maturation. The epididymal gene expression is regulated by endocrine, lumicrine, and paracrine factors in a segment-specific manner. Thus, in addition to its importance for male fertility, the epididymis is a valuable model tissue for studying the regulation of gene expression. This review concentrates on recent advances in understanding the androgen, small RNA, and epigenetically mediated regulation of segment-specific gene expression in the epididymis.
Collapse
|
16
|
Screening and functional analysis of differentially expressed genes in chronic glomerulonephritis by whole genome microarray. Gene 2016; 589:72-80. [DOI: 10.1016/j.gene.2016.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/28/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
|
17
|
Yuan S, Wen J, Cheng J, Shen W, Zhou S, Yan W, Shen L, Luo A, Wang S. Age-associated up-regulation of EGR1 promotes granulosa cell apoptosis during follicle atresia in mice through the NF-κB pathway. Cell Cycle 2016; 15:2895-2905. [PMID: 27436181 DOI: 10.1080/15384101.2016.1208873] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Follicular atresia is the main process responsible for the loss of follicles and oocytes from the ovary, and it is the root cause of ovarian aging. Apoptosis of granulosa cells (GCs) is the cellular mechanism responsible for follicular atresia in mammals. Recent advances have highlighted fundamental roles for EGR1 in age-related diseases via the induction of apoptosis. In the present study, we found that the expression of EGR1 was significantly increased in aged mouse ovaries compared with young ovaries. Immunohistochemical analysis revealed strongly positive EGR1 staining in atretic follicles, especially in apoptotic granulosa cells. We further showed that EGR1 up-regulation in mouse primary granulosa cells inhibited cell proliferation and promoted apoptosis. In addition, the promotion of apoptosis in GCs by EGR1 increases over time and with reactive oxygen species (ROS) stimulation. Our mechanistic study suggested that EGR1 regulates GC apoptosis in a mitochondria-dependent manner and that this mainly occurs through the NF-κB signaling pathway. In conclusion, our results suggested that age-related up-regulation of EGR1 promotes GC apoptosis in follicle atresia during ovarian aging.
Collapse
Affiliation(s)
- Suzhen Yuan
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Jingyi Wen
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Jing Cheng
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Wei Shen
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Su Zhou
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Wei Yan
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Lu Shen
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Aiyue Luo
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Shixuan Wang
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| |
Collapse
|
18
|
Belleannée C. Extracellular microRNAs from the epididymis as potential mediators of cell-to-cell communication. Asian J Androl 2016; 17:730-6. [PMID: 26178395 PMCID: PMC4577581 DOI: 10.4103/1008-682x.155532] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Ribonucleic acid (RNA) was previously thought to remain inside cells as an intermediate between genes and proteins during translation. However, it is now estimated that 98% of the mammalian genomic output is transcribed as noncoding RNAs, which are involved in diverse gene expression regulatory mechanisms and can be transferred from one cell to another through extracellular communication. For instance, microRNAs are 22-nucleotide-long noncoding RNAs that are generated by endonuclease cleavage of precursors inside the cells and are secreted as extracellular microRNAs to regulate target cell posttranscriptional gene expression via RNA interference. We and others have shown that different populations of microRNAs are expressed in distinct regions of the human epididymis and regulate the expression of target genes that are involved in the control of male fertility as indicated by knock-out mouse models. Importantly, some microRNAs, including the microRNA-888 (miR-888) cluster that is exclusively expressed in the reproductive system of human and nonhuman primates, are released in the sperm-surrounding fluid in the epididymis via extracellular vesicles, the so-called epididymosomes. In addition to interacting with the membrane of maturing spermatozoa, these extracellular vesicles containing microRNAs communicate with epithelial cells located downstream from their release site, suggesting a role in the luminal exocrine control of epididymal functions. Apart from their potential roles as mediators of intercellular communication within the epididymis, these extracellular microRNAs are potent molecular targets for the noninvasive diagnosis of male infertility.
Collapse
Affiliation(s)
- Clémence Belleannée
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Reproduction, Mother and Youth Health Division, Research Center CHU de Québec, Québec, G1V 4G2, Canada
| |
Collapse
|
19
|
Guo D, Li J, Liu Z, Tang K, Song H, Bi H. Characterization of microRNA expression profiling in peripheral blood lymphocytes in rats with experimental autoimmune uveitis. Inflamm Res 2015; 64:683-96. [DOI: 10.1007/s00011-015-0848-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022] Open
|
20
|
Pang XM, Liu JL, Li JP, Huang LG, Zhang L, Xiang HY, Feng LB, Chen CY, Li SH, Su SY. Fastigial nucleus stimulation regulates neuroprotection via induction of a novel microRNA, rno-miR-676-1, in middle cerebral artery occlusion rats. J Neurochem 2015; 133:926-34. [PMID: 25783478 DOI: 10.1111/jnc.13094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Min Pang
- Department of Neurology; The First Affiliated Hospital; Guangxi Medical University; Nanning China
| | - Jing-Li Liu
- Department of Neurology; The First Affiliated Hospital; Guangxi Medical University; Nanning China
| | - Jin-Pin Li
- Department of Neurology; The First Affiliated Hospital; Guangxi Medical University; Nanning China
| | - Li-Gang Huang
- Department of Neurology; The First Affiliated Hospital; Guangxi Medical University; Nanning China
| | - Lei Zhang
- Department of Neurology; Dongguan Kanghua Hospital; Dongguan Guangdong China
| | - Hui-Yao Xiang
- Department of Neurology; The First People's Hospital of Yichang; Yichang Hubei China
| | - Ling-Bo Feng
- Department of Neurology; The First Affiliated Hospital; Guangxi Medical University; Nanning China
| | - Chun-Yong Chen
- Department of Neurology; The First Affiliated Hospital; Guangxi Medical University; Nanning China
| | - Sheng-Hua Li
- Department of Neurology; The First Affiliated Hospital; Guangxi Medical University; Nanning China
| | - Sheng-You Su
- Department of Neurology; The First Affiliated Hospital; Guangxi Medical University; Nanning China
| |
Collapse
|
21
|
Yu Z, Lu B, Sheng Y, Zhou L, Ji L, Wang Z. Andrographolide ameliorates diabetic retinopathy by inhibiting retinal angiogenesis and inflammation. Biochim Biophys Acta Gen Subj 2015; 1850:824-31. [DOI: 10.1016/j.bbagen.2015.01.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 11/28/2022]
|
22
|
Killick KE, Magee DA, Park SDE, Taraktsoglou M, Browne JA, Conlon KM, Nalpas NC, Gormley E, Gordon SV, MacHugh DE, Hokamp K. Key Hub and Bottleneck Genes Differentiate the Macrophage Response to Virulent and Attenuated Mycobacterium bovis. Front Immunol 2014; 5:422. [PMID: 25324841 PMCID: PMC4181336 DOI: 10.3389/fimmu.2014.00422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille Calmette-Guérin. Differentially expressed genes were identified (adjusted P-value ≤0.01) and interaction networks generated across an infection time course of 2, 6, and 24 h. The largest number of biological interactions was observed in the 24-h network, which exhibited scale-free network properties. The 24-h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1, and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immuno-modulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment.
Collapse
Affiliation(s)
- Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; Systems Biology Ireland, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Stephen D E Park
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; IdentiGEN Ltd. , Dublin , Ireland
| | - Maria Taraktsoglou
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; Biological Agents Unit, Health and Safety Executive , Leeds , UK
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Kevin M Conlon
- UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland ; Science Foundation Ireland (SFI) , Dublin , Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland ; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College , Dublin , Ireland
| |
Collapse
|
23
|
Gilbert KM, Reisfeld B, Zurlinden TJ, Kreps MN, Erickson SW, Blossom SJ. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis. Toxicol Appl Pharmacol 2014; 279:284-293. [PMID: 25026505 PMCID: PMC4171219 DOI: 10.1016/j.taap.2014.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/27/2014] [Accepted: 07/06/2014] [Indexed: 01/01/2023]
Abstract
Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL+/+mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL+/+mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation.
Collapse
Affiliation(s)
- Kathleen M Gilbert
- University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA.
| | | | | | - Meagan N Kreps
- University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA.
| | - Stephen W Erickson
- University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA.
| | - Sarah J Blossom
- University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA.
| |
Collapse
|
24
|
Famakin BM, Mou Y, Johnson K, Spatz M, Hallenbeck J. A new role for downstream Toll-like receptor signaling in mediating immediate early gene expression during focal cerebral ischemia. J Cereb Blood Flow Metab 2014; 34:258-67. [PMID: 24301291 PMCID: PMC3915199 DOI: 10.1038/jcbfm.2013.182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/16/2013] [Accepted: 09/20/2013] [Indexed: 12/20/2022]
Abstract
To better understand the role of downstream Toll-like receptor (TLR) signaling during acute cerebral ischemia, we performed cDNA microarrays, on brain RNA, and cytokine arrays, on serum, from wild type (WT), MyD88-/- and TRIF-mutant mice, at baseline and following permanent middle cerebral artery occlusion (pMCAO). The acute stress response pathway was among the top pathways identified by Ingenuity Pathway Analysis of microarray data. We used real-time polymerase chain reaction to confirm the expression of four immediate early genes; EGR1, EGR2, ARC, Nurr77, in this pathway, and insulin degrading enzyme (IDE). Compared to WT, baseline immediate early gene expression was increased up to10-fold in MyD88-/- and TRIF-mutant mice. However, following pMCAO, immediate early gene expression remained unchanged, from this elevated baseline in these mice, but increased up to 12-fold in WT. Furthermore, expression of IDE, which also degrades β-amyloid, decreased significantly only in TRIF-mutant mice. Finally, sE-Selectin, sICAM, sVCAM-1, and MMP-9 levels were significantly decreased only in MyD88-/- compared with WT mice. We thus report a new role for downstream TLR signaling in immediate early gene expression during acute cerebral ischemia. We also show that the TRIF pathway regulates IDE expression; a major enzyme that clears β-amyloid from the brain.
Collapse
Affiliation(s)
- Bolanle M Famakin
- National Institute of Neurological Disorders and Stroke, Stroke Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongshan Mou
- National Institute of Neurological Disorders and Stroke, Stroke Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Kory Johnson
- National Institute of Neurological Disorders & Stroke, Section on Bioinformatics, Information Technology & Bioinformatics Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Spatz
- National Institute of Neurological Disorders and Stroke, Stroke Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - John Hallenbeck
- National Institute of Neurological Disorders and Stroke, Stroke Branch, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Yao X, Huang J, Zhong H, Shen N, Faggioni R, Fung M, Yao Y. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther 2013; 141:125-39. [PMID: 24076269 DOI: 10.1016/j.pharmthera.2013.09.004] [Citation(s) in RCA: 429] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine with significant functions in the regulation of the immune system. As a potent pro-inflammatory cytokine, IL-6 plays a pivotal role in host defense against pathogens and acute stress. However, increased or deregulated expression of IL-6 significantly contributes to the pathogenesis of various human diseases. Numerous preclinical and clinical studies have revealed the pathological roles of the IL-6 pathway in inflammation, autoimmunity, and cancer. Based on the rich body of studies on biological activities of IL-6 and its pathological roles, therapeutic strategies targeting the IL-6 pathway are in development for cancers, inflammatory and autoimmune diseases. Several anti-IL-6/IL-6 receptor monoclonal antibodies developed for targeted therapy have demonstrated promising results in both preclinical studies and clinical trials. Tocilizumab, an anti-IL-6 receptor antibody, is effective in the treatment of various autoimmune and inflammatory conditions notably rheumatoid arthritis. It is the only IL-6 pathway targeting agent approved by the regulatory agencies for clinical use. Siltuximab, an anti-IL-6 antibody, has been shown to have potential benefits treating various human cancers either as a single agent or in combination with other chemotherapy drugs. Several other anti-IL-6-based therapies are also under clinical development for various diseases. IL-6 antagonism has been shown to be a potential therapy for these disorders refractory to conventional drugs. New strategies, such as combination of IL-6 blockade with inhibition of other signaling pathways, may further improve IL-6-targeted immunotherapy of human diseases.
Collapse
Affiliation(s)
- Xin Yao
- MedImmune, LLC, Gaithersburg, MD 20878, USA
| | | | | | - Nan Shen
- Joint Molecular Rheumatology Laboratory of Institute of Health Sciences and Shanghai Renji Hospital, Shanghai, China
| | | | | | - Yihong Yao
- MedImmune, LLC, Gaithersburg, MD 20878, USA.
| |
Collapse
|