1
|
Olczak T, Śmiga M, Antonyuk SV, Smalley JW. Hemophore-like proteins of the HmuY family in the oral and gut microbiome: unraveling the mystery of their evolution. Microbiol Mol Biol Rev 2024; 88:e0013123. [PMID: 38305743 PMCID: PMC10966948 DOI: 10.1128/mmbr.00131-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
SUMMARY Heme (iron protoporphyrin IX, FePPIX) is the main source of iron and PPIX for host-associated pathogenic bacteria, including members of the Bacteroidota (formerly Bacteroidetes) phylum. Porphyromonas gingivalis, a keystone oral pathogen, uses a unique heme uptake (Hmu) system, comprising a hemophore-like protein, designated as the first member of the novel HmuY family. Compared to classical, secreted hemophores utilized by Gram-negative bacteria or near-iron transporter domain-based hemophores utilized by Gram-positive bacteria, the HmuY family comprises structurally similar proteins that have undergone diversification during evolution. The best characterized are P. gingivalis HmuY and its homologs from Tannerella forsythia (Tfo), Prevotella intermedia (PinO and PinA), Bacteroides vulgatus (Bvu), and Bacteroides fragilis (BfrA, BfrB, and BfrC). In contrast to the two histidine residues coordinating heme iron in P. gingivalis HmuY, Tfo, PinO, PinA, Bvu, and BfrA preferentially use two methionine residues. Interestingly, BfrB, despite conserved methionine residue, binds the PPIX ring without iron coordination. BfrC binds neither heme nor PPIX in keeping with the lack of conserved histidine or methionine residues used by other members of the HmuY family. HmuY competes for heme binding and heme sequestration from host hemoproteins with other members of the HmuY family to increase P. gingivalis competitiveness. The participation of HmuY in the host immune response confirms its relevance in relation to the survival of P. gingivalis and its ability to induce dysbiosis not only in the oral microbiome but also in the gut microbiome or other host niches, leading to local injuries and involvement in comorbidities.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, the University of Liverpool, Liverpool, United Kingdom
| | - John W. Smalley
- Institute of Life Course and Medical Sciences, School of Dentistry, the University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Ma XQ, Liu YY, Zhong ZQ, Chen SM, Hu WT, Sheng YR, Liu YK, Wei CY, Li MQ, Zhu XY. Heme induced progesterone-resistant profiling and promotion of endometriosis in vitro and in vivo. Biochim Biophys Acta Mol Basis Dis 2023:166761. [PMID: 37247698 DOI: 10.1016/j.bbadis.2023.166761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Endometriosis is an estrogen-dependent, progesterone-resistant gynecological disease with an unknown pathogenesis. Compared to women without endometriosis, women with endometriosis have a remarkably high heme level in the peritoneal fluid. To further investigate the pathomechanisms of heme in endometriosis, we aimed to identify the dysregulated expression of heme-trafficking proteins, such as PGRMC1/2 that are also receptors that mediate the non-genomic responses to progesterone, and heme-degrading enzymes between ectopic endometrial stromal cells and their normal counterparts. We found that heme could regulate progesterone receptor-related gene expression. Functional human endometrial stromal cell experiments showed that heme promotes cell proliferation and migration in a heme oxygenase-1-independent manner; moreover, blocking oxidative phosphorylation/ATP generation could abolish these effects of heme in vitro, whereas intraperitoneal hemopexin administration could alleviate heme-triggered ectopic lesions in vivo. Therefore, heme likely mediates the induction of progesterone resistance and simultaneously induces endometriosis via the mitochondrial oxidative phosphorylation pathway.
Collapse
Affiliation(s)
- Xiao-Qian Ma
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Yu-Yin Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, People's Republic of China
| | - Zhi-Qi Zhong
- Xinglin College, Nantong University, Nantong 226001, People's Republic of China
| | - Si-Man Chen
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Ting Hu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Yan-Ran Sheng
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Yu-Kai Liu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Chun-Yan Wei
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ming-Qing Li
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.
| | - Xiao-Yong Zhu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.
| |
Collapse
|
3
|
Wen Y, Kang X, Li Z, Xia L, Lu Y. Identification of a secretory heme-binding protein from Nocardia seriolae involved in cell apoptosis. JOURNAL OF FISH DISEASES 2022; 45:1189-1199. [PMID: 35671346 DOI: 10.1111/jfd.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
According to the whole-genome bioinformatics analysis, a heme-binding protein from Nocardia seriolae (HBP) was found. HBP was predicted to be a bacterial secretory protein, located at mitochondrial membrane in eukaryotic cells and have a similar protein structure with the heme-binding protein of Mycobacterium tuberculosis, Rv0203. In this study, HBP was found to be a secretory protein and co-localized with mitochondria in FHM cells. Quantitative analysis of mitochondrial membrane potential value, caspase-3 activity, and transcription level of apoptosis-related genes suggested that overexpression of HBP protein can induce cell apoptosis. In conclusion, HBP was a secretory protein which may target to mitochondria and involve in cell apoptosis in host cells. This research will promote the function study of HBP and deepen the comprehension of the virulence factors and pathogenic mechanisms of N. seriolae.
Collapse
Affiliation(s)
- Yiming Wen
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, China
| | - Xu Kang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Zhiyuan Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Liqun Xia
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, China
| | - Yishan Lu
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, China
| |
Collapse
|
4
|
Dent AT, Brimberry M, Albert T, Lanzilotta WN, Moënne-Loccoz P, Wilks A. Axial Heme Coordination by the Tyr-His Motif in the Extracellular Hemophore HasAp Is Critical for the Release of Heme to the HasR Receptor of Pseudomonas aeruginosa. Biochemistry 2021; 60:2549-2559. [PMID: 34324310 DOI: 10.1021/acs.biochem.1c00389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa senses extracellular heme via an extra cytoplasmic function σ factor that is activated upon interaction of the hemophore holo-HasAp with the HasR receptor. Herein, we show Y75H holo-HasAp interacts with HasR but is unable to release heme for signaling and uptake. To understand this inhibition, we undertook a spectroscopic characterization of Y75H holo-HasAp by resonance Raman (RR), electron paramagnetic resonance (EPR), and X-ray crystallography. The RR spectra are consistent with a mixed six-coordinate high-spin (6cHS), six-coordinate low-spin (6cLS) heme configuration and an H218O exchangeable FeIII-O stretching frequency with 16O/18O and H/D isotope shifts that support a two-body Fe-OH2 oscillator with (iron-hydroxy)-like character as both hydrogen atoms are engaged in short hydrogen bond interactions with protein side chains. Further support comes from the EPR spectrum of Y75H holo-HasAp that shows a LS rhombic signal with ligand-field splitting values intermediate between those of His-hydroxy and bis-His ferric hemes. The crystal structure of Y75H holo-HasAp confirmed the coordinated solvent molecule hydrogen bonded through H75 and H83. The long-range conformational rearrangement of HasAp upon heme binding can still take place in Y75H holo-HasAp, because the intercalation of a hydroxy ligand between the heme iron and H75 allows the variant to reproduce the heme binding pocket observed in wild-type holo-HasAp. However, in the absence of a covalent linkage to the Y75 loop combined with the malleability provided by the bracketing H75 and H83 hydrogen bonds, either the hydroxy sixth ligand remains bound after complexation of Y75H holo-HasAp with HasR or rearrangement and coordination of H85 prevent heme transfer.
Collapse
Affiliation(s)
- Alecia T Dent
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Marley Brimberry
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - William N Lanzilotta
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
5
|
Prevotella intermedia produces two proteins homologous to Porphyromonas gingivalis HmuY but with different heme coordination mode. Biochem J 2020; 477:381-405. [PMID: 31899475 DOI: 10.1042/bcj20190607] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Abstract
As part of the infective process, Porphyromonas gingivalis must acquire heme which is indispensable for life and enables the microorganism to survive and multiply at the infection site. This oral pathogenic bacterium uses a newly discovered novel hmu heme uptake system with a leading role played by the HmuY hemophore-like protein, responsible for acquiring heme and increasing virulence of this periodontopathogen. We demonstrated that Prevotella intermedia produces two HmuY homologs, termed PinO and PinA. Both proteins were produced at higher mRNA and protein levels when the bacterium grew under low-iron/heme conditions. PinO and PinA bound heme, but preferentially under reducing conditions, and in a manner different from that of the P. gingivalis HmuY. The analysis of the three-dimensional structures confirmed differences between apo-PinO and apo-HmuY, mainly in the fold forming the heme-binding pocket. Instead of two histidine residues coordinating heme iron in P. gingivalis HmuY, PinO and PinA could use one methionine residue to fulfill this function, with potential support of additional methionine residue/s. The P. intermedia proteins sequestered heme only from the host albumin-heme complex under reducing conditions. Our findings suggest that HmuY-like family might comprise proteins subjected during evolution to significant diversification, resulting in different heme coordination modes. The newer data presented in this manuscript on HmuY homologs produced by P. intermedia sheds more light on the novel mechanism of heme uptake, could be helpful in discovering their biological function, and in developing novel therapeutic approaches.
Collapse
|
6
|
Dent AT, Wilks A. Contributions of the heme coordinating ligands of the Pseudomonas aeruginosa outer membrane receptor HasR to extracellular heme sensing and transport. J Biol Chem 2020; 295:10456-10467. [PMID: 32522817 DOI: 10.1074/jbc.ra120.014081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/06/2020] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa exhibits a high requirement for iron, which it can acquire via several mechanisms, including the acquisition and utilization of heme. The P. aeruginosa genome encodes two heme uptake systems, the heme assimilation system (Has) and the Pseudomonas heme utilization (Phu) system. Extracellular heme is sensed via the Has system, which encodes an extracytoplasmic function (ECF) σ factor system. Previous studies have shown that the transfer of heme from the extracellular hemophore HasAp to the outer membrane receptor HasR is required for activation of the σ factor HasI and upregulation of has operon expression. Here, employing site-directed mutagenesis, allelic exchange, quantitative PCR analyses, immunoblotting, and 13C-heme uptake experiments, we delineated the differential contributions of the extracellular FRAP/PNPNL loop residue His-624 in HasR and of His-221 in its N-terminal plug domain required for heme capture to heme transport and signaling, respectively. Specifically, we show that substitution of the N-terminal plug His-221 disrupts both signaling and transport, leading to dysregulation of both the Has and Phu uptake systems. Our results are consistent with a model wherein heme release from HasAp to the N-terminal plug of HasR is required to initiate signaling, whereas His-624 is required for simultaneously closing off the heme transport channel from the extracellular medium and triggering heme transport. Our results provide critical insight into heme release, signaling, and transport in P. aeruginosa and suggest a functional link between the ECF σ factor and Phu heme uptake system.
Collapse
Affiliation(s)
- Alecia T Dent
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Wißbrock A, Goradia NB, Kumar A, Paul George AA, Kühl T, Bellstedt P, Ramachandran R, Hoffmann P, Galler K, Popp J, Neugebauer U, Hampel K, Zimmermann B, Adam S, Wiendl M, Krönke G, Hamza I, Heinemann SH, Frey S, Hueber AJ, Ohlenschläger O, Imhof D. Structural insights into heme binding to IL-36α proinflammatory cytokine. Sci Rep 2019; 9:16893. [PMID: 31729440 PMCID: PMC6858345 DOI: 10.1038/s41598-019-53231-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Cytokines of the interleukin (IL)-1 family regulate immune and inflammatory responses. The recently discovered IL-36 family members are involved in psoriasis, rheumatoid arthritis, and pulmonary diseases. Here, we show that IL-36α interacts with heme thereby contributing to its regulation. Based on in-depth spectroscopic analyses, we describe two heme-binding sites in IL-36α that associate with heme in a pentacoordinated fashion. Solution NMR analysis reveals structural features of IL-36α and its complex with heme. Structural investigation of a truncated IL-36α supports the notion that the N-terminus is necessary for association with its cognate receptor. Consistent with our structural studies, IL-36-mediated signal transduction was negatively regulated by heme in synovial fibroblast-like synoviocytes from rheumatoid arthritis patients. Taken together, our results provide a structural framework for heme-binding proteins and add IL-1 cytokines to the group of potentially heme-regulated proteins.
Collapse
Affiliation(s)
- Amelie Wißbrock
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121, Bonn, Germany
| | - Nishit B Goradia
- CS Protein Production, Leibniz Institute on Aging/Fritz Lipmann Institute, D-07745, Jena, Germany.,European Molecular Biology Laboratory, D-22607, Hamburg, Germany
| | - Amit Kumar
- CS Protein Production, Leibniz Institute on Aging/Fritz Lipmann Institute, D-07745, Jena, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121, Bonn, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121, Bonn, Germany
| | - Peter Bellstedt
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Ramadurai Ramachandran
- CS Protein Production, Leibniz Institute on Aging/Fritz Lipmann Institute, D-07745, Jena, Germany
| | - Patrick Hoffmann
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747, Jena, Germany.,Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745, Jena, Germany
| | - Kerstin Galler
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747, Jena, Germany.,Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747, Jena, Germany.,Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | | | | | - Susanne Adam
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Maximilian Wiendl
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, D-07745, Jena, Germany
| | - Silke Frey
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Axel J Hueber
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Oliver Ohlenschläger
- CS Protein Production, Leibniz Institute on Aging/Fritz Lipmann Institute, D-07745, Jena, Germany.
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121, Bonn, Germany.
| |
Collapse
|
8
|
Ciambellotti S, Turano P. Structural Biology of Iron‐Binding Proteins by NMR Spectroscopy. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Silvia Ciambellotti
- Resonance Magnetic Center (CERM) University of Florence via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry University of Florence via della Lastruccia 3 50019 Sesto Fiorentino, Italy
| | - Paola Turano
- Resonance Magnetic Center (CERM) University of Florence via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry University of Florence via della Lastruccia 3 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
The molecular basis of transient heme-protein interactions: analysis, concept and implementation. Biosci Rep 2019; 39:BSR20181940. [PMID: 30622148 PMCID: PMC6356037 DOI: 10.1042/bsr20181940] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 11/17/2022] Open
Abstract
Deviant levels of available heme and related molecules can result from pathological situations such as impaired heme biosynthesis or increased hemolysis as a consequence of vascular trauma or bacterial infections. Heme-related biological processes are affected by these situations, and it is essential to fully understand the underlying mechanisms. While heme has long been known as an important prosthetic group of various proteins, its function as a regulatory and signaling molecule is poorly understood. Diseases such as porphyria are caused by impaired heme metabolism, and heme itself might be used as a drug in order to downregulate its own biosynthesis. In addition, heme-driven side effects and symptoms emerging from heme-related pathological conditions are not fully comprehended and thus impede adequate medical treatment. Several heme-regulated proteins have been identified in the past decades, however, the molecular basis of transient heme-protein interactions remains to be explored. Herein, we summarize the results of an in-depth analysis of heme binding to proteins, which revealed specific binding modes and affinities depending on the amino acid sequence. Evaluating the binding behavior of a plethora of heme-peptide complexes resulted in the implementation of a prediction tool (SeqD-HBM) for heme-binding motifs, which eventually led and will perspectively lead to the identification and verification of so far unknown heme-regulated proteins. This systematic approach resulted in a broader picture of the alternative functions of heme as a regulator of proteins. However, knowledge on heme regulation of proteins is still a bottomless barrel that leaves much scope for future research and development.
Collapse
|
10
|
Dent AT, Mouriño S, Huang W, Wilks A. Post-transcriptional regulation of the Pseudomonas aeruginosa heme assimilation system (Has) fine-tunes extracellular heme sensing. J Biol Chem 2018; 294:2771-2785. [PMID: 30593511 DOI: 10.1074/jbc.ra118.006185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/27/2018] [Indexed: 01/23/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that utilizes heme as a primary iron source within the host. Extracellular heme is sensed via a heme assimilation system (has) that encodes an extracytoplasmic function (ECF) σ factor system. Herein, using has deletion mutants, quantitative PCR analyses, and immunoblotting, we show that the activation of the σ factor HasI requires heme release from the hemophore HasAp to the outer-membrane receptor HasR. Using RT-PCR and 5'-RACE, we observed that following transcriptional activation of the co-transcribed hasRAp, it is further processed into specific mRNAs varying in stability. We noted that the processing and variation in stability of the hasAp and hasR mRNAs in response to heme provide a mechanism for differential expression from co-transcribed genes. The multiple layers of post-transcriptional regulation of the ECF signaling cascade, including the previously reported post-transcriptional regulation of HasAp by the heme metabolites biliverdin IXβ and IXδ, allow fine-tuning of the cell-surface signaling system in response to extracellular heme levels. We hypothesize that the complex post-transcriptional regulation of the Has system provides P. aeruginosa an advantage in colonizing a variety of physiological niches in the host.
Collapse
Affiliation(s)
- Alecia T Dent
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Susana Mouriño
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Weiliang Huang
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Angela Wilks
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
11
|
About the use of 13C- 13C NOESY in bioinorganic chemistry. J Inorg Biochem 2018; 192:25-32. [PMID: 30562672 DOI: 10.1016/j.jinorgbio.2018.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
Herein we present examples of the application of the 13C-13C Nuclear Overhauser Effect Spectroscopy (NOESY) experiment to the study of metalloproteins and we critically discuss the advantages and drawbacks of the method as a function of the molecular size of the investigated systems. The contribution is focused on a few case studies among the systems analyzed in the group of the corresponding author. The 13C-13C NOESY experiment represents the gold standard for the observation of NMR signals in the 480 kDa ferritin nanocage and for monitoring its interaction with iron. By decreasing the protein size, the experiment progressively loses its importance as a tool for the detection of the complete spin pattern of the amino acid side chains, as exemplified by nickel-dependent regulatory protein, NikR (molecular mass of the homo-tetramer ~80 kDa). In very small proteins, such as mitochondrial cytochrome c (12.3 kDa), we are only able to detect cross peaks between adjacent 13C nuclei; this feature turned out to be useful for the assignment of the 13C core resonances of the porphyrin in a uniformly enriched heme.
Collapse
|
12
|
Cahill MA, Medlock AE. Thoughts on interactions between PGRMC1 and diverse attested and potential hydrophobic ligands. J Steroid Biochem Mol Biol 2017; 171:11-33. [PMID: 28104494 DOI: 10.1016/j.jsbmb.2016.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 01/05/2023]
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is located in many different subcellular locations with many different attested and probably location-specific functions. PGRMC1 was recently identified in the mitochondrial outer membrane where it interacts with ferrochelatase, the last enzyme in the heme synthetic pathway. It has been proposed that PGRMC1 may act as a chaperone to shuttle newly synthesized heme from the mitochondrion to cytochrome P450 (cyP450) enzymes. Here we consider potential roles that PGRMC1 may play in transferring heme, and other small hydrophobic ligands such as cholesterol and steroids, between the hydrophobic compartment of the membrane lipid bilayer interior to aqueous proteins, and perhaps to the membranes of other organelles. We review the synthesis and roles of especially PGRMC1- and cyP450-bound heme, the sources and transport of cholesterol, the involvement of PGRMC1 in cholesterol regulation, and the production of the first progestogen pregnenolone from cholesterol. We also show by clustering by inferred models of evolution (CLIME) analysis that PGRMC1 and related proteins exhibit co-evolution with a series of cyP450 enzymes, as well as a group of mitochondrial proteins lacking in several parasitic protist groups. Altogether, PGRMC1 is implicated with important roles in sterol synthesis and energy regulation that are dispensable in certain parasites. Some novel hypothetical models for PGRMC1 function are proposed to direct future investigative research.
Collapse
Affiliation(s)
- Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, 30602-1111, USA
| |
Collapse
|
13
|
Brewitz HH, Hagelueken G, Imhof D. Structural and functional diversity of transient heme binding to bacterial proteins. Biochim Biophys Acta Gen Subj 2017; 1861:683-697. [DOI: 10.1016/j.bbagen.2016.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 11/27/2022]
|
14
|
Piel RB, Shiferaw MT, Vashisht AA, Marcero JR, Praissman JL, Phillips JD, Wohlschlegel JA, Medlock AE. A Novel Role for Progesterone Receptor Membrane Component 1 (PGRMC1): A Partner and Regulator of Ferrochelatase. Biochemistry 2016; 55:5204-17. [PMID: 27599036 DOI: 10.1021/acs.biochem.6b00756] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heme is an iron-containing cofactor essential for multiple cellular processes and fundamental activities such as oxygen transport. To better understand the means by which heme synthesis is regulated during erythropoiesis, affinity purification coupled with mass spectrometry (MS) was performed to identify putative protein partners interacting with ferrochelatase (FECH), the terminal enzyme in the heme biosynthetic pathway. Both progesterone receptor membrane component 1 (PGRMC1) and progesterone receptor membrane component 2 (PGRMC2) were identified in these experiments. These interactions were validated by reciprocal affinity purification followed by MS analysis and immunoblotting. The interaction between PGRMC1 and FECH was confirmed in vitro and in HEK 293T cells, a non-erythroid cell line. When cells that are recognized models for erythroid differentiation were treated with a small molecule inhibitor of PGRMC1, AG-205, there was an observed decrease in the level of hemoglobinization relative to that of untreated cells. In vitro heme transfer experiments showed that purified PGRMC1 was able to donate heme to apo-cytochrome b5. In the presence of PGRMC1, in vitro measured FECH activity decreased in a dose-dependent manner. Interactions between FECH and PGRMC1 were strongest for the conformation of FECH associated with product release, suggesting that PGRMC1 may regulate FECH activity by controlling heme release. Overall, the data illustrate a role for PGRMC1 in regulating heme synthesis via interactions with FECH and suggest that PGRMC1 may be a heme chaperone or sensor.
Collapse
Affiliation(s)
- Robert B Piel
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Mesafint T Shiferaw
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California , Los Angeles, California 90095-1737, United States
| | - Jason R Marcero
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Jeremy L Praissman
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - John D Phillips
- Hematology Division, University of Utah School of Medicine , Salt Lake City, Utah 84132, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California , Los Angeles, California 90095-1737, United States
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
15
|
Draganova EB, Adrian SA, Lukat-Rodgers GS, Keutcha CS, Schmitt MP, Rodgers KR, Dixon DW. Corynebacterium diphtheriae HmuT: dissecting the roles of conserved residues in heme pocket stabilization. J Biol Inorg Chem 2016; 21:875-86. [PMID: 27561288 DOI: 10.1007/s00775-016-1386-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022]
Abstract
The heme-binding protein HmuT is part of the Corynebacterium diphtheriae heme uptake pathway and is responsible for the delivery of heme to the HmuUV ABC transporter. HmuT binds heme with a conserved His/Tyr heme axial ligation motif. Sequence alignment revealed additional conserved residues of potential importance for heme binding: R237, Y272 and M292. In this study, site-directed mutations at these three positions provided insight into the nature of axial heme binding to the protein and its effect on the thermal stability of the heme-loaded protein fold. UV-visible absorbance, resonance Raman (rR) and thermal unfolding experiments, along with collision-induced dissociation electrospray ionization mass spectrometry, were used to probe the contributions of each mutated residue to the stability of ϖ HmuT. Thermal unfolding and rR experiments revealed that R237 and M292 are important residues for heme binding. Arginine 237 is a hydrogen-bond donor to the phenol side chain of Y235, which serves as an axial heme ligand. Methionine 292 serves a supporting structural role, favoring the R237 hydrogen-bond donation, which elicits a, heretofore, unobserved modulating influence on π donation by the axial tyrosine ligand in the heme carbonyl complex, HmuT-CO.
Collapse
Affiliation(s)
| | - Seth A Adrian
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Cyrianne S Keutcha
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Michael P Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Dabney W Dixon
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA.
| |
Collapse
|
16
|
Brewitz HH, Goradia N, Schubert E, Galler K, Kühl T, Syllwasschy B, Popp J, Neugebauer U, Hagelueken G, Schiemann O, Ohlenschläger O, Imhof D. Heme interacts with histidine- and tyrosine-based protein motifs and inhibits enzymatic activity of chloramphenicol acetyltransferase from Escherichia coli. Biochim Biophys Acta Gen Subj 2016; 1860:1343-53. [PMID: 27015758 DOI: 10.1016/j.bbagen.2016.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND The occurrence of free organismal heme can either contribute to serious diseases or beneficially regulate important physiological processes. Research on transient binding to heme-regulatory motifs (HRMs) in proteins resulted in the discovery of numerous Cys-based, especially Cys-Pro (CP)-based motifs. However, the number of His- and Tyr-based protein representatives is comparatively low so far, which is in part caused by a lack of information regarding recognition and binding requirements. METHODS To understand transient heme association with such motifs on the molecular level, we analyzed a set of 44 His- and Tyr-based peptides using UV-vis, resonance Raman, cw-EPR and 2D NMR spectroscopy. RESULTS We observed similarities with Cys-based sequences with respect to their spectral behavior and complex geometries. However, significant differences regarding heme-binding affinities and sequence requirements were also found. Compared to Cys-based peptides and proteins all sequences investigated structurally display increased flexibility already in the free-state, which is also maintained upon heme association. The acquired knowledge allowed for identification and prediction of a His-based HRM in chloramphenicol acetyltransferase from Escherichia coli as potential heme-regulated protein. The enzyme's heme-interacting capability was studied, and revealed an inhibitory effect of heme on the protein activity with an IC50 value of 57.69±4.37 μM. CONCLUSIONS It was found that heme inhibits a bacterial protein carrying a potential His-based HRM. This finding brings microbial proteins more into focus of regulation by free heme. GENERAL SIGNIFICANCE Understanding transient binding and regulatory action of heme with bacterial proteins, being crucial for survival, might promote new strategies for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Hans Henning Brewitz
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, 53119 Bonn, Germany
| | - Nishit Goradia
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Erik Schubert
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Kerstin Galler
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Toni Kühl
- Centre National de la Recherche Scientifique (CNRS), Bioénergetique et Ingenierie des Protéines, UMR 7281, 13009 Marseille, France
| | - Benjamin Syllwasschy
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, 53119 Bonn, Germany
| | - Jürgen Popp
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, 07745 Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Gregor Hagelueken
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | | | - Diana Imhof
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, 53119 Bonn, Germany.
| |
Collapse
|
17
|
Sekine Y, Tanzawa T, Tanaka Y, Ishimori K, Uchida T. Cytoplasmic Heme-Binding Protein (HutX) from Vibrio cholerae Is an Intracellular Heme Transport Protein for the Heme-Degrading Enzyme, HutZ. Biochemistry 2016; 55:884-93. [DOI: 10.1021/acs.biochem.5b01273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yukari Sekine
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takehito Tanzawa
- Graduate
School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshikazu Tanaka
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- PRESTO, Japan Science and Technology Agency, Sapporo 060-0810, Japan
| | - Koichiro Ishimori
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takeshi Uchida
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
18
|
Bennett EH, Akbas N, Adrian SA, Lukat-Rodgers GS, Collins DP, Dawson JH, Allen CE, Schmitt MP, Rodgers KR, Dixon DW. Heme Binding by Corynebacterium diphtheriae HmuT: Function and Heme Environment. Biochemistry 2015; 54:6598-609. [PMID: 26478504 PMCID: PMC4943319 DOI: 10.1021/acs.biochem.5b00666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The heme uptake pathway (hmu) of Corynebacterium diphtheriae utilizes multiple proteins to bind and transport heme into the cell. One of these proteins, HmuT, delivers heme to the ABC transporter HmuUV. In this study, the axial ligation of the heme in ferric HmuT is probed by examination of wild-type (WT) HmuT and a series of conserved heme pocket residue mutants, H136A, Y235A, and M292A. Characterization by UV-visible, resonance Raman, and magnetic circular dichroism spectroscopies indicates that H136 and Y235 are the axial ligands in ferric HmuT. Consistent with this assignment of axial ligands, ferric WT and H136A HmuT are difficult to reduce while Y235A is reduced readily in the presence of dithionite. The FeCO Raman shifts in WT, H136A, and Y235A HmuT-CO complexes provide further evidence of the axial ligand assignments. Additionally, these frequencies provide insight into the nonbonding environment of the heme pocket. Ferrous Y235A and the Y235A-CO complex reveal that the imidazole of H136 exists in two forms, one neutral and one with imidazolate character, consistent with a hydrogen bond acceptor on the H136 side of the heme. The ferric fluoride complex of Y235A reveals the presence of at least one hydrogen bond donor on the Y235 side of the heme. Hemoglobin utilization assays showed that the axial Y235 ligand is required for heme uptake in HmuT.
Collapse
Affiliation(s)
| | - Neval Akbas
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| | - Seth A. Adrian
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Gudrun S. Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Daniel P. Collins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - John H. Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Courtni E. Allen
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Dabney W. Dixon
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| |
Collapse
|
19
|
Brewitz HH, Kühl T, Goradia N, Galler K, Popp J, Neugebauer U, Ohlenschläger O, Imhof D. Role of the Chemical Environment beyond the Coordination Site: Structural Insight into Fe(III) Protoporphyrin Binding to Cysteine-Based Heme-Regulatory Protein Motifs. Chembiochem 2015; 16:2216-24. [PMID: 26260099 DOI: 10.1002/cbic.201500331] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/17/2022]
Abstract
The importance of heme as a transient regulatory molecule has become a major focus in biochemical research. However, detailed information about the molecular basis of transient heme-protein interactions is still missing. We report an in-depth structural analysis of Fe(III) heme-peptide complexes by a combination of UV/Vis, resonance Raman, and 2D-NMR spectroscopic methods. The experiments reveal insights both into the coordination to the central iron ion and into the spatial arrangement of the amino acid sequences interacting with protoporphyrin IX. Cysteine-based peptides display different heme-binding behavior as a result of the existence of ordered, partially ordered, and disordered conformations in the heme-unbound state. Thus, the heme-binding mode is clearly the consequence of the nature and flexibility of the residues surrounding the iron ion coordinating cysteine. Our analysis reveals scenarios for transient binding of heme to heme-regulatory motifs in proteins and demonstrates that a thorough structural analysis is required to unravel how heme alters the structure and function of a particular protein.
Collapse
Affiliation(s)
- Hans Henning Brewitz
- Department of Pharmaceutical Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119, Bonn, Germany
| | - Toni Kühl
- Centre National de la Recherche Scientifique (CNRS), Laboratoire BIP-UMR 7281, 31, chemin Joseph Aiguier, Batiment IM, 13009, Marseille, France
| | - Nishit Goradia
- Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Kerstin Galler
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany.,Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Jürgen Popp
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany.,Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany.,Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Oliver Ohlenschläger
- Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Diana Imhof
- Department of Pharmaceutical Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119, Bonn, Germany.
| |
Collapse
|
20
|
Kaluka D, Batabyal D, Chiang BY, Poulos TL, Yeh SR. Spectroscopic and mutagenesis studies of human PGRMC1. Biochemistry 2015; 54:1638-47. [PMID: 25675345 DOI: 10.1021/bi501177e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is a 25 kDa protein with an N-terminal transmembrane domain and a putative C-terminal cytochrome b5 domain. Heme-binding activity of PGRMC1 has been shown in various homologues of PGRMC1. Although the general definition of PGRMC1 is as a progesterone receptor, progesterone-binding activity has not been directly demonstrated in any of the purified PGRMC1 proteins fully loaded with heme. Here, we show that the human homologue of PGRMC1 (hPGRMC1) binds heme in a five-coordinate (5C) high-spin (HS) configuration, with an axial tyrosinate ligand, likely Y95. The negatively charged tyrosinate ligand leads to a relatively low redox potential of approximately -331 mV. The Y95C or Y95F mutation dramatically reduces the ability of the protein to bind heme, supporting the assignment of the axial heme ligand to Y95. On the other hand, the Y95H mutation retains ∼90% of the heme-binding activity. The heme in Y95H is also 5CHS, but it has a hydroxide axial ligand, conceivably stabilized by the engineered-in H95 via an H-bond; CO binding to the distal ligand-binding site leads to an exchange of the axial ligand to a histidine, possibly H95. We show that progesterone binds to hPGRMC1 and introduces spectral changes that manifest conformational changes to the heme. Our data offer the first direct evidence supporting progesterone-binding activity of PGRMC1.
Collapse
Affiliation(s)
- Daniel Kaluka
- Department of Physiology and Biophysics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | | | | | | | | |
Collapse
|
21
|
Piccioli M, Turano P. Transient iron coordination sites in proteins: Exploiting the dual nature of paramagnetic NMR. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Kuznets G, Vigonsky E, Weissman Z, Lalli D, Gildor T, Kauffman SJ, Turano P, Becker J, Lewinson O, Kornitzer D. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin. PLoS Pathog 2014; 10:e1004407. [PMID: 25275454 PMCID: PMC4183699 DOI: 10.1371/journal.ppat.1004407] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022] Open
Abstract
Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7−/− mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope. Candida albicans, a commensal fungus of human mucosal surfaces in healthy individuals, is a common cause of superficial infections, as well as of life-threatening systemic infections in individuals suffering from a reduced immune function. As a systemic pathogen, it has to cope with a scarcity of specific nutrients in the host environment, chief among them iron. To overcome this iron limitation, C. albicans is able to extract iron from heme and hemoglobin, the largest iron pools in the human body, via a pathway that involves endocytosis into the cell. Here we show that efficient heme uptake relies on a family of extracellularly-anchored proteins that serve as heme receptors, two of which, at least, are required for efficient heme utilization. Our data suggest the existence of a relay system that transfers heme from one protein to the next across the cell envelope, explaining the requirement for multiple heme receptors for efficient heme-iron utilization. This study extends our understanding of the pathway of host heme utilization by fungal pathogens, and provides new insights into the question of how nutrients such as heme cross the fungal cell wall.
Collapse
Affiliation(s)
- Galit Kuznets
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Elena Vigonsky
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Ziva Weissman
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Daniela Lalli
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Tsvia Gildor
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Sarah J. Kauffman
- Microbiology Department, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Paola Turano
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Jeffrey Becker
- Microbiology Department, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Oded Lewinson
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Daniel Kornitzer
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
- * E-mail:
| |
Collapse
|
23
|
Mokry DZ, Nadia-Albete A, Johnson MK, Lukat-Rodgers GS, Rodgers KR, Lanzilotta WN. Spectroscopic evidence for a 5-coordinate oxygenic ligated high spin ferric heme moiety in the Neisseria meningitidis hemoglobin binding receptor. Biochim Biophys Acta Gen Subj 2014; 1840:3058-66. [PMID: 24968987 DOI: 10.1016/j.bbagen.2014.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND For many pathogenic microorganisms, iron acquisition represents a significant stress during the colonization of a mammalian host. Heme is the single most abundant source of soluble iron in this environment. While the importance of iron assimilation for nearly all organisms is clear, the mechanisms by which heme is acquired and utilized by many bacterial pathogens, even those most commonly found at sites of infection, remain poorly understood. METHODS An alternative protocol for the production and purification of the outer membrane hemoglobin receptor (HmbR) from the pathogen Neisseria meningitidis has facilitated a biophysical characterization of this outer membrane transporter by electronic absorption, circular dichroism, electron paramagnetic resonance, and resonance Raman techniques. RESULTS HmbR co-purifies with 5-coordinate high spin ferric heme bound. The heme binding site accommodates exogenous imidazole as a sixth ligand, which results in a 6-coordinate, low-spin ferric species. Both the 5- and 6-coordinate complexes are reduced by sodium hydrosulfite. Four HmbR variants with a modest decrease in binding efficiency for heme have been identified (H87C, H280A, Y282A, and Y456C). These findings are consistent with an emerging paradigm wherein the ferric iron center of bound heme is coordinated by a tyrosine ligand. CONCLUSION In summary, this study provides the first spectroscopic characterization for any heme or iron transporter in Neisseria meningitidis, and suggests a coordination environment heretofore unobserved in a TonB-dependent hemin transporter. GENERAL SIGNIFICANCE A detailed understanding of the nutrient acquisition pathways in common pathogens such as N. meningitidis provides a foundation for new antimicrobial strategies.
Collapse
Affiliation(s)
- David Z Mokry
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | - Michael K Johnson
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - William N Lanzilotta
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
24
|
Kumar R, Matsumura H, Lovell S, Yao H, Rodríguez JC, Battaile KP, Moënne-Loccoz P, Rivera M. Replacing the axial ligand tyrosine 75 or its hydrogen bond partner histidine 83 minimally affects hemin acquisition by the hemophore HasAp from Pseudomonas aeruginosa. Biochemistry 2014; 53:2112-25. [PMID: 24625274 PMCID: PMC3985777 DOI: 10.1021/bi500030p] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemophores from Pseudomonas aeruginosa (HasAp), Serratia marcescens (HasAsm), and Yersinia pestis (HasAyp) bind hemin between two loops. One of the loops harbors conserved axial ligand Tyr75 (Y75 loop) in all three structures, whereas the second loop (H32 loop) contains axial ligand His32 in HasAp and HasAsm, but a noncoordinating Gln32 in HasAyp. Binding of hemin to the Y75 loop of HasAp or HasAsm causes a large rearrangement of the H32 loop that allows His32 coordination. The Q32 loop in apo-HasAyp is already in the closed conformation, such that binding of hemin to the conserved Y75 loop occurs with minimal structural rearrangement and without coordinative interaction with the Q32 loop. In this study, structural and spectroscopic investigations of the hemophore HasAp were conducted to probe (i) the role of the conserved Tyr75 loop in hemin binding and (ii) the proposed requirement of the His83-Tyr75 hydrogen bond to allow the coordination of hemin by Tyr75. High-resolution crystal structures of H83A holo-HasAp obtained at pH 6.5 (0.89 Å) and pH 5.4 (1.25 Å) show that Tyr75 remains coordinated to the heme iron, and that a water molecule can substitute for Nδ of His83 to interact with the Oη atom of Tyr75, likely stabilizing the Tyr75-Fe interaction. Nuclear magnetic resonance spectroscopy revealed that in apo-Y75A and apo-H83A HasAp, the Y75 loop is disordered, and that disorder propagates to nearby elements of secondary structure, suggesting that His83 Nδ-Tyr75 Oη interaction is important to the organization of the Y75 loop in apo-HasA. Kinetic analysis of hemin loading conducted via stopped-flow UV-vis and rapid-freeze-quench resonance Raman shows that both mutants load hemin with biphasic kinetic parameters that are not significantly dissimilar from those previously observed for wild-type HasAp. When the structural and kinetic data are taken together, a tentative model emerges, which suggests that HasA hemophores utilize hydrophobic, π-π stacking, and van der Waals interactions to load hemin efficiently, while axial ligation likely functions to slow hemin release, thus allowing the hemophore to meet the challenge of capturing hemin under inhospitable conditions and delivering it selectively to its cognate receptor.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Chemistry, University of Kansas , Multidisciplinary Research Building, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ciofi-Baffoni S, Gallo A, Muzzioli R, Piccioli M. The IR-¹⁵N-HSQC-AP experiment: a new tool for NMR spectroscopy of paramagnetic molecules. JOURNAL OF BIOMOLECULAR NMR 2014; 58:123-8. [PMID: 24414179 DOI: 10.1007/s10858-013-9810-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/27/2013] [Indexed: 05/22/2023]
Abstract
A crucial factor for the understanding of structure-function relationships in metalloproteins is the identification of NMR signals from residues surrounding the metal cofactor. When the latter is paramagnetic, the NMR information in the proximity of the metal center may be scarce, because fast nuclear relaxation quenches signal intensity and coherence transfer efficiency. To identify residues at a short distance from a paramagnetic center, we developed a modified version of the ¹⁵N-HSQC experiment where (1) an inversion recovery filter is added prior to HSQC, (2) the INEPT period has been optimized according to fast relaxation of interested spins, (3) the inverse INEPT has been eliminated and signals acquired as antiphase doublets. The experiment has been successfully tested on a human [Fe₂S₂] protein which is involved in the biogenesis of iron-sulfur proteins. Thirteen HN resonances, unobserved with conventional HSQC experiments, could be identified. The structural arrangement of the protein scaffold in the proximity of the Fe/S cluster is fundamental to comprehend the molecular processes responsible for the transfer of Fe/S groups in the iron-sulfur protein assembly machineries.
Collapse
Affiliation(s)
- Simone Ciofi-Baffoni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | | | | | | |
Collapse
|
26
|
Contreras H, Chim N, Credali A, Goulding CW. Heme uptake in bacterial pathogens. Curr Opin Chem Biol 2014; 19:34-41. [PMID: 24780277 DOI: 10.1016/j.cbpa.2013.12.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 11/30/2022]
Abstract
Iron is an essential nutrient for the survival of organisms. Bacterial pathogens possess specialized pathways to acquire heme from their human hosts. In this review, we present recent structural and biochemical data that provide mechanistic insights into several bacterial heme uptake pathways, encompassing the sequestration of heme from human hemoproteins to secreted or membrane-associated bacterial proteins, the transport of heme across bacterial membranes, and the degradation of heme within the bacterial cytosol to liberate iron. The pathways for heme transport into the bacterial cytosol are divergent, harboring non-homologous protein sequences, novel structures, varying numbers of proteins, and different mechanisms. Congruously, the breakdown of heme within the bacterial cytosol by sequence-divergent proteins releases iron and distinct degradation products.
Collapse
Affiliation(s)
- Heidi Contreras
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Nicholas Chim
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Alfredo Credali
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, UCI, Irvine, CA 92697, USA.
| |
Collapse
|
27
|
NMR investigations of nitrophorin 2 belt side chain effects on heme orientation and seating of native N-terminus NP2 and NP2(D1A). J Biol Inorg Chem 2013; 19:577-93. [PMID: 24292244 DOI: 10.1007/s00775-013-1063-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022]
Abstract
Nitrophorin 2 (NP2), one of the four NO-storing and NO-releasing proteins found in the saliva of the blood-sucking bug Rhodnius prolixus, has a more ruffled heme and a high preference for a particular heme orientation (B) compared with nitrophorin 1 and nitrophorin 4, which show not a preference (A to B ratio of approximately 1:1), suggesting that it fits more tightly in the β-barrel protein. In this work we have prepared a series of "belt" mutants of NP2(D1A) and (ΔM0)NP2 aimed at reducing the size of aromatic or other residues that surround the heme, and investigated them as the high-spin aqua and low-spin N-methylimidazole complexes. The belt mutants included Y38A, Y38F, F42A, F66A, Y85A, Y85F, Y104A, I120T, and a triple mutant of NP2(D1A), the F42L, L106F, I120T mutant. Although I120 has been mainly considered to be a distal pocket residue, CδH3 of I120 lies directly above the heme 3-methyl, at 2.67 Å, of heme orientation B, or the 2-vinyl of A, and it thus plays a role as a belt mutant, a role that turns out to be extremely important in creating the strong favoring of the B heme orientation [A to B ratio of 1:14 for NP2(D1A) or 1:12 for (ΔM0)NP2]. The results show that the 1D (1)H NMR spectra of the high-spin forms are quite sensitive to changes in the shape of the heme binding cavity. The single mutation I120T eliminates the favorability of the B heme orientation by producing a heme A to B orientation ratio of 1:1, whereas the single mutation F42A reverses the heme orientation from an A to B ratio of 1:14 seen for NP2(D1A) to 10:1 for NP2(D1A,F42A). The most extreme ratio was found for the triple mutant of NP2(D1A), NP2(D1A,F42L,L105F,I120T), in which the A to B ratio is approximately 25:1, a ΔG change of about -3.5 kcal/mol or -14.1 kJ/mol with respect to NP2(D1A). The seating of the heme is modified as well in that mutant and in several others, by rotations of the heme by up to 4° from the seating observed in NP2(D1A), in order to relieve steric interactions between a vinyl β-carbon and a protein side chain, or to fill a cavity created by replacing a large protein side chain by a much smaller one; the latter was observed for all tyrosine to alanine mutants. These relatively small changes in seating have a measurable effect on the NMR spectra of the mutants, but are indeed minor in terms of overall seating and reactivity of the NP2(D1A) protein. The (1)H NMR resonances of the hemin substituents of the low-spin N-methylimidazole complexes of NP2(D1A,F42L,L105F,I120T) as well as NP2(D1A,I120T), NP2(D1A,Y104A), and NP2(D1A,F42A) have been assigned using natural abundance (1)H{(13)C} heteronuclear multiple quantum correlation and (1)H-(1)H nuclear Overhauser effect spectroscopy spectra.
Collapse
|
28
|
Cacciatore S, Piccioli M, Turano P. Electron self-exchange of cytochrome c measured via13C detected protonless NMR. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424612501404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of protonless 13C′–13C′ EXSY (COCO-EXSY) is proposed here to measure electron self-exchange rates. The experiment is compared to the commonly employed 1H and 15N EXSY experiments using as a reference system human cytochrome c. In COCO-EXSY, the exchange peaks are stronger than in the other experiments with respect to the self peaks and their intensity is less dependent on the choice of the EXSY mixing time. The use of 13C directed detection may be essential for all those cases where T2 relaxation is detrimental, as in the case of proteins containing highly paramagnetic metal centers, or rotating slowly in solution, or where the amide signals are difficult to detect due to chemical or conformational exchange. The proposed experiment has a general applicability and can be used to monitor exchange phenomena different from electron self-exchange.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto, Fiorentino 50019, Italy
| | - Mario Piccioli
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto, Fiorentino 50019, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto, Fiorentino 50019, Italy
| |
Collapse
|
29
|
Abriata LA, Zaballa ME, Berry RE, Yang F, Zhang H, Walker FA, Vila AJ. Electron spin density on the axial His ligand of high-spin and low-spin nitrophorin 2 probed by heteronuclear NMR spectroscopy. Inorg Chem 2013; 52:1285-95. [PMID: 23327568 PMCID: PMC3594510 DOI: 10.1021/ic301805y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structure of heme proteins is exquisitely tuned by the interaction of the iron center with the axial ligands. NMR studies of paramagnetic heme systems have been focused on the heme signals, but signals from the axial ligands have been rather difficult to detect and assign. We report an extensive assignment of the (1)H, (13)C and (15)N resonances of the axial His ligand in the NO-carrying protein nitrophorin 2 (NP2) in the paramagnetic high-spin and low-spin forms, as well as in the diamagnetic NO complex. We find that the high-spin protein has σ spin delocalization to all atoms in the axial His57, which decreases in size as the number of bonds between Fe(III) and the atom in question increases, except that within the His57 imidazole ring the contact shifts are a balance between positive σ and negative π contributions. In contrast, the low-spin protein has π spin delocalization to all atoms of the imidazole ring. Our strategy, adequately combined with a selective residue labeling scheme, represents a straightforward characterization of the electron spin density in heme axial ligands.
Collapse
Affiliation(s)
- Luciano A Abriata
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, Rosario 2000, Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|