1
|
Imam M, Ji J, Zhang Z, Yan S. Targeting the initiator to activate both ferroptosis and cuproptosis for breast cancer treatment: progress and possibility for clinical application. Front Pharmacol 2025; 15:1493188. [PMID: 39867656 PMCID: PMC11757020 DOI: 10.3389/fphar.2024.1493188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function. The accumulation of iron and copper ions triggers distinct cell death pathways, known as ferroptosis and cuproptosis, respectively. Ferroptosis is characterized by iron-dependent lipid peroxidation, while cuproptosis involves copper-induced oxidative stress. They are increasingly recognized as promising targets for the development of anticancer drugs. Recently, compelling evidence demonstrated that the interplay between ferroptosis and cuproptosis plays a crucial role in regulating breast cancer progression. This review elucidates the converging pathways of ferroptosis and cuproptosis in breast cancer. Moreover, we examined the value of genes associated with ferroptosis and cuproptosis in the clinical diagnosis and treatment of breast cancer, mainly outlining the potential for a co-targeting approach. Lastly, we delve into the current challenges and limitations of this strategy. In general, this review offers an overview of the interaction between ferroptosis and cuproptosis in breast cancer, offering valuable perspectives for further research and clinical treatment.
Collapse
Affiliation(s)
| | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Liu X, Zhang W, Wei S, Liang X, Luo B. Targeting cuproptosis with nano material: new way to enhancing the efficacy of immunotherapy in colorectal cancer. Front Pharmacol 2024; 15:1451067. [PMID: 39691393 PMCID: PMC11649426 DOI: 10.3389/fphar.2024.1451067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Colorectal cancer has emerged as one of the predominant malignant tumors globally. Immunotherapy, as a novel therapeutic methodology, has opened up new possibilities for colorectal cancer patients. However, its actual clinical efficacy requires further enhancement. Copper, as an exceptionally crucial trace element, can influence various signaling pathways, gene expression, and biological metabolic processes in cells, thus playing a critical role in the pathogenesis of colorectal cancer. Recent studies have revealed that cuproptosis, a novel mode of cell death, holds promise to become a potential target to overcome resistance to colorectal cancer immunotherapy. This shows substantial potential in the combination treatment of colorectal cancer. Conveying copper into tumor cells via a nano-drug delivery system to induce cuproptosis of colorectal cancer cells could offer a potential strategy for eliminating drug-resistant colorectal cancer cells and vastly improving the efficacy of immunotherapy while ultimately destroy colorectal tumors. Moreover, combining the cuproptosis induction strategy with other anti-tumor approaches such as photothermal therapy, photodynamic therapy, and chemodynamic therapy could further enhance its therapeutic effect. This review aims to illuminate the practical significance of cuproptosis and cuproptosis-inducing nano-drugs in colorectal cancer immunotherapy, and scrutinize the current challenges and limitations of this methodology, thereby providing innovative thoughts and references for the advancement of cuproptosis-based colorectal cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Xiangdong Liu
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
| | - Wanqiu Zhang
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
| | - Shaozhong Wei
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjun Liang
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
- Department of Abdominal Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Luo
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
| |
Collapse
|
4
|
Mao C, Wang M, Zhuang L, Gan B. Metabolic cell death in cancer: ferroptosis, cuproptosis, disulfidptosis, and beyond. Protein Cell 2024; 15:642-660. [PMID: 38428031 PMCID: PMC11365558 DOI: 10.1093/procel/pwae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
Cell death resistance represents a hallmark of cancer. Recent studies have identified metabolic cell death as unique forms of regulated cell death resulting from an imbalance in the cellular metabolism. This review discusses the mechanisms of metabolic cell death-ferroptosis, cuproptosis, disulfidptosis, lysozincrosis, and alkaliptosis-and explores their potential in cancer therapy. Our review underscores the complexity of the metabolic cell death pathways and offers insights into innovative therapeutic avenues for cancer treatment.
Collapse
Affiliation(s)
- Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
5
|
Song L, Nguyen V, Xie J, Jia S, Chang CJ, Uchio E, Zi X. ATPase Copper Transporting Beta (ATP7B) Is a Novel Target for Improving the Therapeutic Efficacy of Docetaxel by Disulfiram/Copper in Human Prostate Cancer. Mol Cancer Ther 2024; 23:854-863. [PMID: 38417139 PMCID: PMC11150099 DOI: 10.1158/1535-7163.mct-23-0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Docetaxel has been the standard first-line chemotherapy for lethal metastatic prostate cancer (mPCa) since 2004, but resistance to docetaxel treatment is common. The molecular mechanisms of docetaxel resistance remain largely unknown and could be amenable to interventions that mitigate resistance. We have recently discovered that several docetaxel-resistant mPCa cell lines exhibit lower uptake of cellular copper and uniquely express higher levels of a copper exporter protein ATP7B. Knockdown of ATP7B by silencing RNAs (siRNA) sensitized docetaxel-resistant mPCa cells to the growth-inhibitory and apoptotic effects of docetaxel. Importantly, deletions of ATP7B in human mPCa tissues predict significantly better survival of patients after their first chemotherapy than those with wild-type ATP7B (P = 0.0006). In addition, disulfiram (DSF), an FDA-approved drug for the treatment of alcohol dependence, in combination with copper, significantly enhanced the in vivo antitumor effects of docetaxel in a docetaxel-resistant xenograft tumor model. Our analyses also revealed that DSF and copper engaged with ATP7B to decrease protein levels of COMM domain-containing protein 1 (COMMD1), S-phase kinase-associated protein 2 (Skp2), and clusterin and markedly increase protein expression of cyclin-dependent kinase inhibitor 1 (p21/WAF1). Taken together, our results indicate a copper-dependent nutrient vulnerability through ATP7B exporter in docetaxel-resistant prostate cancer for improving the therapeutic efficacy of docetaxel.
Collapse
Affiliation(s)
- Liankun Song
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Vyvyan Nguyen
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Jun Xie
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Shang Jia
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Christopher J. Chang
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Edward Uchio
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| |
Collapse
|
6
|
Ruturaj, Mishra M, Saha S, Maji S, Rodriguez-Boulan E, Schreiner R, Gupta A. Regulation of the apico-basolateral trafficking polarity of the homologous copper-ATPases ATP7A and ATP7B. J Cell Sci 2024; 137:jcs261258. [PMID: 38032054 PMCID: PMC10729821 DOI: 10.1242/jcs.261258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The homologous P-type copper-ATPases (Cu-ATPases) ATP7A and ATP7B are the key regulators of copper homeostasis in mammalian cells. In polarized epithelia, upon copper treatment, ATP7A and ATP7B traffic from the trans-Golgi network (TGN) to basolateral and apical membranes, respectively. We characterized the sorting pathways of Cu-ATPases between TGN and the plasma membrane and identified the machinery involved. ATP7A and ATP7B reside on distinct domains of TGN in limiting copper conditions, and in high copper, ATP7A traffics to basolateral membrane, whereas ATP7B traverses common recycling, apical sorting and apical recycling endosomes en route to apical membrane. Mass spectrometry identified regulatory partners of ATP7A and ATP7B that include the adaptor protein-1 complex. Upon knocking out pan-AP-1, sorting of both Cu-ATPases is disrupted. ATP7A loses its trafficking polarity and localizes on both apical and basolateral surfaces in high copper. By contrast, ATP7B loses TGN retention but retained its trafficking polarity to the apical domain, which became copper independent. Using isoform-specific knockouts, we found that the AP-1A complex provides directionality and TGN retention for both Cu-ATPases, whereas the AP-1B complex governs copper-independent trafficking of ATP7B solely. Trafficking phenotypes of Wilson disease-causing ATP7B mutants that disrupts putative ATP7B-AP1 interaction further substantiates the role of AP-1 in apical sorting of ATP7B.
Collapse
Affiliation(s)
- Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Monalisa Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Soumyendu Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
7
|
Maji S, Pirozzi M, Ruturaj, Pandey R, Ghosh T, Das S, Gupta A. Copper-independent lysosomal localisation of the Wilson disease protein ATP7B. Traffic 2023; 24:587-609. [PMID: 37846526 DOI: 10.1111/tra.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN. ATP7B constitutively distributes itself between the sub-domain of the TGN with a lower pH and the TGN-proximal lysosomal compartments. The presence of ATP7B on TGN-lysosome colocalising sites upon Golgi disruption suggested a possible exchange of ATP7B directly between the TGN and its proximal lysosomes. Manipulating lysosomal positioning significantly alters the localisation of ATP7B in the cell. Contrary to previous understanding, we found that upon copper chelation in a copper-replete hepatocyte, ATP7B is not retrieved back to TGN from peripheral lysosomes; rather, ATP7B recycles to these TGN-proximal lysosomes to initiate the next cycle of copper transport. We report a hitherto unknown copper-independent lysosomal localisation of ATP7B and the importance of TGN-proximal lysosomes but not TGN as the terminal acceptor organelle of ATP7B in its retrograde pathway.
Collapse
Affiliation(s)
- Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | | | - Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Raviranjan Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Tamal Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Santanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
8
|
Gromadzka G, Bendykowska M, Przybyłkowski A. Wilson’s Disease—Genetic Puzzles with Diagnostic Implications. Diagnostics (Basel) 2023; 13:diagnostics13071287. [PMID: 37046505 PMCID: PMC10093728 DOI: 10.3390/diagnostics13071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Introduction: Wilson’s disease (WND) is an autosomal recessive disorder of copper metabolism. The WND gene is ATP7B, located on chromosome 13. WND is characterized by high clinical variability, which causes diagnostic difficulties. (2) Methods: The PubMed, Science Direct, and Wiley Online Library medical databases were reviewed using the following phrases: “Wilson’s disease”, “ATP7B genotype”, “genotype-phenotype”, “epigenetics”, “genetic modifiers”, and their combinations. Publications presenting the results of experimental and clinical studies, as well as review papers, were selected, which concerned: (i) the diversity of genetic strategies and tests used in WND diagnosis; (ii) the difficulties of genetic diagnosis, including uncertainty as to the pathogenicity of variants; (iii) genetic counseling; (iv) phenotypic effects of ATP7B variants in patients with WND and in heterozygous carriers (HzcWND); (v) genetic and epigenetics factors modifying the clinical picture of the disease. (3) Results and conclusions: The genetic diagnosis of WND is carried out using a variety of strategies and tests. Due to the large number of known variants in the ATP7B gene (>900), the usefulness of genetic tests in routine diagnostics is still relatively small and even analyses performed using the most advanced technologies, including next-generation sequencing, require additional tests, including biochemical evidence of abnormal copper metabolism, to confirm the diagnosis of WND. Pseudodominant inheritance, the presence of three various pathogenic variants in the same patient, genotypes indicating the possibility of segmental uniparental disomy, have been reported. Genotype–phenotype relationships in WND are complex. The ATP7B genotype, to some extent, determines the clinical picture of the disease, but other genetic and epigenetic modifiers are also relevant.
Collapse
|
9
|
Paul R, Banerjee S, Sen S, Dubey P, Maji S, Bachhawat AK, Datta R, Gupta A. A novel leishmanial copper P-type ATPase plays a vital role in parasite infection and intracellular survival. J Biol Chem 2021; 298:101539. [PMID: 34958799 PMCID: PMC8800121 DOI: 10.1016/j.jbc.2021.101539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022] Open
Abstract
Copper (Cu) is essential for all life forms; however, in excess, it becomes toxic. Toxic properties of Cu are known to be utilized by host species against various pathogenic invasions. Leishmania, in both free-living and intracellular forms, exhibits appreciable tolerance toward Cu stress. While determining the mechanism of Cu-stress evasion employed by Leishmania, we identified and characterized a hitherto unknown Cu-ATPase in Leishmania major and established its role in parasite survival in host macrophages. This novel L. major Cu-ATPase, LmATP7, exhibits homology with its orthologs at multiple motifs. In promastigotes, LmATP7 primarily localized at the plasma membrane. We also show that LmATP7 exhibits Cu-dependent expression patterns and complements Cu transport in a Cu-ATPase-deficient yeast strain. Promastigotes overexpressing LmATP7 exhibited higher survival upon Cu stress, indicating efficacious Cu export compared with Wt and heterozygous LmATP7 knockout parasites. We further explored macrophage–Leishmania interactions with respect to Cu stress. We found that Leishmania infection triggers upregulation of major mammalian Cu exporter, ATP7A, in macrophages, and trafficking of ATP7A from the trans-Golgi network to endolysosomes in macrophages harboring amastigotes. Simultaneously, in Leishmania, we observed a multifold increase in LmATP7 transcripts as the promastigote becomes established in macrophages and morphs to the amastigote form. Finally, overexpressing LmATP7 in parasites increases amastigote survivability within macrophages, whereas knocking it down reduces survivability drastically. Mice injected in their footpads with an LmATP7-overexpressing strain showed significantly larger lesions and higher amastigote loads as compared with controls and knockouts. These data establish the role of LmATP7 in parasite infectivity and intramacrophagic survivability.
Collapse
Affiliation(s)
- Rupam Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India
| | - Sourav Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India
| | - Samarpita Sen
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India
| | - Pratiksha Dubey
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector 81, Manauli, PO, Sahibzada Ajit Singh Nagar, Punjab-140306, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India
| | - Anand K Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector 81, Manauli, PO, Sahibzada Ajit Singh Nagar, Punjab-140306, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India.
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India.
| |
Collapse
|
10
|
Hyre A, Casanova-Hampton K, Subashchandrabose S. Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus 2021; 9:eESP00142020. [PMID: 34125582 PMCID: PMC8669021 DOI: 10.1128/ecosalplus.esp-0014-2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Copper is an essential micronutrient that also exerts toxic effects at high concentrations. This review summarizes the current state of knowledge on copper handling and homeostasis systems in Escherichia coli and Salmonella enterica. We describe the mechanisms by which transcriptional regulators, efflux pumps, detoxification enzymes, metallochaperones, and ancillary copper response systems orchestrate cellular response to copper stress. E. coli and S. enterica are important pathogens of humans and animals. We discuss the critical role of copper during killing of these pathogens by macrophages and in nutritional immunity at the bacterial-pathogen-host interface. In closing, we identify opportunities to advance our understanding of the biological roles of copper in these model enteric bacterial pathogens.
Collapse
Affiliation(s)
- Amanda Hyre
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Kaitlin Casanova-Hampton
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
11
|
Lutsenko S. Dynamic and cell-specific transport networks for intracellular copper ions. J Cell Sci 2021; 134:272704. [PMID: 34734631 DOI: 10.1242/jcs.240523] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Copper (Cu) homeostasis is essential for the development and function of many organisms. In humans, Cu misbalance causes serious pathologies and has been observed in a growing number of diseases. This Review focuses on mammalian Cu(I) transporters and highlights recent studies on regulation of intracellular Cu fluxes. Cu is used by essential metabolic enzymes for their activity. These enzymes are located in various intracellular compartments and outside cells. When cells differentiate, or their metabolic state is otherwise altered, the need for Cu in different cell compartments change, and Cu has to be redistributed to accommodate these changes. The Cu transporters SLC31A1 (CTR1), SLC31A2 (CTR2), ATP7A and ATP7B regulate Cu content in cellular compartments and maintain Cu homeostasis. Increasing numbers of regulatory proteins have been shown to contribute to multifaceted regulation of these Cu transporters. It is becoming abundantly clear that the Cu transport networks are dynamic and cell specific. The comparison of the Cu transport machinery in the liver and intestine illustrates the distinct composition and dissimilar regulatory response of their Cu transporters to changing Cu levels.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Johns Hopkins Medical Institutes, Department of Physiology, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Greco M, Spinelli CC, De Riccardis L, Buccolieri A, Di Giulio S, Musarò D, Pagano C, Manno D, Maffia M. Copper Dependent Modulation of α-Synuclein Phosphorylation in Differentiated SHSY5Y Neuroblastoma Cells. Int J Mol Sci 2021; 22:ijms22042038. [PMID: 33670800 PMCID: PMC7922547 DOI: 10.3390/ijms22042038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Copper (Cu) dyshomeostasis plays a pivotal role in several neuropathologies, such as Parkinson's disease (PD). Metal accumulation in the central nervous system (CNS) could result in loss-of-function of proteins involved in Cu metabolism and redox cycling, generating reactive oxygen species (ROS). Moreover, neurodegenerative disorders imply the presence of an excess of misfolded proteins known to lead to neuronal damage. In PD, Cu accumulates in the brain, binds α-synuclein, and initiates its aggregation. We assessed the correlation between neuronal differentiation, Cu homeostasis regulation, and α-synuclein phosphorylation. At this purpose, we used differentiated SHSY5Y neuroblastoma cells to reproduce some of the characteristics of the dopaminergic neurons. Here, we reported that differentiated cells expressed a significantly higher amount of a copper transporter protein 1 (CTR1), increasing the copper uptake. Cells also showed a significantly more phosphorylated form of α-synuclein, further increased by copper treatment, without modifications in α-synuclein levels. This effect depended on the upregulation of the polo-like kinase 2 (PLK2), whereas the levels of the relative protein phosphatase 2A (PP2A) remained unvaried. No changes in the oxidative state of the cells were identified. The Cu dependent alteration of α-synuclein phosphorylation pattern might potentially offer new opportunities for clinical intervention.
Collapse
Affiliation(s)
- Marco Greco
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.G.); (D.M.)
| | - Chiara Carmela Spinelli
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Lidia De Riccardis
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Alessandro Buccolieri
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Simona Di Giulio
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Claudia Pagano
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Daniela Manno
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.G.); (D.M.)
| | - Michele Maffia
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
- Correspondence: ; Tel.: +39-0832-298670
| |
Collapse
|
13
|
Roy S, McCann CJ, Ralle M, Ray K, Ray J, Lutsenko S, Jayakanthan S. Analysis of Wilson disease mutations revealed that interactions between different ATP7B mutants modify their properties. Sci Rep 2020; 10:13487. [PMID: 32778786 PMCID: PMC7418023 DOI: 10.1038/s41598-020-70366-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/16/2020] [Indexed: 01/05/2023] Open
Abstract
Wilson disease (WD) is an autosomal-recessive disorder caused by mutations in the copper (Cu)-transporter ATP7B. Thus far, studies of WD mutations have been limited to analysis of ATP7B mutants in the homozygous states. However, the majority of WD patients are compound-heterozygous, and how different mutations on two alleles impact ATP7B properties is unclear. We characterized five mutations identified in Indian WD patients, first by expressing each alone and then by co-expressing two mutants with dissimilar properties. Mutations located in the regulatory domains of ATP7B-A595T, S1362A, and S1426I-do not affect ATP7B targeting to the trans-Golgi network (TGN) but reduce its Cu-transport activity. The S1362A mutation also inhibits Cu-dependent trafficking from the TGN. The G1061E and G1101R mutations, which are located within the ATP-binding domain, cause ATP7B retention in the endoplasmic reticulum, inhibit Cu-transport, and lower ATP7B protein abundance. Co-expression of the A595T and G1061E mutations, which mimics the compound-heterozygous state of some WD patients, revealed an interaction between these mutants that altered their intracellular localization and trafficking under both low and high Cu conditions. These findings highlight the need to study WD variants in both the homozygous and compound-heterozygous states to better understand the genotype-phenotype correlations and incomplete penetrance observed in WD.
Collapse
Affiliation(s)
- Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institute, Baltimore, MD, USA. .,S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| | - Courtney J McCann
- Department of Physiology, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Martina Ralle
- Oregon Health and Science University, Portland, OR, USA
| | - Kunal Ray
- ATGC Diagnostics Private Ltd, Kolkata, India
| | - Jharna Ray
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institute, Baltimore, MD, USA.
| | - Samuel Jayakanthan
- Department of Physiology, Johns Hopkins Medical Institute, Baltimore, MD, USA
| |
Collapse
|
14
|
Solovyev N, Ala A, Schilsky M, Mills C, Willis K, Harrington CF. Biomedical copper speciation in relation to Wilson’s disease using strong anion exchange chromatography coupled to triple quadrupole inductively coupled plasma mass spectrometry. Anal Chim Acta 2020; 1098:27-36. [DOI: 10.1016/j.aca.2019.11.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
|
15
|
Lacombe M, Jaquinod M, Belmudes L, Couté Y, Ramus C, Combes F, Burger T, Mintz E, Barthelon J, Leroy V, Poujois A, Lachaux A, Woimant F, Brun V. Comprehensive and comparative exploration of the Atp7b−/− mouse plasma proteome. Metallomics 2020; 12:249-258. [DOI: 10.1039/c9mt00225a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wilson's disease (WD) is a rare genetic disease caused by mutations in the ATP7B gene. In this study, we used MS-based proteomics to explore the plasma proteome of the Atp7b−/− mouse, a genetic and phenotypic model for WD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Justine Barthelon
- Clinique Universitaire d'Hépato-gastroentérologie
- Centre Hospitalier Universitaire Grenoble
- Grenoble
- France
| | - Vincent Leroy
- Clinique Universitaire d'Hépato-gastroentérologie
- Centre Hospitalier Universitaire Grenoble
- Grenoble
- France
| | - Aurélia Poujois
- National Reference Centre for Wilson's Disease
- AP-HP
- Lariboisière University Hospital
- Paris
- France
| | - Alain Lachaux
- National Reference Centre for Wilson's Disease
- Hôpital Femme Mère Enfant
- Hospices Civils de Lyon
- Lyon
- France
| | - France Woimant
- National Reference Centre for Wilson's Disease
- AP-HP
- Lariboisière University Hospital
- Paris
- France
| | | |
Collapse
|
16
|
Isah MB, Goldring JPD, Coetzer THT. Expression and copper binding properties of the N-terminal domain of copper P-type ATPases of African trypanosomes. Mol Biochem Parasitol 2019; 235:111245. [PMID: 31751595 DOI: 10.1016/j.molbiopara.2019.111245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Copper is an essential component of cuproproteins but can be toxic to cells, therefore copper metabolism is very carefully regulated within cells. To gain insight into trypanosome copper metabolism, Trypanosoma spp. genomic databases were screened for the presence of copper-containing and -transporting proteins. Among other genes encoding copper-binding proteins, a copper-transporting P-type ATPase (CuATPase) gene was identified. Sequence and phylogenetic analyses suggest that the gene codes for a Cu+ transporter belonging to the P1B-1 ATPase subfamily that has an N-terminal domain with copper binding motifs. The N-terminal cytosolic domains of the proteins from Trypanosoma congolense and Trypanosoma brucei brucei were recombinantly expressed in Escherichia coli as maltose binding protein (MBP) fusion proteins. These N-terminal domains bound copper in vitro and within E. coli cells, more than the control MBP fusion partner alone. The copper binding properties of the recombinant proteins were further confirmed when they inhibited copper catalysed ascorbate oxidation. Native CuATPases were detected in a western blot of lysates of T. congolense IL3000 and T. b. brucei ILTat1.1 bloodstream form parasites using affinity purified IgY antibodies against N-terminal domain peptides. The CuATPase was also detected by immunofluorescence in T. b. brucei bloodstream form parasites where it was associated with subcellular vesicles. In conclusion, Trypanosoma species express a copper-transporting P1B-1-type ATPase and together with other copper-binding proteins identified in the genomes of kinetoplastid parasites may constitute potential targets for anti-trypanosomal drug discovery.
Collapse
Affiliation(s)
- Murtala Bindawa Isah
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - J P Dean Goldring
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Theresa H T Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
17
|
Abstract
Copper is a redox-active transition metal ion required for the function of many essential human proteins. For biosynthesis of proteins coordinating copper, the metal may bind before, during or after folding of the polypeptide. If the metal binds to unfolded or partially folded structures of the protein, such coordination may modulate the folding reaction. The molecular understanding of how copper is incorporated into proteins requires descriptions of chemical, thermodynamic, kinetic and structural parameters involved in the formation of protein-metal complexes. Because free copper ions are toxic, living systems have elaborate copper-transport systems that include particular proteins that facilitate efficient and specific delivery of copper ions to target proteins. Therefore, these pathways become an integral part of copper protein folding in vivo. This review summarizes biophysical-molecular in vitro work assessing the role of copper in folding and stability of copper-binding proteins as well as protein-protein copper exchange reactions between human copper transport proteins. We also describe some recent findings about the participation of copper ions and copper proteins in protein misfolding and aggregation reactions in vitro.
Collapse
|
18
|
Shanmugavel KP, Wittung-Stafshede P. Copper relay path through the N-terminus of Wilson disease protein, ATP7B. Metallomics 2019; 11:1472-1480. [PMID: 31321400 DOI: 10.1039/c9mt00147f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In human cells, copper (Cu) ions are transported by the cytoplasmic Cu chaperone Atox1 to the Wilson disease protein (ATP7B) in the Golgi for loading of Cu-dependent enzymes. ATP7B is a membrane-spanning protein which, in contrast to non-mammalian homologs, has six cytoplasmic metal-binding domains (MBDs). To address the reason for multiple MBDs, we introduced strategic mutations in which one, two or three MBDs had been blocked for Cu binding via cysteine-to-serine mutations (but all six MBDs are present in all) in a yeast system that probes Cu flow through Atox1 and ATP7B. The results, combined with earlier work, support a mechanistic model in which MBD1-3 forms a regulatory unit of ATP7B Cu transport. Cu delivery via Atox1 to this unit, followed by loading of Cu in MBD3, promotes release of inhibitory interactions. Whereas the Cu site in MBD4 can be mutated without a large effect, an intact Cu site in either MBD5 or MBD6 is required for Cu transport. All MBDs, expressed as single-domain proteins, can replace Atox1 and deliver Cu to full-length ATP7B. However, only MBD6 can deliver Cu to truncated ATP7B where all six MBDs are removed, suggesting a docking role for this structural unit.
Collapse
Affiliation(s)
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
19
|
Murillo O, Moreno D, Gazquez C, Barberia M, Cenzano I, Navarro I, Uriarte I, Sebastian V, Arruebo M, Ferrer V, Bénichou B, Combal JP, Prieto J, Hernandez-Alcoceba R, Gonzalez Aseguinolaza G. Liver Expression of a MiniATP7B Gene Results in Long-Term Restoration of Copper Homeostasis in a Wilson Disease Model in Mice. Hepatology 2019; 70:108-126. [PMID: 30706949 DOI: 10.1002/hep.30535] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022]
Abstract
Gene therapy with an adeno-associated vector (AAV) serotype 8 encoding the human ATPase copper-transporting beta polypeptide (ATP7B) complementary DNA (cDNA; AAV8-ATP7B) is able to provide long-term copper metabolism correction in 6-week-old male Wilson disease (WD) mice. However, the size of the genome (5.2 kilobases [kb]) surpasses the optimal packaging capacity of the vector, which resulted in low-yield production; in addition, further analyses in WD female mice and in animals with a more advanced disease revealed reduced therapeutic efficacy, as compared to younger males. To improve efficacy of the treatment, an optimized shorter AAV vector was generated, in which four out of six metal-binding domains (MBDs) were deleted from the ATP7B coding sequence, giving rise to the miniATP7B protein (Δ57-486-ATP7B). In contrast to AAV8-ATP7B, AAV8-miniATP7B could be produced at high titers and was able to restore copper homeostasis in 6- and 12-week-old male and female WD mice. In addition, a recently developed synthetic AAV vector, AAVAnc80, carrying the miniATP7B gene was similarly effective at preventing liver damage, restoring copper homeostasis, and improving survival 1 year after treatment. Transduction of approximately 20% of hepatocytes was sufficient to normalize copper homeostasis, suggesting that corrected hepatocytes are acting as a sink to eliminate excess of copper. Importantly, administration of AAVAnc80-miniATP7B was safe in healthy mice and did not result in copper deficiency. Conclusion: In summary, gene therapy using an optimized therapeutic cassette in different AAV systems provides long-term correction of copper metabolism regardless of sex or stage of disease in a clinically relevant WD mouse model. These results pave the way for the implementation of gene therapy in WD patients.
Collapse
Affiliation(s)
- Oihana Murillo
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Daniel Moreno
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Cristina Gazquez
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Miren Barberia
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Itziar Cenzano
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Iñigo Navarro
- Department of Chemistry and Soil Sciences, University of Navarra, IdisNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, FIMA, University of Navarra, IdisNA, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Pamplona, Spain
| | - Victor Sebastian
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, and Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-, Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, and Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-, Madrid, Spain
| | | | | | | | - Jesus Prieto
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Gloria Gonzalez Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain.,Vivet Therapeutics SAS, Paris, France
| |
Collapse
|
20
|
Wang X, Guo L, Zhang S, Chen Y, Chen YT, Zheng B, Sun J, Qian Y, Chen Y, Yan B, Lu W. Copper Sulfide Facilitates Hepatobiliary Clearance of Gold Nanoparticles through the Copper-Transporting ATPase ATP7B. ACS NANO 2019; 13:5720-5730. [PMID: 30973228 PMCID: PMC8325778 DOI: 10.1021/acsnano.9b01154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Metallic gold (Au) nanoparticles have great potential for a wide variety of biomedical applications. Yet, slow clearance of Au nanoparticles significantly hinders their clinical translation. Herein, we describe a strategy of utilizing the endogenous copper (Cu) clearance to improve the elimination of Au nanoparticles. Our mechanistic study reveals that a Cu-transporting P-type ATPase, ATP7B, mediates the exocytosis of CuS nanoparticles into bile canaliculi for their rapid hepatobiliary excretion. The efflux of CuS nanoparticles is adopted to facilitate the hepatobiliary clearance of Au nanoparticles through CuS-Au conjugation. Using two different CuS-Au nanoconjugates, we demonstrate that CuS increases the biliary Au excretion of CuS-Au nanospheres or CuS-Au nanorods in mice or rats in comparison to that of their respective unconjugated Au nanoparticles postintravenous injection. The current CuS-Au conjugation approach provides a feasible strategy to enhance the hepatobiliary clearance of Au nanoparticles that may be applicable to various structures.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Liangran Guo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sihang Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Yuan Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Yi-Tzai Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Binbin Zheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jingwen Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Yuyi Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Yixin Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
21
|
Schmidt K, Ralle M, Schaffer T, Jayakanthan S, Bari B, Muchenditsi A, Lutsenko S. ATP7A and ATP7B copper transporters have distinct functions in the regulation of neuronal dopamine-β-hydroxylase. J Biol Chem 2018; 293:20085-20098. [PMID: 30341172 DOI: 10.1074/jbc.ra118.004889] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/17/2018] [Indexed: 01/06/2023] Open
Abstract
The copper (Cu) transporters ATPase copper-transporting alpha (ATP7A) and ATPase copper-transporting beta (ATP7B) are essential for the normal function of the mammalian central nervous system. Inactivation of ATP7A or ATP7B causes the severe neurological disorders, Menkes disease and Wilson disease, respectively. In both diseases, Cu imbalance is associated with abnormal levels of the catecholamine-type neurotransmitters dopamine and norepinephrine. Dopamine is converted to norepinephrine by dopamine-β-hydroxylase (DBH), which acquires its essential Cu cofactor from ATP7A. However, the role of ATP7B in catecholamine homeostasis is unclear. Here, using immunostaining of mouse brain sections and cultured cells, we show that DBH-containing neurons express both ATP7A and ATP7B. The two transporters are located in distinct cellular compartments and oppositely regulate the export of soluble DBH from cultured neuronal cells under resting conditions. Down-regulation of ATP7A, overexpression of ATP7B, and pharmacological Cu depletion increased DBH retention in cells. In contrast, ATP7B inactivation elevated extracellular DBH. Proteolytic processing and the specific activity of exported DBH were not affected by changes in ATP7B levels. These results establish distinct regulatory roles for ATP7A and ATP7B in neuronal cells and explain, in part, the lack of functional compensation between these two transporters in human disorders of Cu imbalance.
Collapse
Affiliation(s)
- Katharina Schmidt
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Martina Ralle
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - Thomas Schaffer
- the Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Samuel Jayakanthan
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Bilal Bari
- the Department of Neuroscience, Brain Science Institute, Johns Hopkins University, Baltimore, Maryland 21205
| | - Abigael Muchenditsi
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Svetlana Lutsenko
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205,.
| |
Collapse
|
22
|
Mass spectrometric studies of Cu(I)-binding to the N-terminal domains of B. subtilis CopA and influence of bacillithiol. J Inorg Biochem 2018; 190:24-30. [PMID: 30342352 DOI: 10.1016/j.jinorgbio.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 11/20/2022]
Abstract
CopA is a Cu(I)-exporting transmembrane P1B-type ATPase from Bacillus subtilis. It contains two N-terminal cytoplasmic domains, CopAab, which bind Cu(I) with high affinity and to form higher-order complexes with multiple Cu(I) ions. To determine the precise nature of these species, electrospray ionisation mass spectrometry (ESI-MS) under non-denaturing conditions was employed. Up to 1 Cu per CopAab resulted in Cu coordination to one or both CopAab domains. At >1 Cu/CopAab, two distinct dimeric charge state envelopes were observed, corresponding to distinct conformations, each with Cu6(CopAab)2 as its major form. The influence of the physiologically relevant low molecular weight thiol bacillithiol (BSH) on Cu(I)-binding to CopAab was assessed. Dimeric CopAab persisted in the presence of BSH, with previously undetected Cu7(CopAab)2 and Cu6(CopAab)2(BSH) forms apparent.
Collapse
|
23
|
Ponnandai Shanmugavel K, Petranovic D, Wittung-Stafshede P. Probing functional roles of Wilson disease protein (ATP7B) copper-binding domains in yeast. Metallomics 2018; 9:981-988. [PMID: 28653724 DOI: 10.1039/c7mt00101k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
After Ctr1-mediated uptake into human cells, copper (Cu) ions are transported by the cytoplasmic Cu chaperone Atox1 to the Wilson disease protein (ATP7B) in the Golgi network. Cu transfer occurs via direct protein-protein interactions and leads to incorporation of Cu into Cu-dependent enzymes. ATP7B is a large multi-domain membrane-spanning protein which, in contrast to homologs, has six cytoplasmic metal-binding domains (MBDs). The reason for multiple MBDs is proposed to be indirect modulation of activity but mechanistic studies of full-length ATP7B are limited. We here developed a system that probes Cu flow through human Atox1 and ATP7B proteins when expressed in yeast. Using this assay, we assessed the roles of the different MBDs in ATP7B and found that the presence of the most N-terminal MBD increased, whereas the third MBD decreased, overall ATP7B-mediated Cu transport activity. Upon removal of all MBDs in ATP7B, the ability to transport Cu disappeared. The designed system can be expanded to include other yeast viability parameters and will be a useful tool for further mechanistic insights on human Cu transport as well as diseases involving Cu imbalance.
Collapse
Affiliation(s)
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden. and Novo Nordisk Foundation, Center for Biosustainability, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
24
|
Tadini-Buoninsegni F, Sordi G, Smeazzetto S, Natile G, Arnesano F. Effect of cisplatin on the transport activity of P II-type ATPases. Metallomics 2018. [PMID: 28636017 DOI: 10.1039/c7mt00100b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cisplatin (cis-diamminedichlorido-Pt(ii)) is extensively used as a chemotherapeutic agent against various types of tumors. However, cisplatin administration causes serious side effects, including nephrotoxicity, ototoxicity and neurotoxicity. It has been shown that cisplatin can interact with P-type ATPases, e.g., Cu+-ATPases (ATP7A and ATP7B) and Na+,K+-ATPase. Cisplatin-induced inhibition of Na+,K+-ATPase has been related to the nephrotoxic effect of the drug. To investigate the inhibitory effects of cisplatin on the pumping activity of PII-type ATPases, electrical measurements were performed on sarcoplasmic reticulum Ca2+-ATPase (SERCA) and Na+,K+-ATPase embedded in vesicles/membrane fragments adsorbed on a solid-supported membrane. We found that cisplatin inhibits SERCA and Na+,K+-ATPase only when administered without a physiological reducing agent (GSH); in contrast, inhibition was also observed in the case of Cu+-ATPases in the presence of 1 mM GSH. Our results indicate that cisplatin is a much stronger inhibitor of SERCA (with an IC50 value of 1.3 μM) than of Na+,K+-ATPase (with an IC50 value of 11.1 μM); moreover, cisplatin inhibition of Na+,K+-ATPase is reversible, whereas it is irreversible in the case of SERCA. In the absence of a physiological substrate, while Cu+-ATPases are able to translocate cisplatin, SERCA and Na+,K+-ATPase do not perform ATP-dependent cisplatin displacement.
Collapse
|
25
|
Gupta A, Das S, Ray K. A glimpse into the regulation of the Wilson disease protein, ATP7B, sheds light on the complexity of mammalian apical trafficking pathways. Metallomics 2018; 10:378-387. [PMID: 29473088 DOI: 10.1039/c7mt00314e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Wilson disease (WD), a Mendelian disorder of copper metabolism caused by mutations in the ATP7B gene, manifests a large spectrum of phenotypic variability. This phenomenon of extensive symptom variation is not frequently associated with a monogenic disorder. We hypothesize that the phenotypic variability in WD is primarily driven by the variations in interacting proteins that regulate the ATP7B function and localization in the cell. Based on existing literature, we delineated a potential molecular mechanism for ATP7B mediated copper transport in the milieu of its interactome, its dysfunction in WD and the resulting variability in the phenotypic manifestation. Understanding the copper-induced apical trafficking of ATP7B also significantly contributes to the appreciation of the complexities of the ligand-induced transport pathway. We believe that this holistic view of WD will pave the way for a better opportunity for rational drug design and therapeutics.
Collapse
Affiliation(s)
- Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata (IISER K), Mohanpur 741246, West Bengal, India.
| | - Santanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata (IISER K), Mohanpur 741246, West Bengal, India.
| | - Kunal Ray
- Academy of Scientific & Innovative Research (AcSIR), CSIR - HRDC Campus, Ghaziabad, Uttar Pradesh - 201002, India
| |
Collapse
|
26
|
Ariöz C, Li Y, Wittung-Stafshede P. The six metal binding domains in human copper transporter, ATP7B: molecular biophysics and disease-causing mutations. Biometals 2017; 30:823-840. [PMID: 29063292 PMCID: PMC5684295 DOI: 10.1007/s10534-017-0058-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022]
Abstract
Wilson Disease (WD) is a hereditary genetic disorder, which coincides with a dysfunctional copper (Cu) metabolism caused by mutations in ATP7B, a membrane-bound P1B-type ATPase responsible for Cu export from hepatic cells. The N-terminal part (~ 600 residues) of the multi-domain 1400-residue ATP7B constitutes six metal binding domains (MBDs), each of which can bind a copper ion, interact with other ATP7B domains as well as with different proteins. Although the ATP7B's MBDs have been investigated in vitro and in vivo intensively, it remains unclear how these domains modulate overall structure, dynamics, stability and function of ATP7B. The presence of six MBDs is unique to mammalian ATP7B homologs, and many WD causing missense mutations are found in these domains. Here, we have summarized previously reported in vitro biophysical data on the MBDs of ATP7B and WD point mutations located in these domains. Besides the demonstration of where the research field stands today, this review showcasts the need for further biophysical investigation about the roles of MBDs in ATP7B function. Molecular mechanisms of ATP7B are important not only in the development of new WD treatment but also for other aspects of human physiology where Cu transport plays a role.
Collapse
Affiliation(s)
- Candan Ariöz
- Department of Biology and Biological Engineering, Division of Chemical Biology, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| | - Yaozong Li
- Department of Chemistry, Umeå University, Kemihuset A, Linnaeus väg 10, 901 87 Umeå, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Division of Chemical Biology, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| |
Collapse
|
27
|
Yu CH, Yang N, Bothe J, Tonelli M, Nokhrin S, Dolgova NV, Braiterman L, Lutsenko S, Dmitriev OY. The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics. J Biol Chem 2017; 292:18169-18177. [PMID: 28900031 DOI: 10.1074/jbc.m117.811752] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/01/2017] [Indexed: 01/28/2023] Open
Abstract
The human transporter ATP7B delivers copper to the biosynthetic pathways and maintains copper homeostasis in the liver. Mutations in ATP7B cause the potentially fatal hepatoneurological disorder Wilson disease. The activity and intracellular localization of ATP7B are regulated by copper, but the molecular mechanism of this regulation is largely unknown. We show that the copper chaperone Atox1, which delivers copper to ATP7B, and the group of the first three metal-binding domains (MBD1-3) are central to the activity regulation of ATP7B. Atox1-Cu binding to ATP7B changes domain dynamics and interactions within the MBD1-3 group and activates ATP hydrolysis. To understand the mechanism linking Atox1-MBD interactions and enzyme activity, we have determined the MBD1-3 conformational space using small angle X-ray scattering and identified changes in MBD dynamics caused by apo-Atox1 and Atox1-Cu by solution NMR. The results show that copper transfer from Atox1 decreases domain interactions within the MBD1-3 group and increases the mobility of the individual domains. The N-terminal segment of MBD1-3 was found to interact with the nucleotide-binding domain of ATP7B, thus physically coupling the domains involved in copper binding and those involved in ATP hydrolysis. Taken together, the data suggest a regulatory mechanism in which Atox1-mediated copper transfer activates ATP7B by releasing inhibitory constraints through increased freedom of MBD1-3 motions.
Collapse
Affiliation(s)
- Corey H Yu
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Nan Yang
- the Department of Physiology, Johns Hopkins Medical University, Baltimore, Maryland 21205, and
| | - Jameson Bothe
- the National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, Wisconsin 53706
| | - Marco Tonelli
- the National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, Wisconsin 53706
| | - Sergiy Nokhrin
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Natalia V Dolgova
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Lelita Braiterman
- the Department of Physiology, Johns Hopkins Medical University, Baltimore, Maryland 21205, and
| | - Svetlana Lutsenko
- the Department of Physiology, Johns Hopkins Medical University, Baltimore, Maryland 21205, and
| | - Oleg Y Dmitriev
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,
| |
Collapse
|
28
|
Jayakanthan S, Braiterman LT, Hasan NM, Unger VM, Lutsenko S. Human copper transporter ATP7B (Wilson disease protein) forms stable dimers in vitro and in cells. J Biol Chem 2017; 292:18760-18774. [PMID: 28842499 DOI: 10.1074/jbc.m117.807263] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/21/2017] [Indexed: 11/06/2022] Open
Abstract
ATP7B is a copper-transporting P1B-type ATPase (Cu-ATPase) with an essential role in human physiology. Mutations in ATP7B cause the potentially fatal Wilson disease, and changes in ATP7B expression are observed in several cancers. Despite its physiologic importance, the biochemical information about ATP7B remains limited because of a complex multidomain organization of the protein. By analogy with the better characterized prokaryotic Cu-ATPases, ATP7B is assumed to be a single-chain monomer. We show that in eukaryotic cells, human ATP7B forms dimers that can be purified following solubilization. Deletion of the four N-terminal metal-binding domains, characteristic for human ATP7B, does not disrupt dimerization, i.e. the dimer interface is formed by the domains that are conserved among Cu-ATPases. Unlike the full-length ATP7B, which is targeted to the trans-Golgi network, 1-4ΔMBD-7B is targeted primarily to vesicles. This result and the analysis of differentially tagged ATP7B variants indicate that the dimeric structure is retained during ATP7B trafficking between the intracellular compartments. Purified dimeric species of 1-4ΔMBD-7B were characterized by a negative stain electron microscopy in the presence of ADP/MgCl2 Single-particle analysis yielded a low-resolution 3D model that provides the first insight into an overall architecture of a human Cu-ATPase, positions of the main domains, and a dimer interface.
Collapse
Affiliation(s)
| | - Lelita T Braiterman
- Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | | | - Vinzenz M Unger
- the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | | |
Collapse
|
29
|
Yu CH, Dolgova NV, Dmitriev OY. Dynamics of the metal binding domains and regulation of the human copper transporters ATP7B and ATP7A. IUBMB Life 2017; 69:226-235. [DOI: 10.1002/iub.1611] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/03/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Corey H. Yu
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK Canada
| | - Natalia V. Dolgova
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK Canada
| | - Oleg Y. Dmitriev
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK Canada
| |
Collapse
|
30
|
Kumar R, Ariöz C, Li Y, Bosaeus N, Rocha S, Wittung-Stafshede P. Disease-causing point-mutations in metal-binding domains of Wilson disease protein decrease stability and increase structural dynamics. Biometals 2016; 30:27-35. [PMID: 27744583 PMCID: PMC5285417 DOI: 10.1007/s10534-016-9976-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 11/25/2022]
Abstract
After cellular uptake, Copper (Cu) ions are transferred from the chaperone Atox1 to the Wilson disease protein (ATP7B) for incorporation into Cu-dependent enzymes in the secretory pathway. Human ATP7B is a large multi-domain membrane-spanning protein which, in contrast to homologues in other organisms, has six similar cytoplasmic metal-binding domains (MBDs). The reason for multiple MBDs is proposed to be indirect modulation of enzymatic activity and it is thus intriguing that point mutations in MBDs can promote Wilson disease. We here investigated, in vitro and in silico, the biophysical consequences of clinically-observed Wilson disease mutations, G85V in MBD1 and G591D in MBD6, incorporated in domain 4. Because G85 and G591 correspond to a conserved Gly found in all MBDs, we introduced the mutations in the well-characterized MBD4. We found the mutations to dramatically reduce the MBD4 thermal stability, shifting the midpoint temperature of unfolding by more than 20 °C. In contrast to wild type MBD4 and MBD4D, MBD4V adopted a misfolded structure with a large β-sheet content at high temperatures. Molecular dynamic simulations demonstrated that the mutations increased backbone fluctuations that extended throughout the domain. Our findings imply that reduced stability and enhanced dynamics of MBD1 or MBD6 is the origin of ATP7B dysfunction in Wilson disease patients with the G85V or G591D mutation.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Candan Ariöz
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Yaozong Li
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Niklas Bosaeus
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Sandra Rocha
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.
| |
Collapse
|
31
|
Abstract
Copper (Cu) is indispensible for growth and development of human organisms. It is required for such fundamental and ubiquitous processes as respiration and protection against reactive oxygen species. Cu also enables catalytic activity of enzymes that critically contribute to the functional identity of many cells and tissues. Pigmentation, production of norepinephrine by the adrenal gland, the key steps in the formation of connective tissue, neuroendocrine signaling, wound healing - all these processes require Cu and depend on Cu entering the secretory pathway. To reach the Cu-dependent enzymes in a lumen of the trans-Golgi network and various vesicular compartments, Cu undertakes a complex journey crossing the extracellular and intracellular membranes and staying firmly on course while traveling in a cytosol. The proteins that assist Cu in this journey by mediating its entry, distribution, and export, have been identified. The accumulating data also indicate that the current model of cellular Cu homeostasis is still a "skeleton" that has to be fleshed out with many new details. This review summarizes recent data on the mechanisms responsible for Cu transfer to the secretory pathway. The emerging new concepts and gaps in our knowledge are discussed.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe street, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Abstract
Copper (Cu) is an essential transition metal providing activity to key enzymes in the human body. To regulate the levels and avoid toxicity, cells have developed elaborate systems for loading these enzymes with Cu. Most Cu-dependent enzymes obtain the metal from the membrane-bound Cu pumps ATP7A/B in the Golgi network. ATP7A/B receives Cu from the cytoplasmic Cu chaperone Atox1 that acts as the cytoplasmic shuttle between the cell membrane Cu importer, Ctr1 and ATP7A/B. Biological, genetic and structural efforts have provided a tremendous amount of information for how the proteins in this pathway work. Nonetheless, basic mechanistic-biophysical questions (such as how and where ATP7A/B receives Cu, how ATP7A/B conformational changes and domain-domain interactions facilitate Cu movement through the membrane, and, finally, how target polypeptides are loaded with Cu in the Golgi) remain elusive. In this perspective, unresolved inquiries regarding ATP7A/B mechanism will be highlighted. The answers are important from a fundamental view, since mechanistic aspects may be common to other metal transport systems, and for medical purposes, since many diseases appear related to Cu transport dysregulation.
Collapse
|
33
|
Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Nat Commun 2016; 7:10640. [PMID: 26879543 PMCID: PMC4757759 DOI: 10.1038/ncomms10640] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022] Open
Abstract
Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.
Collapse
|
34
|
Mondol T, Åden J, Wittung-Stafshede P. Copper binding triggers compaction in N-terminal tail of human copper pump ATP7B. Biochem Biophys Res Commun 2016; 470:663-669. [DOI: 10.1016/j.bbrc.2016.01.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 02/01/2023]
|
35
|
Niemiec MS, Dingeldein APG, Wittung-Stafshede P. Enthalpy-entropy compensation at play in human copper ion transfer. Sci Rep 2015; 5:10518. [PMID: 26013029 PMCID: PMC4444973 DOI: 10.1038/srep10518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/16/2015] [Indexed: 11/09/2022] Open
Abstract
Copper (Cu) is an essential trace element but toxic in free form. After cell uptake, Cu is transferred, via direct protein-protein interactions, from the chaperone Atox1 to the Wilson disease protein (WD) for incorporation into Cu-dependent enzymes. Cu binds to a conserved C(1)XXC(2) motif in the chaperone as well as in each of the cytoplasmic metal-binding domains of WD. Here, we dissect mechanism and thermodynamics of Cu transfer from Atox1 to the fourth metal binding domain of WD. Using chromatography and calorimetry together with single Cys-to-Ala variants, we demonstrate that Cu-dependent protein heterocomplexes require the presence of C(1) but not C(2). Comparison of thermodynamic parameters for mutant versus wild type reactions reveals that the wild type reaction involves strong entropy-enthalpy compensation. This property is explained by a dynamic inter-conversion of Cu-Cys coordinations in the wild type ensemble and may provide functional advantage by protecting against Cu mis-ligation and bypassing enthalpic traps.
Collapse
|
36
|
Braiterman LT, Gupta A, Chaerkady R, Cole RN, Hubbard AL. Communication between the N and C termini is required for copper-stimulated Ser/Thr phosphorylation of Cu(I)-ATPase (ATP7B). J Biol Chem 2015; 290:8803-19. [PMID: 25666620 DOI: 10.1074/jbc.m114.627414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/06/2022] Open
Abstract
The Wilson disease protein ATP7B exhibits copper-dependent trafficking. In high copper, ATP7B exits the trans-Golgi network and moves to the apical domain of hepatocytes where it facilitates elimination of excess copper through the bile. Copper levels also affect ATP7B phosphorylation. ATP7B is basally phosphorylated in low copper and becomes more phosphorylated ("hyperphosphorylated") in elevated copper. The functional significance of hyperphosphorylation remains unclear. We showed that hyperphosphorylation occurs even when ATP7B is restricted to the trans-Golgi network. We performed comprehensive phosphoproteomics of ATP7B in low versus high copper, which revealed that 24 Ser/Thr residues in ATP7B could be phosphorylated, and only four of these were copper-responsive. Most of the phosphorylated sites were found in the N- and C-terminal cytoplasmic domains. Using truncation and mutagenesis, we showed that inactivation or elimination of all six N-terminal metal binding domains did not block copper-dependent, reversible, apical trafficking but did block hyperphosphorylation in hepatic cells. We showed that nine of 15 Ser/Thr residues in the C-terminal domain were phosphorylated. Inactivation of 13 C-terminal phosphorylation sites reduced basal phosphorylation and eliminated hyperphosphorylation, suggesting that copper binding at the N terminus propagates to the ATP7B C-terminal region. C-terminal mutants with either inactivating or phosphomimetic substitutions showed little effect upon copper-stimulated trafficking, indicating that trafficking does not depend on phosphorylation at these sites. Thus, our studies revealed that copper-dependent conformational changes in the N-terminal region lead to hyperphosphorylation at C-terminal sites, which seem not to affect trafficking and may instead fine-tune copper sequestration.
Collapse
Affiliation(s)
| | | | - Raghothama Chaerkady
- the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert N Cole
- the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
37
|
Huang Y, Nokhrin S, Hassanzadeh-Ghassabeh G, Yu CH, Yang H, Barry AN, Tonelli M, Markley JL, Muyldermans S, Dmitriev OY, Lutsenko S. Interactions between metal-binding domains modulate intracellular targeting of Cu(I)-ATPase ATP7B, as revealed by nanobody binding. J Biol Chem 2014; 289:32682-93. [PMID: 25253690 DOI: 10.1074/jbc.m114.580845] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The biologically and clinically important membrane transporters are challenging proteins to study because of their low level of expression, multidomain structure, and complex molecular dynamics that underlies their activity. ATP7B is a copper transporter that traffics between the intracellular compartments in response to copper elevation. The N-terminal domain of ATP7B (N-ATP7B) is involved in binding copper, but the role of this domain in trafficking is controversial. To clarify the role of N-ATP7B, we generated nanobodies that interact with ATP7B in vitro and in cells. In solution NMR studies, nanobodies revealed the spatial organization of N-ATP7B by detecting transient functionally relevant interactions between metal-binding domains 1-3. Modulation of these interactions by nanobodies in cells enhanced relocalization of the endogenous ATP7B toward the plasma membrane linking molecular and cellular dynamics of the transporter. Stimulation of ATP7B trafficking by nanobodies in the absence of elevated copper provides direct evidence for the important role of N-ATP7B structural dynamics in regulation of ATP7B localization in a cell.
Collapse
Affiliation(s)
- Yiping Huang
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Sergiy Nokhrin
- the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Gholamreza Hassanzadeh-Ghassabeh
- the Vrije Universiteit Brussel, Structural Biology Research Center, and Nanobody Service Facility, VIB, 1050 Brussels, Belgium, and
| | - Corey H Yu
- the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Haojun Yang
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Amanda N Barry
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Marco Tonelli
- the Department of Biochemistry, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - John L Markley
- the Department of Biochemistry, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Serge Muyldermans
- the Vrije Universiteit Brussel, Structural Biology Research Center, and
| | - Oleg Y Dmitriev
- the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,
| | - Svetlana Lutsenko
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205,
| |
Collapse
|
38
|
ATP7B activity is stimulated by PKCɛ in porcine liver. Int J Biochem Cell Biol 2014; 54:60-7. [PMID: 25003971 DOI: 10.1016/j.biocel.2014.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 11/22/2022]
Abstract
Copper is necessary for all organisms since it acts as a cofactor in different enzymes, although toxic at high concentrations. ATP7B is one of two copper-transporting ATPases in humans, its vital role being manifested in Wilson disease due to a mutation in the gene that encodes this pump. Our objective has been to determine whether pathways involving protein kinase C (PKC) modulate ATP7B activity. Different isoforms of PKC (α, ɛ, ζ) were found in Golgi-enriched membrane fractions obtained from porcine liver. Cu(I)-ATPase activity was assessed in the presence of different activators and inhibitors of PKC signaling pathways. PMA (10(-8) M), a PKC activator, increased Cu(I)-ATPase activity by 60%, whereas calphostin C and U73122 (PKC and PLC inhibitors, respectively) decreased the activity by 40%. Addition of phosphatase λ decreased activity by 60%, irrespective of pre-incubation with PMA. No changes were detected with 2 μM Ca(2+), whereas PMA plus EGTA increased activity. This enhanced activity elicited by PMA decreased with a specific inhibitor of PKCɛ to levels comparable with those found after phosphatase λ treatment, showing that the ɛ isoform is essential for activation of the enzyme. This regulatory phosphorylation enhanced Vmax without modifying affinities for ATP and copper. It can be concluded that signaling pathways leading to DAG formation and PKCɛ activation stimulate the active transport of copper by ATP7B, thus evidencing a central role for this specific kinase-mediated mechanism in hepatic copper handling.
Collapse
|
39
|
Lalioti V, Hernandez-Tiedra S, Sandoval IV. DKWSLLL, a versatile DXXXLL-type signal with distinct roles in the Cu(+)-regulated trafficking of ATP7B. Traffic 2014; 15:839-60. [PMID: 24831241 DOI: 10.1111/tra.12176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 11/27/2022]
Abstract
In the liver, the P-type ATPase and membrane pump ATP7B plays a crucial role in Cu(+) donation to cuproenzymes and in the elimination of excess Cu(+). ATP7B is endowed with a COOH-cytoplasmic (DE)XXXLL-type traffic signal. We find that accessory (Lys -3, Trp -2, Ser -1 and Leu +2) and canonical (D -4, Leu 0 and Leu +1) residues confer the DKWSLLL signal with the versatility required for the Cu(+)-regulated cycling of ATP7B between the trans-Golgi network (TGN) and the plasma membrane (PM). The separate mutation of these residues caused a disruption of the signal, resulting in different ATP7B distribution phenotypes. These phenotypes indicate the key roles of specific residues at separate steps of ATP7B trafficking, including sorting at the TGN, transport from the TGN to the PM and its endocytosis, and recycling to the TGN and PM. The distinct roles of ATP7B in the TGN and PM and the variety of phenotypes caused by the mutation of the canonical and accessory residues of the DKWSLLL signal can explain the separate or joined presentation of Wilson's cuprotoxicosis and the dysfunction of the cuproenzymes that accept Cu(+) at the TGN.
Collapse
Affiliation(s)
- Vasiliki Lalioti
- Centro Biología Molecular Severo Ochoa, Cantoblanco, 28049, Madrid, Spain
| | | | | |
Collapse
|
40
|
Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, Piccolo P, Paladino S, Baldantoni D, van IJzendoorn SCD, Chan J, Chang CJ, Amoresano A, Pane F, Pucci P, Tarallo A, Parenti G, Brunetti-Pierri N, Settembre C, Ballabio A, Polishchuk RS. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev Cell 2014; 29:686-700. [PMID: 24909901 PMCID: PMC4070386 DOI: 10.1016/j.devcel.2014.04.033] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/15/2014] [Accepted: 04/29/2014] [Indexed: 12/24/2022]
Abstract
Copper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we show that, in response to elevated copper, ATP7B moves from the Golgi to lysosomes and imports metal into their lumen. ATP7B enables lysosomes to undergo exocytosis through the interaction with p62 subunit of dynactin that allows lysosome translocation toward the canalicular pole of hepatocytes. Activation of lysosomal exocytosis stimulates copper clearance from the hepatocytes and rescues the most frequent Wilson-disease-causing ATP7B mutant to the appropriate functional site. Our findings indicate that lysosomes serve as an important intermediate in ATP7B trafficking, whereas lysosomal exocytosis operates as an integral process in copper excretion and hence can be targeted for therapeutic approaches to combat Wilson disease.
Collapse
Affiliation(s)
- Elena V Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Mafalda Concilli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Simona Iacobacci
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Giancarlo Chesi
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples 80125, Italy
| | | | - Sven C D van IJzendoorn
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713, the Netherlands
| | - Jefferson Chan
- Department of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Department of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy
| | - Piero Pucci
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy
| | - Antonietta Tarallo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Giancarlo Parenti
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Medical Genetics, Department of Translational and Medical Sciences, Federico II University, Naples 80125, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Medical Genetics, Department of Translational and Medical Sciences, Federico II University, Naples 80125, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Medical Genetics, Department of Translational and Medical Sciences, Federico II University, Naples 80125, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dulbecco Telethon Institute, TIGEM, Naples 80131, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Medical Genetics, Department of Translational and Medical Sciences, Federico II University, Naples 80125, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy.
| |
Collapse
|
41
|
Distinct phenotype of a Wilson disease mutation reveals a novel trafficking determinant in the copper transporter ATP7B. Proc Natl Acad Sci U S A 2014; 111:E1364-73. [PMID: 24706876 DOI: 10.1073/pnas.1314161111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wilson disease (WD) is a monogenic autosomal-recessive disorder of copper accumulation that leads to liver failure and/or neurological deficits. WD is caused by mutations in ATP7B, a transporter that loads Cu(I) onto newly synthesized cupro-enzymes in the trans-Golgi network (TGN) and exports excess copper out of cells by trafficking from the TGN to the plasma membrane. To date, most WD mutations have been shown to disrupt ATP7B activity and/or stability. Using a multidisciplinary approach, including clinical analysis of patients, cell-based assays, and computational studies, we characterized a patient mutation, ATP7B(S653Y), which is stable, does not disrupt Cu(I) transport, yet renders the protein unable to exit the TGN. Bulky or charged substitutions at position 653 mimic the phenotype of the patient mutation. Molecular modeling and dynamic simulation suggest that the S653Y mutation induces local distortions within the transmembrane (TM) domain 1 and alter TM1 interaction with TM2. S653Y abolishes the trafficking-stimulating effects of a secondary mutation in the N-terminal apical targeting domain. This result indicates a role for TM1/TM2 in regulating conformations of cytosolic domains involved in ATP7B trafficking. Taken together, our experiments revealed an unexpected role for TM1/TM2 in copper-regulated trafficking of ATP7B and defined a unique class of WD mutants that are transport-competent but trafficking-defective. Understanding the precise consequences of WD-causing mutations will facilitate the development of advanced mutation-specific therapies.
Collapse
|
42
|
Polishchuk R, Lutsenko S. Golgi in copper homeostasis: a view from the membrane trafficking field. Histochem Cell Biol 2013; 140:285-95. [PMID: 23846821 DOI: 10.1007/s00418-013-1123-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2013] [Indexed: 01/06/2023]
Abstract
Copper is essential for a variety of important biological processes as a cofactor and regulator of many enzymes. Incorporation of copper into the secreted and plasma membrane-targeted cuproenzymes takes place in Golgi, a compartment central for normal copper homeostasis. The Golgi complex harbors copper-transporting ATPases, ATP7A and ATP7B that transfer copper from the cytosol into Golgi lumen for incorporation into copper-dependent enzymes. The Golgi complex also sends these ATPases to appropriate post-Golgi destinations to ensure correct Cu fluxes in the body and to avoid potentially toxic copper accumulation. Mutations in ATP7A or ATP7B or in the proteins that regulate their trafficking affect their exit from Golgi or subsequent retrieval to this organelle. This, in turn, disrupts the homeostatic Cu balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease). Research over the last decade has yielded significant insights into the enzymatic properties and cell biology of the copper ATPases. However, the mechanisms through which the Golgi regulates trafficking of ATP7A/7B and, therefore, maintains Cu homeostasis remain unclear. This review summarizes current data on the role of the Golgi in Cu metabolism and outlines questions and challenges that should be addressed to understand ATP7A and ATP7B trafficking mechanisms in health and disease.
Collapse
Affiliation(s)
- Roman Polishchuk
- Telethon Institute of Genetics and Medicine TIGEM, Via Pietro Castellino, 111, 80131 Naples, Italy.
| | | |
Collapse
|
43
|
Parker SJ, Koistinaho J, White AR, Kanninen KM. Biometals in rare neurodegenerative disorders of childhood. Front Aging Neurosci 2013; 5:14. [PMID: 23531702 PMCID: PMC3607070 DOI: 10.3389/fnagi.2013.00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/05/2013] [Indexed: 01/01/2023] Open
Abstract
Copper, iron, and zinc are just three of the main biometals critical for correct functioning of the central nervous system (CNS). They have diverse roles in many functional processes including but not limited to enzyme catalysis, protein stabilization, and energy production. The range of metal concentrations within the body is tightly regulated and when the balance is perturbed, debilitating effects ensue. Homeostasis of brain biometals is mainly controlled by various metal transporters and metal sequestering proteins. The biological roles of biometals are vastly reviewed in the literature with a large focus on the connection to neurological conditions associated with ageing. Biometals are also implicated in a variety of debilitating inherited childhood disorders, some of which arise soon following birth or as the child progresses into early adulthood. This review acts to highlight what we know about biometals in childhood neurological disorders such as Wilson's disease (WD), Menkes disease (MD), neuronal ceroid lipofuscinoses (NCLs), and neurodegeneration with brain iron accumulation (NBIA). Also discussed are some of the animal models available to determine the pathological mechanisms in these childhood disorders, which we hope will aid in our understanding of the role of biometals in disease and in attaining possible therapeutics in the future.
Collapse
Affiliation(s)
- Sarah J Parker
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | | | | | | |
Collapse
|
44
|
Nies DH, Herzberg M. A fresh view of the cell biology of copper in enterobacteria. Mol Microbiol 2012; 87:447-54. [PMID: 23217080 DOI: 10.1111/mmi.12123] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 11/27/2022]
Abstract
Copper ions are essential but also very toxic. Copper resistance in bacteria is based on export of the toxic ion, oxidation from Cu(I) to Cu(II), and sequestration by copper-binding metal chaperones, which deliver copper ions to efflux systems or metal-binding sites of copper-requiring proteins. In their publication in this issue, Osman et al. (2013) demonstrate how tightly copper resistance, homeostasis and delivery pathways are interwoven in Salmonella enterica sv. Typhimurium. Copper is transported from the cytoplasm by the two P-type ATPases CopA and GolT to the periplasm and transferred to SodCII by CueP, a periplasmic copper chaperone. When copper levels are higher, SodCII is also able to bind copper without the help of CueP. This scheme raises the question as to why copper ions present in the growth medium have to make the detour through the cytoplasm. The data presented in the publication by Osman et al. (2013) change our view of the cell biology of copper in enterobacteria.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany.
| | | |
Collapse
|
45
|
Hasan NM, Lutsenko S. Regulation of copper transporters in human cells. CURRENT TOPICS IN MEMBRANES 2012; 69:137-61. [PMID: 23046650 DOI: 10.1016/b978-0-12-394390-3.00006-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is essential for normal growth and development of human organisms. The role of copper as a cofactor of important metabolic enzymes, such as cytochrome c oxidase, superoxide dismutase, lysyl oxidase, dopamine-β-hydroxylase, and many others, has been well established. In recent years, new regulatory roles of copper have emerged. Accumulating evidence points to the involvement of copper in lipid metabolism, antimicrobial defense, neuronal activity, resistance of tumor cells to platinum-based chemotherapeutic drugs, kinase-mediated signal transduction, and other essential cellular processes. For many of these processes, the precise mechanism of copper action remains to be established. Nevertheless, it is increasingly clear that many regulatory and signaling events are associated with changes in the intracellular localization and abundance of copper transporters, as well as distinct compartmentalization of copper itself. In this review, we discuss current data on regulation of the localization and abundance of copper transporters in response to metabolic and signaling events in human cells. Regulation by kinase-mediated phosphorylation will be addressed along with the emerging area of the redox-driven control of copper transport. We highlight mechanistic questions that await further testing.
Collapse
Affiliation(s)
- Nesrin M Hasan
- Department of Physiology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|