1
|
Joseph JW. Therapeutic Potential of Blocking Nephrin Phosphorylation to Improve Pancreatic β-cell Function. Endocrinology 2024; 165:bqae104. [PMID: 39133576 DOI: 10.1210/endocr/bqae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Indexed: 08/28/2024]
Abstract
The phosphorylation of the transmembrane protein nephrin has been shown to play an important role in signaling in kidney podocytes, and it has now been shown to also play a key role in regulating pancreatic β-cell function. Williamson et al have recently shown that the loss of nephrin tyrosine phosphorylation on its 3 cytoplasmic YDxV motifs can enhance insulin release in aged female mice. These studies suggest that blocking nephrin phosphorylation may be an effective treatment option for improving β-cell function.
Collapse
Affiliation(s)
- Jamie W Joseph
- School of Pharmacy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Williamson CR, Jones N. Reduced Nephrin Tyrosine Phosphorylation Enhances Insulin Secretion and Increases Glucose Tolerance With Age. Endocrinology 2024; 165:bqae078. [PMID: 38954536 PMCID: PMC11247170 DOI: 10.1210/endocr/bqae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Nephrin is a transmembrane protein with well-established signaling roles in kidney podocytes, and a smaller set of secretory functions in pancreatic β cells are implicated in diabetes. Nephrin signaling is mediated in part through its 3 cytoplasmic YDxV motifs, which can be tyrosine phosphorylated by high glucose and β cell injuries. Although in vitro studies demonstrate these phosphorylated motifs can regulate β cell vesicle trafficking and insulin release, in vivo evidence of their role in this cell type remains to be determined. METHODS To further explore the role of nephrin YDxV phosphorylation in β cells, we used a mouse line with tyrosine to phenylalanine substitutions at each YDxV motif (nephrin-Y3F) to inhibit phosphorylation. We assessed islet function via primary islet glucose-stimulated insulin secretion assays and oral glucose tolerance tests. RESULTS Nephrin-Y3F mice successfully developed pancreatic endocrine and exocrine tissues with minimal structural differences. Unexpectedly, male and female nephrin-Y3F mice showed elevated insulin secretion, with a stronger increase observed in male mice. At 8 months of age, no differences in glucose tolerance were observed between wild-type (WT) and nephrin-Y3F mice. However, aged nephrin-Y3F mice (16 months of age) demonstrated more rapid glucose clearance compared to WT controls. CONCLUSION Taken together, loss of nephrin YDxV phosphorylation does not alter baseline islet function. Instead, our data suggest a mechanism linking impaired nephrin YDxV phosphorylation to improved islet secretory ability with age. Targeting nephrin phosphorylation could provide novel therapeutic opportunities to improve β cell function.
Collapse
Affiliation(s)
- Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
3
|
Wang H, Yuan YC, Chang C, Izumi T, Wang HH, Yang JK. The signaling protein GIV/Girdin mediates the Nephrin-dependent insulin secretion of pancreatic islet β cells in response to high glucose. J Biol Chem 2023; 299:103045. [PMID: 36822326 PMCID: PMC10040812 DOI: 10.1016/j.jbc.2023.103045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023] Open
Abstract
Glucose-stimulated insulin secretion of pancreatic β cells is essential in maintaining glucose homeostasis. Recent evidence suggests that the Nephrin-mediated intercellular junction between β cells is implicated in the regulation of insulin secretion. However, the underlying mechanisms are only partially characterized. Herein we report that GIV is a signaling mediator coordinating glucose-stimulated Nephrin phosphorylation and endocytosis with insulin secretion. We demonstrate that GIV is expressed in mouse islets and cultured β cells. The loss of function study suggests that GIV is essential for the second phase of glucose-stimulated insulin secretion. Next, we demonstrate that GIV mediates the high glucose-stimulated tyrosine phosphorylation of GIV and Nephrin by recruiting Src kinase, which leads to the endocytosis of Nephrin. Subsequently, the glucose-induced GIV/Nephrin/Src signaling events trigger downstream Akt phosphorylation, which activates Rac1-mediated cytoskeleton reorganization, allowing insulin secretory granules to access the plasma membrane for the second-phase secretion. Finally, we found that GIV is downregulated in the islets isolated from diabetic mice, and rescue of GIV ameliorates the β-cell dysfunction to restore the glucose-stimulated insulin secretion. We conclude that the GIV/Nephrin/Akt signaling axis is vital to regulate glucose-stimulated insulin secretion. This mechanism might be further targeted for therapeutic intervention of diabetic mellitus.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Ying-Chao Yuan
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Cong Chang
- College of Biology, Hunan University, Changsha, Hunan, China; Hunan Food and Drug Vocational College, Changsha, Hunan, China
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Hong-Hui Wang
- College of Biology, Hunan University, Changsha, Hunan, China.
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Martin CE, New LA, Phippen NJ, Keyvani Chahi A, Mitro AE, Takano T, Pawson T, Blasutig IM, Jones N. Multivalent nephrin-Nck interactions define a threshold for clustering and tyrosine-dependent nephrin endocytosis. J Cell Sci 2020; 133:jcs236877. [PMID: 31974115 DOI: 10.1242/jcs.236877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Assembly of signaling molecules into micrometer-sized clusters is driven by multivalent protein-protein interactions, such as those found within the nephrin-Nck (Nck1 or Nck2) complex. Phosphorylation on multiple tyrosine residues within the tail of the nephrin transmembrane receptor induces recruitment of the cytoplasmic adaptor protein Nck, which binds via its triple SH3 domains to various effectors, leading to actin assembly. The physiological consequences of nephrin clustering are not well understood. Here, we demonstrate that nephrin phosphorylation regulates the formation of membrane clusters in podocytes. We also reveal a connection between clustering and endocytosis, which appears to be driven by threshold levels of nephrin tyrosine phosphorylation and Nck SH3 domain signaling. Finally, we expose an in vivo correlation between transient changes in nephrin tyrosine phosphorylation, nephrin localization and integrity of the glomerular filtration barrier during podocyte injury. Altogether, our results suggest that nephrin phosphorylation determines the composition of effector proteins within clusters to dynamically regulate nephrin turnover and podocyte health.
Collapse
Affiliation(s)
- Claire E Martin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Laura A New
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Noah J Phippen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ava Keyvani Chahi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alexander E Mitro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Tony Pawson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ivan M Blasutig
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
5
|
Espiritu EB, Jiang H, Moreau-Marquis S, Sullivan M, Yan K, Beer Stolz D, Sampson MG, Hukriede NA, Swiatecka-Urban A. The human nephrin Y 1139RSL motif is essential for podocyte foot process organization and slit diaphragm formation during glomerular development. J Biol Chem 2019; 294:10773-10788. [PMID: 31152064 DOI: 10.1074/jbc.ra119.008235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/16/2019] [Indexed: 11/06/2022] Open
Abstract
Nephrin is an immunoglobulin-type cell-adhesion molecule with a key role in the glomerular interpodocyte slit diaphragm. Mutations in the nephrin gene are associated with defects in the slit diaphragm, leading to early-onset nephrotic syndrome, typically resistant to treatment. Although the endocytic trafficking of nephrin is essential for the assembly of the slit diaphragm, nephrin's specific endocytic motifs remain unknown. To search for endocytic motifs, here we performed a multisequence alignment of nephrin and identified a canonical YXXØ-type motif, Y1139RSL, in the nephrin cytoplasmic tail, expressed only in primates. Using site-directed mutagenesis, various biochemical methods, single-plane illumination microscopy, a human podocyte line, and a human nephrin-expressing zebrafish model, we found that Y1139RSL is a novel endocytic motif and a structural element for clathrin-mediated nephrin endocytosis that functions as a phosphorylation-sensitive signal. We observed that Y1139RSL motif-mediated endocytosis helps to localize nephrin to specialized plasma membrane domains in podocytes and is essential for normal foot process organization into a functional slit diaphragm between neighboring foot processes in zebrafish. The importance of nephrin Y1139RSL for healthy podocyte development was supported by population-level analyses of genetic variations at this motif, revealing that such variations are very rare, suggesting that mutations in this motif have autosomal-recessive negative effects on kidney health. These findings expand our understanding of the mechanism underlying nephrin endocytosis and may lead to improved diagnostic tools or therapeutic strategies for managing early-onset, treatment-resistant nephrotic syndrome.
Collapse
Affiliation(s)
- Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Huajun Jiang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Sophie Moreau-Marquis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Mara Sullivan
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Kunimasa Yan
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan, and
| | - Donna Beer Stolz
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Matthew G Sampson
- Department of Pediatrics-Nephrology University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224,.
| |
Collapse
|
6
|
Cooper CJ, Dutta NT, Martin CE, Piscione TD, Thorner PS, Jones N. Characterization of a novel disease-associated mutation within NPHS1 and its effects on nephrin phosphorylation and signaling. PLoS One 2018; 13:e0203905. [PMID: 30212551 PMCID: PMC6136785 DOI: 10.1371/journal.pone.0203905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022] Open
Abstract
Mutations in the transmembrane protein nephrin (encoded by NPHS1) underlie nearly half of all cases of congenital nephrotic syndrome (CNS), which is caused by aberrations in the blood filtering function of glomerular podocytes. Nephrin directly contributes to the structure of the filtration barrier, and it also serves as a signaling scaffold in podocytes, undergoing tyrosine phosphorylation on its cytoplasmic tail to recruit intracellular effector proteins. Nephrin phosphorylation is lost in several human and experimental models of glomerular disease, and genetic studies have confirmed its importance in maintenance of the filtration barrier. To date, however, the effect of CNS-associated NPHS1 variants on nephrin phosphorylation remains to be determined, which hampers genotype-phenotype correlations. Here, we have characterized a novel nephrin sequence variant, A419T, which is expressed along with C623F in a patient presenting with CNS. Nephrin localization is altered in kidney biopsies, and we further demonstrate reduced surface expression and ER retention of A419T and C623F in cultured cells. Moreover, we show that both mutations impair nephrin tyrosine phosphorylation, and they exert dominant negative effects on wildtype nephrin signaling. Our findings thus reveal that missense mutations in the nephrin extracellular region can impact nephrin signaling, and they uncover a potential pathomechanism to explain the spectrum of clinical severity seen with mild NPHS1 mutations.
Collapse
Affiliation(s)
- C. James Cooper
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Nikkita T. Dutta
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Claire E. Martin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Tino D. Piscione
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul S. Thorner
- Department of Pathology and Laboratory Medicine, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- * E-mail:
| |
Collapse
|
7
|
Hermle T, Schneider R, Schapiro D, Braun DA, van der Ven AT, Warejko JK, Daga A, Widmeier E, Nakayama M, Jobst-Schwan T, Majmundar AJ, Ashraf S, Rao J, Finn LS, Tasic V, Hernandez JD, Bagga A, Jalalah SM, El Desoky S, Kari JA, Laricchia KM, Lek M, Rehm HL, MacArthur DG, Mane S, Lifton RP, Shril S, Hildebrandt F. GAPVD1 and ANKFY1 Mutations Implicate RAB5 Regulation in Nephrotic Syndrome. J Am Soc Nephrol 2018; 29:2123-2138. [PMID: 29959197 PMCID: PMC6065084 DOI: 10.1681/asn.2017121312] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/24/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of CKD. The discovery of monogenic causes of SRNS has revealed specific pathogenetic pathways, but these monogenic causes do not explain all cases of SRNS. METHODS To identify novel monogenic causes of SRNS, we screened 665 patients by whole-exome sequencing. We then evaluated the in vitro functional significance of two genes and the mutations therein that we discovered through this sequencing and conducted complementary studies in podocyte-like Drosophila nephrocytes. RESULTS We identified conserved, homozygous missense mutations of GAPVD1 in two families with early-onset NS and a homozygous missense mutation of ANKFY1 in two siblings with SRNS. GAPVD1 and ANKFY1 interact with the endosomal regulator RAB5. Coimmunoprecipitation assays indicated interaction between GAPVD1 and ANKFY1 proteins, which also colocalized when expressed in HEK293T cells. Silencing either protein diminished the podocyte migration rate. Compared with wild-type GAPVD1 and ANKFY1, the mutated proteins produced upon ectopic expression of GAPVD1 or ANKFY1 bearing the patient-derived mutations exhibited altered binding affinity for active RAB5 and reduced ability to rescue the knockout-induced defect in podocyte migration. Coimmunoprecipitation assays further demonstrated a physical interaction between nephrin and GAPVD1, and immunofluorescence revealed partial colocalization of these proteins in rat glomeruli. The patient-derived GAPVD1 mutations reduced nephrin-GAPVD1 binding affinity. In Drosophila, silencing Gapvd1 impaired endocytosis and caused mistrafficking of the nephrin ortholog. CONCLUSIONS Mutations in GAPVD1 and probably in ANKFY1 are novel monogenic causes of NS. The discovery of these genes implicates RAB5 regulation in the pathogenesis of human NS.
Collapse
Affiliation(s)
- Tobias Hermle
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ronen Schneider
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Schapiro
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amelie T van der Ven
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jillian K Warejko
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ankana Daga
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eugen Widmeier
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Makiko Nakayama
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tilman Jobst-Schwan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amar J Majmundar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shazia Ashraf
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jia Rao
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Laura S Finn
- Department of Pathology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Velibor Tasic
- Department of Pediatric Nephrology, Medical Faculty Skopje, University Children's Hospital, Skopje, Macedonia
| | - Joel D Hernandez
- Department of Pediatric Nephrology, Providence Sacred Heart Medical Center and Children's Hospital, Spokane, Washington
| | - Arvind Bagga
- Division of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sherif El Desoky
- Pediatric Nephrology Center of Excellence and Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jameela A Kari
- Pediatric Nephrology Center of Excellence and Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Kristen M Laricchia
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Monkol Lek
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Heidi L Rehm
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Daniel G MacArthur
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut; and
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut; and
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
8
|
Martin CE, Jones N. Nephrin Signaling in the Podocyte: An Updated View of Signal Regulation at the Slit Diaphragm and Beyond. Front Endocrinol (Lausanne) 2018; 9:302. [PMID: 29922234 PMCID: PMC5996060 DOI: 10.3389/fendo.2018.00302] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Podocytes are a major component of the glomerular blood filtration barrier, and alterations to the morphology of their unique actin-based foot processes (FP) are a common feature of kidney disease. Adjacent FP are connected by a specialized intercellular junction known as the slit diaphragm (SD), which serves as the ultimate barrier to regulate passage of macromolecules from the blood. While the link between SD dysfunction and reduced filtration selectivity has been recognized for nearly 50 years, our understanding of the underlying molecular circuitry began only 20 years ago, sparked by the identification of NPHS1, encoding the transmembrane protein nephrin. Nephrin not only functions as the core component of the extracellular SD filtration network but also as a signaling scaffold via interactions at its short intracellular region. Phospho-regulation of several conserved tyrosine residues in this region influences signal transduction pathways which control podocyte cell adhesion, shape, and survival, and emerging studies highlight roles for nephrin phospho-dynamics in mechanotransduction and endocytosis. The following review aims to summarize the last 5 years of advancement in our knowledge of how signaling centered at nephrin directs SD barrier formation and function. We further provide insight on promising frontiers in podocyte biology, which have implications for SD signaling in the healthy and diseased kidney.
Collapse
|
9
|
Martin CE, Petersen KA, Aoudjit L, Tilak M, Eremina V, Hardy WR, Quaggin SE, Takano T, Jones N. ShcA Adaptor Protein Promotes Nephrin Endocytosis and Is Upregulated in Proteinuric Nephropathies. J Am Soc Nephrol 2017; 29:92-103. [PMID: 29018139 DOI: 10.1681/asn.2017030285] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/23/2017] [Indexed: 11/03/2022] Open
Abstract
Nephrin is a key structural component of the podocyte slit diaphragm, and proper expression of nephrin on the cell surface is critical to ensure integrity of the blood filtration barrier. Maintenance of nephrin within this unique cell junction has been proposed to require dynamic phosphorylation events and endocytic recycling, although the molecular mechanisms that control this interplay are poorly understood. Here, we investigated the possibility that the phosphotyrosine adaptor protein ShcA regulates nephrin turnover. Western blotting and immunostaining analysis confirmed that ShcA is expressed in podocytes. In immunoprecipitation and pulldown assays, ShcA, via its SH2 domain, was associated with several phosphorylated tyrosine residues on nephrin. Overexpression of ShcA promoted nephrin tyrosine phosphorylation and reduced nephrin signaling and cell surface expression in vitro In a rat model of reversible podocyte injury and proteinuria, phosphorylated nephrin temporally colocalized with endocytic structures coincident with upregulation of ShcA expression. In vivo biotinylation assays confirmed that nephrin expression decreased at the cell surface and correspondingly increased in the cytosol during the injury time course. Finally, immunostaining in kidney biopsy specimens demonstrated overexpression of ShcA in several human proteinuric kidney diseases compared with normal conditions. Our results suggest that increases in ShcA perturb nephrin phosphosignaling dynamics, leading to aberrant nephrin turnover and slit diaphragm disassembly.
Collapse
Affiliation(s)
- Claire E Martin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kelly A Petersen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lamine Aoudjit
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Manali Tilak
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Vera Eremina
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and
| | - W Rod Hardy
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and
| | - Susan E Quaggin
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and.,Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University of Chicago, Illinois
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada;
| |
Collapse
|
10
|
Regulation of Nephrin Phosphorylation in Diabetes and Chronic Kidney Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639250 DOI: 10.1007/5584_2017_62] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetes is the leading cause of microalbuminuria and end-stage renal failure in industrial countries. Disruption of the filtration barrier, seen in almost all nephrotic diseases and diabetes, is the result of the loss or effacement of the podocyte foot process, notably damage of proteins within the slit diaphragm such as nephrin. For many years, nephrin has been viewed as a structural component of the slit diaphragm. It is now well recognized that nephrin contains several tyrosine residues in its cytoplasmic domain, which influences the development of glomerular injury. In this review, we propose an overview of nephrin signaling pathways in kidney injury.
Collapse
|
11
|
Wada Y, Abe M, Moritani H, Mitori H, Kondo M, Tanaka-Amino K, Eguchi M, Imasato A, Inoki Y, Kajiyama H, Mimura T, Tomura Y. Original Research: Potential of urinary nephrin as a biomarker reflecting podocyte dysfunction in various kidney disease models. Exp Biol Med (Maywood) 2016; 241:1865-76. [PMID: 27216597 DOI: 10.1177/1535370216651937] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
Urinary nephrin is a potential non-invasive biomarker of disease. To date, however, most studies of urinary nephrin have been conducted in animal models of diabetic nephropathy, and correlations between urinary nephrin-to-creatinine ratio and other parameters have yet to be evaluated in animal models or patients of kidney disease with podocyte dysfunction. We hypothesized that urinary nephrin-to-creatinine ratio can be up-regulated and is negatively correlated with renal nephrin mRNA levels in animal models of kidney disease, and that increased urinary nephrin-to-creatinine ratio levels are attenuated following administration of glucocorticoids. In the present study, renal nephrin mRNA, urinary nephrin-to-creatinine ratio, urinary protein-to-creatinine ratio, and creatinine clearance ratio were measured in animal models of adriamycin nephropathy, puromycin aminonucleoside nephropathy, anti-glomerular basement membrane glomerulonephritis, and 5/6 nephrectomy. The effects of prednisolone on urinary nephrin-to-creatinine ratio and other parameters in puromycin aminonucleoside (single injection) nephropathy rats were also investigated. In all models tested, urinary nephrin-to-creatinine ratio and urinary protein-to-creatinine ratio increased, while renal nephrin mRNA and creatinine clearance ratio decreased. Urinary nephrin-to-creatinine ratio exhibited a significant negative correlation with renal nephrin mRNA in almost all models, as well as a significant positive correlation with urinary protein-to-creatinine ratio and a significant negative correlation with creatinine clearance ratio. Urinary protein-to-creatinine ratio exhibited a significant negative correlation with renal nephrin mRNA. Following the administration of prednisolone to puromycin aminonucleoside (single injection) nephropathy rats, urinary nephrin-to-creatinine ratio was significantly suppressed and exhibited a significant positive correlation with urinary protein-to-creatinine ratio. In addition, the decrease in number of glomerular Wilms tumor antigen-1-positive cells was attenuated, and urinary nephrin-to-creatinine ratio exhibited a significant negative correlation in these cells. In conclusion, these results suggest that urinary nephrin-to-creatinine ratio level is a useful and reliable biomarker for predicting the amelioration of podocyte dysfunction by candidate drugs in various kidney disease models with podocyte dysfunction. This suggestion will also be validated in a clinical setting in future studies.
Collapse
Affiliation(s)
- Yusuke Wada
- Drug Discovery Research, Astellas Pharma Inc., Tasukuba-shi, Ibaraki 3058585, Japan
| | - Masaki Abe
- Drug Discovery Research, Astellas Pharma Inc., Tasukuba-shi, Ibaraki 3058585, Japan
| | - Hiroshi Moritani
- Drug Discovery Research, Astellas Pharma Inc., Tasukuba-shi, Ibaraki 3058585, Japan
| | - Hikaru Mitori
- Drug Discovery Research, Astellas Pharma Inc., Tasukuba-shi, Ibaraki 3058585, Japan
| | - Mitsuhiro Kondo
- Drug Discovery Research, Astellas Pharma Inc., Tasukuba-shi, Ibaraki 3058585, Japan
| | - Keiko Tanaka-Amino
- Drug Discovery Research, Astellas Pharma Inc., Tasukuba-shi, Ibaraki 3058585, Japan
| | - Megumi Eguchi
- Drug Discovery Research, Astellas Pharma Inc., Tasukuba-shi, Ibaraki 3058585, Japan
| | - Akira Imasato
- Drug Discovery Research, Astellas Pharma Inc., Tasukuba-shi, Ibaraki 3058585, Japan
| | - Yutaka Inoki
- Drug Discovery Research, Astellas Pharma Inc., Tasukuba-shi, Ibaraki 3058585, Japan
| | - Hiroshi Kajiyama
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Moroyama 3500495, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Moroyama 3500495, Japan
| | - Yuichi Tomura
- Drug Discovery Research, Astellas Pharma Inc., Tasukuba-shi, Ibaraki 3058585, Japan
| |
Collapse
|
12
|
Menon MC, He JC. Prostaglandin I2 Receptor Agonism for Proteinuria and Diabetes: Good for the Goose and Good for the Gander? Diabetes 2016; 65:1149-51. [PMID: 27208182 PMCID: PMC4839201 DOI: 10.2337/dbi16-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
13
|
Batchu SN, Majumder S, Bowskill BB, White KE, Advani SL, Brijmohan AS, Liu Y, Thai K, Azizi PM, Lee WL, Advani A. Prostaglandin I2 Receptor Agonism Preserves β-Cell Function and Attenuates Albuminuria Through Nephrin-Dependent Mechanisms. Diabetes 2016; 65:1398-409. [PMID: 26868296 DOI: 10.2337/db15-0783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022]
Abstract
Discovery of common pathways that mediate both pancreatic β-cell function and end-organ function offers the opportunity to develop therapies that modulate glucose homeostasis and separately slow the development of diabetes complications. Here, we investigated the in vitro and in vivo effects of pharmacological agonism of the prostaglandin I2 (IP) receptor in pancreatic β-cells and in glomerular podocytes. The IP receptor agonist MRE-269 increased intracellular 3',5'-cyclic adenosine monophosphate (cAMP), augmented glucose-stimulated insulin secretion (GSIS), and increased viability in MIN6 β-cells. Its prodrug form, selexipag, augmented GSIS and preserved islet β-cell mass in diabetic mice. Determining that this preservation of β-cell function is mediated through cAMP/protein kinase A (PKA)/nephrin-dependent pathways, we found that PKA inhibition, nephrin knockdown, or targeted mutation of phosphorylated nephrin tyrosine residues 1176 and 1193 abrogated the actions of MRE-269 in MIN6 cells. Because nephrin is important to glomerular permselectivity, we next set out to determine whether IP receptor agonism similarly affects nephrin phosphorylation in podocytes. Expression of the IP receptor in podocytes was confirmed in cultured cells by immunoblotting and quantitative real-time PCR and in mouse kidneys by immunogold electron microscopy, and its agonism 1) increased cAMP, 2) activated PKA, 3) phosphorylated nephrin, and 4) attenuated albumin transcytosis. Finally, treatment of diabetic endothelial nitric oxide synthase knockout mice with selexipag augmented renal nephrin phosphorylation and attenuated albuminuria development independently of glucose change. Collectively, these observations describe a pharmacological strategy that posttranslationally modifies nephrin and the effects of this strategy in the pancreas and in the kidney.
Collapse
MESH Headings
- Acetamides/therapeutic use
- Acetates/pharmacology
- Animals
- Cell Line
- Cell Survival/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/physiopathology
- Diabetic Nephropathies/prevention & control
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin/agonists
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Phosphorylation/drug effects
- Podocytes/drug effects
- Podocytes/metabolism
- Podocytes/pathology
- Podocytes/ultrastructure
- Prodrugs/therapeutic use
- Protein Processing, Post-Translational/drug effects
- Pyrazines/pharmacology
- Pyrazines/therapeutic use
- RNA Interference
- Receptors, Epoprostenol/agonists
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- Renal Insufficiency/complications
- Renal Insufficiency/metabolism
- Renal Insufficiency/pathology
- Renal Insufficiency/prevention & control
Collapse
Affiliation(s)
- Sri N Batchu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Syamantak Majumder
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Bridgit B Bowskill
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kathryn E White
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, U.K
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Angela S Brijmohan
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Youan Liu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kerri Thai
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Paymon M Azizi
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Lehtonen S, Jalanko H. Nephrin Trafficking beyond the Kidney--Role in Glucose-Stimulated Insulin Secretion in β Cells. J Am Soc Nephrol 2015; 27:965-8. [PMID: 26400568 DOI: 10.1681/asn.2015080960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland; and
| | - Hannu Jalanko
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
15
|
Villarreal R, Mitrofanova A, Maiguel D, Morales X, Jeon J, Grahammer F, Leibiger IB, Guzman J, Fachado A, Yoo TH, Busher Katin A, Gellermann J, Merscher S, Burke GW, Berggren PO, Oh J, Huber TB, Fornoni A. Nephrin Contributes to Insulin Secretion and Affects Mammalian Target of Rapamycin Signaling Independently of Insulin Receptor. J Am Soc Nephrol 2015; 27:1029-41. [PMID: 26400569 DOI: 10.1681/asn.2015020210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022] Open
Abstract
Nephrin belongs to a family of highly conserved proteins with a well characterized function as modulators of cell adhesion and guidance, and nephrin may have a role in metabolic pathways linked to podocyte and pancreatic β-cell survival. However, this role is incompletely characterized. In this study, we developed floxed nephrin mice for pancreatic β-cell-specific deletion of nephrin, which had no effect on islet size and glycemia. Nephrin deficiency, however, resulted in glucose intolerance in vivo and impaired glucose-stimulated insulin release ex vivo Glucose intolerance was also observed in eight patients with nephrin mutations compared with three patients with other genetic forms of nephrotic syndrome or nine healthy controls.In vitro experiments were conducted to investigate if nephrin affects autocrine signaling through insulin receptor A (IRA) and B (IRB), which are both expressed in human podocytes and pancreatic islets. Coimmunoprecipitation of nephrin and IRB but not IRA was observed and required IR phosphorylation. Nephrin per se was sufficient to induce phosphorylation of p70S6K in an phosphatidylinositol 3-kinase-dependent but IR/Src-independent manner, which was not augmented by exogenous insulin. These results suggest a role for nephrin as an independent modulator of podocyte and pancreatic β-cell nutrient sensing in the fasting state and the potential of nephrin as a drug target in diabetes.
Collapse
Affiliation(s)
- Rodrigo Villarreal
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Alla Mitrofanova
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and
| | - Dony Maiguel
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ximena Morales
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and
| | - Jongmin Jeon
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Ingo B Leibiger
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Guzman
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Alberto Fachado
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Tae H Yoo
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Department of Internal Medicine, Division of Nephrology, Yonsei University College of Medicine, Seoul, Korea
| | - Anja Busher Katin
- Pediatric Nephrology, Pediatrics II, University Children's Hospital Essen, Essen, Germany
| | - Jutta Gellermann
- Department of Pediatric Nephrology, Charité Children's Hospital, Berlin, Germany
| | - Sandra Merscher
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - George W Burke
- Department of Surgery, University of Miami, Miami, Florida; and
| | - Per-Olof Berggren
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida; Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Jun Oh
- Pediatric Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Alessia Fornoni
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida;
| |
Collapse
|
16
|
Kapodistria K, Tsilibary EP, Politis P, Moustardas P, Charonis A, Kitsiou P. Nephrin, a transmembrane protein, is involved in pancreatic beta-cell survival signaling. Mol Cell Endocrinol 2015; 400:112-28. [PMID: 25448064 DOI: 10.1016/j.mce.2014.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/15/2014] [Accepted: 11/03/2014] [Indexed: 01/15/2023]
Abstract
Nephrin, a cell surface signaling receptor, regulates podocyte function in health and disease. We study the role of nephrin in β-cell survival signaling. We report that in mouse islet β-cells and the mouse pancreatic beta-cell line (βTC-6 cells) nephrin is associated and partly co-localized with PI3-kinase. Incubation of cells with functional anti-nephrin antibodies induced nephrin clustering at the plasma membrane, nephrin phosphorylation and recruitment of PI3-kinase to nephrin thus resulting in increased PI3K-dependent Akt phosphorylation and augmented phosphorylation/inhibition of pro-apoptotic Bad and FoxO. Nephrin silencing abolished Akt activation and increased susceptibility of cells to apoptosis. High glucose impaired nephrin signaling, increased nephrin internalization and up-regulated PKCα expression. Interestingly, a marked decrease in nephrin expression and phosphorylated Akt was observed in pancreatic islets of db/db lepr-/- diabetic mice. Our findings revealed that nephrin is involved in β-cell survival and suggest that glucose-induced changes in nephrin signaling may contribute to gradual pancreatic β-cell loss in type 2 diabetes.
Collapse
Affiliation(s)
- Katerina Kapodistria
- Institute of Biosciences and Applications, National Centre for Scientific Research, N.C.S.R. "Demokritos", Terma Patriarchou Grigoriou & Neapoleos, 15310 Agia Paraskevi, Attiki, Greece
| | - Effie-Photini Tsilibary
- Institute of Biosciences and Applications, National Centre for Scientific Research, N.C.S.R. "Demokritos", Terma Patriarchou Grigoriou & Neapoleos, 15310 Agia Paraskevi, Attiki, Greece
| | - Panagiotis Politis
- Center for Basic Research, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou, Athens 115 27, Greece
| | - Petros Moustardas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou, Athens 115 27, Greece
| | - Aristidis Charonis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou, Athens 115 27, Greece
| | - Paraskevi Kitsiou
- Institute of Biosciences and Applications, National Centre for Scientific Research, N.C.S.R. "Demokritos", Terma Patriarchou Grigoriou & Neapoleos, 15310 Agia Paraskevi, Attiki, Greece.
| |
Collapse
|
17
|
|
18
|
Dessapt-Baradez C, Woolf AS, White KE, Pan J, Huang JL, Hayward AA, Price KL, Kolatsi-Joannou M, Locatelli M, Diennet M, Webster Z, Smillie SJ, Nair V, Kretzler M, Cohen CD, Long DA, Gnudi L. Targeted glomerular angiopoietin-1 therapy for early diabetic kidney disease. J Am Soc Nephrol 2013; 25:33-42. [PMID: 24009238 DOI: 10.1681/asn.2012121218] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vascular growth factors play an important role in maintaining the structure and integrity of the glomerular filtration barrier. In healthy adult glomeruli, the proendothelial survival factors vascular endothelial growth factor-A (VEGF-A) and angiopoietin-1 are constitutively expressed in glomerular podocyte epithelia. We demonstrate that this milieu of vascular growth factors is altered in streptozotocin-induced type 1 diabetic mice, with decreased angiopoietin-1 levels, VEGF-A upregulation, decreased soluble VEGF receptor-1 (VEGFR1), and increased VEGFR2 phosphorylation. This was accompanied by marked albuminuria, nephromegaly, hyperfiltration, glomerular ultrastructural alterations, and aberrant angiogenesis. We subsequently hypothesized that restoration of angiopoietin-1 expression within glomeruli might ameliorate manifestations of early diabetic glomerulopathy. Podocyte-specific inducible repletion of angiopoietin-1 in diabetic mice caused a 70% reduction of albuminuria and prevented diabetes-induced glomerular endothelial cell proliferation; hyperfiltration and renal morphology were unchanged. Furthermore, angiopoietin-1 repletion in diabetic mice increased Tie-2 phosphorylation, elevated soluble VEGFR1, and was paralleled by a decrease in VEGFR2 phosphorylation and increased endothelial nitric oxide synthase Ser(1177) phosphorylation. Diabetes-induced nephrin phosphorylation was also reduced in mice with angiopoietin-1 repletion. In conclusion, targeted angiopoietin-1 therapy shows promise as a renoprotective tool in the early stages of diabetic kidney disease.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW In this review, we discuss the role of endocytosis, a fundamental process internalizing molecules from the plasma membrane, and its critical importance in podocyte biology. RECENT FINDINGS Endocytic clathrin and nonclathrin-coated pits have been visualized in podocytes using electron microscopy, but the functional biological relevance has not been well defined. Recent evidence suggests that loss of key clathrin endocytic regulatory apparatus, such as dynamin, synaptojanin 1 or endophilin, in genetic mouse models of disease results in severe proteinuria and foot process effacement. In addition, several genes implicated in human nephrotic syndrome directly or indirectly associate with these endocytic proteins, thus creating a protein network that is linked in actin dynamics, signalling and endocytosis. SUMMARY This review summarizes our current understanding of membrane trafficking specifically in podocytes, thus giving further novel insights into the molecular mechanisms and pathogenesis of nephrotic syndrome.
Collapse
Affiliation(s)
- Keita Soda
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|