1
|
Fazakerley DJ, Koumanov F, Holman GD. GLUT4 On the move. Biochem J 2022; 479:445-462. [PMID: 35147164 PMCID: PMC8883492 DOI: 10.1042/bcj20210073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022]
Abstract
Insulin rapidly stimulates GLUT4 translocation and glucose transport in fat and muscle cells. Signals from the occupied insulin receptor are translated into downstream signalling changes in serine/threonine kinases within timescales of seconds, and this is followed by delivery and accumulation of the glucose transporter GLUT4 at the plasma membrane. Kinetic studies have led to realisation that there are distinct phases of this stimulation by insulin. There is a rapid initial burst of GLUT4 delivered to the cell surface from a subcellular reservoir compartment and this is followed by a steady-state level of continuing stimulation in which GLUT4 recycles through a large itinerary of subcellular locations. Here, we provide an overview of the phases of insulin stimulation of GLUT4 translocation and the molecules that are currently considered to activate these trafficking steps. Furthermore, we suggest how use of new experimental approaches together with phospho-proteomic data may help to further identify mechanisms for activation of these trafficking processes.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, U.K
| | - Francoise Koumanov
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset BA2 7AY, U.K
| | - Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset BA2 7AY, U.K
| |
Collapse
|
2
|
Batty SR, Langlais PR. Microtubules in insulin action: what's on the tube? Trends Endocrinol Metab 2021; 32:776-789. [PMID: 34462181 PMCID: PMC8446328 DOI: 10.1016/j.tem.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Microtubules (MT) have a role in the intracellular response to insulin stimulation and subsequent glucose transport by glucose transporter 4 (GLUT4), which resides in specialized storage vesicles that travel through the cell. Before GLUT4 is inserted into the plasma membrane for glucose transport, it undergoes complex trafficking through the cell via the integration of cytoskeletal networks. In this review, we highlight the importance of MT elements in insulin action in adipocytes through a summary of MT depolymerization studies, MT-based GLUT4 movement, molecular motor proteins involved in GLUT4 trafficking, as well as MT-related phenomena in response to insulin and links between insulin action and MT-associated proteins.
Collapse
Affiliation(s)
- Skylar R Batty
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
3
|
Panagopoulos I, Gorunova L, Andersen K, Lobmaier I, Heim S. Several Fusion Genes Identified in a Spermatic Cord Leiomyoma With Rearrangements of Chromosome Arms 3p and 21q. Cancer Genomics Proteomics 2021; 18:531-542. [PMID: 34183386 DOI: 10.21873/cgp.20278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Benign smooth-muscle tumors, leiomyomas, occur in nearly every organ but are most common in the uterus. Whereas much is known about the genetics of uterine leiomyomas, little genetic information exists about leiomyomas of other organs. Here, we report and discuss the genetic findings in a para-testicular leiomyoma. MATERIALS AND METHODS Cytogenetic, array comparative genomic hybridization (aCGH) RNA sequencing, reverse-transcription polymerase chain reaction (RT- PCR), and Sanger sequencing analyses were performed on a leiomyoma of the spermatic cord removed from a 61-year-old man. RESULTS The karyotype was 48~50,XY,add(3) (p21),+4,+7,+8,+9,add(21)(q22)[cp9]/46,XY[2]. aCGH confirmed the trisomies and also detected multiple gains and losses from 3p and 21q. RNA sequencing detected the chimeras ARHGEF3-CACNA2D2, TRAK1-TIMP4, ITPR1- DT-NR2C2, CLASP2-IL17RD, ZNF621-LARS2, CNTN4- RHOA, and NR2C2-CFAP410. All chimeras were confirmed by RT-PCR and Sanger sequencing. CONCLUSION Our data, together with those previously published, indicate that a group of leiomyomas may be cytogenetically characterized by aberrations of 3p and the formation of fusion genes.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingvild Lobmaier
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Li T, Liu L, Wang X. [Sepsis impairs aggregation of nicotinic acetylcholine receptors on murine skeletal muscle cell membranes by inhibiting AKT/GSK3β phosphorylation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1337-1343. [PMID: 31852639 DOI: 10.12122/j.issn.1673-4254.2019.11.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To investigate the role of the protein-serine-threonine kinase (AKT)/glycogen synthase kinase 3β (GSK3β) signaling pathway in nicotinic acetylcholine receptors (nAChRs) aggregation disorder on skeletal muscle cell membranes induced by sepsis. METHODS Mouse C2C12 myoblasts were differentiated into myotubes by horse serum, and then C2C12 myotubes were randomly divided into four groups: the Sham group treated with serum from sham-operated mice, the Sepsis group treated with serum from septic mice, the Sepsis+D group treated with serum from septic mice and dimethyl sulfoxide (DMSO), the Sepsis+SB group treated with serum from septic mice and GSK3β inhibitor SB216763. Agrin was added into the cell culture to induce nAChRs aggregation before the treatment. After serum treatment for 5.5 h, the myotubes were examined for nAChRs clusters using Alexa Fluor 594-conjugated α-bungarotoxin (α- BTX). The expression levels of AKT, GSK3β and CLIP- associated protein 2 (CLASP2) and the phosphorylation of AKT, GSK3β were examined with Western blotting. The phosphorylation of CLASP2 and the interaction between CLASP2 and α-tubulin were detected with co-immunoprecipitation (Co-IP) assay. RESULTS Compared with the serum from sham-operated mice, the serum from septic mice caused significant reduction in the area and density of nAChRs clusters on C2C12 myotubes, lowered the levels of phosphorylated AKT (p-AKT) and phosphorylated GSK3β (p-GSK3β), increased the expression of phosphorylated CLASP2 (p-CLASP2), and obviously reduced the binding between CLASP2 and α-tubulin. Compared with DMSO, SB216763 significantly increased the area and density of nAChRs clusters on C2C12 myotubes treated with serum from septic mice, decreased the expression of p-CLASP2, and enhanced the interaction between CLASP2 and α-tubulin. CONCLUSIONS Septic mouse serum impairs nAChRs aggregation on C2C12 myotubes possibly by suppressing AKT/GSK3β phosphorylation to cause reduced interaction between CLASP2 and α-tubulin.
Collapse
Affiliation(s)
- Tianmei Li
- Department of Anesthesiology, First Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Li Liu
- Department of Anesthesiology, First Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaobin Wang
- Department of Anesthesiology, First Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
5
|
Parker SS, Krantz J, Kwak EA, Barker NK, Deer CG, Lee NY, Mouneimne G, Langlais PR. Insulin Induces Microtubule Stabilization and Regulates the Microtubule Plus-end Tracking Protein Network in Adipocytes. Mol Cell Proteomics 2019; 18:1363-1381. [PMID: 31018989 PMCID: PMC6601206 DOI: 10.1074/mcp.ra119.001450] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Insulin-stimulated glucose uptake is known to involve microtubules, although the function of microtubules and the microtubule-regulating proteins involved in insulin action are poorly understood. CLASP2, a plus-end tracking microtubule-associated protein (+TIP) that controls microtubule dynamics, was recently implicated as the first +TIP associated with insulin-regulated glucose uptake. Here, using protein-specific targeted quantitative phosphoproteomics within 3T3-L1 adipocytes, we discovered that insulin regulates phosphorylation of the CLASP2 network members G2L1, MARK2, CLIP2, AGAP3, and CKAP5 as well as EB1, revealing the existence of a previously unknown microtubule-associated protein system that responds to insulin. To further investigate, G2L1 interactome studies within 3T3-L1 adipocytes revealed that G2L1 coimmunoprecipitates CLASP2 and CLIP2 as well as the master integrators of +TIP assembly, the end binding (EB) proteins. Live-cell total internal reflection fluorescence microscopy in adipocytes revealed G2L1 and CLASP2 colocalize on microtubule plus-ends. We found that although insulin increases the number of CLASP2-containing plus-ends, insulin treatment simultaneously decreases CLASP2-containing plus-end velocity. In addition, we discovered that insulin stimulates redistribution of CLASP2 and G2L1 from exclusive plus-end tracking to "trailing" behind the growing tip of the microtubule. Insulin treatment increases α-tubulin Lysine 40 acetylation, a mechanism that was observed to be regulated by a counterbalance between GSK3 and mTOR, and led to microtubule stabilization. Our studies introduce insulin-stimulated microtubule stabilization and plus-end trailing of +TIPs as new modes of insulin action and reveal the likelihood that a network of microtubule-associated proteins synergize to coordinate insulin-regulated microtubule dynamics.
Collapse
Affiliation(s)
- Sara S Parker
- From the ‡Department of Cellular & Molecular Medicine
| | - James Krantz
- §Department of Medicine, Division of Endocrinology
| | | | | | - Chris G Deer
- University of Arizona Research Computing, University of Arizona, Tucson, Arizona 85721
| | - Nam Y Lee
- ¶Department of Pharmacology,; ‖Department of Chemistry & Biochemistry, University of Arizona College of Medicine, Tucson, Arizona 85721
| | | | | |
Collapse
|
6
|
Sayas CL, Basu S, van der Reijden M, Bustos-Morán E, Liz M, Sousa M, van IJcken WFJ, Avila J, Galjart N. Distinct Functions for Mammalian CLASP1 and -2 During Neurite and Axon Elongation. Front Cell Neurosci 2019; 13:5. [PMID: 30787869 PMCID: PMC6373834 DOI: 10.3389/fncel.2019.00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/08/2019] [Indexed: 01/10/2023] Open
Abstract
Mammalian cytoplasmic linker associated protein 1 and -2 (CLASP1 and -2) are microtubule (MT) plus-end tracking proteins that selectively stabilize MTs at the edge of cells and that promote MT nucleation and growth at the Golgi, thereby sustaining cell polarity. In vitro analysis has shown that CLASPs are MT growth promoting factors. To date, a single CLASP1 isoform (called CLASP1α) has been described, whereas three CLASP2 isoforms are known (CLASP2α, -β, and -γ). Although CLASP2β/γ are enriched in neurons, suggesting isoform-specific functions, it has been proposed that during neurite outgrowth CLASP1 and -2 act in a redundant fashion by modulating MT dynamics downstream of glycogen synthase kinase 3 (GSK3). Here, we show that in differentiating N1E-115 neuroblastoma cells CLASP1 and CLASP2 differ in their accumulation at MT plus-ends and display different sensitivity to GSK3-mediated phosphorylation, and hence regulation. More specifically, western blot (WB) analysis suggests that pharmacological inhibition of GSK3 affects CLASP2 but not CLASP1 phosphorylation and fluorescence-based microscopy data show that GSK3 inhibition leads to an increase in the number of CLASP2-decorated MT ends, as well as to increased CLASP2 staining of individual MT ends, whereas a reduction in the number of CLASP1-decorated ends is observed. Thus, in N1E-115 cells CLASP2 appears to be a prominent target of GSK3 while CLASP1 is less sensitive. Surprisingly, knockdown of either CLASP causes phosphorylation of GSK3, pointing to the existence of feedback loops between CLASPs and GSK3. In addition, CLASP2 depletion also leads to the activation of protein kinase C (PKC). We found that these differences correlate with opposite functions of CLASP1 and CLASP2 during neuronal differentiation, i.e., CLASP1 stimulates neurite extension, whereas CLASP2 inhibits it. Consistent with knockdown results in N1E-115 cells, primary Clasp2 knockout (KO) neurons exhibit early accelerated neurite and axon outgrowth, showing longer axons than control neurons. We propose a model in which neurite outgrowth is fine-tuned by differentially posttranslationally modified isoforms of CLASPs acting at distinct intracellular locations, thereby targeting MT stabilizing activities of the CLASPs and controlling feedback signaling towards upstream kinases. In summary, our findings provide new insight into the roles of neuronal CLASPs, which emerge as regulators acting in different signaling pathways and locally modulating MT behavior during neurite/axon outgrowth.
Collapse
Affiliation(s)
- Carmen Laura Sayas
- Department of Cell Biology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.,Centro de Biología Molecular Severo Ochoa (CSIC-Universidad Autónoma de Madrid (UAM)), Madrid, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), Tenerife, Spain
| | - Sreya Basu
- Department of Cell Biology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Michael van der Reijden
- Department of Cell Biology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eugenio Bustos-Morán
- Centro de Biología Molecular Severo Ochoa (CSIC-Universidad Autónoma de Madrid (UAM)), Madrid, Spain
| | - Marcia Liz
- Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| | - Monica Sousa
- Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| | - Wilfred F J van IJcken
- Center for Biomics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jesus Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-Universidad Autónoma de Madrid (UAM)), Madrid, Spain.,Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Niels Galjart
- Department of Cell Biology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
7
|
Tunduguru R, Zhang J, Aslamy A, Salunkhe VA, Brozinick JT, Elmendorf JS, Thurmond DC. The actin-related p41ARC subunit contributes to p21-activated kinase-1 (PAK1)-mediated glucose uptake into skeletal muscle cells. J Biol Chem 2017; 292:19034-19043. [PMID: 28972183 DOI: 10.1074/jbc.m117.801340] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/21/2017] [Indexed: 02/04/2023] Open
Abstract
Defects in translocation of the glucose transporter GLUT4 are associated with peripheral insulin resistance, preclinical diabetes, and progression to type 2 diabetes. GLUT4 recruitment to the plasma membrane of skeletal muscle cells requires F-actin remodeling. Insulin signaling in muscle requires p21-activated kinase-1 (PAK1), whose downstream signaling triggers actin remodeling, which promotes GLUT4 vesicle translocation and glucose uptake into skeletal muscle cells. Actin remodeling is a cyclic process, and although PAK1 is known to initiate changes to the cortical actin-binding protein cofilin to stimulate the depolymerizing arm of the cycle, how PAK1 might trigger the polymerizing arm of the cycle remains unresolved. Toward this, we investigated whether PAK1 contributes to the mechanisms involving the actin-binding and -polymerizing proteins neural Wiskott-Aldrich syndrome protein (N-WASP), cortactin, and ARP2/3 subunits. We found that the actin-polymerizing ARP2/3 subunit p41ARC is a PAK1 substrate in skeletal muscle cells. Moreover, co-immunoprecipitation experiments revealed that insulin stimulates p41ARC phosphorylation and increases its association with N-WASP coordinately with the associations of N-WASP with cortactin and actin. Importantly, all of these associations were ablated by the PAK inhibitor IPA3, suggesting that PAK1 activation lies upstream of these actin-polymerizing complexes. Using the N-WASP inhibitor wiskostatin, we further demonstrated that N-WASP is required for localized F-actin polymerization, GLUT4 vesicle translocation, and glucose uptake. These results expand the model of insulin-stimulated glucose uptake in skeletal muscle cells by implicating p41ARC as a new component of the insulin-signaling cascade and connecting PAK1 signaling to N-WASP-cortactin-mediated actin polymerization and GLUT4 vesicle translocation.
Collapse
Affiliation(s)
- Ragadeepthi Tunduguru
- From the Departments of Biochemistry and Molecular Biology and.,the Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute and Beckman Research Institute of the City of Hope, Duarte, California 91010, and
| | - Jing Zhang
- the Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute and Beckman Research Institute of the City of Hope, Duarte, California 91010, and
| | - Arianne Aslamy
- the Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute and Beckman Research Institute of the City of Hope, Duarte, California 91010, and.,Cellular and Integrative Physiology, Center for Diabetes and Metabolic Diseases,Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Vishal A Salunkhe
- the Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute and Beckman Research Institute of the City of Hope, Duarte, California 91010, and
| | | | - Jeffrey S Elmendorf
- From the Departments of Biochemistry and Molecular Biology and.,Cellular and Integrative Physiology, Center for Diabetes and Metabolic Diseases,Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Debbie C Thurmond
- From the Departments of Biochemistry and Molecular Biology and .,the Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute and Beckman Research Institute of the City of Hope, Duarte, California 91010, and.,Cellular and Integrative Physiology, Center for Diabetes and Metabolic Diseases,Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
8
|
Dahlman I, Belarbi Y, Laurencikiene J, Pettersson AM, Arner P, Kulyté A. Comprehensive functional screening of miRNAs involved in fat cell insulin sensitivity among women. Am J Physiol Endocrinol Metab 2017; 312:E482-E494. [PMID: 28270439 DOI: 10.1152/ajpendo.00251.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 01/12/2023]
Abstract
The key pathological link between obesity and type 2 diabetes is insulin resistance, but the molecular mechanisms are not entirely identified. micro-RNAs (miRNA) are dysregulated in obesity and may contribute to insulin resistance. Our objective was to detect and functionally investigate miRNAs linked to insulin sensitivity in human subcutaneous white adipose tissue (scWAT). Subjects were selected based on the insulin-stimulated lipogenesis response of subcutaneous adipocytes. Global miRNA profiling was performed in abdominal scWAT of 18 obese insulin-resistance (OIR), 21 obese insulin-sensitive (OIS), and 9 lean women. miRNAs demonstrating differential expression between OIR and OIS women were overexpressed in human in vitro-differentiated adipocytes followed by assessment of lipogenesis and identification of miRNA targets by measuring mRNA/protein expression and 3'-untranslated region analysis. Eleven miRNAs displayed differential expression between OIR and OIS states. Overexpression of miR-143-3p and miR-652-3p increased insulin-stimulated lipogenesis in human in vitro differentiated adipocytes and directly or indirectly affected several genes/proteins involved in insulin signaling at transcriptional or posttranscriptional levels. Adipose expression of miR-143-3p and miR-652-3p was positively associated with insulin-stimulated lipogenesis in scWAT independent of body mass index. In conclusion, miR-143-3p and miR-652-3p are linked to scWAT insulin resistance independent of obesity and influence insulin-stimulated lipogenesis by interacting at different steps with insulin-signaling pathways.
Collapse
Affiliation(s)
- Ingrid Dahlman
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Yasmina Belarbi
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jurga Laurencikiene
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Annie M Pettersson
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Peter Arner
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Agné Kulyté
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Kruse R, Krantz J, Barker N, Coletta RL, Rafikov R, Luo M, Højlund K, Mandarino LJ, Langlais PR. Characterization of the CLASP2 Protein Interaction Network Identifies SOGA1 as a Microtubule-Associated Protein. Mol Cell Proteomics 2017; 16:1718-1735. [PMID: 28550165 DOI: 10.1074/mcp.ra117.000011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 12/26/2022] Open
Abstract
CLASP2 is a microtubule-associated protein that undergoes insulin-stimulated phosphorylation and co-localization with reorganized actin and GLUT4 at the plasma membrane. To gain insight to the role of CLASP2 in this system, we developed and successfully executed a streamlined interactome approach and built a CLASP2 protein network in 3T3-L1 adipocytes. Using two different commercially available antibodies for CLASP2 and an antibody for epitope-tagged, overexpressed CLASP2, we performed multiple affinity purification coupled with mass spectrometry (AP-MS) experiments in combination with label-free quantitative proteomics and analyzed the data with the bioinformatics tool Significance Analysis of Interactome (SAINT). We discovered that CLASP2 coimmunoprecipitates (co-IPs) the novel protein SOGA1, the microtubule-associated protein kinase MARK2, and the microtubule/actin-regulating protein G2L1. The GTPase-activating proteins AGAP1 and AGAP3 were also enriched in the CLASP2 interactome, although subsequent AGAP3 and CLIP2 interactome analysis suggests a preference of AGAP3 for CLIP2. Follow-up MARK2 interactome analysis confirmed reciprocal co-IP of CLASP2 and revealed MARK2 can co-IP SOGA1, glycogen synthase, and glycogenin. Investigating the SOGA1 interactome confirmed SOGA1 can reciprocal co-IP both CLASP2 and MARK2 as well as glycogen synthase and glycogenin. SOGA1 was confirmed to colocalize with CLASP2 and with tubulin, which identifies SOGA1 as a new microtubule-associated protein. These results introduce the metabolic function of these proposed novel protein networks and their relationship with microtubules as new fields of cytoskeleton-associated protein biology.
Collapse
Affiliation(s)
- Rikke Kruse
- From the ‡The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.,§Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - James Krantz
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Natalie Barker
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Richard L Coletta
- ‖School of Life Sciences, Arizona State University, Tempe, Arizona 85787
| | - Ruslan Rafikov
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Moulun Luo
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Kurt Højlund
- From the ‡The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.,§Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Lawrence J Mandarino
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Paul R Langlais
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721;
| |
Collapse
|
10
|
Zhu B, Qi L, Liu S, Liu W, Ou Z, Chen M, Liu L, Zu X, Wang J, Li Y. CLASP2 is involved in the EMT and early progression after transurethral resection of the bladder tumor. BMC Cancer 2017; 17:105. [PMID: 28166762 PMCID: PMC5294712 DOI: 10.1186/s12885-017-3101-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/01/2017] [Indexed: 01/17/2023] Open
Abstract
Background Cytoplasmic linker-associated protein 2 (CLASP2) belongs to a family of microtubule plus-end tracking proteins that localizes to the distal ends of microtubules and regulate microtubule dynamics. We speculated that it might be involved in the epithelial-mesenchymal transition (EMT) and progression of bladder cancer (BC). Methods Western blotting and RT-PCR were used to detect the changes at protein and mRNA levels in BC cell lines. Cell proliferation, clonogenic formation, wound healing and chamber invasion assay were used to investigate the abilities of cellular proliferation, migration and invasion. The data of BC patients treated with transurethral resection of the bladder tumor (TURBT) was collected and analyzed. The levels of mRNA of CLASP2 and EMT-related markers in tumor and urine samples were tested by RT-PCR. Results Expressions of CLASP2 varied in four BC cell lines. Manipulation of CLASP2 expression changed EMT-related markers. CLASP2 could promote proliferation, migration and invasion in BC cell lines. The combination (CLASP2 + E-cadherin mRNA in urine) could better discriminate the patients with or without 2-years progression compared with tumor grade after TURBT. Conclusion CLASP2 is involved in the EMT and progression of bladder urothelial cancer. Simultaneous urine-based detection of CLASP2 and E-cadherin mRNA can efficiently discriminate patients with or without 2-years progression after TURBT.
Collapse
Affiliation(s)
- Bisong Zhu
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Sulai Liu
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Wentao Liu
- Department of Urology, The second Xiangya Hospital, Central South University, Renmin Road, Changsha, 410000, People's Republic of China
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Minfeng Chen
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Jun Wang
- Department of Urology, The first affiliated Hospital, Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, 450000, People's Republic of China
| | - Yuan Li
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
11
|
Xu Q, Hou YX, Langlais P, Erickson P, Zhu J, Shi CX, Luo M, Zhu Y, Xu Y, Mandarino LJ, Stewart K, Chang XB. Expression of the cereblon binding protein argonaute 2 plays an important role for multiple myeloma cell growth and survival. BMC Cancer 2016; 16:297. [PMID: 27142104 PMCID: PMC4855823 DOI: 10.1186/s12885-016-2331-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 04/29/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Immunomodulatory drugs (IMiDs), such as lenalidomide, are therapeutically active compounds that bind and modulate the E3 ubiquitin ligase substrate recruiter cereblon, thereby affect steady-state levels of cereblon and cereblon binding partners, such as ikaros and aiolos, and induce many cellular responses, including cytotoxicity to multiple myeloma (MM) cells. Nevertheless, it takes many days for MM cells to die after IMiD induced depletion of ikaros and aiolos and thus we searched for other cereblon binding partners that participate in IMiD cytotoxicity. METHODS Cereblon binding partners were identified from a MM cell line expressing histidine-tagged cereblon by pulling down cereblon and its binding partners and verified by co-immunoprecipitation. IMiD effects were determined by western blot analysis, cell viability assay, microRNA array and apoptosis analysis. RESULTS We identified argonaute 2 (AGO2) as a cereblon binding partner and found that the steady-state levels of AGO2 were regulated by cereblon. Upon treatment of IMiD-sensitive MM cells with lenalidomide, the steady-state levels of cereblon were significantly increased, whereas levels of AGO2 were significantly decreased. It has been reported that AGO2 plays a pivotal role in microRNA maturation and function. Interestingly, upon treatment of MM cells with lenalidomide, the steady-state levels of microRNAs were significantly altered. In addition, silencing of AGO2 in MM cells, regardless of sensitivity to IMiDs, significantly decreased the levels of AGO2 and microRNAs and massively induced cell death. CONCLUSION These results support the notion that the cereblon binding partner AGO2 plays an important role in regulating MM cell growth and survival and AGO2 could be considered as a novel drug target for overcoming IMiD resistance in MM cells.
Collapse
Affiliation(s)
- Qinqin Xu
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.,Zhejiang Provincial Key Laboratory of Nephrology, Hangzhou Traditional Chinese Medical Hospital, 453 Tiyuchang Rd, Hangzhou, 310007, China
| | - Yue-xian Hou
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Paul Langlais
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Patrick Erickson
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - James Zhu
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Chang-Xin Shi
- Division of Hematology-Oncology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Moulun Luo
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
| | - Yuanxiao Zhu
- Division of Hematology-Oncology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ye Xu
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.,Key Laboratory of Carcinogenesis and Translational Research, Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, P. R. China
| | - Lawrence J Mandarino
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA.,Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Keith Stewart
- Division of Hematology-Oncology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Xiu-bao Chang
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
12
|
Caruso M, Ma D, Msallaty Z, Lewis M, Seyoum B, Al-janabi W, Diamond M, Abou-Samra AB, Højlund K, Tagett R, Draghici S, Zhang X, Horowitz JF, Yi Z. Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes. Diabetes 2014; 63:1933-47. [PMID: 24584551 PMCID: PMC4030113 DOI: 10.2337/db13-1872] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin receptor substrate 1 (IRS1) is a key mediator of insulin signal transduction. Perturbations involving IRS1 complexes may lead to the development of insulin resistance and type 2 diabetes (T2D). Surprisingly little is known about the proteins that interact with IRS1 in humans under health and disease conditions. We used a proteomic approach to assess IRS1 interaction partners in skeletal muscle from lean healthy control subjects (LCs), obese insulin-resistant nondiabetic control subjects (OCs), and participants with T2D before and after insulin infusion. We identified 113 novel endogenous IRS1 interaction partners, which represents the largest IRS1 interactome in humans and provides new targets for studies of IRS1 complexes in various diseases. Furthermore, we generated the first global picture of IRS1 interaction partners in LCs, and how they differ in OCs and T2D patients. Interestingly, dozens of proteins in OCs and/or T2D patients exhibited increased associations with IRS1 compared with LCs under the basal and/or insulin-stimulated conditions, revealing multiple new dysfunctional IRS1 pathways in OCs and T2D patients. This novel abnormality, increased interaction of multiple proteins with IRS1 in obesity and T2D in humans, provides new insights into the molecular mechanism of insulin resistance and identifies new targets for T2D drug development.
Collapse
Affiliation(s)
- Michael Caruso
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI
| | - Danjun Ma
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI
| | - Zaher Msallaty
- Division of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, MI
| | - Monique Lewis
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI
| | - Berhane Seyoum
- Division of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, MI
| | - Wissam Al-janabi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI
| | - Michael Diamond
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MIDepartment of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA
| | - Abdul B Abou-Samra
- Division of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, MIDepartment of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Kurt Højlund
- Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Rebecca Tagett
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI
| | - Sorin Draghici
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI
| | | | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI
| |
Collapse
|
13
|
Zhang X, Heckmann BL, Liu J. Studying lipolysis in adipocytes by combining siRNA knockdown and adenovirus-mediated overexpression approaches. Methods Cell Biol 2013; 116:83-105. [PMID: 24099289 DOI: 10.1016/b978-0-12-408051-5.00006-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3T3-L1 adipocytes are widely used as a model system for studying hormone-stimulated lipolysis. However, these cells were limited in their utility for gain- and loss-of-function studies due to the low efficiency of their transfection with plasmid DNA or small interfering RNA (siRNA) oligos. In this chapter, we provide a review of two methods established for manipulation of protein expression in differentiated mature adipocytes. The use of electroporation allows a high-efficiency delivery of siRNA oligos and subsequent knockdown of specific gene expression. A centrifugation-assisted infection with recombinant adenovirus, on the other hand, enables robust overexpression of ectopic proteins. Most importantly, by combining siRNA electroporation with adenovirus infection, simultaneous manipulation of levels of two different proteins can be achieved in differentiated adipocytes. Through subsequent analyses of lipase activity in cell extracts and fatty acid or glycerol release from living cells, mutual interdependence between the two proteins in the context of basal and hormone-stimulated adipocyte lipolysis can be evaluated.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, Arizona, USA; Metabolic HEALth Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA
| | | | | |
Collapse
|