1
|
Huang M, Liu W, Cheng Z, Li F, Kong Y, Yang C, Tang Y, Jiang D, Li W, Hu Y, Hu J, Puno P, Chen C. Targeting the HECTD3-p62 axis increases the radiosensitivity of triple negative breast cancer cells. Cell Death Discov 2024; 10:462. [PMID: 39487119 PMCID: PMC11530666 DOI: 10.1038/s41420-024-02154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 11/04/2024] Open
Abstract
Triple negative breast cancer is the most malignant subtype of breast cancer and current treatment options are limited. Radiotherapy is one of the primary therapeutic options for patients with TNBC. In this study, we discovered that the E3 ubiquitin ligase, HECTD3, promoted TNBC cell survival after irradiation. HECTD3 collaborated with UbcH5b to promote p62 ubiquitination and autophagy while HECTD3 deletion led to p62 accumulation in the nucleus in response to irradiation, thus inhibiting RNF168 mediated DNA damage repair. Furthermore, the HECTD3/UbcH5b inhibitor, PC3-15, increased the radiosensitivity of TNBC cells by inhibiting DNA damage repair. Taken together, we conclude that HECTD3 promotes autophagy and DNA damage repair in response to irradiation in a p62-denpendent manner, and that inhibition of the HECTD3-p62 axis could be a potential therapeutic strategy for patients with TNBC in addition to radiotherapy.
Collapse
Affiliation(s)
- Maobo Huang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- The First People's Hospital of Kunming City (The Affiliated Calmette Hospital of Kunming Medical University), Kunming, 650224, China
| | - Wenjing Liu
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Zhuo Cheng
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | - Fubing Li
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China
| | - Yanjie Kong
- Biobank, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Chuanyu Yang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yu Tang
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Dewei Jiang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wenhui Li
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Yudie Hu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Jinhui Hu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China.
| | - PemaTenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Ceshi Chen
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China.
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
2
|
Huang J, Cook DE. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens. FEMS Microbiol Rev 2022; 46:fuac035. [PMID: 35810003 PMCID: PMC9779921 DOI: 10.1093/femsre/fuac035] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks require repair or risk corrupting the language of life. To ensure genome integrity and viability, multiple DNA double-strand break repair pathways function in eukaryotes. Two such repair pathways, canonical non-homologous end joining and homologous recombination, have been extensively studied, while other pathways such as microhomology-mediated end joint and single-strand annealing, once thought to serve as back-ups, now appear to play a fundamental role in DNA repair. Here, we review the molecular details and hierarchy of these four DNA repair pathways, and where possible, a comparison for what is known between animal and fungal models. We address the factors contributing to break repair pathway choice, and aim to explore our understanding and knowledge gaps regarding mechanisms and regulation in filamentous pathogens. We additionally discuss how DNA double-strand break repair pathways influence genome engineering results, including unexpected mutation outcomes. Finally, we review the concept of biased genome evolution in filamentous pathogens, and provide a model, termed Biased Variation, that links DNA double-strand break repair pathways with properties of genome evolution. Despite our extensive knowledge for this universal process, there remain many unanswered questions, for which the answers may improve genome engineering and our understanding of genome evolution.
Collapse
Affiliation(s)
- Jun Huang
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| | - David E Cook
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| |
Collapse
|
3
|
Ping X, Stark JM. O-GlcNAc transferase is important for homology-directed repair. DNA Repair (Amst) 2022; 119:103394. [PMID: 36095925 PMCID: PMC9884008 DOI: 10.1016/j.dnarep.2022.103394] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023]
Abstract
O-Linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) to serine or threonine residues is a reversible and dynamic post-translational modification. O-GlcNAc transferase (OGT) is the only enzyme for O-GlcNAcylation, and is a potential cancer therapeutic target in combination with clastogenic (i.e., chromosomal breaking) therapeutics. Thus, we sought to examine the influence of O-GlcNAcylation on chromosomal break repair. Using a set of DNA double strand break (DSB) reporter assays, we found that the depletion of OGT, and its inhibition with a small molecule each caused a reduction in repair pathways that involve use of homology: RAD51-dependent homology-directed repair (HDR), and single strand annealing. In contrast, such OGT disruption did not obviously affect chromosomal break end joining, and furthermore caused an increase in homology-directed gene targeting. Such disruption in OGT also caused a reduction in clonogenic survival, as well as modifications to cell cycle profiles, particularly an increase in G1-phase cells. We also examined intermediate steps of HDR, finding no obvious effects on an assay for DSB end resection, nor for RAD51 recruitment into ionizing radiation induced foci (IRIF) in proliferating cells. However, we also found that the influence of OGT on HDR and homology-directed gene targeting were dependent on RAD52, and that OGT is important for RAD52 IRIF in proliferating cells. Thus, we suggest that OGT is important for regulation of HDR that is partially linked to RAD52 function.
Collapse
Affiliation(s)
- Xiaoli Ping
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA,Correspondence should be addressed to J.M.S:, Phone: 626-218-6346, Fax: 626-301-8892,
| |
Collapse
|
4
|
Giardia duodenalis carries out canonical homologous recombination and single-strand annealing. Res Microbiol 2022; 173:103984. [DOI: 10.1016/j.resmic.2022.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 04/26/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
|
5
|
Kelliher J, Ghosal G, Leung JWC. New answers to the old RIDDLE: RNF168 and the DNA damage response pathway. FEBS J 2022; 289:2467-2480. [PMID: 33797206 PMCID: PMC8486888 DOI: 10.1111/febs.15857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/31/2022]
Abstract
The chromatin-based DNA damage response pathway is tightly orchestrated by histone post-translational modifications, including histone H2A ubiquitination. Ubiquitination plays an integral role in regulating cellular processes including DNA damage signaling and repair. The ubiquitin E3 ligase RNF168 is essential in assembling a cohort of DNA repair proteins at the damaged chromatin via its enzymatic activity. RNF168 ubiquitinates histone H2A(X) at the N terminus and generates a specific docking scaffold for ubiquitin-binding motif-containing proteins. The regulation of RNF168 at damaged chromatin and the mechanistic implication in the recruitment of DNA repair proteins to the damaged sites remain an area of active investigation. Here, we review the function and regulation of RNF168 in the context of ubiquitin-mediated DNA damage signaling and repair. We will also discuss the unanswered questions that require further investigation and how understanding RNF168 targeting specificity could benefit the therapeutic development for cancer treatment.
Collapse
Affiliation(s)
- Jessica Kelliher
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States,To whom correspondence should be addressed: and
| | - Justin Wai Chung Leung
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States,To whom correspondence should be addressed: and
| |
Collapse
|
6
|
Vu TV, Das S, Nguyen CC, Kim J, Kim JY. Single-strand annealing: Molecular mechanisms and potential applications in CRISPR-Cas-based precision genome editing. Biotechnol J 2021; 17:e2100413. [PMID: 34846104 DOI: 10.1002/biot.202100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spontaneous double-stranded DNA breaks (DSBs) frequently occur within the genome of all living organisms and must be well repaired for survival. Recently, more important roles of the DSB repair pathways that were previously thought to be minor pathways, such as single-strand annealing (SSA), have been shown. Nevertheless, the biochemical mechanisms and applications of the SSA pathway in genome editing have not been updated. PURPOSE AND SCOPE Understanding the molecular mechanism of SSA is important to design potential applications in gene editing. This review provides insights into the recent progress of SSA studies and establishes a model for their potential applications in precision genome editing. SUMMARY AND CONCLUSION The SSA mechanism involved in DNA DSB repair appears to be activated by a complex signaling cascade starting with broken end sensing and 5'-3' resection to reveal homologous repeats on the 3' ssDNA overhangs that flank the DSB. Annealing the repeats would help to amend the discontinuous ends and restore the intact genome, resulting in the missing of one repeat and the intervening sequence between the repeats. We proposed a model for CRISPR-Cas-based precision insertion or replacement of DNA fragments to take advantage of the characteristics. The proposed model can add a tool to extend the choice for precision gene editing. Nevertheless, the model needs to be experimentally validated and optimized with SSA-favorable conditions for practical applications.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.,National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Bac Tu Liem, Hanoi, Vietnam
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Cam Chau Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.,Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
7
|
Disruption of Chromatin Dynamics by Hypotonic Stress Suppresses HR and Shifts DSB Processing to Error-Prone SSA. Int J Mol Sci 2021; 22:ijms222010957. [PMID: 34681628 PMCID: PMC8535785 DOI: 10.3390/ijms222010957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
The processing of DNA double-strand breaks (DSBs) depends on the dynamic characteristics of chromatin. To investigate how abrupt changes in chromatin compaction alter these dynamics and affect DSB processing and repair, we exposed irradiated cells to hypotonic stress (HypoS). Densitometric and chromosome-length analyses show that HypoS transiently decompacts chromatin without inducing histone modifications known from regulated local chromatin decondensation, or changes in Micrococcal Nuclease (MNase) sensitivity. HypoS leaves undisturbed initial stages of DNA-damage-response (DDR), such as radiation-induced ATM activation and H2AX-phosphorylation. However, detection of ATM-pS1981, γ-H2AX and 53BP1 foci is reduced in a protein, cell cycle phase and cell line dependent manner; likely secondary to chromatin decompaction that disrupts the focal organization of DDR proteins. While HypoS only exerts small effects on classical nonhomologous end-joining (c-NHEJ) and alternative end-joining (alt-EJ), it markedly suppresses homologous recombination (HR) without affecting DNA end-resection at DSBs, and clearly enhances single-strand annealing (SSA). These shifts in pathway engagement are accompanied by decreases in HR-dependent chromatid-break repair in the G2-phase, and by increases in alt-EJ and SSA-dependent chromosomal translocations. Consequently, HypoS sensitizes cells to ionizing radiation (IR)-induced killing. We conclude that HypoS-induced global chromatin decompaction compromises regulated chromatin dynamics and genomic stability by suppressing DSB-processing by HR, and allowing error-prone processing by alt-EJ and SSA.
Collapse
|
8
|
Krais JJ, Wang Y, Patel P, Basu J, Bernhardy AJ, Johnson N. RNF168-mediated localization of BARD1 recruits the BRCA1-PALB2 complex to DNA damage. Nat Commun 2021; 12:5016. [PMID: 34408138 PMCID: PMC8373961 DOI: 10.1038/s41467-021-25346-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
DNA damage prompts a diverse range of alterations to the chromatin landscape. The RNF168 E3 ubiquitin ligase catalyzes the mono-ubiquitination of histone H2A at lysine (K)13/15 (mUb-H2A), forming a binding module for DNA repair proteins. BRCA1 promotes homologous recombination (HR), in part, through its interaction with PALB2, and the formation of a larger BRCA1-PALB2-BRCA2-RAD51 (BRCA1-P) complex. The mechanism by which BRCA1-P is recruited to chromatin surrounding DNA breaks is unclear. In this study, we reveal that an RNF168-governed signaling pathway is responsible for localizing the BRCA1-P complex to DNA damage. Using mice harboring a Brca1CC (coiled coil) mutation that blocks the Brca1-Palb2 interaction, we uncovered an epistatic relationship between Rnf168− and Brca1CC alleles, which disrupted development, and reduced the efficiency of Palb2-Rad51 localization. Mechanistically, we show that RNF168-generated mUb-H2A recruits BARD1 through a BRCT domain ubiquitin-dependent recruitment motif (BUDR). Subsequently, BARD1-BRCA1 accumulate PALB2-RAD51 at DNA breaks via the CC domain-mediated BRCA1-PALB2 interaction. Together, these findings establish a series of molecular interactions that connect the DNA damage signaling and HR repair machinery. The BRCA1-PALB2-BRCA2-RAD51 (BRCA1-P) complex is well known to play a fundamental role in DNA repair, but how the complex recruitment is regulated is still a matter of interest. Here the authors reveal mechanistic insights into RNF168 activity being responsible for PALB2 recruitment, through BARD1-BRCA1 during homologous recombination repair.
Collapse
Affiliation(s)
- John J Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yifan Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Pooja Patel
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jayati Basu
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Andrea J Bernhardy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Non-canonical function of DGCR8 in DNA double-strand break repair signaling and tumor radioresistance. Nat Commun 2021; 12:4033. [PMID: 34188037 PMCID: PMC8242032 DOI: 10.1038/s41467-021-24298-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/11/2021] [Indexed: 12/21/2022] Open
Abstract
In response to DNA double-strand breaks (DSBs), repair proteins are recruited to the damaged sites. Ubiquitin signaling plays a critical role in coordinating protein recruitment during the DNA damage response. Here, we find that the microRNA biogenesis factor DGCR8 promotes tumor resistance to X-ray radiation independently of its Drosha-binding ability. Upon radiation, the kinase ATM and the deubiquitinase USP51 mediate the activation and stabilization of DGCR8 through phosphorylation and deubiquitination. Specifically, radiation-induced ATM-dependent phosphorylation of DGCR8 at serine 677 facilitates USP51 to bind, deubiquitinate, and stabilize DGCR8, which leads to the recruitment of DGCR8 and DGCR8’s binding partner RNF168 to MDC1 and RNF8 at DSBs. This, in turn, promotes ubiquitination of histone H2A, repair of DSBs, and radioresistance. Altogether, these findings reveal the non-canonical function of DGCR8 in DSB repair and suggest that radiation treatment may result in therapy-induced tumor radioresistance through ATM- and USP51-mediated activation and upregulation of DGCR8. The molecular mechanisms underlying cancer cell radioresistance need to be elucidated. In this study, the authors show that the microRNA biogenesis factor DGCR8 is stabilized by USP51 and ATM upon irradiation and by consequence it promotes the repair of DNA double-strand breaks and radioresistance by recruiting RNF168 to sites of damage.
Collapse
|
10
|
Mendez-Dorantes C, Tsai LJ, Jahanshir E, Lopezcolorado FW, Stark JM. BLM has Contrary Effects on Repeat-Mediated Deletions, based on the Distance of DNA DSBs to a Repeat and Repeat Divergence. Cell Rep 2021; 30:1342-1357.e4. [PMID: 32023454 PMCID: PMC7085117 DOI: 10.1016/j.celrep.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/08/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
Repeat-mediated deletions (RMDs) often involve repetitive elements (e.g., short interspersed elements) with sequence divergence that is separated by several kilobase pairs (kbps). We have examined RMDs induced by DNA double-strand breaks (DSBs) under varying conditions of repeat sequence divergence (identical versus 1% and 3% divergent) and DSB/repeat distance (16 bp–28.4 kbp). We find that the BLM helicase promotes RMDs with long DSB/repeat distances (e.g., 28.4 kbp), which is consistent with a role in extensive DSB end resection, because the resection nucleases EXO1 and DNA2 affect RMDs similarly to BLM. In contrast, BLM suppresses RMDs with sequence divergence and intermediate (e.g., 3.3 kbp) DSB/repeat distances, which supports a role in heteroduplex rejection. The role of BLM in heteroduplex rejection is not epistatic with MSH2 and is independent of the annealing factor RAD52. Accordingly, the role of BLM on RMDs is substantially affected by DSB/repeat distance and repeat sequence divergence. Mendez-Dorantes et al. identify the BLM helicase as a key regulator of repeat-mediated deletions (RMDs). BLM, EXO1, and DNA2 mediate RMDs with remarkably long DNA break/repeat distances. BLM suppresses RMDs with sequence divergence that is optimal with a long non-homologous tail and is independent of MSH2 and RAD52.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - L Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Eva Jahanshir
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
11
|
Single-Strand Annealing in Cancer. Int J Mol Sci 2021; 22:ijms22042167. [PMID: 33671579 PMCID: PMC7926775 DOI: 10.3390/ijms22042167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the most serious forms of DNA damage. In humans, DSBs are repaired mainly by non-homologous end joining (NHEJ) and homologous recombination repair (HRR). Single-strand annealing (SSA), another DSB repair system, uses homologous repeats flanking a DSB to join DNA ends and is error-prone, as it removes DNA fragments between repeats along with one repeat. Many DNA deletions observed in cancer cells display homology at breakpoint junctions, suggesting the involvement of SSA. When multiple DSBs occur in different chromosomes, SSA may result in chromosomal translocations, essential in the pathogenesis of many cancers. Inhibition of RAD52 (RAD52 Homolog, DNA Repair Protein), the master regulator of SSA, results in decreased proliferation of BRCA1/2 (BRCA1/2 DNA Repair Associated)-deficient cells, occurring in many hereditary breast and ovarian cancer cases. Therefore, RAD52 may be targeted in synthetic lethality in cancer. SSA may modulate the response to platinum-based anticancer drugs and radiation. SSA may increase the efficacy of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR associated 9) genome editing and reduce its off-target effect. Several basic problems associated with SSA, including its evolutionary role, interplay with HRR and NHEJ and should be addressed to better understand its role in cancer pathogenesis and therapy.
Collapse
|
12
|
Setton J, Reis-Filho JS, Powell SN. Homologous recombination deficiency: how genomic signatures are generated. Curr Opin Genet Dev 2021; 66:93-100. [PMID: 33477018 DOI: 10.1016/j.gde.2021.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Cancer genomes harbor mutational and structural rearrangements that are jointly shaped by DNA damage and repair mechanisms. Accumulating evidence suggests that genetic alterations in DNA repair-defective tumors reflect the scars caused by the use of backup DNA repair mechanisms needed to maintain cellular viability. Detailed analysis of the patterns of mutations and structural rearrangements present in BRCA1/2-deficient tumors has allowed for the delineation of genomic signatures that reflect alternative repair with inactive homologous recombination (HR). Here we aim to summarize recent advances in the analysis of genomic signatures associated with HR-deficiency and examine recent studies that have shed light on the backup repair mechanisms responsible for genomic scarring in HR-deficient tumors.
Collapse
Affiliation(s)
- Jeremy Setton
- Dept. of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jorge S Reis-Filho
- Dept. of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Simon N Powell
- Dept. of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Molecular Biology Program, Sloan Kettering Institute, New York, NY, United States.
| |
Collapse
|
13
|
Krais JJ, Johnson N. BRCA1 Mutations in Cancer: Coordinating Deficiencies in Homologous Recombination with Tumorigenesis. Cancer Res 2020; 80:4601-4609. [PMID: 32747362 PMCID: PMC7641968 DOI: 10.1158/0008-5472.can-20-1830] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 01/08/2023]
Abstract
Cancers that arise from BRCA1 germline mutations are deficient for homologous recombination (HR) DNA repair and are sensitive to DNA-damaging agents such as platinum and PARP inhibitors. In vertebrate organisms, knockout of critical HR genes including BRCA1 and BRCA2 is lethal because HR is required for genome replication. Thus, cancers must develop strategies to cope with loss of HR activity. Furthermore, as established tumors respond to chemotherapy selection pressure, additional genetic adaptations transition cancers to an HR-proficient state. In this review, we discuss biological mechanisms that influence the ability of BRCA1-mutant cancers to perform HR. Furthermore, we consider how the HR status fluctuates throughout the cancer life course, from tumor initiation to the development of therapy refractory disease.
Collapse
Affiliation(s)
- John J Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
14
|
Krais JJ, Wang Y, Bernhardy AJ, Clausen E, Miller JA, Cai KQ, Scott CL, Johnson N. RNF168-Mediated Ubiquitin Signaling Inhibits the Viability of BRCA1-Null Cancers. Cancer Res 2020; 80:2848-2860. [PMID: 32213544 PMCID: PMC7335334 DOI: 10.1158/0008-5472.can-19-3033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/10/2020] [Accepted: 03/11/2020] [Indexed: 11/16/2022]
Abstract
BRCA1 gene mutations impair homologous recombination (HR) DNA repair, resulting in cellular senescence and embryonic lethality in mice. Therefore, BRCA1-deficient cancers require adaptations that prevent excessive genomic alterations from triggering cell death. RNF168-mediated ubiquitination of γH2AX at K13/15 (ub-H2AX) serves as a recruitment module for the localization of 53BP1 to DNA break sites. Here, we found multiple BRCA1-mutant cancer cell lines and primary tumors with low levels of RNF168 protein expression. Overexpression of ectopic RNF168 or a ub-H2AX fusion protein induced cell death and delayed BRCA1-mutant tumor formation. Cell death resulted from the recruitment of 53BP1 to DNA break sites and inhibition of DNA end resection. Strikingly, reintroduction of BRCA1 or 53BP1 depletion restored HR and rescued the ability of cells to maintain RNF168 and ub-H2AX overexpression. Thus, downregulation of RNF168 protein expression is a mechanism for providing BRCA1-null cancer cell lines with a residual level of HR that is essential for viability. Overall, our work identifies loss of RNF168 ubiquitin signaling as a proteomic alteration that supports BRCA1-mutant carcinogenesis. We propose that restoring RNF168-ub-H2AX signaling, potentially through inhibition of deubiquitinases, could represent a new therapeutic approach. SIGNIFICANCE: This study explores the concept that homologous recombination DNA repair is not an all-or-nothing concept, but a spectrum, and that where a tumor stands on this spectrum may have therapeutic relevance.See related commentary by Wang and Wulf, p. 2720.
Collapse
Affiliation(s)
- John J Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yifan Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andrea J Bernhardy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emma Clausen
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jessica A Miller
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
15
|
Toma M, Sullivan-Reed K, Śliwiński T, Skorski T. RAD52 as a Potential Target for Synthetic Lethality-Based Anticancer Therapies. Cancers (Basel) 2019; 11:E1561. [PMID: 31615159 PMCID: PMC6827130 DOI: 10.3390/cancers11101561] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations in DNA repair systems play a key role in the induction and progression of cancer. Tumor-specific defects in DNA repair mechanisms and activation of alternative repair routes create the opportunity to employ a phenomenon called "synthetic lethality" to eliminate cancer cells. Targeting the backup pathways may amplify endogenous and drug-induced DNA damage and lead to specific eradication of cancer cells. So far, the synthetic lethal interaction between BRCA1/2 and PARP1 has been successfully applied as an anticancer treatment. Although PARP1 constitutes a promising target in the treatment of tumors harboring deficiencies in BRCA1/2-mediated homologous recombination (HR), some tumor cells survive, resulting in disease relapse. It has been suggested that alternative RAD52-mediated HR can protect BRCA1/2-deficient cells from the accumulation of DNA damage and the synthetic lethal effect of PARPi. Thus, simultaneous inhibition of RAD52 and PARP1 might result in a robust dual synthetic lethality, effectively eradicating BRCA1/2-deficient tumor cells. In this review, we will discuss the role of RAD52 and its potential application in synthetic lethality-based anticancer therapies.
Collapse
Affiliation(s)
- Monika Toma
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
- Laboratory of Medical Genetics Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Katherine Sullivan-Reed
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Tomasz Skorski
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
16
|
Singh AN, Oehler J, Torrecilla I, Kilgas S, Li S, Vaz B, Guérillon C, Fielden J, Hernandez‐Carralero E, Cabrera E, Tullis IDC, Meerang M, Barber PR, Freire R, Parsons J, Vojnovic B, Kiltie AE, Mailand N, Ramadan K. The p97-Ataxin 3 complex regulates homeostasis of the DNA damage response E3 ubiquitin ligase RNF8. EMBO J 2019; 38:e102361. [PMID: 31613024 PMCID: PMC6826192 DOI: 10.15252/embj.2019102361] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
The E3 ubiquitin ligase RNF8 (RING finger protein 8) is a pivotal enzyme for DNA repair. However, RNF8 hyper-accumulation is tumour-promoting and positively correlates with genome instability, cancer cell invasion, metastasis and poor patient prognosis. Very little is known about the mechanisms regulating RNF8 homeostasis to preserve genome stability. Here, we identify the cellular machinery, composed of the p97/VCP ubiquitin-dependent unfoldase/segregase and the Ataxin 3 (ATX3) deubiquitinase, which together form a physical and functional complex with RNF8 to regulate its proteasome-dependent homeostasis under physiological conditions. Under genotoxic stress, when RNF8 is rapidly recruited to sites of DNA lesions, the p97-ATX3 machinery stimulates the extraction of RNF8 from chromatin to balance DNA repair pathway choice and promote cell survival after ionising radiation (IR). Inactivation of the p97-ATX3 complex affects the non-homologous end joining DNA repair pathway and hypersensitises human cancer cells to IR. We propose that the p97-ATX3 complex is the essential machinery for regulation of RNF8 homeostasis under both physiological and genotoxic conditions and that targeting ATX3 may be a promising strategy to radio-sensitise BRCA-deficient cancers.
Collapse
Affiliation(s)
- Abhay Narayan Singh
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Judith Oehler
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
- Present address:
Department of BiochemistryUniversity of OxfordOxfordUK
| | - Ignacio Torrecilla
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Susan Kilgas
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Shudong Li
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Bruno Vaz
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Claire Guérillon
- Novo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - John Fielden
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Esperanza Hernandez‐Carralero
- Unidad de InvestigaciónHospital Universitario de CanariasLa LagunaSpain
- Instituto de Tecnologías BiomédicasUniversidad de La LagunaLa LagunaSpain
| | - Elisa Cabrera
- Unidad de InvestigaciónHospital Universitario de CanariasLa LagunaSpain
- Instituto de Tecnologías BiomédicasUniversidad de La LagunaLa LagunaSpain
| | - Iain DC Tullis
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Mayura Meerang
- Institute of Pharmacology and Toxicology‐Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Present address:
Department of Thoracic SurgeryUniversity Hospital ZurichZurichSwitzerland
| | - Paul R Barber
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Raimundo Freire
- Unidad de InvestigaciónHospital Universitario de CanariasLa LagunaSpain
- Instituto de Tecnologías BiomédicasUniversidad de La LagunaLa LagunaSpain
- Universidad Fernando Pessoa CanariasSanta Maria de GuiaSpain
| | - Jason Parsons
- Department of Molecular and Clinical Cancer MedicineCancer Research CentreUniversity of LiverpoolLiverpoolUK
| | - Borivoj Vojnovic
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Anne E Kiltie
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Kristijan Ramadan
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| |
Collapse
|
17
|
Zong D, Adam S, Wang Y, Sasanuma H, Callén E, Murga M, Day A, Kruhlak MJ, Wong N, Munro M, Chaudhuri AR, Karim B, Xia B, Takeda S, Johnson N, Durocher D, Nussenzweig A. BRCA1 Haploinsufficiency Is Masked by RNF168-Mediated Chromatin Ubiquitylation. Mol Cell 2019; 73:1267-1281.e7. [PMID: 30704900 PMCID: PMC6430682 DOI: 10.1016/j.molcel.2018.12.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/22/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
BRCA1 functions at two distinct steps during homologous recombination (HR). Initially, it promotes DNA end resection, and subsequently it recruits the PALB2 and BRCA2 mediator complex, which stabilizes RAD51-DNA nucleoprotein filaments. Loss of 53BP1 rescues the HR defect in BRCA1-deficient cells by increasing resection, suggesting that BRCA1's downstream role in RAD51 loading is dispensable when 53BP1 is absent. Here we show that the E3 ubiquitin ligase RNF168, in addition to its canonical role in inhibiting end resection, acts in a redundant manner with BRCA1 to load PALB2 onto damaged DNA. Loss of RNF168 negates the synthetic rescue of BRCA1 deficiency by 53BP1 deletion, and it predisposes BRCA1 heterozygous mice to cancer. BRCA1+/-RNF168-/- cells lack RAD51 foci and are hypersensitive to PARP inhibitor, whereas forced targeting of PALB2 to DNA breaks in mutant cells circumvents BRCA1 haploinsufficiency. Inhibiting the chromatin ubiquitin pathway may, therefore, be a synthetic lethality strategy for BRCA1-deficient cancers.
Collapse
Affiliation(s)
- Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Salomé Adam
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yifan Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Elsa Callén
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Center, CNIO, Madrid, Spain
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Meagan Munro
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Arnab Ray Chaudhuri
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.,Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Baktiar Karim
- Pathology/Histotechnology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bing Xia
- Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
18
|
Abstract
53BP1 restrains DNA end resection, and its dosage imbalance upsets DNA double-strand break (DSB) repair pathway choice. Here, by monitoring 53BP1 distribution on DSB-flanking chromatin, we have established a dose-dependent role of the RING finger protein RNF169 in limiting 53BP1 DSB deposition. Moreover, we found that forced expression of RNF169 overcomes 53BP1 activity and stimulates mutagenic DSB repair via the single-strand annealing pathway. Our findings suggest that aberrant expression of RNF169 may represent a deleterious factor in DSB repair control and in maintenance of genome stability. Unrestrained 53BP1 activity at DNA double-strand breaks (DSBs) hampers DNA end resection and upsets DSB repair pathway choice. RNF169 acts as a molecular rheostat to limit 53BP1 deposition at DSBs, but how this fine balance translates to DSB repair control remains undefined. In striking contrast to 53BP1, ChIP analyses of AsiSI-induced DSBs unveiled that RNF169 exhibits robust accumulation at DNA end-proximal regions and preferentially targets resected, RPA-bound DSBs. Accordingly, we found that RNF169 promotes CtIP-dependent DSB resection and favors homology-mediated DSB repair, and further showed that RNF169 dose-dependently stimulates single-strand annealing repair, in part, by alleviating the 53BP1-imposed barrier to DSB end resection. Our results highlight the interplay of RNF169 with 53BP1 in fine-tuning choice of DSB repair pathways.
Collapse
|
19
|
Isobe SY, Nagao K, Nozaki N, Kimura H, Obuse C. Inhibition of RIF1 by SCAI Allows BRCA1-Mediated Repair. Cell Rep 2018; 20:297-307. [PMID: 28700933 DOI: 10.1016/j.celrep.2017.06.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/24/2017] [Accepted: 06/21/2017] [Indexed: 12/19/2022] Open
Abstract
DNA double-strand breaks (DSBs) are repaired by either the homology-directed repair (HDR) or the non-homologous end-joining (NHEJ) pathway. RIF1 (RAP1-interacting factor homolog) was recently shown to stimulate NHEJ through an interaction with 53BP1 (p53-binding protein 1) phosphorylated at S/TQ sites, but the molecular mechanism underlying pathway choice remains unclear. Here, we show that SCAI (suppressor of cancer cell invasion) binds to 53BP1 phosphorylated at S/TP sites and facilitates HDR. Upon DNA damage, RIF1 immediately accumulates at damage sites and then gradually dissociates from 53BP1 and is subsequently replaced with SCAI. Depletion of SCAI reduces both the accumulation of HDR factors, including BRCA1 (breast cancer susceptibility gene 1), at damage sites and the efficiency of HDR, as detected by a reporter assay system. These data suggest that SCAI inhibits RIF1 function to allow BRCA1-mediated repair, which possibly includes alt-NHEJ and resection-dependent NHEJ in G1, as well as HDR in S/G2.
Collapse
Affiliation(s)
- Shin-Ya Isobe
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Koji Nagao
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Naohito Nozaki
- MAB Institute, Inc., 2070-11 Oosegi, Iida, Nagano 395-0157, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
20
|
Sallmyr A, Tomkinson AE. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem 2018. [PMID: 29530982 DOI: 10.1074/jbc.tm117.000375] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative end-joining (a-EJ) pathways, which repair DNA double-strand breaks (DSBs), are initiated by end resection that generates 3' single strands. This reaction is shared, at least in part, with homologous recombination but distinguishes a-EJ from the major nonhomologous end-joining pathway. Although the a-EJ pathways make only a minor and poorly understood contribution to DSB repair in nonmalignant cells, there is growing interest in these pathways, as they generate genomic rearrangements that are hallmarks of cancer cells. Here, we review and discuss the current understanding of the mechanisms and regulation of a-EJ pathways, the role of a-EJ in human disease, and the potential utility of a-EJ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Annahita Sallmyr
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131
| | - Alan E Tomkinson
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
21
|
Uckelmann M, Densham RM, Baas R, Winterwerp HHK, Fish A, Sixma TK, Morris JR. USP48 restrains resection by site-specific cleavage of the BRCA1 ubiquitin mark from H2A. Nat Commun 2018; 9:229. [PMID: 29335415 PMCID: PMC5768779 DOI: 10.1038/s41467-017-02653-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
BRCA1-BARD1-catalyzed ubiquitination of histone H2A is an important regulator of the DNA damage response, priming chromatin for repair by homologous recombination. However, no specific deubiquitinating enzymes (DUBs) are known to antagonize this function. Here we identify ubiquitin specific protease-48 (USP48) as a H2A DUB, specific for the C-terminal BRCA1 ubiquitination site. Detailed biochemical analysis shows that an auxiliary ubiquitin, an additional ubiquitin that itself does not get cleaved, modulates USP48 activity, which has possible implications for its regulation in vivo. In cells we reveal that USP48 antagonizes BRCA1 E3 ligase function and in BRCA1-proficient cells loss of USP48 results in positioning 53BP1 further from the break site and in extended resection lengths. USP48 repression confers a survival benefit to cells treated with camptothecin and its activity acts to restrain gene conversion and mutagenic single-strand annealing. We propose that USP48 promotes genome stability by antagonizing BRCA1 E3 ligase function.
Collapse
Affiliation(s)
- Michael Uckelmann
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ruth M Densham
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham, B15 2TT, UK
| | - Roy Baas
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Herrie H K Winterwerp
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alexander Fish
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
22
|
Yang C, Zang W, Tang Z, Ji Y, Xu R, Yang Y, Luo A, Hu B, Zhang Z, Liu Z, Zheng X. A20/TNFAIP3 Regulates the DNA Damage Response and Mediates Tumor Cell Resistance to DNA-Damaging Therapy. Cancer Res 2017; 78:1069-1082. [DOI: 10.1158/0008-5472.can-17-2143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/02/2017] [Accepted: 12/01/2017] [Indexed: 11/16/2022]
|
23
|
Canny MD, Moatti N, Wan LCK, Fradet-Turcotte A, Krasner D, Mateos-Gomez PA, Zimmermann M, Orthwein A, Juang YC, Zhang W, Noordermeer SM, Seclen E, Wilson MD, Vorobyov A, Munro M, Ernst A, Ng TF, Cho T, Cannon PM, Sidhu SS, Sicheri F, Durocher D. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat Biotechnol 2017; 36:95-102. [PMID: 29176614 PMCID: PMC5762392 DOI: 10.1038/nbt.4021] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Programmable nucleases, such as Cas9, are used for precise genome editing by homology-dependent repair (HDR)1–3. However, HDR efficiency is constrained by competition from other double-strand break (DSB) repair pathways, including non-homologous end-joining (NHEJ)4. We report the discovery of a genetically encoded inhibitor of 53BP1 that increases the efficiency of HDR-dependent genome editing in human and mouse cells. 53BP1 is a key regulator of DSB repair pathway choice in eukaryotic cells4, 5 and functions to favor NHEJ over HDR by suppressing end resection, which is the rate-limiting step in the initiation of HDR. We screened an existing combinatorial library of engineered ubiquitin variants6 for inhibitors of 53BP1. Expression of one variant, named i53 (inhibitor of 53BP1), in human and mouse cells blocked accumulation of 53BP1 at sites of DNA damage and improved gene targeting and chromosomal gene conversion with either double-stranded DNA or single-stranded oligonucleotide donors by up to 5.6-fold. Inhibition of 53BP1 is a robust method to increase efficiency of HDR-based precise genome editing.
Collapse
Affiliation(s)
- Marella D Canny
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Nathalie Moatti
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Leo C K Wan
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Amélie Fradet-Turcotte
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Danielle Krasner
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Pedro A Mateos-Gomez
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, New York, USA
| | - Michal Zimmermann
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alexandre Orthwein
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yu-Chi Juang
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Wei Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | - Sylvie M Noordermeer
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eduardo Seclen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Marcus D Wilson
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andrew Vorobyov
- The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | - Meagan Munro
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andreas Ernst
- The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | - Timothy F Ng
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Tiffany Cho
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Ontario, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, Canada
| |
Collapse
|
24
|
PRPF8 is important for BRCA1-mediated homologous recombination. Oncotarget 2017; 8:93319-93337. [PMID: 29212152 PMCID: PMC5706798 DOI: 10.18632/oncotarget.21555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/15/2017] [Indexed: 11/25/2022] Open
Abstract
Disruption of RNA splicing causes genome instability, which could contribute to cancer etiology. Furthermore, RNA splicing is an emerging anti-cancer target. Thus, we have evaluated the influence of the spliceosome factor PRPF8 and the splicing inhibitor Pladienolide B (PlaB) on homologous recombination (HR). We find that PRPF8 depletion and PlaB treatment cause a specific defect in homology-directed repair (HDR), and single strand annealing (SSA), which share end resection as a common intermediate, and BRCA1 as a required factor. Furthermore, PRPF8 depletion and PlaB treatment cause reduced end resection detected as chromatin-bound RPA, BRCA1 foci in response to damage, and histone acetylation marks that are associated with BRCA1-mediated HR. We also identified distinctions between PlaB and PRPF8 depletion, in that PlaB also reduces 53BP1 foci, and BRCA1 expression. Furthermore loss of 53BP1, which rescues SSA in BRCA1 depleted cells, and partially rescues SSA in PRPF8 depleted cells, has no effect on SSA in PlaB treated cells. Finally, while PRPF8 depletion has no obvious effect on the integrity of interchromatin granules, PlaB disrupts these structures. These findings indicate that PRPF8 is important for BRCA1-mediated HR, whereas PlaB also has a more general effect on the DNA damage response and nuclear organization.
Collapse
|
25
|
Kizilors A, Pickard MR, Schulte CE, Yacqub-Usman K, McCarthy NJ, Gan SU, Darling D, Gäken J, Williams GT, Farzaneh F. Retroviral insertional mutagenesis implicates E3 ubiquitin ligase RNF168 in the control of cell proliferation and survival. Biosci Rep 2017; 37:BSR20170843. [PMID: 28754805 PMCID: PMC5634340 DOI: 10.1042/bsr20170843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/11/2017] [Accepted: 07/27/2017] [Indexed: 02/01/2023] Open
Abstract
The E3 ubiquitin ligase RNF168 is a ring finger protein that has previously been identified to play an important regulatory role in the repair of double-strand DNA breaks. In the present study, an unbiased forward genetics functional screen in mouse granulocyte/ macrophage progenitor cell line FDCP1 has identified E3 ubiquitin ligase RNF168 as a key regulator of cell survival and proliferation. Our data indicate that RNF168 is an important component of the mechanisms controlling cell fate, not only in human and mouse haematopoietic growth factor-dependent cells, but also in the human breast epithelial cell line MCF-7. These observations therefore suggest that RNF168 provides a connection to key pathways controlling cell fate, potentially through interaction with PML nuclear bodies and/or epigenetic control of gene expression. Our study is the first to demonstrate a critical role for RNF168 in the in the mechanisms regulating cell proliferation and survival, in addition to its well-established role in DNA repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Shu-Uin Gan
- King's College London, London, N/A, United Kingdom
| | | | - Joop Gäken
- King's College London, London, N/A, United Kingdom
| | - Gwyn T Williams
- Life Sciences, Keele University, Keele, N/A, AT5 5AZ, United Kingdom
| | | |
Collapse
|
26
|
Luijsterburg MS, Typas D, Caron MC, Wiegant WW, van den Heuvel D, Boonen RA, Couturier AM, Mullenders LH, Masson JY, van Attikum H. A PALB2-interacting domain in RNF168 couples homologous recombination to DNA break-induced chromatin ubiquitylation. eLife 2017; 6. [PMID: 28240985 PMCID: PMC5328590 DOI: 10.7554/elife.20922] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks (DSB) elicit a ubiquitylation cascade that controls DNA repair pathway choice. This cascade involves the ubiquitylation of histone H2A by the RNF168 ligase and the subsequent recruitment of RIF1, which suppresses homologous recombination (HR) in G1 cells. The RIF1-dependent suppression is relieved in S/G2 cells, allowing PALB2-driven HR to occur. With the inhibitory impact of RIF1 relieved, it remains unclear how RNF168-induced ubiquitylation influences HR. Here, we uncover that RNF168 links the HR machinery to H2A ubiquitylation in S/G2 cells. We show that PALB2 indirectly recognizes histone ubiquitylation by physically associating with ubiquitin-bound RNF168. This direct interaction is mediated by the newly identified PALB2-interacting domain (PID) in RNF168 and the WD40 domain in PALB2, and drives DNA repair by facilitating the assembly of PALB2-containing HR complexes at DSBs. Our findings demonstrate that RNF168 couples PALB2-dependent HR to H2A ubiquitylation to promote DNA repair and preserve genome integrity. DOI:http://dx.doi.org/10.7554/eLife.20922.001
Collapse
Affiliation(s)
| | - Dimitris Typas
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, McMahon, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rick A Boonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anthony M Couturier
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, McMahon, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Leon H Mullenders
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, McMahon, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Chroma K, Mistrik M, Moudry P, Gursky J, Liptay M, Strauss R, Skrott Z, Vrtel R, Bartkova J, Kramara J, Bartek J. Tumors overexpressing RNF168 show altered DNA repair and responses to genotoxic treatments, genomic instability and resistance to proteotoxic stress. Oncogene 2016; 36:2405-2422. [DOI: 10.1038/onc.2016.392] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/14/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
|
28
|
Abstract
Unrestrained 53BP1 activity causes fusions of dysfunctional telomeres and embryonic lethality associated with misrepair of DNA double-strand breaks in BRCA1-deficient mice. However, the physiological role of 53BP1 remains unclear, because it presumably did not evolve to carry out these pathological functions. A new report proposes that 53BP1 activity prevents hyper-resection and thereby promotes error-free DNA repair while suppressing alternative mutagenic pathways.
Collapse
Affiliation(s)
- Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Arnab Ray Chaudhuri
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
29
|
Bhargava R, Onyango DO, Stark JM. Regulation of Single-Strand Annealing and its Role in Genome Maintenance. Trends Genet 2016; 32:566-575. [PMID: 27450436 DOI: 10.1016/j.tig.2016.06.007] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 01/19/2023]
Abstract
Single-strand annealing (SSA) is a DNA double-strand break (DSB) repair pathway that uses homologous repeats to bridge DSB ends. SSA involving repeats that flank a single DSB causes a deletion rearrangement between the repeats, and hence is relatively mutagenic. Nevertheless, this pathway is conserved, in that SSA events have been found in several organisms. In this review, we describe the mechanism of SSA and its regulation, including the cellular conditions that may favor SSA versus other DSB repair events. We will also evaluate the potential contribution of SSA to cancer-associated genome rearrangements, and to DSB-induced gene targeting.
Collapse
Affiliation(s)
- Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - David O Onyango
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| |
Collapse
|
30
|
Smeenk G, Mailand N. Writers, Readers, and Erasers of Histone Ubiquitylation in DNA Double-Strand Break Repair. Front Genet 2016; 7:122. [PMID: 27446204 PMCID: PMC4923129 DOI: 10.3389/fgene.2016.00122] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/15/2016] [Indexed: 12/16/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose faulty repair may alter the content and organization of cellular genomes. To counteract this threat, numerous signaling and repair proteins are recruited hierarchically to the chromatin areas surrounding DSBs to facilitate accurate lesion repair and restoration of genome integrity. In vertebrate cells, ubiquitin-dependent modifications of histones adjacent to DSBs by RNF8, RNF168, and other ubiquitin ligases have a key role in promoting the assembly of repair protein complexes, serving as direct recruitment platforms for a range of genome caretaker proteins and their associated factors. These DNA damage-induced chromatin ubiquitylation marks provide an essential component of a histone code for DSB repair that is controlled by multifaceted regulatory circuits, underscoring its importance for genome stability maintenance. In this review, we provide a comprehensive account of how DSB-induced histone ubiquitylation is sensed, decoded and modulated by an elaborate array of repair factors and regulators. We discuss how these mechanisms impact DSB repair pathway choice and functionality for optimal protection of genome integrity, as well as cell and organismal fitness.
Collapse
Affiliation(s)
- Godelieve Smeenk
- Ubiquitin Signaling Group, Protein Signaling Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen Copenhagen, Denmark
| | - Niels Mailand
- Ubiquitin Signaling Group, Protein Signaling Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
31
|
Ochs F, Somyajit K, Altmeyer M, Rask MB, Lukas J, Lukas C. 53BP1 fosters fidelity of homology-directed DNA repair. Nat Struct Mol Biol 2016; 23:714-21. [PMID: 27348077 DOI: 10.1038/nsmb.3251] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) in mammals is coordinated by the ubiquitin-dependent accumulation of 53BP1 at DSB-flanking chromatin. Owing to its ability to limit DNA-end processing, 53BP1 is thought to promote nonhomologous end-joining (NHEJ) and to suppress homology-directed repair (HDR). Here, we show that silencing 53BP1 or exhausting its capacity to bind damaged chromatin changes limited DSB resection to hyper-resection and results in a switch from error-free gene conversion by RAD51 to mutagenic single-strand annealing by RAD52. Thus, rather than suppressing HDR, 53BP1 fosters its fidelity. These findings illuminate causes and consequences of synthetic viability acquired through 53BP1 silencing in cells lacking the BRCA1 tumor suppressor. We show that such cells survive DSB assaults at the cost of increasing reliance on RAD52-mediated HDR, which may fuel genome instability. However, our findings suggest that when challenged by DSBs, BRCA1- and 53BP1-deficient cells may become hypersensitive to, and be eliminated by, RAD52 inhibition.
Collapse
Affiliation(s)
- Fena Ochs
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kumar Somyajit
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Altmeyer
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maj-Britt Rask
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Onyango DO, Howard SM, Neherin K, Yanez DA, Stark JM. Tetratricopeptide repeat factor XAB2 mediates the end resection step of homologous recombination. Nucleic Acids Res 2016; 44:5702-16. [PMID: 27084940 PMCID: PMC4937314 DOI: 10.1093/nar/gkw275] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/05/2016] [Indexed: 12/15/2022] Open
Abstract
We examined the influence of the tetratricopeptide repeat factor XAB2 on chromosomal break repair, and found that XAB2 promotes end resection that generates the 3′ ssDNA intermediate for homologous recombination (HR). Namely, XAB2 is important for chromosomal double-strand break (DSB) repair via two pathways of HR that require end resection as an intermediate step, end resection of camptothecin (Cpt)-induced DNA damage, and RAD51 recruitment to ionizing radiation induced foci (IRIF), which requires end resection. Furthermore, XAB2 mediates specific aspects of the DNA damage response associated with end resection proficiency: CtIP hyperphosphorylation induced by Cpt and BRCA1 IRIF. XAB2 also promotes histone acetylation events linked to HR proficiency. From truncation mutation analysis, the capacity for XAB2 to promote HR correlates with its ability to form a complex with ISY1 and PRP19, which show a similar influence as XAB2 on HR. This XAB2 complex localizes to punctate structures consistent with interchromatin granules that show a striking adjacent-localization to the DSB marker γH2AX. In summary, we suggest that the XAB2 complex mediates DNA damage response events important for the end resection step of HR, and speculate that its adjacent-localization relative to DSBs marked by γH2AX is important for this function.
Collapse
Affiliation(s)
- David O Onyango
- Department of Cancer Genetics and Epigenetics, 1500 E Duarte Rd., Duarte, CA 91010, USA
| | - Sean M Howard
- Department of Cancer Genetics and Epigenetics, 1500 E Duarte Rd., Duarte, CA 91010, USA Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010, USA
| | - Kashfia Neherin
- Department of Cancer Genetics and Epigenetics, 1500 E Duarte Rd., Duarte, CA 91010, USA Department of Biology, California State University, San Bernardino, CA 92407 USA; current address University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Diana A Yanez
- Department of Cancer Genetics and Epigenetics, 1500 E Duarte Rd., Duarte, CA 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, 1500 E Duarte Rd., Duarte, CA 91010, USA Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
33
|
Zhu Q, Sharma N, He J, Wani G, Wani AA. USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168. Cell Cycle 2016; 14:1413-25. [PMID: 25894431 DOI: 10.1080/15384101.2015.1007785] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
During DNA damage response (DDR), histone ubiquitination by RNF168 is a critical event, which orchestrates the recruitment of downstream DDR factors, e.g. BRCA1 and 53BP1. Here, we report USP7 deubiquitinase regulates the stability of RNF168. We showed that USP7 disruption impairs H2A and ultraviolet radiation (UVR)-induced γH2AX monoubiquitination, and decreases the levels of pBmi1, Bmi1, RNF168 and BRCA1. The effect of USP7 disruption was recapitulated by siRNA-mediated USP7 depletion. The USP7 disruption also compromises the formation of UVR-induced foci (UVRIF) and ionizing radiation-induced foci (IRIF) of monoubiquitinated H2A (uH2A) and polyubiquitinated H2AX/A, and subsequently affects UVRIF and IRIF of BRCA1 as well as the IRIF of 53BP1. USP7 was shown to physically bind RNF168 in vitro and in vivo. Overexpression of wild-type USP7, but not its interaction-defective mutant, prevents UVR-induced RNF168 degradation. The USP7 mutant is unable to cleave Ub-conjugates of RNF168 in vivo. Importantly, ectopic expression of RNF168, or both RNF8 and RNF168 together in USP7-disrupted cells, significantly rescue the formation of UVRIF and IRIF of polyubiquitinated H2A and BRCA1. Taken together, these findings reveal an important role of USP7 in regulating ubiquitin-dependent signaling via stabilization of RNF168.
Collapse
Affiliation(s)
- Qianzheng Zhu
- a Department of Radiology ; The Ohio State University ; Columbus , OH USA
| | | | | | | | | |
Collapse
|
34
|
Cdc14A and Cdc14B Redundantly Regulate DNA Double-Strand Break Repair. Mol Cell Biol 2015; 35:3657-68. [PMID: 26283732 DOI: 10.1128/mcb.00233-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 08/10/2015] [Indexed: 01/12/2023] Open
Abstract
Cdc14 is a phosphatase that controls mitotic exit and cytokinesis in budding yeast. In mammals, the two Cdc14 homologues, Cdc14A and Cdc14B, have been proposed to regulate DNA damage repair, whereas the mitotic exit and cytokinesis rely on another phosphatase, PP2A-B55α. It is unclear if the two Cdc14s work redundantly in DNA repair and which repair pathways they participate in. More importantly, their target(s) in DNA repair remains elusive. Here we report that Cdc14B knockout (Cdc14B(-/-)) mouse embryonic fibroblasts (MEFs) showed defects in repairing ionizing radiation (IR)-induced DNA double-strand breaks (DSBs), which occurred only at late passages when Cdc14A levels were low. This repair defect could occur at early passages if Cdc14A levels were also compromised. These results indicate redundancy between Cdc14B and Cdc14A in DSB repair. Further, we found that Cdc14B deficiency impaired both homologous recombination (HR) and nonhomologous end joining (NHEJ), the two major DSB repair pathways. We also provide evidence that Cdh1 is a downstream target of Cdc14B in DSB repair.
Collapse
|
35
|
Typas D, Luijsterburg MS, Wiegant WW, Diakatou M, Helfricht A, Thijssen PE, van den Broek B, Mullenders LH, van Attikum H. The de-ubiquitylating enzymes USP26 and USP37 regulate homologous recombination by counteracting RAP80. Nucleic Acids Res 2015; 43:6919-33. [PMID: 26101254 PMCID: PMC4538816 DOI: 10.1093/nar/gkv613] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022] Open
Abstract
The faithful repair of DNA double-strand breaks (DSBs) is essential to safeguard genome stability. DSBs elicit a signaling cascade involving the E3 ubiquitin ligases RNF8/RNF168 and the ubiquitin-dependent assembly of the BRCA1-Abraxas-RAP80-MERIT40 complex. The association of BRCA1 with ubiquitin conjugates through RAP80 is known to be inhibitory to DSB repair by homologous recombination (HR). However, the precise regulation of this mechanism remains poorly understood. Through genetic screens we identified USP26 and USP37 as key de-ubiquitylating enzymes (DUBs) that limit the repressive impact of RNF8/RNF168 on HR. Both DUBs are recruited to DSBs where they actively remove RNF168-induced ubiquitin conjugates. Depletion of USP26 or USP37 disrupts the execution of HR and this effect is alleviated by the simultaneous depletion of RAP80. We demonstrate that USP26 and USP37 prevent excessive spreading of RAP80-BRCA1 from DSBs. On the other hand, we also found that USP26 and USP37 promote the efficient association of BRCA1 with PALB2. This suggests that these DUBs limit the ubiquitin-dependent sequestration of BRCA1 via the BRCA1-Abraxas-RAP80-MERIT40 complex, while promoting complex formation and cooperation of BRCA1 with PALB2-BRCA2-RAD51 during HR. These findings reveal a novel ubiquitin-dependent mechanism that regulates distinct BRCA1-containing complexes for efficient repair of DSBs by HR.
Collapse
Affiliation(s)
- Dimitris Typas
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Michaela Diakatou
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Angela Helfricht
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Peter E Thijssen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Bram van den Broek
- Biophysics of Cell Signaling, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Leon H Mullenders
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| |
Collapse
|
36
|
Zong D, Callén E, Pegoraro G, Lukas C, Lukas J, Nussenzweig A. Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining. Nucleic Acids Res 2015; 43:4950-61. [PMID: 25916843 PMCID: PMC4446425 DOI: 10.1093/nar/gkv336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
Abstract
DNA double strand breaks (DSBs) formed during S phase are preferentially repaired by homologous recombination (HR), whereas G1 DSBs, such as those occurring during immunoglobulin class switch recombination (CSR), are repaired by non-homologous end joining (NHEJ). The DNA damage response proteins 53BP1 and BRCA1 regulate the balance between NHEJ and HR. 53BP1 promotes CSR in part by mediating synapsis of distal DNA ends, and in addition, inhibits 5’ end resection. BRCA1 antagonizes 53BP1 dependent DNA end-blocking activity during S phase, which would otherwise promote mutagenic NHEJ and genome instability. Recently, it was shown that supra-physiological levels of the E3 ubiquitin ligase RNF168 results in the hyper-accumulation of 53BP1/BRCA1 which accelerates DSB repair. Here, we ask whether increased expression of RNF168 or 53BP1 impacts physiological versus mutagenic NHEJ. We find that the anti-resection activities of 53BP1 are rate-limiting for mutagenic NHEJ but not for physiological CSR. As heterogeneity in the expression of RNF168 and 53BP1 is found in human tumors, our results suggest that deregulation of the RNF168/53BP1 pathway could alter the chemosensitivity of BRCA1 deficient tumors.
Collapse
Affiliation(s)
- Dali Zong
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Elsa Callén
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Gianluca Pegoraro
- Center for Cancer Research, National Cancer Institute; National Institute of Health, Bethesda, MD 20892, USA
| | - Claudia Lukas
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Jiri Lukas
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - André Nussenzweig
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Howard SM, Yanez DA, Stark JM. DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet 2015; 11:e1004943. [PMID: 25629353 PMCID: PMC4309583 DOI: 10.1371/journal.pgen.1004943] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/09/2014] [Indexed: 01/06/2023] Open
Abstract
Alternative end joining (Alt-EJ) chromosomal break repair involves bypassing classical non-homologous end joining (c-NHEJ), and such repair causes mutations often with microhomology at the repair junction. Since the mediators of Alt-EJ are not well understood, we have sought to identify DNA damage response (DDR) factors important for this repair event. Using chromosomal break reporter assays, we surveyed an RNAi library targeting known DDR factors for siRNAs that cause a specific decrease in Alt-EJ, relative to an EJ event that is a composite of Alt-EJ and c-NHEJ (Distal-EJ between two tandem breaks). From this analysis, we identified several DDR factors that are specifically important for Alt-EJ relative to Distal-EJ. While these factors are from diverse pathways, we also found that most of them also promote homologous recombination (HR), including factors important for DNA crosslink repair, such as the Fanconi Anemia factor, FANCA. Since bypass of c-NHEJ is likely important for both Alt-EJ and HR, we disrupted the c-NHEJ factor Ku70 in Fanca-deficient mouse cells and found that Ku70 loss significantly diminishes the influence of Fanca on Alt-EJ. In contrast, an inhibitor of poly ADP-ribose polymerase (PARP) causes a decrease in Alt-EJ that is enhanced by Ku70 loss. Additionally, the helicase/nuclease DNA2 appears to have distinct effects from FANCA and PARP on both Alt-EJ, as well as end resection. Finally, we found that the proteasome inhibitor Bortezomib, a cancer therapeutic that has been shown to disrupt FANC signaling, causes a significant reduction in both Alt-EJ and HR, relative to Distal-EJ, as well as a substantial loss of end resection. We suggest that several distinct DDR functions are important for Alt-EJ, which include promoting bypass of c-NHEJ and end resection. Alternative EJ (Alt-EJ) is a chromosomal double strand break (DSB) repair pathway that often uses short stretches of homology (microhomology) to bridge the break during repair. Alt-EJ involves bypass of the classical non-homologous end joining (c-NHEJ) pathway, and hence may be important for DSBs that are not readily repaired by c-NHEJ, such as DSBs requiring extensive end processing prior to ligation. Since the factors that mediate Alt-EJ are unclear, we identified DNA damage response factors that differentially promote Alt-EJ relative to an EJ event that is a composite of c-NHEJ and Alt-EJ. Several of these factors promote other repair events that are enhanced by loss of c-NHEJ, namely homologous recombination (HR), including DNA crosslink repair factors, such as FANCA. We then investigated distinctions among individual factors. For instance, we found that loss of c-NHEJ appears to diminish the influence of FANCA on Alt-EJ, but enhances the effect of PARP inhibition. Furthermore, we find that FANCA and DNA2 differentially affect another aspect of the DNA damage response, namely end resection. Based on these findings, we suggest that several aspects of the DNA damage response are important for Alt-EJ.
Collapse
Affiliation(s)
- Sean M. Howard
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Diana A. Yanez
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jeremy M. Stark
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Xiong X, Du Z, Wang Y, Feng Z, Fan P, Yan C, Willers H, Zhang J. 53BP1 promotes microhomology-mediated end-joining in G1-phase cells. Nucleic Acids Res 2015; 43:1659-70. [PMID: 25586219 PMCID: PMC4330367 DOI: 10.1093/nar/gku1406] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alternative non-homologous end joining (alt-NHEJ) was originally identified as a backup repair mechanism in the absence of classical NHEJ (c-NHEJ) factors but recent studies have demonstrated that alt-NHEJ is active even when c-NHEJ as well as homologous recombination is available. The functions of 53BP1 in NHEJ processes are not well understood. Here, we report that 53BP1 promotes DNA double-strand break (DSB) repair and genomic stability not only in c-NHEJ-proficient but also -deficient human G1-phase cells. Using an array of repair substrates we show that these effects of 53BP1 are correlated with a promotion of microhomology-mediated end-joining (MMEJ), a subtype of alt-NHEJ, in G1-phase. Consistent with a specific role in MMEJ we confirm that 53BP1 status does not affect c-NHEJ. 53BP1 supports sequence deletion during MMEJ consistent with a putative role in facilitating end-resection. Interestingly, promotion of MMEJ by 53BP1 in G1-phase cells is only observed in the presence of functional BRCA1. Depletion of both 53BP1 and BRCA1 increases repair needing microhomology usage and augments loss of DNA sequence, suggesting that MMEJ is a highly regulated DSB repair process. Together, these findings significantly expand our understanding of the cell-cycle-dependent roles of 53BP1 in DSB repair.
Collapse
Affiliation(s)
- Xiahui Xiong
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Zhanwen Du
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Ying Wang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Zhihui Feng
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Pan Fan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine,1650 Orleans Street, Baltimore, MD 21231, USA
| | - Chunhong Yan
- Department of Biochemistry and Molecular Biology, Georgia Regents University, 1410 Laney Walker Blvd., CN-2134, Augusta, GA 30912, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| |
Collapse
|
39
|
Muñoz MC, Yanez DA, Stark JM. An RNF168 fragment defective for focal accumulation at DNA damage is proficient for inhibition of homologous recombination in BRCA1 deficient cells. Nucleic Acids Res 2014; 42:7720-33. [PMID: 24829461 PMCID: PMC4081061 DOI: 10.1093/nar/gku421] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The E3 ubiquitin ligase RNF168 is a DNA damage response (DDR) factor that promotes monoubiquitination of H2A/H2AX at K13/15, facilitates recruitment of other DDR factors (e.g. 53BP1) to DNA damage, and inhibits homologous recombination (HR) in cells deficient in the tumor suppressor BRCA1. We have examined the domains of RNF168 important for these DDR events, including chromosomal HR that is induced by several nucleases (I-SceI, CAS9-WT and CAS9-D10A), since the inducing nuclease affects the relative frequency of distinct repair outcomes. We found that an N-terminal fragment of RNF168 (1-220/N221*) efficiently inhibits HR induced by each of these nucleases in BRCA1 depleted cells, and promotes recruitment of 53BP1 to DNA damage and H2AX monoubiquitination at K13/15. Each of these DDR events requires a charged residue in RNF168 (R57). Notably, RNF168-N221* fails to self-accumulate into ionizing radiation induced foci (IRIF). Furthermore, expression of RNF168 WT and N221* can significantly bypass the role of another E3 ubiquitin ligase, RNF8, for inhibition of HR in BRCA1 depleted cells, and for promotion of 53BP1 IRIF. We suggest that the ability for RNF168 to promote H2A/H2AX monoubiquitination and 53BP1 IRIF, but not RNF168 self-accumulation into IRIF, is important for inhibition of HR in BRCA1 deficient cells.
Collapse
Affiliation(s)
- Meilen C Muñoz
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Diana A Yanez
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Jeremy M Stark
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
40
|
Belle JI, Nijnik A. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology. Int J Biochem Cell Biol 2014; 50:161-74. [PMID: 24647359 DOI: 10.1016/j.biocel.2014.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 12/16/2022]
Abstract
Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology.
Collapse
Affiliation(s)
- Jad I Belle
- Department of Physiology, McGill University, Canada; Complex Traits Group, McGill University, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Canada; Complex Traits Group, McGill University, Canada.
| |
Collapse
|
41
|
Abstract
In eukaryotic cells, maintenance of genomic stability relies on the coordinated action of a network of cellular processes, including DNA replication, DNA repair, cell-cycle progression, and others. The DNA damage response (DDR) signaling pathway orchestrated by the ATM and ATR kinases is the central regulator of this network in response to DNA damage. Both ATM and ATR are activated by DNA damage and DNA replication stress, but their DNA-damage specificities are distinct and their functions are not redundant. Furthermore, ATM and ATR often work together to signal DNA damage and regulate downstream processes. Here, we will discuss the recent findings and current models of how ATM and ATR sense DNA damage, how they are activated by DNA damage, and how they function in concert to regulate the DDR.
Collapse
Affiliation(s)
- Alexandre Maréchal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
42
|
Yu N, Huangyang P, Yang X, Han X, Yan R, Jia H, Shang Y, Sun L. microRNA-7 suppresses the invasive potential of breast cancer cells and sensitizes cells to DNA damages by targeting histone methyltransferase SET8. J Biol Chem 2013; 288:19633-42. [PMID: 23720754 DOI: 10.1074/jbc.m113.475657] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SET8 (SET domain containing 8) is a histone H4 lysine 20 (H4K20)-specific monomethyltransferase in higher eukaryotes that exerts diverse functions in transcription regulation, DNA repair, tumor metastasis, and genome integrity. The activity of SET8 is tightly controlled during cell cycle through post-translational modifications, including ubiquitination, phosphorylation, and sumoylation. However, how the expression of SET8 is regulated is not fully understood. Here, we report that microRNA-7 is a negative regulator of SET8. We demonstrated that microRNA-7 inhibits H4K20 monomethylation and suppresses epithelial-mesenchymal transition and the invasive potential of breast cancer cells. We showed that microRNA-7 promotes spontaneous DNA damages and sensitizes cells to induced DNA damages. Our experiments provide a molecular mechanism for the regulation of SET8 and extend the biological function of microRNA-7 to DNA damage response, supporting the pursuit of microRNA-7 as a potential target for breast cancer intervention.
Collapse
Affiliation(s)
- Na Yu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|