1
|
Zou R, Xu X, Li F. Classification and characteristics of bacterial glycosaminoglycan lyases, and their therapeutic and experimental applications. J Cell Sci 2025; 138:JCS263489. [PMID: 39846151 DOI: 10.1242/jcs.263489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Glycosaminoglycans (GAGs), as animal polysaccharides, are linked to proteins to form various types of proteoglycans. Bacterial GAG lyases are not only essential enzymes that spoilage bacteria use for the degradation of GAGs, but also valuable tools for investigating the biological function and potential therapeutic applications of GAGs. The ongoing discovery and characterization of novel GAG lyases has identified an increasing number of lyases suitable for functional studies and other applications involving GAGs, which include oligosaccharide sequencing, detection and removal of specific glycan chains, clinical drug development and the design of novel biomaterials and sensors, some of which have not yet been comprehensively summarized. GAG lyases can be classified into hyaluronate lyases, chondroitinases and heparinases based on their substrate spectra, and their functional applications are mainly determined by their substrates, with different lyases exhibiting differing substrate selectivity and preferences. It is thus necessary to understand the properties of the available enzymes to determine strategies for their functional application. Building on previous studies and reviews, this Review highlights small yet crucial differences among or within the various GAG lyases to aid in optimizing their use in future studies. To clarify ideas and strategies for further research, we also discuss several traditional and novel applications of GAG lyases.
Collapse
Affiliation(s)
- Ruyi Zou
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Xiangyu Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| |
Collapse
|
2
|
Shioiri T, Tsuchimoto J, Fukushige K, Takeuchi T, Naito M, Watanabe H, Sugiura N. Chondroitin sulfate liposome: clustering toward high functional efficiency. J Biochem 2024; 176:229-236. [PMID: 38861406 DOI: 10.1093/jb/mvae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
Chondroitin sulfate (CS) is a linear polysaccharide chain of alternating residues of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc), modified with sulfate groups. Based on the structure, CS chains bind to bioactive molecules specifically and regulate their functions. For example, CS whose GalNAc is sulfated at the C4 position, termed CSA, and CS whose GalNAc is sulfated at both C4 and C6 positions, termed CSE, bind to a malaria protein VAR2CSA and receptor type of protein tyrosine phosphatase sigma (RPTPσ), respectively, in a specific manner. Here, we modified CSA and CSE chains with phosphatidylethanolamine (PE) at a reducing end, attached them to liposomes containing phospholipids and generated CSA and CSE liposomes. The CS-PE was incorporated into the liposome particles efficiently. Inhibition ELISA revealed specific interaction of CSA and CSE with recombinant VAR2CSA and RPTPσ, respectively, more efficiently than CS chains alone. Furthermore, CSE liposome was specifically incorporated into RPTPσ-expressing HEK293T cells. These results indicate CS liposome as a novel and efficient drug delivery system, especially for CS-binding molecules.
Collapse
Affiliation(s)
- Tatsumasa Shioiri
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Jun Tsuchimoto
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kaori Fukushige
- Department of Anatomy, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Japan
| | - Takao Takeuchi
- Department of Anatomy, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Japan
| | - Munekazu Naito
- Department of Anatomy, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
3
|
Zhang W, Zhang P, Wang H, Xu R, Xie Z, Wang Y, Du G, Kang Z. Enhancing the expression of chondroitin 4-O-sulfotransferase for one-pot enzymatic synthesis of chondroitin sulfate A. Carbohydr Polym 2024; 337:122158. [PMID: 38710555 DOI: 10.1016/j.carbpol.2024.122158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024]
Abstract
Chondroitin sulfate (CS) stands as a pivotal compound in dietary supplements for osteoarthritis treatment, propelling significant interest in the biotechnological pursuit of environmentally friendly and safe CS production. Enzymatic synthesis of CS for instance CSA has been considered as one of the most promising methods. However, the bottleneck consistently encountered is the active expression of chondroitin 4-O-sulfotransferase (C4ST) during CSA biosynthesis. This study meticulously delved into optimizing C4ST expression through systematic enhancements in transcription, translation, and secretion mechanisms via modifications in the 5' untranslated region, the N-terminal encoding sequence, and the Komagataella phaffii chassis. Ultimately, the active C4ST expression escalated to 2713.1 U/L, representing a striking 43.7-fold increase. By applying the culture broth supernatant of C4ST and integrating the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) biosynthesis module, we constructed a one-pot enzymatic system for CSA biosynthesis, achieving a remarkable sulfonation degree of up to 97.0 %. The substantial enhancement in C4ST expression and the development of an engineered one-pot enzymatic synthesis system promises to expedite large-scale CSA biosynthesis with customizable sulfonation degrees.
Collapse
Affiliation(s)
- Weijiao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ping Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hao Wang
- Bloomage Biotechnology CO, LTD, 250000 Jinan, China
| | - Ruirui Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhuan Xie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yang Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Zhang W, Xu R, Chen J, Xiong H, Wang Y, Pang B, Du G, Kang Z. Advances and challenges in biotechnological production of chondroitin sulfate and its oligosaccharides. Int J Biol Macromol 2023; 253:126551. [PMID: 37659488 DOI: 10.1016/j.ijbiomac.2023.126551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/04/2023]
Abstract
Chondroitin sulfate (CS) is a member of glycosaminoglycans (GAGs) and has critical physiological functions. CS is widely applied in medical and clinical fields. Currently, the supply of CS relies on traditional animal tissue extraction methods. From the perspective of medical applications, the biggest drawback of animal-derived CS is its uncontrollable molecular weight and sulfonated patterns, which are key factors affecting CS activities. The advances of cell-free enzyme catalyzed systems and de novo biosynthesis strategies have paved the way to rationally regulate CS sulfonated pattern and molecular weight. In this review, we first present a general overview of biosynthesized CS and its oligosaccharides. Then, the advances in chondroitin biosynthesis, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) synthesis and regeneration, and CS biosynthesis catalyzed by sulfotransferases are discussed. Moreover, the progress of mining and expression of chondroitin depolymerizing enzymes for preparation of CS oligosaccharides is also summarized. Finally, we analyze and discuss the challenges faced in synthesizing CS and its oligosaccharides using microbial and enzymatic methods. In summary, the biotechnological production of CS and its oligosaccharides is a promising method in addressing the drawbacks associated with animal-derived CS and enabling the production of CS oligosaccharides with defined structures.
Collapse
Affiliation(s)
- Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jiamin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Haibo Xiong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| | - Bo Pang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Cahyadi DD, Warita K, Takeda-Okuda N, Tamura JI, Hosaka YZ. Qualitative and quantitative analyses in sulfated glycosaminoglycans, chondroitin sulfate/dermatan sulfate, during 3 T3-L1 adipocytes differentiation. Anim Sci J 2023; 94:e13894. [PMID: 38054387 DOI: 10.1111/asj.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Chondroitin sulfate/dermatan sulfate (CS/DS) is a member of glycosaminoglycans (GAGs) found in animal tissues. Major CS/DS subclasses, O, A, C, D, and E units, exist based on the sulfation pattern in d-glucuronic acid (GlcA) and N-acetyl-d-galactosamine repeating units. DS is formed when GlcA is epimerized into l-iduronic acid. Our study aimed to analyze the CS/DS profile in 3 T3-L1 cells before and after adipogenic induction. CS/DS contents, molecular weight (Mw), and sulfation pattern were analyzed by using high-performance liquid chromatography. CS/DS synthesis- and sulfotransferase-related genes were analyzed by reverse transcription real-time PCR. CS/DS amount was significantly decreased in the differentiated (DI) group compared to the non-differentiated (ND) group, along with a lower expression of CS biosynthesis-related genes, chondroitin sulfate N-acetylgalactosaminyltransferase 1 and 2, as well as chondroitin polymerizing factor. GAGs in the DI group also showed lower Mw than those of ND. Furthermore, the A unit was the major CS/DS in both groups, with a proportionally higher CS-A in the DI group. This was consistent with the expression of carbohydrate sulfotransferase 12 that encodes chondroitin 4-O-sulfotransferase, for CS-A formation. These qualitative and quantitative changes in CS/DS and CS/DS-synthases before and after adipocyte differentiation reveal valuable insights into adipocyte development.
Collapse
Affiliation(s)
- Danang Dwi Cahyadi
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
- Division of Anatomy Histology and Embryology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Katsuhiko Warita
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Naoko Takeda-Okuda
- Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Jun-Ichi Tamura
- Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yoshinao Z Hosaka
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Mikami T, Kitagawa H. Immunochemical Detection and Glycosaminoglycan Disaccharide-Based Characterization of Chondroitin Sulfate Proteoglycans. Methods Mol Biol 2023; 2619:25-38. [PMID: 36662459 DOI: 10.1007/978-1-0716-2946-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are polyanionic extra/pericellular matrix macromolecules that surround almost all cell types and create microenvironmental niches to support miscellaneous cellular events. In general, the multifunctional properties of CSPGs are attributable to the structural divergence of the CS glycosaminoglycan (GAG) moieties. Because the expression profiles of the GAG chains of CSPGs change with developmental stage, aging, and disease progression, characterization of the GAG chains is essential to understand the functional roles of CSPGs. This chapter describes the basic protocols for GAG moiety-based immunochemical detection of CSPGs in biological samples in conjunction with CS disaccharide composition analysis.
Collapse
Affiliation(s)
- Tadahisa Mikami
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan.
| |
Collapse
|
7
|
Habuchi O. Functions of chondroitin/dermatan sulfate containing GalNAc4,6-disulfate. Glycobiology 2022; 32:664-678. [PMID: 35552694 DOI: 10.1093/glycob/cwac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) containing GalNAc4,6-disulfate (GalNAc4S6S) were initially discovered in marine animals. Following the discovery, these glycosaminoglycans have been found in various animals including human. In the biosynthesis of CS/DS containing GalNAc4S6S, three groups of sulfotransferases are involved; chondroitin 4-sulfotransferases (C4STs), dermatan 4-sulfotransferase-1 (D4ST-1) and GalNAc 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST). GalNAc4S-6ST and its products have been shown to play important roles in the abnormal pathological conditions such as central nervous system injury, cancer development, abnormal tissue fibrosis, development of osteoporosis, and infection with viruses or nematodes. CS/DS containing GalNAc4S6S has been shown to increase with the functional differentiation of mast cells, macrophages and neutrophils. Genetic approaches using knockout or knockdown of GalNAc4S-6ST, blocking of the epitopes containing GalNAc4S6S by specific antibodies and chemical technology that enabled the synthesis of oligosaccharides with defined sulfation patterns have been applied successfully to these investigations. These studies contributed significantly to the basic understanding of the functional roles of CS/DS containing GalNAc4S6S in various abnormal conditions, and appear to provide promising clues to the development of possible measures to treat them.
Collapse
Affiliation(s)
- Osami Habuchi
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi 480-1195, Japan.,Department of Chemistry, Aichi University of Education, Igayacho, Kariya, Aichi 448-8542, Japan
| |
Collapse
|
8
|
Couto MR, Rodrigues JL, Rodrigues LR. Heterologous production of chondroitin. BIOTECHNOLOGY REPORTS 2022; 33:e00710. [PMID: 35242620 PMCID: PMC8858990 DOI: 10.1016/j.btre.2022.e00710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023]
Abstract
Chondroitin sulfate (CS) is a glycosaminoglycan with a growing variety of applications. CS can be produced from microbial fermentation of native or engineered strains. Synthetic biology tools are being used to improve CS yields in different hosts. Integrated polymerization and sulfation can generate cost-effective CS.
Chondroitin sulfate (CS) is a glycosaminoglycan with a broad range of applications being a popular dietary supplement for osteoarthritis. Usually, CS is extracted from animal sources. However, the known risks of animal products use have been driving the search for alternative methods and sources to obtain this compound. Several pathogenic bacteria naturally produce chondroitin-like polysaccharides through well-known pathways and, therefore, have been the basis for numerous studies that aim to produce chondroitin using non-pathogenic hosts. However, the yields obtained are not enough to meet the high demand for this glycosaminoglycan. Metabolic engineering strategies have been used to construct improved heterologous hosts. The identification of metabolic bottlenecks and regulation points, and the screening for efficient enzymes are key points for constructing microbial cell factories with improved chondroitin yields to achieve industrial CS production. The recent advances on enzymatic and microbial strategies to produce non-animal chondroitin are herein reviewed. Challenges and prospects for future research are also discussed.
Collapse
Affiliation(s)
- Márcia R. Couto
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana L. Rodrigues
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- Corresponding author.
| | - Lígia R. Rodrigues
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
9
|
Takashima M, Suzuki K, Mochizuki H, Uemura S, Inokuchi JI, Eguchi T. Expression of highly active chondroitin 4-O-sulfotransferase-1 in Escherichia coli by a trigger factor fusion protein expression system. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Hosaka YZ, Washie S, Warita K. Preliminary study of the gene expression of sulfation and degradation enzymes for chondroitin sulfate in glycerol-treated C2C12 myoblast cells. J Vet Med Sci 2022; 84:306-309. [PMID: 35022360 PMCID: PMC8983298 DOI: 10.1292/jvms.21-0632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we induced chemical damage of C2C12 myoblasts that had differentiated into myotubes with glycerol, and four sulfation enzymes for chondroitin sulfate (CS) [carbohydrate
sulfotransferase (Chst) 12, Chst15 and Chst3 and uronyl 2-O-sulfotransferase (UST)] and two CS degradation enzymes [hyaluronidase (Hyal) 1 and Hyal2] were examined for changes in gene
expression. Treatment of myoblasts with 5% glycerol significantly increased the expression levels of the sulfation enzymes Chst12 and Chst15 and the
degradation enzymes Hyal1 and Hyal2. However, the expression levels of the other two genes (Chst3 and Ust) showed no change. Differences in
the expression levels of these enzymes may help to understand the difference in responsiveness of myoblasts to glycerol after muscle injury in vivo or in
vitro.
Collapse
Affiliation(s)
- Yoshinao Z Hosaka
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Division of Basic Veterinary Science, Joint Graduate School of Veterinary Sciences, Tottori University
| | - Sota Washie
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University
| | - Katsuhiko Warita
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Division of Basic Veterinary Science, Joint Graduate School of Veterinary Sciences, Tottori University
| |
Collapse
|
11
|
Spliid CB, Toledo AG, Sanderson P, Mao Y, Gatto F, Gustavsson T, Choudhary S, Saldanha AL, Vogelsang RP, Gögenur I, Theander TG, Leach FE, Amster IJ, Esko JD, Salanti A, Clausen TM. The specificity of the malarial VAR2CSA protein for chondroitin sulfate depends on 4-O-sulfation and ligand accessibility. J Biol Chem 2021; 297:101391. [PMID: 34762909 DOI: 10.1016/j.jbc.2021.101391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022] Open
Abstract
Placental malaria infection is mediated by the binding of the malarial VAR2CSA protein to the placental glycosaminoglycan, chondroitin sulfate. Recombinant sub-fragments of VAR2CSA (rVAR2) have also been shown to bind specifically and with high affinity to cancer cells and tissues, suggesting the presence of a shared type of oncofetal chondroitin sulfate (ofCS) in the placenta and in tumors. However, the exact structure of ofCS and what determines the selective tropism of VAR2CSA remains poorly understood. In this study, ofCS was purified by affinity chromatography using rVAR2 and subjected to detailed structural analysis. We found high levels of N-acetylgalactosamine 4-O-sulfation (∼80-85%) in placenta- and tumor-derived ofCS. This level of 4-O-sulfation was also found in other tissues that do not support parasite sequestration, suggesting that VAR2CSA tropism is not exclusively determined by placenta- and tumor-specific sulfation. Here, we show that both placenta and tumors contain significantly more chondroitin sulfate moieties of higher molecular weight than other tissues. In line with this, CHPF and CHPF2, which encode proteins required for chondroitin polymerization, are significantly upregulated in most cancer types. CRISPR/Cas9 targeting of CHPF and CHPF2 in tumor cells reduced the average molecular weight of cell-surface chondroitin sulfate and resulted in a marked reduction of rVAR2 binding. Finally, utilizing a cell-based glycocalyx model, we showed that rVAR2 binding correlates with the length of the chondroitin sulfate chains in the cellular glycocalyx. These data demonstrate that the total amount and cellular accessibility of chondroitin sulfate chains impact rVAR2 binding and thus malaria infection.
Collapse
Affiliation(s)
- Charlotte B Spliid
- Department of Cellular and Molecular Medicine, and Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Alejandro Gomez Toledo
- Department of Cellular and Molecular Medicine, and Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Clinical Sciences, Division of Infection Medicine, Lund University, Sweden
| | | | - Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China and Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, 510990 Guangzhou, China
| | - Francesco Gatto
- Department of Biology and Biological Engineering, Chalmers University of Technology, 42196 Gothenburg, Sweden
| | - Tobias Gustavsson
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Ana L Saldanha
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Rasmus P Vogelsang
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, DK-4600 Koege, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, DK-4600 Koege, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Franklin E Leach
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602
| | | | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, and Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA
| | - Ali Salanti
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, and Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark.
| |
Collapse
|
12
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 426] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
13
|
Gottschalk J, Elling L. Current state on the enzymatic synthesis of glycosaminoglycans. Curr Opin Chem Biol 2020; 61:71-80. [PMID: 33271474 DOI: 10.1016/j.cbpa.2020.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
Glycosaminoglycans (GAGs) are linear anionic polysaccharides, and most of them show a specific sulfation pattern. GAGs have been studied for decades, and still, new biological functions are discovered. Hyaluronic acid and heparin are sold for medical or cosmetic applications. With increased market and applications, the production of GAGs stays in the focus of research groups and the industry. Common industrial GAG production relies on the extraction of animal tissue. Contamination, high dispersity, and uncontrolled sulfation pattern are still obstacles to this process. Tailored production strategies for the chemoenzymatic synthesis have been developed to address these obstacles. In recent years, enzyme cascades, including uridine-5'-diphosphate sugar syntheses, were established to obtain defined polymer size and dispersity, as well as defined sulfation patterns. Nevertheless, the complex synthesis of GAGs is still a challenging research field.
Collapse
Affiliation(s)
- Johannes Gottschalk
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.
| |
Collapse
|
14
|
Extracellular Matrix in Neural Plasticity and Regeneration. Cell Mol Neurobiol 2020; 42:647-664. [PMID: 33128689 DOI: 10.1007/s10571-020-00986-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as a non-specific physical barrier that modulates neuronal plasticity and axon regeneration. There are two specialized types of ECM in the CNS, diffuse perisynaptic ECM and condensed ECM, which selectively surround the perikaryon and initial part of dendritic trees in subtypes of neurons, forming perineuronal nets. This review presents the current knowledge about the role of important neuronal ECM molecules in maintaining the basic functions of a neuron, including electrogenesis and the ability to form neural circuits. The review mainly focuses on the role of ECM components that participate in the control of key events such as cell survival, axonal growth, and synaptic remodeling. Particular attention is drawn to the numerous molecular partners of the main ECM components. These regulatory molecules are integrated into the cell membrane or disposed into the matrix itself in solid or soluble form. The interaction of the main matrix components with molecular partners seems essential in molecular mechanisms controlling neuronal functions. Special attention is paid to the chondroitin sulfate proteoglycan 4, type 1 transmembrane protein, neural-glial antigen 2 (NG2/CSPG4), whose cleaved extracellular domain is such a molecular partner that it not only acts directly on neural and vascular cells, but also exerts its influence indirectly by binding to resident ECM molecules.
Collapse
|
15
|
Alabbas A, Desai UR. Enzyme immobilization offers a robust tool to scale up the production of longer, diverse, natural glycosaminoglycan oligosaccharides. Glycobiology 2020; 30:768-773. [PMID: 32193533 DOI: 10.1093/glycob/cwaa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 11/14/2022] Open
Abstract
Although structurally diverse, longer glycosaminoglycan (GAG) oligosaccharides are critical to understand human biology, few are available. The major bottleneck has been the predominant production of oligosaccharides, primarily disaccharides, upon enzymatic depolymerization of GAGs. In this work, we employ enzyme immobilization to prepare hexasaccharide and longer sequences of chondroitin sulfate in good yields with reasonable homogeneity. Immobilized chondroitinase ABC displayed good efficiency, robust operational pH range, broad thermal stability, high recycle ability and excellent distribution of products in comparison to the free enzyme. Diverse sequences could be chromatographically resolved into well-defined peaks and characterized using LC-MS. Enzyme immobilization technology could enable easier access to diverse longer GAG sequences.
Collapse
Affiliation(s)
- Alhumaidi Alabbas
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.,Department of Pharmaceutical Chemistry, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Umesh R Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
16
|
Alonge KM, Logsdon AF, Murphree TA, Banks WA, Keene CD, Edgar JS, Whittington D, Schwartz MW, Guttman M. Quantitative analysis of chondroitin sulfate disaccharides from human and rodent fixed brain tissue by electrospray ionization-tandem mass spectrometry. Glycobiology 2020; 29:847-860. [PMID: 31361007 DOI: 10.1093/glycob/cwz060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Chondroitin sulfates (CS) are long, negatively charged, unbranched glycosaminoglycan (GAG) chains attached to CS-proteoglycan (CSPG) core proteins that comprise the glycan component in both loose interstitial extracellular matrices (ECMs) and in rigid, structured perineuronal net (PNN) scaffolds within the brain. As aberrant CS-PNN formations have been linked to a range of pathological states, including Alzheimer's disease (AD) and schizophrenia, the analysis of CS-GAGs in brain tissue at the disaccharide level has great potential to enhance disease diagnosis and prognosis. Two mass-spectrometry (MS)-based approaches were adapted to detect CS disaccharides from minute fixed tissue samples with low picomolar sensitivity and high reproducibility. The first approach employed a straightforward, quantitative direct infusion (DI)-tandem mass spectrometry (MS/MS) technique to determine the percentages of Δ4S- and Δ6S-CS disaccharides within the 4S/6S-CS ratio, while the second used a comprehensive liquid chromatography (LC)-MS/MS technique to determine the relative percentages of Δ0S-, Δ4S-, Δ6S-, Δ4S6S-CS and Δ2S6S-CS disaccharides, with internal validation by full chondroitin lyase activity. The quantitative accuracy of the five primary biologically relevant CS disaccharides was validated using a developmental time course series in fixed rodent brain tissue. We then analyzed the CS disaccharide composition in formalin-fixed human brain tissue, thus providing the first quantitative report of CS sulfation patterns in the human brain. The ability to comprehensively analyze the CS disaccharide composition from fixed brain tissue provides a means with which to identify alterations in the CS-GAG composition in relation to the onset and/or progression of neurological diseases.
Collapse
Affiliation(s)
- Kimberly M Alonge
- University of Washington Medicine Diabetes Institute, Department of Medicine, Seattle, WA, USA
| | - Aric F Logsdon
- Department of Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA, USA
| | - J Scott Edgar
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Michael W Schwartz
- University of Washington Medicine Diabetes Institute, Department of Medicine, Seattle, WA, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Hatano S, Watanabe H. Regulation of Macrophage and Dendritic Cell Function by Chondroitin Sulfate in Innate to Antigen-Specific Adaptive Immunity. Front Immunol 2020; 11:232. [PMID: 32194548 PMCID: PMC7063991 DOI: 10.3389/fimmu.2020.00232] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a linear acidic polysaccharide comprised of repeating disaccharides, modified with sulfate groups at various positions. Except for hyaluronan (HA), GAGs are covalently bound to core proteins, forming proteoglycans (PGs). With highly negative charges, GAGs interact with a variety of physiologically active molecules, including cytokines, chemokines, and growth factors, and control cell behavior during development and in the progression of diseases, including cancer, infections, and inflammation. Heparan sulfate (HS), another type of GAG, and HA are well reported as regulators for leukocyte migration at sites of inflammation. There have been many reports on the regulation of immune cell function by HS and HA; however, regulation of immune cells by CS has not yet been fully understood. This article focuses on the regulatory function of CS in antigen-presenting cells, including macrophages and dendritic cells, and refers to CSPGs, such as versican and biglycan, and the cell surface proteoglycan, syndecan.
Collapse
Affiliation(s)
- Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
18
|
Pearson CS, Solano AG, Tilve SM, Mencio CP, Martin KR, Geller HM. Spatiotemporal distribution of chondroitin sulfate proteoglycans after optic nerve injury in rodents. Exp Eye Res 2019; 190:107859. [PMID: 31705897 DOI: 10.1016/j.exer.2019.107859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
The accumulation of chondroitin sulfate proteoglycans (CSPGs) in the glial scar following acute damage to the central nervous system (CNS) limits the regeneration of injured axons. Given the rich diversity of CSPG core proteins and patterns of GAG sulfation, identifying the composition of these CSPGs is essential for understanding their roles in injury and repair. Differential expression of core proteins and sulfation patterns have been characterized in the brain and spinal cord of mice and rats, but a comprehensive study of these changes following optic nerve injury has not yet been performed. Here, we show that the composition of CSPGs in the optic nerve and retina following optic nerve crush (ONC) in mice and rats exhibits an increase in aggrecan, brevican, phosphacan, neurocan and versican, similar to changes following spinal cord injury. We also observe an increase in inhibitory 4-sulfated (4S) GAG chains, which suggests that the persistence of CSPGs in the glial scar opposes the growth of CNS axons, thereby contributing to the failure of regeneration and recovery of function.
Collapse
Affiliation(s)
- Craig S Pearson
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Andrea G Solano
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharada M Tilve
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keith R Martin
- Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Vessella G, Traboni S, Cimini D, Iadonisi A, Schiraldi C, Bedini E. Development of Semisynthetic, Regioselective Pathways for Accessing the Missing Sulfation Patterns of Chondroitin Sulfate. Biomacromolecules 2019; 20:3021-3030. [DOI: 10.1021/acs.biomac.9b00590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Giulia Vessella
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, via de Crecchio 7, I-80138 Napoli, Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, via de Crecchio 7, I-80138 Napoli, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| |
Collapse
|
20
|
Kastana P, Choleva E, Poimenidi E, Karamanos N, Sugahara K, Papadimitriou E. Insight into the role of chondroitin sulfate E in angiogenesis. FEBS J 2019; 286:2921-2936. [DOI: 10.1111/febs.14830] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Pinelopi Kastana
- Laboratory of Molecular Pharmacology Department of Pharmacy University of Patras Greece
| | - Effrosyni Choleva
- Laboratory of Molecular Pharmacology Department of Pharmacy University of Patras Greece
| | - Evangelia Poimenidi
- Laboratory of Molecular Pharmacology Department of Pharmacy University of Patras Greece
| | - Nikos Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| | - Kazuyuki Sugahara
- Faculty of Pharmacy Department of Pathobiochemistry Meijo University Nagoya Japan
| | | |
Collapse
|
21
|
Pudełko A, Wisowski G, Olczyk K, Koźma EM. The dual role of the glycosaminoglycan chondroitin-6-sulfate in the development, progression and metastasis of cancer. FEBS J 2019; 286:1815-1837. [PMID: 30637950 PMCID: PMC6850286 DOI: 10.1111/febs.14748] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/14/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
Abstract
The remarkable structural heterogeneity of chondroitin sulfate (CS) and dermatan sulfate (DS) generates biological information that can be unique to each of these glycosaminoglycans (GAGs), and changes in their composition are translated into alterations in the binding profiles of these molecules. CS/DS can bind to various cytokines and growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillar glycoproteins of the extracellular matrix, thereby influencing both cell behavior and the biomechanical and biochemical properties of the matrix. In this review, we summarize the current knowledge concerning CS/DS metabolism in the human cancer stroma. The remodeling of the GAG profile in the tumor niche is manifested as a substantial increase in the CS content and a gradual decrease in the proportion between DS and CS. Furthermore, the composition of CS and DS is also affected, which results in a substantial increase in the 6‐O‐sulfated and/or unsulfated disaccharide content, which is concomitant with a decrease in the 4‐O‐sulfation level. Here, we discuss the possible impact of alterations in the CS/DS sulfation pattern on the binding capacity and specificity of these GAGs. Moreover, we propose potential consequences of the stromal accumulation of chondroitin‐6‐sulfate for the progression and metastasis of cancer.
Collapse
Affiliation(s)
- Adam Pudełko
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Wisowski
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Ewa Maria Koźma
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
22
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
23
|
Chemical synthesis of 4-azido-β-galactosamine derivatives for inhibitors of N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase. Glycoconj J 2018; 35:477-491. [DOI: 10.1007/s10719-018-9839-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/27/2018] [Accepted: 08/15/2018] [Indexed: 12/15/2022]
|
24
|
Kang Z, Zhou Z, Wang Y, Huang H, Du G, Chen J. Bio-Based Strategies for Producing Glycosaminoglycans and Their Oligosaccharides. Trends Biotechnol 2018; 36:806-818. [DOI: 10.1016/j.tibtech.2018.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 01/06/2023]
|
25
|
Tadai K, Shioiri T, Tsuchimoto J, Nagai N, Watanabe H, Sugiura N. Interaction of receptor type of protein tyrosine phosphatase sigma (RPTPσ) with a glycosaminoglycan library. J Biochem 2018; 164:41-51. [PMID: 29420785 DOI: 10.1093/jb/mvy027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/31/2018] [Indexed: 12/14/2022] Open
Abstract
Receptor type of protein tyrosine phosphatase sigma (RPTPσ) functions as a glycosaminoglycan (GAG) receptor of neuronal cells in both the central and peripheral nervous systems. Both chondroitin sulphate (CS) and heparan sulphate (HS) are important constituents of GAG ligands for RPTPσ, although they have opposite effects on neuronal cells. CS inhibits neurite outgrowth and neural regeneration through RPTPσ, whereas HS enhances them. We prepared recombinant RPTPσ N-terminal fragment containing the GAG binding site and various types of biotin-conjugated GAG (CS and HS) with chemical modification and chemo-enzymatic synthesis. Then interaction of the RPTPσ N-terminal fragment was analysed using GAG-biotin immobilized on streptavidin sensor chips by surface plasmon resonance. Interaction of RPTPσ with the CS library was highly correlated to the degree of disulphated disaccharide E unit, which had two sulphate groups at C-4 and C-6 positions of the N-acetylgalactosamine residue (CSE). The optimum molecular mass of CSE was suggested to be approximately 10 kDa. Heparin showed higher affinity to RPTPσ than the CS library. Our GAG library will not only contribute to the fields of carbohydrate science and cell biology, but also provide medical application to regulate neural regeneration.
Collapse
Affiliation(s)
- Kouki Tadai
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan.,Faculty of Health and Nutrition, Shubun University, 6 Nikko-cho, Ichinomiya, Aichi 491-0938, Japan
| | - Tatsumasa Shioiri
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Jun Tsuchimoto
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Naoko Nagai
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
26
|
Pearson CS, Mencio CP, Barber AC, Martin KR, Geller HM. Identification of a critical sulfation in chondroitin that inhibits axonal regeneration. eLife 2018; 7:37139. [PMID: 29762123 PMCID: PMC5976435 DOI: 10.7554/elife.37139] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/14/2018] [Indexed: 01/02/2023] Open
Abstract
The failure of mammalian CNS neurons to regenerate their axons derives from a combination of intrinsic deficits and extrinsic factors. Following injury, chondroitin sulfate proteoglycans (CSPGs) within the glial scar inhibit axonal regeneration, an action mediated by the sulfated glycosaminoglycan (GAG) chains of CSPGs, especially those with 4-sulfated (4S) sugars. Arylsulfatase B (ARSB) selectively cleaves 4S groups from the non-reducing ends of GAG chains without disrupting other, growth-permissive motifs. We demonstrate that ARSB is effective in reducing the inhibitory actions of CSPGs both in in vitro models of the glial scar and after optic nerve crush (ONC) in adult mice. ARSB is clinically approved for replacement therapy in patients with mucopolysaccharidosis VI and therefore represents an attractive candidate for translation to the human CNS.
Collapse
Affiliation(s)
- Craig S Pearson
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Amanda C Barber
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith R Martin
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
27
|
Matsushita K, Nakata T, Takeda-Okuda N, Nadanaka S, Kitagawa H, Tamura JI. Synthesis of chondroitin sulfate CC and DD tetrasaccharides and interactions with 2H6 and LY111. Bioorg Med Chem 2018; 26:1016-1025. [PMID: 29402610 DOI: 10.1016/j.bmc.2018.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 11/17/2022]
Abstract
We synthesized the biotinylated chondroitin sulfate tetrasaccharides CS-CC [-3)βGalNAc6S(1-4)βGlcA(1-]2 and CS-DD [-3)βGalNAc6S(1-4)βGlcA2S(1-]2 which possess sulfate groups at O-6 of GalNAc and an additional sulfate group at O-2 of GlcA, respectively. We also analyzed interactions among CS-CC and CS-DD and the antibodies 2H6 and LY111, both of which are known to bind with CS-A, while CS-DD was shown for the first time to bind with both antibodies.
Collapse
Affiliation(s)
- Kenya Matsushita
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyamacho-Minami 4-101, Tottori 680-8552, Japan
| | - Tomomi Nakata
- Department of Regional Environment, Faculty of Regional Sciences, Tottori University, Koyamacho-Minami 4-101, Tottori 680-8551, Japan
| | - Naoko Takeda-Okuda
- Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Koyamacho-Minami 4-101, Tottori 680-8553, Japan
| | - Satomi Nadanaka
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Jun-Ichi Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyamacho-Minami 4-101, Tottori 680-8552, Japan; Department of Regional Environment, Faculty of Regional Sciences, Tottori University, Koyamacho-Minami 4-101, Tottori 680-8551, Japan; Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Koyamacho-Minami 4-101, Tottori 680-8553, Japan.
| |
Collapse
|
28
|
A review of chemical methods for the selective sulfation and desulfation of polysaccharides. Carbohydr Polym 2017; 174:1224-1239. [DOI: 10.1016/j.carbpol.2017.07.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/22/2017] [Accepted: 07/06/2017] [Indexed: 11/24/2022]
|
29
|
Gil MS, Thambi T, Phan VHG, Kim SH, Lee DS. Injectable hydrogel-incorporated cancer cell-specific cisplatin releasing nanogels for targeted drug delivery. J Mater Chem B 2017; 5:7140-7152. [PMID: 32263905 DOI: 10.1039/c7tb00873b] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Cisplatin (CDDP) is a well-known anticancer agent, and it has been widely used to treat various solid tumors during clinical cancer therapy. Nevertheless, therapeutic applications of CDDP are hampered by its severe side effects. Although CDDP can be encapsulated into nano-scale drug delivery formulations to improve its physicochemical properties, the lack of stability in the formulation and cancer cell-specific targetability have prompted the exploration of novel vectors for the targeted delivery of CDDP. Here, we introduce CDDP-bearing chondroitin sulfate nanogels (CS-nanogels) that are synthesized through a chelating ligand-metal coordination cross-linking reaction, and then incorporated into pH- and temperature-responsive bioresorbable poly(ethylene glycol)-poly(β-aminoester urethane) (PEG-PAEU) hydrogels for cancer cell-specific delivery of CDDP. The CS-nanogels released from the hydrogels exhibit a pH-dependent release of CDDP. CDDP was released slowly under physiological conditions (pH 7.4), whereas the release of CDDP was triggered under acidic conditions (pH 5.0). Confocal microscopy images demonstrated that fluorescein-5-thiosemicarbazide-labeled CS-nanogels released from the hydrogels selectively bound to the A549 lung carcinoma cell line through the overexpressing CD44 receptor but not to NIH 3T3 cells. An in vitro cytotoxicity test indicated that CS-nanogels released from the hydrogels effectively inhibited the growth of A549 lung carcinoma cells. Subcutaneous injection of CS-nanogel-loaded PEG-PAEU copolymer sols into the dorsal region of Sprague-Dawley rats spontaneously formed a viscoelastic gel without causing noticeable inflammation at the injection site and was found to be bioresorbable in eight weeks. Overall, the injectable hydrogel-incorporated CS-nanogels were demonstrated to be a useful formulation for the targeted delivery of CDDP.
Collapse
Affiliation(s)
- Moon Soo Gil
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea.
| | | | | | | | | |
Collapse
|
30
|
Li J, Su G, Liu J. Enzymatic Synthesis of Homogeneous Chondroitin Sulfate Oligosaccharides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jine Li
- Division of Chemical Biology and Medicinal Chemistry; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC USA
| | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC USA
| |
Collapse
|
31
|
Li J, Su G, Liu J. Enzymatic Synthesis of Homogeneous Chondroitin Sulfate Oligosaccharides. Angew Chem Int Ed Engl 2017; 56:11784-11787. [PMID: 28731518 DOI: 10.1002/anie.201705638] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 11/07/2022]
Abstract
Chondroitin sulfate (CS) is a sulfated polysaccharide that plays essential physiological roles. Here, we report an enzyme-based method for the synthesis of a library of 15 different CS oligosaccharides. This library covers 4-O-sulfated and 6-O-sulfated oligosaccharides ranging from trisaccharides to nonasaccharides. We also describe the synthesis of unnatural 6-O-sulfated CS pentasaccharides containing either a 6-O-sulfo-2-azidogalactosamine or a 6-O-sulfogalactosamine residue. The availability of structurally defined CS oligosaccharides offers a novel approach to investigate the biological functions of CS.
Collapse
Affiliation(s)
- Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
32
|
He W, Zhu Y, Shirke A, Sun X, Liu J, Gross RA, Koffas MAG, Linhardt RJ, Li M. Expression of chondroitin-4-O-sulfotransferase in Escherichia coli and Pichia pastoris. Appl Microbiol Biotechnol 2017; 101:6919-6928. [DOI: 10.1007/s00253-017-8411-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
|
33
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
34
|
Clausen TM, Pereira MA, Al Nakouzi N, Oo HZ, Agerbæk MØ, Lee S, Ørum-Madsen MS, Christensen AR, El-Naggar A, Grandgenett PM, Grem JL, Hollingsworth MA, Holst PJ, Theander T, Sorensen PH, Daugaard M, Salanti A. Oncofetal Chondroitin Sulfate Glycosaminoglycans Are Key Players in Integrin Signaling and Tumor Cell Motility. Mol Cancer Res 2016; 14:1288-1299. [PMID: 27655130 PMCID: PMC5136311 DOI: 10.1158/1541-7786.mcr-16-0103] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/08/2016] [Accepted: 09/02/2016] [Indexed: 01/21/2023]
Abstract
Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion, and anchorage-independent growth of tumor cells in vitro Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin-β1 (ITGB1) and integrin-α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core chondroitin sulfate synthesis enzymes β-1,3-glucuronyltransferase 1 (B3GAT1) and chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and preincubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target. IMPLICATIONS The cancer-specific expression of ofCS aids in metastatic phenotypes and is a candidate target for therapy. Mol Cancer Res; 14(12); 1288-99. ©2016 AACR.
Collapse
Affiliation(s)
- Thomas Mandel Clausen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Marina Ayres Pereira
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Nader Al Nakouzi
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Molecular Pathology and Cell Imaging Laboratory, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Mette Ø Agerbæk
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sherry Lee
- Vancouver Prostate Centre, Vancouver, Canada
| | - Maj Sofie Ørum-Madsen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
- Vancouver Prostate Centre, Vancouver, Canada
| | - Anders Riis Christensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Amal El-Naggar
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Paul M. Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jean L. Grem
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter J. Holst
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Thor Theander
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Molecular Pathology and Cell Imaging Laboratory, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ali Salanti
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| |
Collapse
|
35
|
Degree of Suppression of Mouse Myoblast Cell Line C₂C 12 Differentiation Varies According to Chondroitin Sulfate Subtype. Mar Drugs 2016; 14:md14100193. [PMID: 27775651 PMCID: PMC5082341 DOI: 10.3390/md14100193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/10/2023] Open
Abstract
Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a factor involved in the suppression of myogenic differentiation. CS comprises two repeating sugars and has different subtypes depending on the position and number of bonded sulfate groups. However, the effect of each subtype on myogenic differentiation remains unclear. In this study, we spiked cultures of C2C12 myoblasts, cells which are capable of undergoing skeletal muscle differentiation, with one of five types of CS (CS-A, -B, -C, -D, or -E) and induced differentiation over a fixed time. After immunostaining of the formed myotubes with an anti-MHC antibody, we counted the number of nuclei in the myotubes and then calculated the fusion index (FI) as a measure of myotube differentiation. The FI values of all the CS-treated groups were lower than the FI value of the control group, especially the group treated with CS-E, which displayed notable suppression of myotube formation. To confirm that the sugar chain in CS-E is important in the suppression of differentiation, chondroitinase ABC (ChABC), which catabolizes CS, was added to the media. The addition of ChABC led to the degradation of CS-E, and neutralized the suppression of myotube formation by CS-E. Collectively, it can be concluded that the degree of suppression of differentiation depends on the subtype of CS and that CS-E strongly suppresses myogenic differentiation. We conclude that the CS sugar chain has inhibitory action against myoblast cell fusion.
Collapse
|
36
|
Zhao X, Chen Z, Gu G, Guo Z. Recent advances in the research of bacterial glucuronosyltransferases. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2016.1205597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library. Glycoconj J 2016; 33:985-994. [DOI: 10.1007/s10719-016-9685-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/27/2022]
|
38
|
Bedini E, Laezza A, Iadonisi A. Chemical Derivatization of Sulfated Glycosaminoglycans. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Emiliano Bedini
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo; via Cintia 4 80126 Napoli Italy
| | - Antonio Laezza
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo; via Cintia 4 80126 Napoli Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo; via Cintia 4 80126 Napoli Italy
| |
Collapse
|
39
|
Brown DS, Eames BF. Emerging tools to study proteoglycan function during skeletal development. Methods Cell Biol 2016; 134:485-530. [PMID: 27312503 DOI: 10.1016/bs.mcb.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past 20years, appreciation for the varied roles of proteoglycans (PGs), which are specific types of sugar-coated proteins, has increased dramatically. PGs in the extracellular matrix were long known to impart structural functions to many tissues, especially articular cartilage, which cushions bones and allows mobility at skeletal joints. Indeed, osteoarthritis is a debilitating disease associated with loss of PGs in articular cartilage. Today, however, PGs have a demonstrated role in cell biological processes, such as growth factor signalling, prompting new perspectives on the etiology of PG-associated diseases. Here, we review diseases associated with defects in PG synthesis and sulfation, also highlighting current understanding of the underlying genetics, biochemistry, and cell biology. Since most research has analyzed a class of PGs called heparan sulfate PGs, more attention is paid here to studies of chondroitin sulfate PGs (CSPGs), which are abundant in cartilage. Interestingly, CSPG synthesis is tightly linked to the cell biological processes of secretion and lysosomal degradation, suggesting that these systems may be linked genetically. Animal models of loss of CSPG function have revealed CSPGs to impact skeletal development. Specifically, our work from a mutagenesis screen in zebrafish led to the hypothesis that cartilage PGs normally delay the timing of endochondral ossification. Finally, we outline emerging approaches in zebrafish that may revolutionize the study of cartilage PG function, including transgenic methods and novel imaging techniques. Our recent work with X-ray fluorescent imaging, for example, enables direct correlation of PG function with PG-dependent biological processes.
Collapse
Affiliation(s)
- D S Brown
- University of Saskatchewan, Saskatoon, SK, Canada
| | - B F Eames
- University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
40
|
Shioiri T, Tsuchimoto J, Watanabe H, Sugiura N. Sequence determination of synthesized chondroitin sulfate dodecasaccharides. Glycobiology 2016; 26:592-606. [PMID: 26791444 DOI: 10.1093/glycob/cww008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/15/2016] [Indexed: 11/14/2022] Open
Abstract
Chondroitin sulfate (CS) is a linear acidic polysaccharide composed of repeating disaccharide units of glucuronic acid and N-acetyl-d-galactosamine. The polysaccharide is modified with sulfate groups at different positions by a variety of sulfotransferases. CS chains exhibit various biological and pathological functions by interacting with cytokines and growth factors and regulating their signal transduction. The fine structure of the CS chain defines its specific biological roles. However, structural analysis of CS has been restricted to disaccharide analysis, hampering the understanding of the structure-function relationship of CS chains. Here, we chemo-enzymatically synthesized CS dodecasaccharides having various sulfate modifications using a bioreactor system of bacterial chondroitin polymerase mutants and various CS sulfotransferases. We developed a sequencing method for CS chains using the CS dodecasaccharides. The method consists of (i) labeling a reducing end with 2-aminopyridine (PA), (ii) partial digestion of CS with testicular hyaluronidase, followed by separation of PA-conjugated oligosaccharides with different chain lengths, (iii) limited digestion of these oligosaccharides with chondroitin lyase AC II into disaccharides, followed by labeling with 2-aminobenzamide, (iv) CS disaccharide analysis using a dual-fluorescence HPLC system (reversed-phase ion-pair and ion-exchange chromatography), and (v) estimation of the composition by calculating individual disaccharide ratios. This CS chain sequencing allows characterization of CS-modifying enzymes and provides a useful tool toward understanding the structure-function relationship of CS chains.
Collapse
Affiliation(s)
- Tatsumasa Shioiri
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Jun Tsuchimoto
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
41
|
Suflita M, Fu L, He W, Koffas M, Linhardt RJ. Heparin and related polysaccharides: synthesis using recombinant enzymes and metabolic engineering. Appl Microbiol Biotechnol 2015; 99:7465-79. [PMID: 26219501 PMCID: PMC4546523 DOI: 10.1007/s00253-015-6821-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 01/14/2023]
Abstract
Glycosaminoglycans are linear anionic polysaccharides that exhibit a number of important biological and pharmacological activities. The two most prominent members of this class of polysaccharides are heparin/heparan sulfate and the chondroitin sulfates (including dermatan sulfate). These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of most animal cells. The chemical synthesis of these glycosaminoglycans is precluded by their structural complexity. Today, we depend on food animal tissues for their isolation and commercial production. Ton quantities of these glycosaminoglycans are used annually as pharmaceuticals and nutraceuticals. The variability of animal-sourced glycosaminoglycans, their inherent impurities, the limited availability of source tissues, the poor control of these source materials, and their manufacturing processes suggest a need for new approaches for their production. Over the past decade, there have been major efforts in the biotechnological production of these glycosaminoglycans. This mini-review focuses on the use of recombinant enzymes and metabolic engineering for the production of heparin and chondroitin sulfates.
Collapse
Affiliation(s)
- Matthew Suflita
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
| | - Li Fu
- Department of Chemistry and Chemical, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
| | - Wenqin He
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
| | - Mattheos Koffas
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
| | - Robert J. Linhardt
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
- Department of Chemistry and Chemical, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
| |
Collapse
|
42
|
Watanabe I, Hikita T, Mizuno H, Sekita R, Minami A, Ishii A, Minamisawa Y, Suzuki K, Maeda H, Hidari KIPJ, Suzuki T. Isolation and characterization of monoclonal antibodies specific for chondroitin sulfate E. Glycobiology 2015; 25:953-62. [PMID: 26036195 DOI: 10.1093/glycob/cwv039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/28/2015] [Indexed: 12/26/2022] Open
Abstract
Chondroitin sulfate E (CSE) is a polysaccharide containing mainly disaccharide units of D-glucuronic acid (GlcA) and 4,6-O-disulfated N-acetyl-D-galactosamine (GalNAc) residues (E-unit) in the amount of ∼ 60%. CSE is involved in many biological and pathological processes. In this study, we established new monoclonal antibodies, termed E-12C and E-18H, by using CSE that contained more than 70% of E-units as an immunogen. These antibodies recognized CSE but not other CSs isomers or dermatan sulfate (DS). We evaluated the reactivities of the antibodies to 6-O-sulfated CSA (6S-CSA) and DS (6S-DS) that possessed ∼ 60% of GalNAc (4S, 6S) moieties in their structures. Neither of the antibodies reacted with 6S-DS. The antibodies strictly distinguished the structural difference of GlcA and L-iduronic acid in the polysaccharide. Binding affinities of the antibodies were determined by a surface plasmon resonance assay using CSE and 6S-CSA. The binding affinities were strongly associated with the molecular weight of CSE and the E-unit content of 6S-CSA. Moreover, we demonstrated that the antibodies are applicable to histochemical analysis. In conclusion, the new anti-CSE monoclonal antibodies specifically recognize the E-unit of CSE. The antibodies will become useful tools for the investigation of the biological and pathological significance of CSE.
Collapse
Affiliation(s)
- Ippei Watanabe
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato-shi, Tokyo 207-0021, Japan
| | - Tomoya Hikita
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Haruka Mizuno
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Risa Sekita
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Ami Ishii
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Yuka Minamisawa
- Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato-shi, Tokyo 207-0021, Japan
| | - Kiyoshi Suzuki
- Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato-shi, Tokyo 207-0021, Japan
| | - Hiroshi Maeda
- Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato-shi, Tokyo 207-0021, Japan
| | - Kazuya I P J Hidari
- Department of Food and Nutrition, Junior College Division, University of Aizu, 1-1 Aza-Kadota Yahata, Ikki-machi, Aizuwakamatsu-shi, Fukushima 965-8570, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| |
Collapse
|
43
|
Jones DR. Measuring midkine: the utility of midkine as a biomarker in cancer and other diseases. Br J Pharmacol 2015; 171:2925-39. [PMID: 24460734 DOI: 10.1111/bph.12601] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/15/2013] [Accepted: 01/17/2014] [Indexed: 01/05/2023] Open
Abstract
Midkine (MK) is a pleiotropic growth factor prominently expressed during embryogenesis but down-regulated to neglible levels in healthy adults. Many published studies have demonstrated striking MK overexpression compared with healthy controls in various pathologies, including ischaemia, inflammation, autoimmunity and, most notably, in many cancers. MK expression is detectable in biopsies of diseased, but not healthy, tissues. Significantly, because it is a soluble cytokine, elevated MK is readily apparent in the blood and other body fluids such as urine and CSF, making MK a relatively convenient, accessible, non-invasive and inexpensive biomarker for population screening and early disease detection. The first diagnostic tests that quantify MK are just now receiving regulatory clearance and entering the clinic. This review examines the current state of knowledge pertaining to MK as a biomarker and highlights promising indications and clinical settings where measuring MK could make a difference to patient treatment. I also raise outstanding questions about reported variants of MK as well as MK's bio-distribution in vivo. Answering these questions in future studies will enhance our understanding of the significance of measured MK levels in both patients and healthy subjects, and may reveal further opportunities for measuring MK to diagnose disease. MK has already proven to be a biomarker that can significantly improve detection, management and treatment of cancer, and there is significant promise for developing further MK-based diagnostics in the future.
Collapse
Affiliation(s)
- D R Jones
- Cellmid Ltd., Sydney, NSW, Australia
| |
Collapse
|
44
|
Griffin ME, Hsieh-Wilson LC. Synthetic probes of glycosaminoglycan function. Curr Opin Chem Biol 2013; 17:1014-22. [PMID: 24148269 PMCID: PMC3934325 DOI: 10.1016/j.cbpa.2013.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/24/2013] [Indexed: 01/07/2023]
Abstract
Glycosaminoglycans (GAGs) participate in many critical biological processes by modulating the activities of a wide range of proteins, including growth factors, chemokines, and viral receptors. Recent studies using synthetic oligosaccharides and glycomimetic polymers have established the importance of specific structural determinants in controlling GAG function. These findings illustrate the power of synthetic molecules to elucidate glycan-mediated signaling events, as well as the prospect of further advancements to understand the roles of GAGs in vivo and explore their therapeutic potential.
Collapse
Affiliation(s)
- Matthew E Griffin
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
45
|
Sugiura N, Ikeda M, Shioiri T, Yoshimura M, Kobayashi M, Watanabe H. Chondroitinase from baculovirus Bombyx mori nucleopolyhedrovirus and chondroitin sulfate from silkworm Bombyx mori. Glycobiology 2013; 23:1520-30. [DOI: 10.1093/glycob/cwt082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Swarup VP, Hsiao TW, Zhang J, Prestwich GD, Kuberan B, Hlady V. Exploiting differential surface display of chondroitin sulfate variants for directing neuronal outgrowth. J Am Chem Soc 2013; 135:13488-94. [PMID: 23947484 DOI: 10.1021/ja4056728] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chondroitin sulfate (CS) proteoglycans (CSPGs) are known to be primary inhibitors of neuronal regeneration at scar sites. However, a variety of CSPGs are also involved in neuronal growth and guidance during other physiological stages. Sulfation patterns of CS chains influence their interactions with various growth factors in the central nervous system (CNS), thus influencing neuronal growth, inhibition, and pathfinding. This report demonstrates the use of differentially sulfated CS chains for neuronal navigation. Surface-immobilized patterns of CS glycosaminoglycan chains were used to determine neuronal preference toward specific sulfations of five CS variants: CS-A, CS-B (dermatan sulfate), CS-C, CS-D, and CS-E. Neurons preferred CS-A, CS-B, and CS-E and avoided CS-C containing lanes. In addition, significant alignment of neurites was observed using underlying lanes containing CS-A, CS-B, and CS-E chains. To utilize differential preference of neurons toward the CS variants, a binary combinations of CS chains were created by backfilling a neuro-preferred CS variant between the microcontact printed lanes of CS-C stripes, which are avoided by neurons. The neuronal outgrowth results demonstrate for the first time that a combination of sulfation variants of CS chains without any protein component of CSPG is sufficient for directing neuronal outgrowth. Biomaterials with surface immobilized GAG chains could find numerous applications as bridging devices for tackling CNS injuries where directional growth of neurons is critical for recovery.
Collapse
Affiliation(s)
- Vimal P Swarup
- Department of Bioengineering, ‡Department of Medicinal Chemistry, and §Interdepartmental Program in Neuroscience, University of Utah , Salt Lake City, Utah 84112, United States
| | | | | | | | | | | |
Collapse
|
47
|
DeAngelis PL, Liu J, Linhardt RJ. Chemoenzymatic synthesis of glycosaminoglycans: re-creating, re-modeling and re-designing nature's longest or most complex carbohydrate chains. Glycobiology 2013; 23:764-77. [PMID: 23481097 PMCID: PMC3671772 DOI: 10.1093/glycob/cwt016] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 02/03/2023] Open
Abstract
Glycosaminoglycans (GAGs) are complex polysaccharides composed of hexosamine-containing disaccharide repeating units. The three most studied classes of GAGs, heparin/heparan sulfate, hyaluronan and chondroitin/dermatan sulfate, are essential macromolecules. GAGs isolated from animal and microbial sources have been utilized therapeutically, but naturally occurring GAGs are extremely heterogeneous limiting further development of these agents. These molecules pose difficult targets to construct by classical organic syntheses due to the long chain lengths and complex patterns of modification by sulfation and epimerization. Chemoenzymatic synthesis, a process that employs exquisite enzyme catalysts and various defined precursors (e.g. uridine 5'-diphosphosphate-sugar donors, sulfate donors, acceptors and oxazoline precursors), promises to deliver homogeneous GAGs. This review covers both theoretical and practical issues of GAG oligosaccharide and polysaccharide preparation as single molecular entities and in library formats. Even at this early stage of technology development, nearly monodisperse GAGs can be made with either natural or artificial structures.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma Center for Medical Glycobiology, Oklahoma City, OK 73126, USA.
| | | | | |
Collapse
|
48
|
Application of Chondroitin Sulfate Derivatives for Understanding Axonal Guidance in the Nervous System during Development. Polymers (Basel) 2013. [DOI: 10.3390/polym5010254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|