1
|
Sharma NK, Bahot A, Sekar G, Bansode M, Khunteta K, Sonar PV, Hebale A, Salokhe V, Sinha BK. Understanding Cancer's Defense against Topoisomerase-Active Drugs: A Comprehensive Review. Cancers (Basel) 2024; 16:680. [PMID: 38398072 PMCID: PMC10886629 DOI: 10.3390/cancers16040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the emergence of cancer drug resistance has been one of the crucial tumor hallmarks that are supported by the level of genetic heterogeneity and complexities at cellular levels. Oxidative stress, immune evasion, metabolic reprogramming, overexpression of ABC transporters, and stemness are among the several key contributing molecular and cellular response mechanisms. Topo-active drugs, e.g., doxorubicin and topotecan, are clinically active and are utilized extensively against a wide variety of human tumors and often result in the development of resistance and failure to therapy. Thus, there is an urgent need for an incremental and comprehensive understanding of mechanisms of cancer drug resistance specifically in the context of topo-active drugs. This review delves into the intricate mechanistic aspects of these intracellular and extracellular topo-active drug resistance mechanisms and explores the use of potential combinatorial approaches by utilizing various topo-active drugs and inhibitors of pathways involved in drug resistance. We believe that this review will help guide basic scientists, pre-clinicians, clinicians, and policymakers toward holistic and interdisciplinary strategies that transcend resistance, renewing optimism in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Anjali Bahot
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Gopinath Sekar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Mahima Bansode
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Kratika Khunteta
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Priyanka Vijay Sonar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Ameya Hebale
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Vaishnavi Salokhe
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Birandra Kumar Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
2
|
Purhonen J, Klefström J, Kallijärvi J. MYC-an emerging player in mitochondrial diseases. Front Cell Dev Biol 2023; 11:1257651. [PMID: 37731815 PMCID: PMC10507175 DOI: 10.3389/fcell.2023.1257651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
The mitochondrion is a major hub of cellular metabolism and involved directly or indirectly in almost all biological processes of the cell. In mitochondrial diseases, compromised respiratory electron transfer and oxidative phosphorylation (OXPHOS) lead to compensatory rewiring of metabolism with resemblance to the Warburg-like metabolic state of cancer cells. The transcription factor MYC (or c-MYC) is a major regulator of metabolic rewiring in cancer, stimulating glycolysis, nucleotide biosynthesis, and glutamine utilization, which are known or predicted to be affected also in mitochondrial diseases. Albeit not widely acknowledged thus far, several cell and mouse models of mitochondrial disease show upregulation of MYC and/or its typical transcriptional signatures. Moreover, gene expression and metabolite-level changes associated with mitochondrial integrated stress response (mt-ISR) show remarkable overlap with those of MYC overexpression. In addition to being a metabolic regulator, MYC promotes cellular proliferation and modifies the cell cycle kinetics and, especially at high expression levels, promotes replication stress and genomic instability, and sensitizes cells to apoptosis. Because cell proliferation requires energy and doubling of the cellular biomass, replicating cells should be particularly sensitive to defective OXPHOS. On the other hand, OXPHOS-defective replicating cells are predicted to be especially vulnerable to high levels of MYC as it facilitates evasion of metabolic checkpoints and accelerates cell cycle progression. Indeed, a few recent studies demonstrate cell cycle defects and nuclear DNA damage in OXPHOS deficiency. Here, we give an overview of key mitochondria-dependent metabolic pathways known to be regulated by MYC, review the current literature on MYC expression in mitochondrial diseases, and speculate how its upregulation may be triggered by OXPHOS deficiency and what implications this has for the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Janne Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine, Medical Faculty, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Corum DG, Jenkins DP, Heslop JA, Tallent LM, Beeson GC, Barth JL, Schnellmann RG, Muise-Helmericks RC. PDE5 inhibition rescues mitochondrial dysfunction and angiogenic responses induced by Akt3 inhibition by promotion of PRC expression. J Biol Chem 2020; 295:18091-18104. [PMID: 33087445 PMCID: PMC7939459 DOI: 10.1074/jbc.ra120.013716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/15/2020] [Indexed: 12/01/2022] Open
Abstract
Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses.
Collapse
Affiliation(s)
- Daniel G Corum
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Dorea P Jenkins
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina
| | - James A Heslop
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Lacey M Tallent
- Department of Bioengineering, Duke University, Durham, North Carolina
| | - Gyda C Beeson
- Department of Drug Discovery, Medical University of South Carolina, Charleston, South Carolina
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | | | - Robin C Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
4
|
Buler M, Naessens T, Mattsson J, Morias Y, Söderberg M, Robbins P, Kärrberg L, Svensson TS, Thulin P, Glinghammar B, Scarpulla RC, Andersson U. The regulatory role of PGC1α-related coactivator in response to drug-induced liver injury. FASEB Bioadv 2020; 2:453-463. [PMID: 32821877 PMCID: PMC7429352 DOI: 10.1096/fba.2020-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/13/2020] [Accepted: 05/28/2020] [Indexed: 11/24/2022] Open
Abstract
PGC1α-Related Coactivator (PRC) is a transcriptional coactivator promoting cytokine expression in vitro in response to mitochondrial injury and oxidative stress, however, its physiological role has remained elusive. Herein we investigate aspects of the immune response function of PRC, first in an in vivo thioacetamide (TAA)-induced mouse model of drug-induced liver injury (DILI), and subsequently in vitro in human monocytes, HepG2, and dendritic (DC) cells. TAA treatment resulted in the dose-dependent induction of PRC mRNA and protein, both of which were shown to correlate with liver injury markers. Conversely, an adenovirus-mediated knockdown of PRC attenuated this response, thereby reducing hepatic cytokine mRNA expression and monocyte infiltration. Subsequent in vitro studies with conditioned media from HepG2 cells overexpressing PRC, activated human monocytes and monocyte-derived DC, demonstrated up to 20% elevated expression of CD86, CD40, and HLA-DR. Similarly, siRNA-mediated knockdown of PRC abolished this response in oligomycin stressed HepG2 cells. A putative mechanism was suggested by the co-immunoprecipitation of Signal Transducer and Activator of Transcription 1 (STAT1) with PRC, and induction of a STAT-dependent reporter. Furthermore, PRC co-activated an NF-κB-dependent reporter, indicating interaction with known major inflammatory factors. In summary, our study indicates PRC as a novel factor modulating inflammation in DILI.
Collapse
Affiliation(s)
- Marcin Buler
- Clinical Pharmacology and Safety SciencesAstraZeneca R&DMölndalSweden
| | - Thomas Naessens
- Clinical Pharmacology and Safety SciencesAstraZeneca R&DMölndalSweden
| | - Johan Mattsson
- Clinical Pharmacology and Safety SciencesAstraZeneca R&DMölndalSweden
| | - Yannick Morias
- Clinical Pharmacology and Safety SciencesAstraZeneca R&DMölndalSweden
| | - Magnus Söderberg
- Clinical Pharmacology and Safety SciencesAstraZeneca R&DMölndalSweden
| | | | - Lillevi Kärrberg
- Clinical Pharmacology and Safety SciencesAstraZeneca R&DMölndalSweden
| | - Tor S. Svensson
- Clinical Pharmacology and Safety SciencesAstraZeneca R&DMölndalSweden
| | - Petra Thulin
- Clinical Pharmacology and Safety SciencesAstraZeneca R&DMölndalSweden
| | - Björn Glinghammar
- Science for Life LaboratoryDrug Discovery & Development Platform & Division of Translational Medicine & Chemical BiologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | | | - Ulf Andersson
- Clinical Pharmacology and Safety SciencesAstraZeneca R&DMölndalSweden
| |
Collapse
|
5
|
Mori MP, Souza-Pinto NCD. PPRC1, but not PGC-1α, levels directly correlate with expression of mitochondrial proteins in human dermal fibroblasts. Genet Mol Biol 2020; 43:e20190083. [PMID: 32639509 PMCID: PMC7341727 DOI: 10.1590/1678-4685-gmb-2019-0083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/15/2020] [Indexed: 11/22/2022] Open
Abstract
The XPC protein, which is mutated in xeroderma pigmentosum (XP) complementation group C (XP-C), is a lesion recognition factor in NER, but it has also been shown to interact with and stimulate DNA glycosylases, to act as transcriptional co-activator and on energy metabolism adaptation. We have previously demonstrated that XP-C cells show increased mitochondrial H2O2 production with a shift between respiratory complexes I and II, leading to sensitivity to mitochondrial stress. Here we report a marked decrease in expression of the transcriptional co-activator PGC-1α, a master regulator of mitochondrial biogenesis, in XP-C cells. A transcriptional role for XPC in PGC-1α expression was discarded, as XPC knockdown did not downregulate PGC-1α expression and XPC-corrected cells still showed lower PGC-1α expression. DNA methylation alone did not explain PGC-1α silencing. In four different XP-C cell lines tested, reduction of PGC-1α expression was detected in three, all of them carrying the c.1643_1644delTG mutation (ΔTG) in XPC. Indeed, all cell lines carrying XPC ΔTG mutation, whether homozygous or heterozygous, presented decreased PGC-1α expression. However, this alteration in gene expression was not exclusive to XPC ΔTG cell lines, for other non-related cell lines also showed altered PGC-1α expression. Moreover, PGC1-α expression did not correlate with expression levels of TFAM and SDHA, known PGC-1α target-genes. In turn, PPRC1, another member of the PGC family of transcription co-activators controlling mitochondrial biogenesis, displayed a good correlation between its expression in 10 cell lines and TFAM and SDHA. Nonetheless, PGC-1α knockdown led to a slight decrease of its target-gene protein level, TFAM, and subsequently of a mtDNA-encoded gene, MT-CO2. These results indicate that PGC-1α and PPRC1 cooperate as regulators of mitochondrial biogenesis and maintenance in fibroblasts.
Collapse
Affiliation(s)
- Mateus Prates Mori
- Universidade de São Paulo, Departamento de Bioquímica, Instituto de Química, São Paulo, SP, Brazil
| | | |
Collapse
|
6
|
Bennett JP, Keeney PM. Alzheimer's and Parkinson's brain tissues have reduced expression of genes for mtDNA OXPHOS Proteins, mitobiogenesis regulator PGC-1α protein and mtRNA stabilizing protein LRPPRC (LRP130). Mitochondrion 2020; 53:154-157. [PMID: 32497722 DOI: 10.1016/j.mito.2020.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022]
Abstract
We used RNA sequencing (RNA-seq) to quantitate gene expression in total RNA extracts of vulnerable brain tissues from Alzheimer's disease (AD, frontal cortical ribbon) and Parkinson's disease (PD, ventral midbrain) subjects and phenotypically negative control subjects. Paired-end sequencing files were processed with HISAT2 aligner/Cufflinks quantitation against the hg38 human genome. We observed a significant decrease in gene expression of all mtDNA OXPHOS genes in AD and PD tissues. Gene expression of the master mitochondrial biogenesis regulator PGC-1α (PPARGC1A) was significantly reduced in AD; expression of genes for mitochondrial transcription factors A (TFAM) and B1/B2 (TFB1M/TFB2M) were not significantly changed in AD and PD tissues. 2-way ANOVAs showed significant reduction in AD brain Complex I subunits' expressions and nearly significant reductions in PD brain. We found a significant reduction in both AD and PD brain samples of expression of genes for leucine-rich pentatricopeptide repeat containing (LRPPRC, a.k.a. LRP130), a known mtRNA-stabilizing protein. Our findings suggest that AD and PD brain tissues have a reduction in mitochondrial ATP production derived from a reduction of mitobiogenesis and mtRNA stability. If true, increased brain expression of PGC-1α and/or LRPPRC may improve bioenergetics of AD and PD and alter the course of neurodegeneration in both conditions. (201 words).
Collapse
Affiliation(s)
- James P Bennett
- Neurodegeneration Therapeutics, Inc., Charlottesville, VA 22901, United States.
| | - Paula M Keeney
- Neurodegeneration Therapeutics, Inc., Charlottesville, VA 22901, United States
| |
Collapse
|
7
|
Yang X, Arslan M, Liu X, Song H, Du M, Li Y, Zhang Z. IFN-γ establishes interferon-stimulated gene-mediated antiviral state against Newcastle disease virus in chicken fibroblasts. Acta Biochim Biophys Sin (Shanghai) 2020; 52:268-280. [PMID: 32047904 PMCID: PMC7109688 DOI: 10.1093/abbs/gmz158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022] Open
Abstract
Newcastle disease virus (NDV) causes severe economic losses through severe morbidity and mortality and poses a significant threat to the global poultry industry. Significant efforts have been made to develop novel vaccines and therapeutics; however, the interaction of NDV with the host is not yet fully understood. Interferons (IFNs), an integral component of innate immune signaling, act as the first line of defense against invading viruses. Compared with the mammalian repertoire of IFNs, limited information is available on the antiviral potential of IFNs in chickens. Here, we expressed chicken IFN-γ (chIFN-γ) using a baculovirus expression vector system, characterized its antiviral potential against NDV, and determined its antiviral potential. Priming of chicken embryo fibroblasts with chIFN-γ elicited an antiviral environment in primary cells, which was mainly due to interferon-stimulated genes (ISGs). A genome-wide transcriptomics approach was used to elucidate the possible signaling pathways associated with IFN-γ-induced immune responses. RNA-sequencing (RNA-seq) data revealed significant induction of ISG-associated pathways, activated temporal expression of ISGs, antiviral mediators, and transcriptional regulators in a cascade of antiviral responses. Collectively, we found that IFN-γ significantly elicited an antiviral response against NDV infection. These data provide a foundation for chIFN-γ-mediated antiviral responses and underpin functional annotation of these important chIFN-γ-induced antiviral influencers.
Collapse
Affiliation(s)
- Xin Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mehboob Arslan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingjian Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haozhi Song
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengtan Du
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Fila M, Pawłowska E, Blasiak J. Mitochondria in migraine pathophysiology - does epigenetics play a role? Arch Med Sci 2019; 15:944-956. [PMID: 31360189 PMCID: PMC6657237 DOI: 10.5114/aoms.2019.86061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022] Open
Abstract
The approximately three times higher rate of migraine prevalence in women than men may result from the mitochondrial transmission of this disease. Studies with imaging techniques suggest disturbances in mitochondrial metabolism in specific regions of the brain in migraine patients. Migraine shares some clinical features with several mitochondrial diseases and many other disorders include migraine headaches. Epigenetic regulation of mitochondrial DNA (mtDNA) is a matter of debate and there are some conflicting results, especially on mtDNA methylation. Micro RNAs (miRNAs) and long-noncoding RNA (lncRNAs) have been detected in mitochondria. The regulation of the miRNA-lncRNA axis can be important for mitochondrial physiology and its impairment can result in a disease phenotype. Further studies on the role of mitochondrial epigenetic modifications in migraine are needed, but they require new methods and approaches.
Collapse
Affiliation(s)
- Michał Fila
- Department of Neurology, Polish Mother Memorial Hospital, Research Institute, Lodz, Poland
| | | | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
De Vitto H, Bode AM, Dong Z. The PGC-1/ERR network and its role in precision oncology. NPJ Precis Oncol 2019; 3:9. [PMID: 30911677 PMCID: PMC6428848 DOI: 10.1038/s41698-019-0081-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Transcriptional regulators include a superfamily of nuclear proteins referred to as co-activators and co-repressors, both of which are involved in controlling the functions of several nuclear receptors (NRs). The Nuclear Receptor Signaling Atlas (NURSA) has cataloged the composition of NRs, co-regulators, and ligands present in the human cell and their effort has been identified in more than 600 potential molecules. Given the importance of co-regulators in steroid, retinoid, and thyroid hormone signaling networks, hypothesizing that NRs/co-regulators are implicated in a wide range of pathologies are tempting. The co-activators known as peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1) and their key nuclear partner, the estrogen-related receptor (ERR), are emerging as pivotal transcriptional signatures that regulate an extremely broad repertoire of mitochondrial and metabolic genes, making them very attractive drug targets for cancer. Several studies have provided an increased understanding of the functional and structural biology of nuclear complexes. However, more comprehensive work is needed to create different avenues to explore the therapeutic potential of NRs/co-activators in precision oncology. Here, we discuss the emerging data associated with the structure, function, and molecular biology of the PGC-1/ERR network and address how the concepts evolving from these studies have deepened our understanding of how to develop more effective treatment strategies. We present an overview that underscores new biological insights into PGC-1/ERR to improve cancer outcomes against therapeutic resistance. Finally, we discuss the importance of exploiting new technologies such as single-particle cryo-electron microscopy (cryo-EM) to develop a high-resolution biological structure of PGC-1/ERR, focusing on novel drug discovery for precision oncology.
Collapse
Affiliation(s)
- Humberto De Vitto
- The Hormel Institute, University of Minnesota, 801 16th Avenue, Austin, NE 55912 USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Avenue, Austin, NE 55912 USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16th Avenue, Austin, NE 55912 USA
| |
Collapse
|
10
|
PGC1α: Friend or Foe in Cancer? Genes (Basel) 2018; 9:genes9010048. [PMID: 29361779 PMCID: PMC5793199 DOI: 10.3390/genes9010048] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
The PGC1 family (Peroxisome proliferator-activated receptor γ (PPARγ) coactivators) of transcriptional coactivators are considered master regulators of mitochondrial biogenesis and function. The PGC1α isoform is expressed especially in metabolically active tissues, such as the liver, kidneys and brain, and responds to energy-demanding situations. Given the altered and highly adaptable metabolism of tumor cells, it is of interest to investigate PGC1α in cancer. Both high and low levels of PGC1α expression have been reported to be associated with cancer and worse prognosis, and PGC1α has been attributed with oncogenic as well as tumor suppressive features. Early in carcinogenesis PGC1α may be downregulated due to a protective anticancer role, and low levels likely reflect a glycolytic phenotype. We suggest mechanisms of PGC1α downregulation and how these might be connected to the increased cancer risk that obesity is now known to entail. Later in tumor progression PGC1α is often upregulated and is reported to contribute to increased lipid and fatty acid metabolism and/or a tumor cell phenotype with an overall metabolic plasticity that likely supports drug resistance as well as metastasis. We conclude that in cancer PGC1α is neither friend nor foe, but rather the obedient servant reacting to metabolic and environmental cues to benefit the tumor cell.
Collapse
|
11
|
Bera A, Leighton XM, Pollard H, Srivastava M. Cyclin E and FGF8 are downstream cell growth regulators in distinct tumor suppressor effects of ANXA7 in hormone-resistant cancer cells of breast versus prostate origin. TRENDS IN CANCER RESEARCH 2018; 13:55-62. [PMID: 30369774 PMCID: PMC6200414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tumor suppressor function of Annexin-A7 (ANXA7) was demonstrated by cancer-prone phenotype in Anxa7(+/-) mice and ANXA7 profiling in human cancers including prostate and breast. Consistent with its more evident in vivo tumor suppressor role in prostate cancer, wild-type(wt)-ANXA7 in vitro induced similar G2-arrests, but reduced survival more drastically in prostate cancer cells compared to breast cancer cells (DU145 versus MDA-MB-231 and -435). In all three hormone-resistant cancer cell lines, wt-ANXA7 abolished the expression of the oncogenic low-molecular weight (LMW) cyclin E which was for the first time encountered in prostate cancer cells. Dominant-negative nMMM-ANXA7 (which lacks phosphatidylserine liposome aggregation properties) failed to abrogate LMW-cyclin E and simultaneously induced fibroblast growth factor 8 (FGF8) in DU145 that was consistent with the continuing cell cycle progression and reduced cell death. Adenoviral vector alone induced FGF8 in MDA-MB-231/435 cell lines, but not in DU145 cells. Our data indicated that the LMW-Cyclin E expressions in breast cancer and prostate cancer cell-lines were differentially regulated by wild-type and dominant-negative ANXA7 isoforms, demonstrating a different survival mechanism utilized by breast cancer cells. Conventional tumor suppressor p53 failed to completely abolish FGF8 and LMW-cyclin E in breast cancer cells, which were eventually translated into their survival. Thus, ANXA7 tumor suppression could modulate FGF8 and cyclin E expression, and control implying more specific associations with the annexin properties of ANXA7 in prostate tumorigenesis.
Collapse
|
12
|
Gleyzer N, Scarpulla RC. Concerted Action of PGC-1-related Coactivator (PRC) and c-MYC in the Stress Response to Mitochondrial Dysfunction. J Biol Chem 2016; 291:25529-25541. [PMID: 27789709 DOI: 10.1074/jbc.m116.719682] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
PGC-1-related coactivator (PRC) has a dual function in growth-regulated mitochondrial biogenesis and as a sensor of metabolic stress. PRC induction by mitochondrial inhibitors, intracellular ROS, or topoisomerase I inhibition orchestrates an inflammatory program associated with the adaptation to cellular stress. Activation of this program is accompanied by the coordinate expression of c-MYC, which is linked kinetically to that of PRC in response to multiple stress inducers. Here, we show that the c-MYC inhibitor 10058-F4 blocks the induction of c-MYC, PRC, and representative PRC-dependent stress genes by the respiratory chain uncoupler, carbonyl cyanide m-chlorophenyl hydrazine (CCCP). This result, confirmed by the suppression of PRC induction by c-MYC siRNA silencing, demonstrates a requirement for c-MYC in orchestrating the stress program. PRC steady-state expression was markedly increased upon mutation of two GSK-3 serine phosphorylation sites within the carboxyl-terminal domain. The negative control of PRC expression by GSK-3 was consistent with the phosphor-inactivation of GSK-3β by CCCP and by the induction of PRC by the GSK-3 inhibitor AZD2858. Unlike PRC, which was induced post-translationally through increased protein half-life, c-MYC was induced predominantly at the mRNA level. Moreover, suppression of Akt activation by the Akt inhibitor MK-2206 blocked the CCCP induction of PRC, c-MYC, and representative PRC stress genes, demonstrating a requirement for Akt signaling. MK-2206 also inhibited the phosphor-inactivation of GSK-3β by CCCP, a result consistent with the ability of Akt to phosphorylate, and thereby suppress GSK-3 activity. Thus, PRC and c-MYC can act in concert through Akt-GSK-3 signaling to reprogram gene expression in response to mitochondrial stress.
Collapse
Affiliation(s)
- Natalie Gleyzer
- From the Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 60611
| | - Richard C Scarpulla
- From the Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 60611
| |
Collapse
|
13
|
Zhuo M, Gorgun MF, Englander EW. Augmentation of glycolytic metabolism by meclizine is indispensable for protection of dorsal root ganglion neurons from hypoxia-induced mitochondrial compromise. Free Radic Biol Med 2016; 99:20-31. [PMID: 27458119 PMCID: PMC5538108 DOI: 10.1016/j.freeradbiomed.2016.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 01/12/2023]
Abstract
To meet energy demands, dorsal root ganglion (DRG) neurons harbor high mitochondrial content, which renders them acutely vulnerable to disruptions of energy homeostasis. While neurons typically rely on mitochondrial energy production and have not been associated with metabolic plasticity, new studies reveal that meclizine, a drug, recently linked to modulations of energy metabolism, protects neurons from insults that disrupt energy homeostasis. We show that meclizine rapidly enhances glycolysis in DRG neurons and that glycolytic metabolism is indispensable for meclizine-exerted protection of DRG neurons from hypoxic stress. We report that supplementation of meclizine during hypoxic exposure prevents ATP depletion, preserves NADPH and glutathione stores, curbs reactive oxygen species (ROS) and attenuates mitochondrial clustering in DRG neurites. Using extracellular flux analyzer, we show that in cultured DRG neurons meclizine mitigates hypoxia-induced loss of mitochondrial respiratory capacity. Respiratory capacity is a measure of mitochondrial fitness and cell ability to meet fluctuating energy demands and therefore, a key determinant of cellular fate. While meclizine is an 'old' drug with long record of clinical use, its ability to modulate energy metabolism has been uncovered only recently. Our findings documenting neuroprotection by meclizine in a setting of hypoxic stress reveal previously unappreciated metabolic plasticity of DRG neurons as well as potential for pharmacological harnessing of the newly discovered metabolic plasticity for protection of peripheral nervous system under mitochondria compromising conditions.
Collapse
Affiliation(s)
- Ming Zhuo
- Department of Surgery, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Murat F Gorgun
- Department of Surgery, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Ella W Englander
- Department of Surgery, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| |
Collapse
|
14
|
Tran JR, Chen H, Zheng X, Zheng Y. Lamin in inflammation and aging. Curr Opin Cell Biol 2016; 40:124-130. [PMID: 27023494 DOI: 10.1016/j.ceb.2016.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/26/2016] [Accepted: 03/08/2016] [Indexed: 12/16/2022]
Abstract
Aging is characterized by a progressive loss of tissue function and an increased susceptibility to injury and disease. Many age-associated pathologies manifest an inflammatory component, and this has led to the speculation that aging is at least in part caused by some form of inflammation. However, whether or not inflammation is truly a cause of aging, or is a consequence of the aging process is unknown. Recent work using Drosophila has uncovered a mechanism where the progressive loss of lamin-B in the fat body upon aging triggers systemic inflammation. This inflammatory response perturbs the local immune response of the neighboring gut tissue and leads to hyperplasia. Here, we will discuss the literature connecting lamins to aging and inflammation.
Collapse
Affiliation(s)
- Joseph R Tran
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Haiyang Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States.
| |
Collapse
|
15
|
The complex crosstalk between mitochondria and the nucleus: What goes in between? Int J Biochem Cell Biol 2015; 63:10-5. [DOI: 10.1016/j.biocel.2015.01.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/21/2015] [Accepted: 01/29/2015] [Indexed: 12/22/2022]
|
16
|
Correia JC, Ferreira DMS, Ruas JL. Intercellular: local and systemic actions of skeletal muscle PGC-1s. Trends Endocrinol Metab 2015; 26:305-14. [PMID: 25934582 DOI: 10.1016/j.tem.2015.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 12/16/2022]
Abstract
Physical exercise promotes complex adaptations in skeletal muscle that benefit various aspects of human health. Many of these adaptations are coordinated at the gene expression level by the concerted action of transcriptional regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1) proteins play a prominent role in skeletal muscle transcriptional reprogramming induced by numerous stimuli. PGC-1s are master coactivators that orchestrate broad gene programs to modulate fuel supply and mitochondrial function, thus improving cellular energy metabolism. Recent studies unveiled novel biological functions for PGC-1s that extend well beyond skeletal muscle bioenergetics. Here we review recent advances in our understanding of PGC-1 actions in skeletal muscle, with special focus on their systemic effects.
Collapse
Affiliation(s)
- Jorge C Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Duarte M S Ferreira
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| |
Collapse
|
17
|
Yang Y, Zhang H, Li X, Yang T, Jiang Q. Effects of PPARα/PGC-1α on the myocardial energy metabolism during heart failure in the doxorubicin induced dilated cardiomyopathy in mice. Int J Clin Exp Med 2014; 7:2435-2442. [PMID: 25356095 PMCID: PMC4211745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/20/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE This study aims to investigate the effects and their mechanisms of PPARα and PGC-1α pathways in doxorubicin induced dilated cardiomyopathy in mice. METHODS The model of dilated cardiomyopathy (DCM) was established by injecting doxorubicin in mice. The 40 surviving mice were divided randomly into control group, doxorubicin model group, PPARα inhibitor and PPARα agonist group. The PPARα/PGC-1α proteins were detected. The size of adenine acid pool (ATP, ADP, AMP) and phosphocreatine (Pcr) in mitochondria were measured by HPLC. The ANT activity was detected by the atractyloside-inhibitor stop technique. The echocardiography and hemodynamic changes were detected in each group after PPARα inhibitor and PPARα agonist treatment for 2 weeks. RESULTS The DOX induced DCM model were successfully established. The expression of PPARα and PGC-1α protein level in normal group were significantly higher than that in DOX model group (P<0.05). Both the high-energy phosphate content and the transport activity of ANT were decreased in DOX group (P<0.05), and the hemodynamic parameters were disorder (P<0.01). Compared with Dox group, PPARα inhibitor intervention significantly reduce the expression of PPARα/PGC-1α, high-energy phosphate content in the mitochondria had no significant change (P>0.05), but the ANT transport activity of mitochondria decreased significantly (P<0.05), the left ventricular function decreased. On the other side, PPARα agonist intervention significantly increased the expression of PPARα and PGC-1α, improved transport activity of ANT, the hemodynamic parameters was ameliorated (P<0.05), but the high-energy phosphate content of mitochondria did not change significantly (P>0.05). CONCLUSION There was lower expression of PPARα and PGC-1α in DOC induced DCM in mice. Promotion of PPARα can improve myocardia energy metabolism and delay the occurrence of heart failure.
Collapse
Affiliation(s)
- Yongyao Yang
- Department of Cardiology, Guizhou Provincial People’s HospitalGuiyang 550002, China
| | - Hongming Zhang
- Department of Cardiology, The General Hospital of Jinnan Military RegionJinan 250031, China
| | - Xiaoyan Li
- Department of Cardiology, The General Hospital of Jinnan Military RegionJinan 250031, China
| | - Tianhe Yang
- Department of Cardiology, Guizhou Provincial People’s HospitalGuiyang 550002, China
| | - Qingan Jiang
- Department of Cardiology, Guizhou Provincial People’s HospitalGuiyang 550002, China
| |
Collapse
|
18
|
Kotiadis VN, Duchen MR, Osellame LD. Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta Gen Subj 2013; 1840:1254-65. [PMID: 24211250 PMCID: PMC3970188 DOI: 10.1016/j.bbagen.2013.10.041] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/14/2013] [Accepted: 10/29/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND The maintenance of cell metabolism and homeostasis is a fundamental characteristic of living organisms. In eukaryotes, mitochondria are the cornerstone of these life supporting processes, playing leading roles in a host of core cellular functions, including energy transduction, metabolic and calcium signalling, and supporting roles in a number of biosynthetic pathways. The possession of a discrete mitochondrial genome dictates that the maintenance of mitochondrial 'fitness' requires quality control mechanisms which involve close communication with the nucleus. SCOPE OF REVIEW This review explores the synergistic mechanisms that control mitochondrial quality and function and ensure cellular bioenergetic homeostasis. These include antioxidant defence mechanisms that protect against oxidative damage caused by reactive oxygen species, while regulating signals transduced through such free radicals. Protein homeostasis controls import, folding, and degradation of proteins underpinned by mechanisms that regulate bioenergetic capacity through the mitochondrial unfolded protein response. Autophagic machinery is recruited for mitochondrial turnover through the process of mitophagy. Mitochondria also communicate with the nucleus to exact specific transcriptional responses through retrograde signalling pathways. MAJOR CONCLUSIONS The outcome of mitochondrial quality control is not only reliant on the efficient operation of the core homeostatic mechanisms but also in the effective interaction of mitochondria with other cellular components, namely the nucleus. GENERAL SIGNIFICANCE Understanding mitochondrial quality control and the interactions between the organelle and the nucleus will be crucial in developing therapies for the plethora of diseases in which the pathophysiology is determined by mitochondrial dysfunction. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Vassilios N Kotiadis
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK; UCL Consortium for Mitochondrial Research, University College London, WC1E 6BT, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK; UCL Consortium for Mitochondrial Research, University College London, WC1E 6BT, UK
| | - Laura D Osellame
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK; UCL Consortium for Mitochondrial Research, University College London, WC1E 6BT, UK.
| |
Collapse
|