1
|
Yan J, Yang A, Tu S. The relationship between keratin 18 and epithelial-derived tumors: as a diagnostic marker, prognostic marker, and its role in tumorigenesis. Front Oncol 2024; 14:1445978. [PMID: 39502314 PMCID: PMC11534658 DOI: 10.3389/fonc.2024.1445978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
As a structural protein, keratin is mainly expressed in epithelial cells and skin appendages to provide mechanical support and external resistance. The keratin family has a total of 54 members, which are divided into type I and type II. Two types of keratins connect to each other to form keratin intermediate filaments and participate in the construction of the cytoskeleton. K18 is a non-hair keratin, which is widely expressed in simple epithelial tissues with its partner, K8. Compared with mechanical support, K8/K18 pairs play more important roles in biological regulation, such as mediating anti-apoptosis, regulating cell cycle progression, and transmitting signals. Mutations in K18 can cause a variety of non-neoplastic diseases of the visceral epithelium. In addition, the expression levels of K18 are frequently altered in various epithelial-derived tumors, especially adenocarcinomas, which suggests that K18 may be involved in tumorigenesis. Due to the specific expression pattern of K18 in tumor tissues and its serum level reflecting tumor cell death, apply K18 to diagnose tumors and predict its prognosis have the potential to be simple and effective alternative methods. However, these potential roles of K18 in tumors have not been fully summarized. In this review, we focus on the relationship between K18 and epithelial-derived tumors, discuss the value of K18 as a diagnostic and prognostic marker, and summarize the interactions of K18 with various related proteins in tumorigenesis, with examples of simple epithelial tumors such as lung, breast, liver, and gastrointestinal cancers.
Collapse
Affiliation(s)
- Jiazhi Yan
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Aiwei Yang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shuo Tu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Di Capua DM, Shanahan W, Bourke M, Ramlaul N, Appel J, Canney A, Docherty NG, McGrath E, Ring E, Jones F, Boyle M, McCormack J, Gallagher T, Hoti E, Nolan N, Ryan JD, Houlihan DD, Fabre A. Tumour stemness and poor clinical outcomes in haemochromatosis patients with hepatocellular carcinoma. J Clin Pathol 2024; 77:669-675. [PMID: 37253536 PMCID: PMC11503110 DOI: 10.1136/jcp-2022-208679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023]
Abstract
AIMS Patients with haemochromatosis (HFE) are known to have an increased risk of developing hepatocellular carcinoma (HCC). Available data are conflicting on whether such patients have poorer prognosis, and there is lack of data regarding the biology of HFE-HCC. We compared the course of HFE-HCC with a matched non-HFE-HCC control group and examined tumour characteristics using immunohistochemistry. METHODS In this tertiary care-based retrospective analysis, 12 patients with HFE and 34 patients with alcohol/non-alcoholic steatohepatitis who underwent initially successful curative HCC therapy with ablation or resection were identified from our registry. Time to tumour progression was compared. Resected liver tissue from a separate cohort of 11 matched patients with HFE-HCC and without HFE-HCC was assessed for the expression of progenitor and epithelial-mesenchymal transition markers using immunohistochemistry. RESULTS The median follow-up was 24.39 and 24.28 months for patients with HFE-HCC and those without HFE-HCC, respectively (p>0.05). The mean time to progression was shorter in the HFE group compared with the non-HFE group (12.87 months vs 17.78 months; HR 3.322, p<0.05). Patients with HFE-HCC also progressed to more advanced disease by the end of follow-up (p<0.05). Immunohistochemical analysis of matched HFE-HCC and non-HFE-HCC explants demonstrated increased expression of the cancer stem cell markers EpCAM (epithelial cell adhesion molecule) and EpCAM/SALL4 (spalt-like transcription factor 4) coexpression in HFE-HCC specimens (p<0.05). There was a high frequency of combined tumour subtypes within the HFE cohort. CONCLUSIONS This study demonstrates that the clinical course of patients with HFE-HCC is more aggressive and provides the first data indicating that their tumours have increased expression of progenitor markers. These findings suggest patients with HFE-HCC may need to be considered for transplant at an earlier stage.
Collapse
Affiliation(s)
| | | | - Michele Bourke
- Liver Unit, St Vincent's University Hospital, Dublin, Ireland
| | - Navneet Ramlaul
- Liver Unit, St Vincent's University Hospital, Dublin, Ireland
| | - Josh Appel
- Liver Unit, St Vincent's University Hospital, Dublin, Ireland
| | - Aoife Canney
- Histopathology, University Hospital Galway, Galway, Ireland
| | - Neil G Docherty
- University College Dublin School of Medicine, Dublin, Ireland
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Erinn McGrath
- HIstopathology, St Vincent's University Hospital, Dublin, Ireland
| | - Eabha Ring
- Liver Unit, St Vincent's University Hospital, Dublin, Ireland
| | - Fiona Jones
- Liver Unit, St Vincent's University Hospital, Dublin, Ireland
| | - Marie Boyle
- Liver Unit, St Vincent's University Hospital, Dublin, Ireland
| | - Janet McCormack
- Reseach Pathology Core, Conway Institute, University College Dublin, Dublin, Ireland
| | - Tom Gallagher
- University College Dublin School of Medicine, Dublin, Ireland
- Hepatobiliary and Transplant Surgery, St Vincent's University Hospital, Dublin, Ireland
| | - Emir Hoti
- University College Dublin School of Medicine, Dublin, Ireland
- Hepatobiliary and Transplant Surgery, St Vincent's University Hospital, Dublin, Ireland
| | - Niamh Nolan
- HIstopathology, St Vincent's University Hospital, Dublin, Ireland
| | - John D Ryan
- Hepatology Unit, Beaumont Hospital, Dublin, ireland
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | | | - Aurelie Fabre
- HIstopathology, St Vincent's University Hospital, Dublin, Ireland
- University College Dublin School of Medicine, Dublin, Ireland
- Reseach Pathology Core, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Li K, Hong Y, Yu Y, Xie Z, Lv D, Wang C, Xie T, Chen H, Chen Z, Zeng J, Zhao S. NAT10 Promotes Prostate Cancer Growth and Metastasis by Acetylating mRNAs of HMGA1 and KRT8. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310131. [PMID: 38922788 PMCID: PMC11348116 DOI: 10.1002/advs.202310131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/22/2024] [Indexed: 06/28/2024]
Abstract
N4-acetylcytidine (ac4C) is essential for the development and migration of tumor cells. According to earlier research, N-acetyltransferase 10 (NAT10) can increase messenger RNAs (mRNAs) stability by catalyzing the synthesis of ac4C. However, little is known about NAT10 expression and its role in the acetylation modifications in prostate cancer (PCa). Thus, the biological function of NAT10 in PCa is investigated in this study. Compared to paraneoplastic tissues, the expression of NAT10 is significantly higher in PCa. The NAT10 expression is strongly correlated with the pathological grade, clinical stage, Gleason score, T-stage, and N-stage of PCa. NAT10 has the ability to advance the cell cycle and the epithelial-mesenchymal transition (EMT), both of which raise the malignancy of tumor cells. Mechanistically, NAT10 enhance the stability of high mobility group AT-hook 1 (HMGA1) by acetylating its mRNA, thereby promoting cell cycle progression to improve cell proliferation. In addition, NAT10 improve the stability of Keratin 8 (KRT8) by acetylating its mRNA, which promotes the progression of EMT to improve cell migration. This findings provide a potential prognostic or therapeutic target for PCa.
Collapse
Affiliation(s)
- Kang‐Jing Li
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Department of UrologyAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People's HospitalQingyuan511518China
| | - Yaying Hong
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yu‐Zhong Yu
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Zhiyue Xie
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Dao‐Jun Lv
- Department of UrologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Chong Wang
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Tao Xie
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional MoleculesCollege of Food and DrugLuoyang Normal UniversityLuoyangHenan471934P. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Jianwen Zeng
- Department of UrologyAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People's HospitalQingyuan511518China
| | - Shan‐Chao Zhao
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Department of UrologyThe Fifth Affiliated HospitalSouthern Medical UniversityGuangzhou510900China
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510500China
| |
Collapse
|
4
|
Noma IHY, Carvalho LADC, Camarena DEM, Silva RO, Moraes Junior MOD, de Souza ST, Newton-Bishop J, Nsengimana J, Maria-Engler SS. Peroxiredoxin-2 represses NRAS-mutated melanoma cells invasion by modulating EMT markers. Biomed Pharmacother 2024; 177:116953. [PMID: 38955087 DOI: 10.1016/j.biopha.2024.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
The second most common mutation in melanoma occurs in NRAS oncogene, being a more aggressive disease that has no effective approved treatment. Besides, cellular plasticity limits better outcomes of the advanced and therapy-resistant patients. Peroxiredoxins (PRDXs) control cellular processes through direct hydrogen peroxide oxidation or by redox-relaying processes. Here, we demonstrated that PRDX2 could act as a modulator of multiple EMT markers in NRAS-mutated melanomas. PRDX2 knockdown lead to phenotypic changes towards invasion in human reconstructed skin and the treatment with a PRDX mimetic (gliotoxin), decreased migration in PRDX2-deficient cells. We also confirmed the favorable clinical outcome of patients expressing PRDX2 in a large primary melanoma cohort. This study contributes to our knowledge about genes involved in phenotype switching and opens a new perspective for PRDX2 as a biomarker and target in NRAS-mutated melanomas.
Collapse
Affiliation(s)
- Isabella Harumi Yonehara Noma
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil
| | - Larissa Anastacio da Costa Carvalho
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil
| | - Denisse Esther Mallaupoma Camarena
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil
| | - Renaira Oliveira Silva
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil
| | - Manoel Oliveira de Moraes Junior
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil
| | - Sophia Tavares de Souza
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil
| | - Julia Newton-Bishop
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BN, UK
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil.
| |
Collapse
|
5
|
Wang J, Fonseca GJ, Ding J. scSemiProfiler: Advancing large-scale single-cell studies through semi-profiling with deep generative models and active learning. Nat Commun 2024; 15:5989. [PMID: 39013867 PMCID: PMC11252419 DOI: 10.1038/s41467-024-50150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Single-cell sequencing is a crucial tool for dissecting the cellular intricacies of complex diseases. Its prohibitive cost, however, hampers its application in expansive biomedical studies. Traditional cellular deconvolution approaches can infer cell type proportions from more affordable bulk sequencing data, yet they fall short in providing the detailed resolution required for single-cell-level analyses. To overcome this challenge, we introduce "scSemiProfiler", an innovative computational framework that marries deep generative models with active learning strategies. This method adeptly infers single-cell profiles across large cohorts by fusing bulk sequencing data with targeted single-cell sequencing from a few rigorously chosen representatives. Extensive validation across heterogeneous datasets verifies the precision of our semi-profiling approach, aligning closely with true single-cell profiling data and empowering refined cellular analyses. Originally developed for extensive disease cohorts, "scSemiProfiler" is adaptable for broad applications. It provides a scalable, cost-effective solution for single-cell profiling, facilitating in-depth cellular investigation in various biological domains.
Collapse
Affiliation(s)
- Jingtao Wang
- Meakins-Christe Laboratories, Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada
| | - Gregory J Fonseca
- Meakins-Christe Laboratories, Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada
- Quantitative Life Sciences, McGill University, 845 Rue Sherbrooke Ouest, Montreal, H3A 0G4, Quebec, Canada
| | - Jun Ding
- Meakins-Christe Laboratories, Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada.
- Quantitative Life Sciences, McGill University, 845 Rue Sherbrooke Ouest, Montreal, H3A 0G4, Quebec, Canada.
- School of Computer Science, McGill University, 3480 Rue University, Montreal, H3A 2A7, Quebec, Canada.
- Mila-Quebec AI Institute, 6666 Rue Saint-Urbain, Montreal, H2S 3H1, Quebec, Canada.
| |
Collapse
|
6
|
Conboy JP, Istúriz Petitjean I, van der Net A, Koenderink GH. How cytoskeletal crosstalk makes cells move: Bridging cell-free and cell studies. BIOPHYSICS REVIEWS 2024; 5:021307. [PMID: 38840976 PMCID: PMC11151447 DOI: 10.1063/5.0198119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cell migration is a fundamental process for life and is highly dependent on the dynamical and mechanical properties of the cytoskeleton. Intensive physical and biochemical crosstalk among actin, microtubules, and intermediate filaments ensures their coordination to facilitate and enable migration. In this review, we discuss the different mechanical aspects that govern cell migration and provide, for each mechanical aspect, a novel perspective by juxtaposing two complementary approaches to the biophysical study of cytoskeletal crosstalk: live-cell studies (often referred to as top-down studies) and cell-free studies (often referred to as bottom-up studies). We summarize the main findings from both experimental approaches, and we provide our perspective on bridging the two perspectives to address the open questions of how cytoskeletal crosstalk governs cell migration and makes cells move.
Collapse
Affiliation(s)
- James P. Conboy
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Irene Istúriz Petitjean
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
7
|
Young N, Gui Z, Mustafa S, Papa K, Jessop E, Ruddell E, Bevington L, Quinlan RA, Benham AM, Goldberg MW, Obara B, Karakesisoglou I. Inhibition of PDIs Downregulates Core LINC Complex Proteins, Promoting the Invasiveness of MDA-MB-231 Breast Cancer Cells in Confined Spaces In Vitro. Cells 2024; 13:906. [PMID: 38891038 PMCID: PMC11172124 DOI: 10.3390/cells13110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Eukaryotic cells tether the nucleoskeleton to the cytoskeleton via a conserved molecular bridge, called the LINC complex. The core of the LINC complex comprises SUN-domain and KASH-domain proteins that directly associate within the nuclear envelope lumen. Intra- and inter-chain disulphide bonds, along with KASH-domain protein interactions, both contribute to the tertiary and quaternary structure of vertebrate SUN-domain proteins. The significance of these bonds and the role of PDIs (protein disulphide isomerases) in LINC complex biology remains unclear. Reducing and non-reducing SDS-PAGE analyses revealed a prevalence of SUN2 homodimers in non-tumorigenic breast epithelia MCF10A cells, but not in the invasive triple-negative breast cancer MDA-MB-231 cell line. Furthermore, super-resolution microscopy revealed SUN2 staining alterations in MCF10A, but not in MDA-MB-231 nuclei, upon reducing agent exposure. While PDIA1 levels were similar in both cell lines, pharmacological inhibition of PDI activity in MDA-MB-231 cells led to SUN-domain protein down-regulation, as well as Nesprin-2 displacement from the nucleus. This inhibition also caused changes in perinuclear cytoskeletal architecture and lamin downregulation, and increased the invasiveness of PDI-inhibited MDA-MB-231 cells in space-restrictive in vitro environments, compared to untreated cells. These results emphasise the key roles of PDIs in regulating LINC complex biology, cellular architecture, biomechanics, and invasion.
Collapse
Affiliation(s)
- Natalie Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Zizhao Gui
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Suleiman Mustafa
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK; (S.M.); (B.O.)
| | - Kleopatra Papa
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Emily Jessop
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Elizabeth Ruddell
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Laura Bevington
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Roy A. Quinlan
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Adam M. Benham
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Martin W. Goldberg
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Boguslaw Obara
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK; (S.M.); (B.O.)
| | - Iakowos Karakesisoglou
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| |
Collapse
|
8
|
Liu H. Effect of Skin Barrier on Atopic Dermatitis. Dermatitis 2024. [PMID: 38738291 DOI: 10.1089/derm.2024.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The skin acts as the body's primary physical and immune barrier, maintaining the skin microbiome and providing a physical, chemical, and immune barrier. A disrupted skin barrier plays a critical role in the onset and advancement of inflammatory skin conditions such as atopic dermatitis (AD) and contact dermatitis. This narrative review outlines the relationship between AD and skin barrier function in preparation for the search for possible markers for the treatment of AD.
Collapse
Affiliation(s)
- Hanye Liu
- From the Beihua University, Jilin, China
| |
Collapse
|
9
|
Dondi A, Borgsmüller N, Ferreira PF, Haas BJ, Jacob F, Heinzelmann-Schwarz V, Beerenwinkel N. De novo detection of somatic variants in long-read single-cell RNA sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583775. [PMID: 38496441 PMCID: PMC10942462 DOI: 10.1101/2024.03.06.583775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In cancer, genetic and transcriptomic variations generate clonal heterogeneity, possibly leading to treatment resistance. Long-read single-cell RNA sequencing (LR scRNA-seq) has the potential to detect genetic and transcriptomic variations simultaneously. Here, we present LongSom, a computational workflow leveraging LR scRNA-seq data to call de novo somatic single-nucleotide variants (SNVs), copy-number alterations (CNAs), and gene fusions to reconstruct the tumor clonal heterogeneity. For SNV calling, LongSom distinguishes somatic SNVs from germline polymorphisms by reannotating marker gene expression-based cell types using called variants and applying strict filters. Applying LongSom to ovarian cancer samples, we detected clinically relevant somatic SNVs that were validated against single-cell and bulk panel DNA-seq data and could not be detected with short-read (SR) scRNA-seq. Leveraging somatic SNVs and fusions, LongSom found subclones with different predicted treatment outcomes. In summary, LongSom enables de novo SNVs, CNAs, and fusions detection, thus enabling the study of cancer evolution, clonal heterogeneity, and treatment resistance.
Collapse
Affiliation(s)
- Arthur Dondi
- ETH Zurich, Department of Biosystems Science and Engineering, Schanzenstrasse 44, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Schanzenstrasse 44, 4056 Basel, Switzerland
| | - Nico Borgsmüller
- ETH Zurich, Department of Biosystems Science and Engineering, Schanzenstrasse 44, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Schanzenstrasse 44, 4056 Basel, Switzerland
| | - Pedro F. Ferreira
- ETH Zurich, Department of Biosystems Science and Engineering, Schanzenstrasse 44, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Schanzenstrasse 44, 4056 Basel, Switzerland
| | - Brian J. Haas
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Francis Jacob
- University Hospital Basel and University of Basel, Ovarian Cancer Research, Department of Biomedicine, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- University Hospital Basel and University of Basel, Ovarian Cancer Research, Department of Biomedicine, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | - Niko Beerenwinkel
- ETH Zurich, Department of Biosystems Science and Engineering, Schanzenstrasse 44, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Schanzenstrasse 44, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Constantinescu DR, Sorop A, Ghionescu AV, Lixandru D, Herlea V, Bacalbasa N, Dima SO. EM-transcriptomic signature predicts drug response in advanced stages of high-grade serous ovarian carcinoma based on ascites-derived primary cultures. Front Pharmacol 2024; 15:1363142. [PMID: 38510654 PMCID: PMC10953505 DOI: 10.3389/fphar.2024.1363142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction: High-grade serous ovarian carcinoma (HGSOC) remains a medical challenge despite considerable improvements in the treatment. Unfortunately, over 75% of patients have already metastasized at the time of diagnosis. Advances in understanding the mechanisms underlying how ascites cause chemoresistance are urgently needed to derive novel therapeutic strategies. This study aimed to identify the molecular markers involved in drug sensitivity and highlight the use of ascites as a potential model to investigate HGSOC treatment options. Methods: After conducting an in silico analysis, eight epithelial-mesenchymal (EM)-associated genes related to chemoresistance were identified. To evaluate differences in EM-associated genes in HGSOC samples, we analyzed ascites-derived HGSOC primary cell culture (AS), tumor (T), and peritoneal nodule (NP) samples. Moreover, in vitro experiments were employed to measure tumor cell proliferation and cell migration in AS, following treatment with doxorubicin (DOX) and cisplatin (CIS) and expression of these markers. Results: Our results showed that AS exhibits a mesenchymal phenotype compared to tumor and peritoneal nodule samples. Moreover, DOX and CIS treatment leads to an invasive-intermediate epithelial-to-mesenchymal transition (EMT) state of the AS by different EM-associated marker expression. For instance, the treatment of AS showed that CDH1 and GATA6 decreased after CIS exposure and increased after DOX treatment. On the contrary, the expression of KRT18 has an opposite pattern. Conclusion: Taken together, our study reports a comprehensive investigation of the EM-associated genes after drug exposure of AS. Exploring ascites and their associated cellular and soluble components is promising for understanding the HGSOC progression and treatment response at a personalized level.
Collapse
Affiliation(s)
| | - Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Daniela Lixandru
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | - Vlad Herlea
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Department of Pathology-Fundeni Clinical Institute, Bucharest, Romania
| | - Nicolae Bacalbasa
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
11
|
Lian C, Li F, Xie Y, Zhang L, Chen H, Wang Z, Pan X, Wang X, Zhang J. Identification of T-cell exhaustion-related genes and prediction of their immunotherapeutic role in lung adenocarcinoma. J Cancer 2024; 15:2160-2178. [PMID: 38495503 PMCID: PMC10937285 DOI: 10.7150/jca.92839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background: Lung adenocarcinoma ranks as the second most widespread form of cancer globally, accompanied by a significant mortality rate. Several studies have shown that T cell exhaustion is associated with immunotherapy of tumours. Consequently, it is essential to comprehend the possible impact of T cell exhaustion on the tumor microenvironment. The purpose of this research was to create a TEX-based model that would use single-cell RNA-seq (scRNA-seq) and bulk-RNA sequencing to explore new possibilities for assessing the prognosis and immunotherapeutic response of LUAD patients. Methods: RNA-seq data from LUAD patients was downloaded from the Cancer Genome Atlas (TCGA) database and the National Center for Biotechnology Information (GEO). 10X scRNA sequencing data, as reported by Bischoff P et al., was utilized for down-sampling clustering and subgroup identification using TSNE. TEX-associated genes were identified through gene set variance analysis (GSVA) and weighted gene correlation network analysis (WGCNA). We utilized LASSO-Cox analysis to establish predicted TEX features. External validation was conducted in GSE31210 and GSE30219 cohorts. Immunotherapeutic response was assessed in IMvigor210, GSE78220, GSE35640 and GSE100797 cohorts. Furthermore, we investigated differences in mutational profiles and immune microenvironment between various risk groups. We then screened TEXRS key regulatory genes using ROC diagnostic curves and KM survival curves. Finally, we verified the differential expression of key regulatory genes through RT-qPCR. Results: Nine TEX genes were identified as highly predictive of LUAD prognosis and strongly correlated with disease outcome. Univariate and multivariate analysis revealed that patients in the low-risk group had significantly better overall survival rates compared with those in the high-risk group, highlighting the model's ability to independently predict LUAD prognosis. Our analysis revealed significant variation in the biological function, mutational landscape, and immune cell infiltration within the tumor microenvironment of both high-risk and low-risk groups. Additionally, immunotherapy was found to have a significant impact on both groups, indicating strong predictive efficacy of the model. Conclusions: The TEX model showed good predictive performance and provided a new perspective for evaluating the efficacy of preimmunization, which provides a new strategy for the future treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu 233030, China
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, China
| | - Feifan Li
- Department of Tumor Radiotherapy, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, China
| | - Yiluo Xie
- Department of Clinical Medicine, Bengbu Medical University, Bengbu 233030, China
| | - Linxiang Zhang
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu 233030, China
| | - Huili Chen
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, China
| | - Ziqiang Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, China
| | - Xinyu Pan
- Department of Medical Imaging, Bengbu Medical University, Bengbu 233030, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu 233030, China
| |
Collapse
|
12
|
Jianpraphat N, Supsavhad W, Ngernmeesri P, Siripattarapravat K, Soontararak S, Akrimajirachoote N, Phaochoosak N, Jermnak U. A New Benzo[6,7]oxepino[3,2-b] Pyridine Derivative Induces Apoptosis in Canine Mammary Cancer Cell Lines. Animals (Basel) 2024; 14:386. [PMID: 38338029 PMCID: PMC10854894 DOI: 10.3390/ani14030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
CMC is the most frequently diagnosed cancer and one of the leading causes of death in non-spayed female dogs. Exploring novel therapeutic agents is necessary to increase the survival rate of dogs with CMC. MPOBA is a BZOP derivative that has a significant anticancer effect in a human cell line. The main goal of this study was to investigate the anticancer properties of MPOBA against two CMC cell lines (REM134 and CMGT071020) using a 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, a wound healing assay, a transwell migration assay, an Annexin V-FITC apoptosis assay with a flow cytometry analysis, a mRNA expression analysis using quantitative real-time PCR (qRT-PCR), and an immunohistochemistry (IHC). According to the accumulated studies, MPOBA caused significant concentration- and time-dependent reductions in cell proliferation and cell migration and induced apoptosis in both CMC cell lines. In gene expression analysis, nine canine genes, including TP53, BCL-2, BAX, epidermal growth factor receptor (EGFR), snail transcription factor (SNAIL), snail-related zinc-finger transcription factor (SLUG), TWIST, E-cadherin, and N-cadherin, were investigated. The mRNA expression results revealed that MPOBA induced upregulation of TP53 and overexpression of the pro-apoptotic gene BAX, together with an inhibition of BCL-2. Moreover, MPOBA also suppressed the mRNA expression levels of SNAIL, EGFR, and N-cadherin and induced upregulation of E-cadherin, crucial genes related to the epithelial-to-mesenchymal transition (EMT). However, there was no significant difference in the IHC results of the expression patterns of vimentin (VT) and cytokeratin (CK) between MPOBA-treated and control CMC cells. In conclusion, the results of the present study suggested that MPOBA exhibited significant anticancer activity by inducing apoptosis in both CMCs via upregulation of TP53 and BAX and downregulation of BCL-2 relative mRNA expression. MPOBA may prove to be a potential candidate drug to be further investigated as a therapeutic agent for CMC.
Collapse
Affiliation(s)
- Natamon Jianpraphat
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.J.); (N.P.)
| | - Wachiraphan Supsavhad
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.S.); (K.S.)
| | - Paiboon Ngernmeesri
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Kannika Siripattarapravat
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.S.); (K.S.)
| | - Sirikul Soontararak
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | | | - Napasorn Phaochoosak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.J.); (N.P.)
| | - Usuma Jermnak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.J.); (N.P.)
| |
Collapse
|
13
|
Pei H, Yang J, Li W, Luo X, Xu Y, Sun X, Chen Q, Zhao Q, Hou L, Tan G, Ji D. Solanum nigrum Linn.: Advances in anti-cancer activity and mechanism in digestive system tumors. Med Oncol 2023; 40:311. [PMID: 37775552 DOI: 10.1007/s12032-023-02167-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023]
Abstract
Cancer has currently become a serious public health issue in many countries worldwide, and tumors of the digestive system have attracted an increasing number of researchers' due to their numerous types, high proportion and wide area of occurrence. While tumors of the digestive system suffer from high mortality rates, leading to untimely diagnosis and a poor prognosis, making it necessary to update current treatment approaches such as surgery, radiation therapy, and chemotherapy. This highlights the importance of exploring novel therapeutic ideas and targets. Traditional Chinese medicine has a long history of clinical use due to its low toxicity and multi-factor targeting of multiple pathways. As a kind of traditional Chinese herb, S. nigrum Linn. is highly regarded for its proven antitumor activity. The aim of this study was to comprehensively recapitulate and analyze the anti-cancer effects and molecular mechanisms of treatment of gastrointestinal tumors with S. nigrum Linn. extracts and related compounds, including classical signaling pathways mediated by them as well as noncoding RNA pathways associated with tumor suppression. Components that have been found to be responsible for the anti-cancer activity of S. nigrum Linn. include solanine, solasonine, solamargine, a-L-rhhamnopyranose, uttroside B, degalactotigonin, glycoprotein, and other compounds. The underlying mechanisms of anti-cancer activity reflected in this study include apoptosis, cell cycle arrest, autophagy, anti-angiogenesis, suppression of metastasis and invasion, immune escape, and increased sensitivity to radiotherapy. S. nigrum Linn. has great potential in the treatment of tumors of the digestive system, and through further clinical trials and pharmacological mechanisms it has the potential to become a uniform and standardized anti-tumor drug.
Collapse
Affiliation(s)
- Hongyu Pei
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Jing Yang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wang Li
- Department of Thyroid and Breast Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xing Luo
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xueying Sun
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Qian Chen
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Qi Zhao
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Li Hou
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Gang Tan
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| | - Daolin Ji
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.
| |
Collapse
|
14
|
Hua H, Zou S, Ma Z, Guo W, Fong CY, Khoo BL. A deformability-based biochip for precise label-free stratification of metastatic subtypes using deep learning. MICROSYSTEMS & NANOENGINEERING 2023; 9:120. [PMID: 37780810 PMCID: PMC10539402 DOI: 10.1038/s41378-023-00577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 10/03/2023]
Abstract
Cellular deformability is a promising biomarker for evaluating the physiological state of cells in medical applications. Microfluidics has emerged as a powerful technique for measuring cellular deformability. However, existing microfluidic-based assays for measuring cellular deformability rely heavily on image analysis, which can limit their scalability for high-throughput applications. Here, we develop a parallel constriction-based microfluidic flow cytometry device and an integrated computational framework (ATMQcD). The ATMQcD framework includes automatic training set generation, multiple object tracking, segmentation, and cellular deformability quantification. The system was validated using cancer cell lines of varying metastatic potential, achieving a classification accuracy of 92.4% for invasiveness assessment and stratifying cancer cells before and after hypoxia treatment. The ATMQcD system also demonstrated excellent performance in distinguishing cancer cells from leukocytes (accuracy = 89.5%). We developed a mechanical model based on power-law rheology to quantify stiffness, which was fitted with measured data directly. The model evaluated metastatic potentials for multiple cancer types and mixed cell populations, even under real-world clinical conditions. Our study presents a highly robust and transferable computational framework for multiobject tracking and deformation measurement tasks in microfluidics. We believe that this platform has the potential to pave the way for high-throughput analysis in clinical applications, providing a powerful tool for evaluating cellular deformability and assessing the physiological state of cells.
Collapse
Affiliation(s)
- Haojun Hua
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
| | - Shangjie Zou
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077 China
| | - Zhiqiang Ma
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077 China
| | - Wang Guo
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077 China
| | - Ching Yin Fong
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
| | - Bee Luan Khoo
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077 China
- City University of Hong Kong Futian-Shenzhen Research Institute, Shenzhen, 518057 China
| |
Collapse
|
15
|
Anderle N, Schäfer-Ruoff F, Staebler A, Kersten N, Koch A, Önder C, Keller AL, Liebscher S, Hartkopf A, Hahn M, Templin M, Brucker SY, Schenke-Layland K, Schmees C. Breast cancer patient-derived microtumors resemble tumor heterogeneity and enable protein-based stratification and functional validation of individualized drug treatment. J Exp Clin Cancer Res 2023; 42:210. [PMID: 37596623 PMCID: PMC10436441 DOI: 10.1186/s13046-023-02782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023] Open
Abstract
Despite tremendous progress in deciphering breast cancer at the genomic level, the pronounced intra- and intertumoral heterogeneity remains a major obstacle to the advancement of novel and more effective treatment approaches. Frequent treatment failure and the development of treatment resistance highlight the need for patient-derived tumor models that reflect the individual tumors of breast cancer patients and allow a comprehensive analyses and parallel functional validation of individualized and therapeutically targetable vulnerabilities in protein signal transduction pathways. Here, we introduce the generation and application of breast cancer patient-derived 3D microtumors (BC-PDMs). Residual fresh tumor tissue specimens were collected from n = 102 patients diagnosed with breast cancer and subjected to BC-PDM isolation. BC-PDMs retained histopathological characteristics, and extracellular matrix (ECM) components together with key protein signaling pathway signatures of the corresponding primary tumor tissue. Accordingly, BC-PDMs reflect the inter- and intratumoral heterogeneity of breast cancer and its key signal transduction properties. DigiWest®-based protein expression profiling of identified treatment responder and non-responder BC-PDMs enabled the identification of potential resistance and sensitivity markers of individual drug treatments, including markers previously associated with treatment response and yet undescribed proteins. The combination of individualized drug testing with comprehensive protein profiling analyses of BC-PDMs may provide a valuable complement for personalized treatment stratification and response prediction for breast cancer.
Collapse
Affiliation(s)
- Nicole Anderle
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany.
| | - Felix Schäfer-Ruoff
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Annette Staebler
- Institute of Pathology and Neuropathology, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Nicolas Kersten
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karls University Tuebingen, Tuebingen, 72076, Germany
- FZI Research Center for Information Technology, 76131, Karlsruhe, Germany
| | - André Koch
- Department of Women's Health, University Women's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Cansu Önder
- Department of Women's Health, University Women's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Anna-Lena Keller
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Simone Liebscher
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Andreas Hartkopf
- Department of Women's Health, University Women's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
- Department of Gynecology and Obstetrics, University Hospital of Ulm, 89081, Ulm, Germany
| | - Markus Hahn
- Department of Women's Health, University Women's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Sara Y Brucker
- Department of Women's Health, University Women's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Christian Schmees
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany.
| |
Collapse
|
16
|
Lee RS, Sad K, Fawwal DV, Spangle JM. Emerging Role of Epigenetic Modifiers in Breast Cancer Pathogenesis and Therapeutic Response. Cancers (Basel) 2023; 15:4005. [PMID: 37568822 PMCID: PMC10417282 DOI: 10.3390/cancers15154005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer pathogenesis, treatment, and patient outcomes are shaped by tumor-intrinsic genomic alterations that divide breast tumors into molecular subtypes. These molecular subtypes often dictate viable therapeutic interventions and, ultimately, patient outcomes. However, heterogeneity in therapeutic response may be a result of underlying epigenetic features that may further stratify breast cancer patient outcomes. In this review, we examine non-genetic mechanisms that drive functional changes to chromatin in breast cancer to contribute to cell and tumor fitness and highlight how epigenetic activity may inform the therapeutic response. We conclude by providing perspectives on the future of therapeutic targeting of epigenetic enzymes, an approach that holds untapped potential to improve breast cancer patient outcomes.
Collapse
Affiliation(s)
- Richard Sean Lee
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.S.L.); (K.S.); (D.V.F.)
- Department of Biology, Emory College, Atlanta, GA 30322, USA
| | - Kirti Sad
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.S.L.); (K.S.); (D.V.F.)
| | - Dorelle V. Fawwal
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.S.L.); (K.S.); (D.V.F.)
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University School of Medicine, Atlanta, GA 30311, USA
| | - Jennifer Marie Spangle
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.S.L.); (K.S.); (D.V.F.)
| |
Collapse
|
17
|
Lorenz C, Forsting J, Style RW, Klumpp S, Köster S. Keratin filament mechanics and energy dissipation are determined by metal-like plasticity. MATTER 2023; 6:2019-2033. [PMID: 37332398 PMCID: PMC10273143 DOI: 10.1016/j.matt.2023.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023]
Abstract
Cell mechanics are determined by an intracellular biopolymer network, including intermediate filaments that are expressed in a cell-type-specific manner. A prominent pair of intermediate filaments are keratin and vimentin, as they are expressed by non-motile and motile cells, respectively. Therefore, the differential expression of these proteins coincides with a change in cellular mechanics and dynamic properties of the cells. This observation raises the question of how the mechanical properties already differ on the single filament level. Here, we use optical tweezers and a computational model to compare the stretching and dissipation behavior of the two filament types. We find that keratin and vimentin filaments behave in opposite ways: keratin filaments elongate but retain their stiffness, whereas vimentin filaments soften but retain their length. This finding is explained by fundamentally different ways to dissipate energy: viscous sliding of subunits within keratin filaments and non-equilibrium α helix unfolding in vimentin filaments.
Collapse
Affiliation(s)
- Charlotta Lorenz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Johanna Forsting
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Robert W. Style
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Max Planck School “Matter to Life”, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Max Planck School “Matter to Life”, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
18
|
Nappi A, Miro C, Pezone A, Tramontano A, Di Cicco E, Sagliocchi S, Cicatiello AG, Murolo M, Torabinejad S, Abbotto E, Caiazzo G, Raia M, Stornaiuolo M, Antonini D, Fabbrocini G, Salvatore D, Avvedimento VE, Dentice M. Loss of p53 activates thyroid hormone via type 2 deiodinase and enhances DNA damage. Nat Commun 2023; 14:1244. [PMID: 36871014 PMCID: PMC9985592 DOI: 10.1038/s41467-023-36755-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
The Thyroid Hormone (TH) activating enzyme, type 2 Deiodinase (D2), is functionally required to elevate the TH concentration during cancer progression to advanced stages. However, the mechanisms regulating D2 expression in cancer still remain poorly understood. Here, we show that the cell stress sensor and tumor suppressor p53 silences D2 expression, thereby lowering the intracellular THs availability. Conversely, even partial loss of p53 elevates D2/TH resulting in stimulation and increased fitness of tumor cells by boosting a significant transcriptional program leading to modulation of genes involved in DNA damage and repair and redox signaling. In vivo genetic deletion of D2 significantly reduces cancer progression and suggests that targeting THs may represent a general tool reducing invasiveness in p53-mutated neoplasms.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples "Federico II", 80126, Naples, Italy
| | - Alfonso Tramontano
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | | | - Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Sepehr Torabinejad
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Elena Abbotto
- Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Giuseppina Caiazzo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Maddalena Raia
- CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples "Federico II", 80149, Naples, Italy
| | - Dario Antonini
- Department of Biology, University of Naples "Federico II", 80126, Naples, Italy
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Domenico Salvatore
- CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy.,Department of Public Health, University of Naples "Federico II", 80131, Naples, Italy
| | - Vittorio Enrico Avvedimento
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy. .,CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy.
| |
Collapse
|
19
|
Liu S, Li Y, Hong Y, Wang M, Zhang H, Ma J, Qu K, Huang G, Lu TJ. Mechanotherapy in oncology: Targeting nuclear mechanics and mechanotransduction. Adv Drug Deliv Rev 2023; 194:114722. [PMID: 36738968 DOI: 10.1016/j.addr.2023.114722] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/23/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Mechanotherapy is proposed as a new option for cancer treatment. Increasing evidence suggests that characteristic differences are present in the nuclear mechanics and mechanotransduction of cancer cells compared with those of normal cells. Recent advances in understanding nuclear mechanics and mechanotransduction provide not only further insights into the process of malignant transformation but also useful references for developing new therapeutic approaches. Herein, we present an overview of the alterations of nuclear mechanics and mechanotransduction in cancer cells and highlight their implications in cancer mechanotherapy.
Collapse
Affiliation(s)
- Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Hong
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Ming Wang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, PR China.
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China.
| |
Collapse
|
20
|
Yin Y, Peng J, Zheng X, Zhou J, Wang Y, Dai Y, Yin G, Tang Y. Extrinsic apoptosis and senescence involved in growth kinetics of seminoma to cisplatin. Clin Exp Pharmacol Physiol 2023; 50:140-148. [PMID: 36222180 DOI: 10.1111/1440-1681.13730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 01/05/2023]
Abstract
Seminoma is the most common type of testicular germ cell tumour and is highly sensitive to cisplatin therapy, which has not been fully elucidated. In this study, we comprehensively monitored dynamic changes of TCam-2 cells after cisplatin treatment. At an early stage, we found that both low and high concentrations of cisplatin induced the S-phase arrest in TCam-2 cells. By contrast, the G0G1 arrest was caused by cisplatin in teratoma NTERA-2 cells. Afterwards, high concentrations of cisplatin promoted the extrinsic apoptosis and high expressions of related genes (Fas/FasL-caspase-8/-3) in TCam-2 cells. However, when decreasing the cisplatin, the apoptotic cells were significantly reduced, and accompanied by cells showing senescence-like morphology, positive SA-β-gal staining and up-regulation of senescence-related genes (p53, p21 and p16). Furthermore, the cell cycle analysis revealed that most of the senescent TCam-2 cells were irreversibly arrested in the G2M phase. G2M arrest was also observed in NTERA-2 cells treated with a low concentration of cisplatin, while no senescence-related phenotype was discovered. In addition, we detected the γ-H2AX, a DNA damage marker protein, and reactive oxygen species (ROS) and found both of which were elevated with the increase of cisplatin in TCam-2 cells. In conclusion, the extrinsic apoptosis and senescence are involved in the growth kinetics of TCam-2 cells to cisplatin, which provide some implications for studies on cisplatin and seminoma.
Collapse
Affiliation(s)
- Yinghao Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingxuan Peng
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaoping Zheng
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Wang
- Department of Urology Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuxin Tang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
21
|
Bontempo A, Chirino A, Heidari A, Boparai S, Arora S, Ruiz S, Antonson SA, Kawai T, Cayabyab MJ. Assessment of SARS-CoV-2 entry in gingival epithelial cells expressing CD147. Eur J Oral Sci 2023; 131:e12906. [PMID: 36412995 DOI: 10.1111/eos.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
SARS-CoV-2, the causative agent of the debilitating COVID-19, is mainly transmitted by first infecting nose and lung epithelial cells. The mouth is also believed to be a viral portal site since certain types of oral epithelial cells were shown to express ACE2 receptor. However, it is unclear whether oral epithelial cells are directly infected by SARS-CoV-2. In this study, we addressed whether epithelial cells of the oral gingiva were susceptible to infection. Interestingly, we found that KRT5+ and KRT18+ gingival epithelial cells do not express ACE2 but highly express TMPRSS2 and Furin as well as CD147, which was proposed to be an alternative receptor for SARS-CoV-2. However, using SARS-CoV-2 pseudoviruses containing the spike protein, we observed that gingival epithelial cells were not susceptible to infection due to the lack of ACE2 expression and the inability of CD147 to mediate viral entry. These results strongly suggest that epithelial cells from the gingiva are not susceptible to SARS-CoV-2 and CD147 is not a receptor for the SARS-CoV-2 virus. The susceptibility of oral cells from other oral structures under healthy and pathological conditions still needs to be confirmed to better understand the role of the oral cavity in COVID-19 infection and transmission.
Collapse
Affiliation(s)
- Alexander Bontempo
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Alexandra Chirino
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Alireza Heidari
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Saurav Boparai
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA.,Dr. Kiran C. Patel College of Osteopathic Medicine, NOVA Southeastern University, Fort Lauderdale, Florida, USA
| | - Saher Arora
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA.,Halmos College of Arts and Sciences, NOVA Southeastern University, Fort Lauderdale, Florida, USA
| | - Sunniva Ruiz
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Sibel A Antonson
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Mark J Cayabyab
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| |
Collapse
|
22
|
Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight Junction Protein Signaling and Cancer Biology. Cells 2023; 12:243. [PMID: 36672179 PMCID: PMC9857217 DOI: 10.3390/cells12020243] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Tight junctions (TJs) are intercellular protein complexes that preserve tissue homeostasis and integrity through the control of paracellular permeability and cell polarity. Recent findings have revealed the functional role of TJ proteins outside TJs and beyond their classical cellular functions as selective gatekeepers. This is illustrated by the dysregulation in TJ protein expression levels in response to external and intracellular stimuli, notably during tumorigenesis. A large body of knowledge has uncovered the well-established functional role of TJ proteins in cancer pathogenesis. Mechanistically, TJ proteins act as bidirectional signaling hubs that connect the extracellular compartment to the intracellular compartment. By modulating key signaling pathways, TJ proteins are crucial players in the regulation of cell proliferation, migration, and differentiation, all of which being essential cancer hallmarks crucial for tumor growth and metastasis. TJ proteins also promote the acquisition of stem cell phenotypes in cancer cells. These findings highlight their contribution to carcinogenesis and therapeutic resistance. Moreover, recent preclinical and clinical studies have used TJ proteins as therapeutic targets or prognostic markers. This review summarizes the functional role of TJ proteins in cancer biology and their impact for novel strategies to prevent and treat cancer.
Collapse
Affiliation(s)
- Zeina Nehme
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
| | - Natascha Roehlen
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198 NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, 68105 NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, 68105-1850 NE, USA
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75006 Paris, France
| |
Collapse
|
23
|
Wang EJY, Chen IH, Kuo BYT, Yu CC, Lai MT, Lin JT, Lin LYT, Chen CM, Hwang T, Sheu JJC. Alterations of Cytoskeleton Networks in Cell Fate Determination and Cancer Development. Biomolecules 2022; 12:biom12121862. [PMID: 36551290 PMCID: PMC9775460 DOI: 10.3390/biom12121862] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Cytoskeleton proteins have been long recognized as structural proteins that provide the necessary mechanical architecture for cell development and tissue homeostasis. With the completion of the cancer genome project, scientists were surprised to learn that huge numbers of mutated genes are annotated as cytoskeletal or associated proteins. Although most of these mutations are considered as passenger mutations during cancer development and evolution, some genes show high mutation rates that can even determine clinical outcomes. In addition, (phospho)proteomics study confirms that many cytoskeleton-associated proteins, e.g., β-catenin, PIK3CA, and MB21D2, are important signaling mediators, further suggesting their biofunctional roles in cancer development. With emerging evidence to indicate the involvement of mechanotransduction in stemness formation and cell differentiation, mutations in these key cytoskeleton components may change the physical/mechanical properties of the cells and determine the cell fate during cancer development. In particular, tumor microenvironment remodeling triggered by such alterations has been known to play important roles in autophagy, metabolism, cancer dormancy, and immune evasion. In this review paper, we will highlight the current understanding of how aberrant cytoskeleton networks affect cancer behaviors and cellular functions through mechanotransduction.
Collapse
Affiliation(s)
- Evan Ja-Yang Wang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - I-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 907391, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Brian Yu-Ting Kuo
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chia-Cheng Yu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 907391, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung 403301, Taiwan
| | - Jen-Tai Lin
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
| | - Leo Yen-Ting Lin
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Correspondence: ; Tel.: +886-7-5252000 (ext. 7102)
| |
Collapse
|
24
|
Aris P, Wei Y, Mohamadzadeh M, Xia X. Griseofulvin: An Updated Overview of Old and Current Knowledge. Molecules 2022; 27:7034. [PMID: 36296627 PMCID: PMC9610072 DOI: 10.3390/molecules27207034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Griseofulvin is an antifungal polyketide metabolite produced mainly by ascomycetes. Since it was commercially introduced in 1959, griseofulvin has been used in treating dermatophyte infections. This fungistatic has gained increasing interest for multifunctional applications in the last decades due to its potential to disrupt mitosis and cell division in human cancer cells and arrest hepatitis C virus replication. In addition to these inhibitory effects, we and others found griseofulvin may enhance ACE2 function, contribute to vascular vasodilation, and improve capillary blood flow. Furthermore, molecular docking analysis revealed that griseofulvin and its derivatives have good binding potential with SARS-CoV-2 main protease, RNA-dependent RNA polymerase (RdRp), and spike protein receptor-binding domain (RBD), suggesting its inhibitory effects on SARS-CoV-2 entry and viral replication. These findings imply the repurposing potentials of the FDA-approved drug griseofulvin in designing and developing novel therapeutic interventions. In this review, we have summarized the available information from its discovery to recent progress in this growing field. Additionally, explored is the possible mechanism leading to rare hepatitis induced by griseofulvin. We found that griseofulvin and its metabolites, including 6-desmethylgriseofulvin (6-DMG) and 4- desmethylgriseofulvin (4-DMG), have favorable interactions with cytokeratin intermediate filament proteins (K8 and K18), ranging from -3.34 to -5.61 kcal mol-1. Therefore, they could be responsible for liver injury and Mallory body (MB) formation in hepatocytes of human, mouse, and rat treated with griseofulvin. Moreover, the stronger binding of griseofulvin to K18 in rodents than in human may explain the observed difference in the severity of hepatitis between rodents and human.
Collapse
Affiliation(s)
- Parisa Aris
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, ON K1N 6N5, Canada
| | - Yulong Wei
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Masoud Mohamadzadeh
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 71961, Iran
| | - Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, ON K1N 6N5, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
25
|
Lemesle M, Geoffroy M, Alpy F, Tomasetto CL, Kuntz S, Grillier-Vuissoz I. CLDN1 Sensitizes Triple-Negative Breast Cancer Cells to Chemotherapy. Cancers (Basel) 2022; 14:cancers14205026. [PMID: 36291810 PMCID: PMC9599637 DOI: 10.3390/cancers14205026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) treatment represents a major challenge in oncology. TNBC evolves into chemotherapy resistance for 60 to 70% of the patients. About 77% of the TNBC displays a lack of claudin-1 (CLDN1), a major tight junction component. We demonstrated that CLDN1 increased the sensitivity of TNBC cell lines to the main chemotherapeutic agents commonly used for breast cancer treatment. Our data support the idea that CLDN1 may be a good predictive chemotherapy response marker to help therapeutic management of TNBC patients. In longer terms, this study could allow new treatment protocols creation aimed to induce CLDN1 expression in TNBCs to increase their sensitivity to chemotherapy. Abstract Triple-negative breast cancer (TNBC) is an aggressive subtype that constitutes 15–20% of breast cancer cases worldwide. Current therapies often evolve into chemoresistance and lead to treatment failure. About 77% of the TNBC lacks claudin-1 (CLDN1) expression, a major tight junction component, and this absence is correlated with poorer prognostic. Little is known about CLDN1 role on the chemosensitivity of breast cancer. Our clinical data analysis reveals that CLDN1 low expression is correlated to a poor prognostic in TNBC patients. Next, the sensitivity of various TNBC “claudin-1-high” or “claudin-1-low” cells to three compounds belonging to the main class of chemotherapeutic agents commonly used for the treatment of TNBC patients: 5-fluorouracil (5-FU), paclitaxel (PTX) and doxorubicin (DOX). Using RNA interference and stable overexpressing models, we demonstrated that CLDN1 expression increased the sensitivity of TNBC cell lines to these chemotherapeutic agents. Taken together, our data established the important role of CLDN1 in TNBC cells chemosensitivity and supported the hypothesis that CLDN1 could be a chemotherapy response predictive marker for TNBC patients. This study could allow new treatment protocols creation aimed to induce CLDN1 expression in TNBCs to increase their sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Marine Lemesle
- CRAN, UMR 7039, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
| | - Marine Geoffroy
- CRAN, UMR 7039, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Centre National de la Recherche Scientifique (CNRS), UMR7104 and Université de Strasbourg, 67400 Illkirch, France
| | - Catherine-Laure Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Centre National de la Recherche Scientifique (CNRS), UMR7104 and Université de Strasbourg, 67400 Illkirch, France
| | - Sandra Kuntz
- CRAN, UMR 7039, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
| | - Isabelle Grillier-Vuissoz
- CRAN, UMR 7039, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
- Correspondence: ; Tel.: +33-(0)3-72-74-51-84
| |
Collapse
|
26
|
Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A, Karimi-Shahri M. The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem 2022; 123:1704-1735. [PMID: 36063530 DOI: 10.1002/jcb.30326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
Heat shock proteins (HSPs) are a large molecular chaperone family classified by their molecular weights, including HSP27, HSP40, HSP60, HSP70, HSP90, and HSP110. HSPs are likely to have antiapoptotic properties and participate actively in various processes such as tumor cell proliferation, invasion, metastases, and death. In this review, we discuss comprehensively the functions of HSPs associated with the progression of colorectal cancer (CRC) and metastasis and resistance to cancer therapy. Taken together, HSPs have numerous clinical applications as biomarkers for cancer diagnosis and prognosis and potential therapeutic targets for CRC and its related metastases.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Shaghayegh Yazdani
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Sharbaf Mashhad
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
27
|
Keratin 8 Is an Inflammation-Induced and Prognosis-Related Marker for Pancreatic Adenocarcinoma. DISEASE MARKERS 2022; 2022:8159537. [PMID: 35958278 PMCID: PMC9359862 DOI: 10.1155/2022/8159537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the highest-grade malignancies in the world. More effective biomarkers and treatment plans are necessary to improve the diagnosis rate and clinical outcome. The oncogenesis of PDAC is influenced by several factors, including chronic pancreatitis (CP). Keratin 8 (KRT8) is an important member of the keratin protein family and plays a role in regulating the cellular response to stress stimuli and mediating inflammatory reactions. However, the role of KRT8 in pancreatitis and PDAC is still poorly understood. Here we assessed the differentially expressed genes (DEGs) by bioinformatic methods with expression profiles available online for a caerulein-induced mouse model and human PDAC tissue. The prognostic value was evaluated by Kaplan–Meier analysis and Cox regression analysis. The diagnostic value was evaluated by Receiver Operating Characteristic analysis (ROC). The function of the genes was predicted by protein-protein interaction analysis, correlation analysis, and GO analysis. The conclusion was further validated in rat pancreatitis model, human tissue, and PDAC cell lines, including immunohistochemical staining (IHC), CCK-8 assay, wound healing assay, and flow cytometry. KRT8 was found to be upregulated in murine pancreatitis tissue, human CP tissue, and human PDAC tissue. High expression of KRT8 had a negative impact on the prognosis of PDAC patients. KRT8 was predicted to be involved in the regulation of the migration and viability of PDAC cells, which was validated in PDAC cell lines. Knockdown of KRT8 impaired the migration and proliferation and induced apoptosis in PDAC cell lines. In conclusion, keratin 8 is an inflammation-induced molecule and could serve as a diagnostic and prognostic marker for PDAC patients. More studies are needed for further validation from the perspective of precision and individualized medicine.
Collapse
|
28
|
Resveratrol Downregulates miR-155-5p to Block the Malignant Behavior of Gastric Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6968641. [PMID: 35789645 PMCID: PMC9250436 DOI: 10.1155/2022/6968641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
Abstract
Studies have shown that resveratrol (Res) exerts significant antiproliferative effects in cancer, and regulating the expression of microRNAs (miRNAs) is one the underlying mechanisms of these effects. Overexpression of miR-155-5p leads to oncogenesis. However, it is unclear whether Res exerts antitumor effects by regulating the expression of miR-155-5p, and its specific mechanism in gastric cancer remains unknown. In this study, qRT-PCR was performed to assess the expression of miR-155-5p in gastric cells and clinical tissues, and the MTT assay, plate clone formation test, cell scratch test, Transwell assay, and flow cytometry were performed to investigate the functions of Res on the growth of gastric cancer cells after treatment with miR-155-5p. Western blot analysis was performed to detect the expression of claudin 1, c-Myc, cyclin D1, Bcl-2, and caspase-3 proteins in gastric cancer cell lines after treatment with miR-155-5p and Res. We found that miR-155-5p was overexpressed in gastric cancer cells and clinical tissues, while Res inhibited gastric cancer cell growth by regulating miR-155-5p expression. The results of MTT assay, plate clone formation test, cell scratch test, Transwell test, and flow cytometry showed that miR-155-5p promoted the proliferation, invasion, and metastasis of gastric cancer cell lines and inhibited apoptosis, while Res addition inhibited this effect (
). When miR-155-5p was overexpressed, the expressions of claudin 1, c-Myc, cyclin D1, and Bcl-2 were upregulated and that of caspase-3 was downregulated. Collectively, these results suggest that miR-155-5p may be a therapeutic target in gastric cancer, and Res may be a potential therapeutic agent based on its regulation of miR-155-5p.
Collapse
|
29
|
Yoon S, Windoffer R, Kozyrina AN, Piskova T, Di Russo J, Leube RE. Combining Image Restoration and Traction Force Microscopy to Study Extracellular Matrix-Dependent Keratin Filament Network Plasticity. Front Cell Dev Biol 2022; 10:901038. [PMID: 35646906 PMCID: PMC9131083 DOI: 10.3389/fcell.2022.901038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
Keratin intermediate filaments are dynamic cytoskeletal components that are responsible for tuning the mechanical properties of epithelial tissues. Although it is known that keratin filaments (KFs) are able to sense and respond to changes in the physicochemical properties of the local niche, a direct correlation of the dynamic three-dimensional network structure at the single filament level with the microenvironment has not been possible. Using conventional approaches, we find that keratin flow rates are dependent on extracellular matrix (ECM) composition but are unable to resolve KF network organization at the single filament level in relation to force patterns. We therefore developed a novel method that combines a machine learning-based image restoration technique and traction force microscopy to decipher the fine details of KF network properties in living cells grown on defined ECM patterns. Our approach utilizes Content-Aware Image Restoration (CARE) to enhance the temporal resolution of confocal fluorescence microscopy by at least five fold while preserving the spatial resolution required for accurate extraction of KF network structure at the single KF/KF bundle level. The restored images are used to segment the KF network, allowing numerical analyses of its local properties. We show that these tools can be used to study the impact of ECM composition and local mechanical perturbations on KF network properties and corresponding traction force patterns in size-controlled keratinocyte assemblies. We were thus able to detect increased curvature but not length of KFs on laminin-322 versus fibronectin. Photoablation of single cells in microprinted circular quadruplets revealed surprisingly little but still significant changes in KF segment length and curvature that were paralleled by an overall reduction in traction forces without affecting global network orientation in the modified cell groups irrespective of the ECM coating. Single cell analyses furthermore revealed differential responses to the photoablation that were less pronounced on laminin-332 than on fibronectin. The obtained results illustrate the feasibility of combining multiple techniques for multimodal monitoring and thereby provide, for the first time, a direct comparison between the changes in KF network organization at the single filament level and local force distribution in defined paradigms.
Collapse
Affiliation(s)
- Sungjun Yoon
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Aleksandra N Kozyrina
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany
| | - Teodora Piskova
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany
| | - Jacopo Di Russo
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
30
|
Asgharzadeh F, Moradi-Marjaneh R, Marjaneh MM. The role of heat shock protein 40 in carcinogenesis and biology of colorectal cancer. Curr Pharm Des 2022; 28:1457-1465. [PMID: 35570564 DOI: 10.2174/1381612828666220513124603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Despite the enormous amount of effort in the diagnosis and treatment of CRC, the overall survival rate of patients remains low. The precise molecular and cellular basis underlying CRC has not been completely understood yet. Over time, new genes and molecular pathways involved in the pathogenesis of the disease are being identified. Accurate discovery of these genes and signaling pathways are important and urgent missions for the next generation of anticancer therapy research. Chaperone DnaJ, also known as Hsp40 (heat shock protein 40), has been of particular interest in CRC pathogenesis, as it is involved in the fundamental cell activities for maintaining cellular homeostasis. Evidence show that protein family members of DnaJ/Hsp40 play both roles; enhancing and reducing the growth of CRC cells. In the present review, we focus on the current knowledge on the molecular mechanisms responsible for the role of DnaJ/Hsp40 in CRC carcinogenesis and biology.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi-Marjaneh
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
Deng S, Leong HC, Datta A, Gopal V, Kumar AP, Yap CT. PI3K/AKT Signaling Tips the Balance of Cytoskeletal Forces for Cancer Progression. Cancers (Basel) 2022; 14:1652. [PMID: 35406424 PMCID: PMC8997157 DOI: 10.3390/cancers14071652] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
The PI3K/AKT signaling pathway plays essential roles in multiple cellular processes, which include cell growth, survival, metabolism, and motility. In response to internal and external stimuli, the PI3K/AKT signaling pathway co-opts other signaling pathways, cellular components, and cytoskeletal proteins to reshape individual cells. The cytoskeletal network comprises three main components, which are namely the microfilaments, microtubules, and intermediate filaments. Collectively, they are essential for many fundamental structures and cellular processes. In cancer, aberrant activation of the PI3K/AKT signaling cascade and alteration of cytoskeletal structures have been observed to be highly prevalent, and eventually contribute to many cancer hallmarks. Due to their critical roles in tumor progression, pharmacological agents targeting PI3K/AKT, along with cytoskeletal components, have been developed for better intervention strategies against cancer. In our review, we first discuss existing evidence in-depth and then build on recent advances to propose new directions for therapeutic intervention.
Collapse
Affiliation(s)
- Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Hin Chong Leong
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Departments of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Arpita Datta
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Vennila Gopal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Departments of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
32
|
Zhang J, Hu T, Wang Y, Zhang X, Zhang H, Lin J, Tang X, Liu X, Chen M, Khan NU, Shen L, Luo P. Investigating the Neurotoxic Impacts of Arsenic and the Neuroprotective Effects of Dictyophora Polysaccharide Using SWATH-MS-Based Proteomics. Molecules 2022; 27:1495. [PMID: 35268596 PMCID: PMC8911851 DOI: 10.3390/molecules27051495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Arsenic (As) is one of the most important toxic elements in the natural environment. Currently, although the assessment of the potential health risks of chronic arsenic poisoning has received great attention, the research on the effects of arsenic on the brain is still limited. It has been reported that dictyophora polysaccharide (DIP), a common bioactive natural compound found in dietary plants, could reduce arsenic toxicity. Following behavioral research, comparative proteomics was performed to explore the molecular mechanism of arsenic toxicity to the hippocampi of SD (Sprague Dawley) rats and the protective effect of DIP. The results showed that exposure to arsenic impaired the spatial learning and memory ability of SD rats, while DIP treatment improved both the arsenic-exposed rats. Proteomic analysis showed that arsenic exposure dysregulated the expression of energy metabolism, apoptosis, synapse, neuron, and mitochondria related proteins in the hippocampi of arsenic-exposed rats. However, DIP treatment reversed or restored the expression levels of these proteins, thereby improving the spatial learning and memory ability of arsenic-exposed rats. This study is the first to use high-throughput proteomics to reveal the mechanism of arsenic neurotoxicity in rats as well as the protective mechanism of DIP against arsenic neurotoxicity.
Collapse
Affiliation(s)
- Jun Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; (J.Z.); (T.H.); (Y.W.); (X.Z.)
| | - Ting Hu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; (J.Z.); (T.H.); (Y.W.); (X.Z.)
| | - Yi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; (J.Z.); (T.H.); (Y.W.); (X.Z.)
| | - Xinglai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; (J.Z.); (T.H.); (Y.W.); (X.Z.)
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.Z.); (J.L.); (X.T.); (X.L.); (N.U.K.)
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.Z.); (J.L.); (X.T.); (X.L.); (N.U.K.)
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.Z.); (J.L.); (X.T.); (X.L.); (N.U.K.)
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.Z.); (J.L.); (X.T.); (X.L.); (N.U.K.)
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, GA 30322, USA;
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.Z.); (J.L.); (X.T.); (X.L.); (N.U.K.)
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.Z.); (J.L.); (X.T.); (X.L.); (N.U.K.)
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; (J.Z.); (T.H.); (Y.W.); (X.Z.)
| |
Collapse
|
33
|
Jain AP, Sambath J, Sathe G, George IA, Pandey A, Thompson EW, Kumar P. Pan-cancer quantitation of epithelial-mesenchymal transition dynamics using parallel reaction monitoring-based targeted proteomics approach. J Transl Med 2022; 20:84. [PMID: 35148768 PMCID: PMC8832824 DOI: 10.1186/s12967-021-03227-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/30/2021] [Indexed: 12/31/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a dynamic and complex cellular process that is known to be hijacked by cancer cells to facilitate invasion, metastasis and therapeutic resistance. Several quantitative measures to assess the interplay between EMT and cancer progression are available, based on large scale genome and transcriptome data. However, these large scale multi-omics studies have repeatedly illustrated a lack of correlation in mRNA and protein abundances that may be influenced by diverse post-translational regulation. Hence, it is imperative to understand how changes in the EMT proteome are associated with the process of oncogenic transformation. To this effect, we developed a parallel reaction monitoring-based targeted proteomics method for quantifying abundances of EMT-associated proteins across cancer cell lines. Our study revealed that quantitative measurement of EMT proteome which enabled a more accurate assessment than transcriptomics data and revealed specific discrepancies against a backdrop of generally strong concordance between proteomic and transcriptomic data. We further demonstrated that changes in our EMT proteome panel might play a role in tumor transformation across cancer types. In future, this EMT panel assay has the potential to be used for clinical samples to guide treatment choices and to congregate functional information for the development and advancing novel therapeutics.
Collapse
Affiliation(s)
- Ankit P Jain
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India
| | - Janani Sambath
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Irene A George
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.,Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4059, Australia. .,School-Biomedical Sciences, Translational Research Institute, Woolloongabba, QLD, 4102, Australia.
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India. .,Manipal Academy of Higher Education (MAHE), Manipal, 576104, India. .,Somaiya Institute of Research and Consultancy (SIRAC), Somaiya Vidyavihar University (SVU), Vidyavihar, Mumbai, 400077, Maharashtra, India.
| |
Collapse
|
34
|
Novel Diagnostic Biomarkers in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23020852. [PMID: 35055034 PMCID: PMC8776048 DOI: 10.3390/ijms23020852] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of “ideal” diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.
Collapse
|
35
|
Ayanlaja AA, Hong X, Cheng B, Zhou H, Kanwore K, Alphayo-Kambey P, Zhang L, Tang C, Adeyanju MM, Gao D. Susceptibility of cytoskeletal-associated proteins for tumor progression. Cell Mol Life Sci 2021; 79:13. [PMID: 34964908 PMCID: PMC11072373 DOI: 10.1007/s00018-021-04101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
The traditional functions of cytoskeletal-associated proteins (CAPs) in line with polymerization and stabilization of the cytoskeleton have evolved and are currently underrated in oncology. Although therapeutic drugs have been developed to target the cytoskeletal components directly in cancer treatment, several recently established therapeutic agents designed for new targets block the proliferation of cancer cells and suppress resistance to existing target agents. It would seem like these targets only work toward inhibiting the polymerization of cytoskeletal components or hindering mitotic spindle formation in cancer cells, but a large body of literature points to CAPs and their culpability in cell signaling, molecular conformation, organelle trafficking, cellular metabolism, and genomic modifications. Here, we review those underappreciated functions of CAPs, and we delineate the implications of cellular signaling instigated by evasive properties induced by aberrant expression of CAPs in response to stress or failure to exert normal functions. We present an analogy establishing CAPs as vulnerable targets for cancer systems and credible oncotargets. This review establishes a paradigm in which the cancer machinery may commandeer the conventional functions of CAPs for survival, drug resistance, and energy generation; an interesting feature overdue for attention.
Collapse
Affiliation(s)
- Abiola Abdulrahman Ayanlaja
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Neurology, Johns Hopkins University School of Medicine, 201 N Broadway, Baltimore, MD, 21287, USA
| | - Xiaoliang Hong
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bo Cheng
- The Affiliated Oriental Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Han Zhou
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kouminin Kanwore
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Piniel Alphayo-Kambey
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lin Zhang
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chuanxi Tang
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | | | - Dianshuai Gao
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
36
|
Bailly C, Vergoten G. Anticancer Properties and Mechanism of Action of Oblongifolin C, Guttiferone K and Related Polyprenylated Acylphloroglucinols. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:629-641. [PMID: 34586597 PMCID: PMC8479269 DOI: 10.1007/s13659-021-00320-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 05/06/2023]
Abstract
Polyprenylated acylphloroglucinols represent an important class of natural products found in many plants. Among them, the two related products oblongifolin C (Ob-C) and guttiferone K (Gt-K) isolated from Garcinia species (notably from edible fruits), have attracted attention due to their marked anticancer properties. The two compounds only differ by the nature of the C-6 side chain, prenyl (Gt-K) or geranyl (Ob-C) on the phloroglucinol core. Their origin, method of extraction and biological properties are presented here, with a focus on the targets and pathways implicated in their anticancer activities. Both compounds markedly reduce cancer cell proliferation in vitro, as well as tumor growth and metastasis in vivo. They are both potent inducer of tumor cell apoptosis, and regulation of autophagy flux is a hallmark of their mode of action. The distinct mechanism leading to autophagosome accumulation in cells and the implicated molecular targets are discussed. The specific role of the chaperone protein HSPA8, known to interact with Ob-C, is addressed. Molecular models of Gt-K and Ob-C bound to HSPA8 provide a structural basis to their common HSPA8-binding recognition capacity. The review shed light on the mechanism of action of these compounds, to encourage their studies and potential development.
Collapse
Affiliation(s)
- Christian Bailly
- Scientific Consulting Office, OncoWitan, 59290, Lille, Wasquehal, France.
| | - Gérard Vergoten
- Inserm, INFINITE - U1286, Faculté de Pharmacie, University of Lille, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, BP-83, 59006, Lille, France
| |
Collapse
|
37
|
Abstract
E-cadherin is the main component of epithelial adherens junctions (AJs), which play a crucial role in the maintenance of stable cell-cell adhesion and overall tissue integrity. Down-regulation of E-cadherin expression has been found in many carcinomas, and loss of E-cadherin is generally associated with poor prognosis in patients. During the last decade, however, numerous studies have shown that E-cadherin is essential for several aspects of cancer cell biology that contribute to cancer progression, most importantly, active cell migration. In this review, we summarize the available data about the input of E-cadherin in cancer progression, focusing on the latest advances in the research of the various roles E-cadherin-based AJs play in cancer cell dissemination. The review also touches upon the "cadherin switching" in cancer cells where N- or P-cadherin replace or are co-expressed with E-cadherin and its influence on the migratory properties of cancer cells.
Collapse
Affiliation(s)
- Svetlana N Rubtsova
- N.N. Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, Russia
| | - Irina Y Zhitnyak
- N.N. Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, Russia
| | - Natalya A Gloushankova
- N.N. Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, Russia
| |
Collapse
|
38
|
Roy A, Wang G, Iskander D, O'Byrne S, Elliott N, O'Sullivan J, Buck G, Heuston EF, Wen WX, Meira AR, Hua P, Karadimitris A, Mead AJ, Bodine DM, Roberts I, Psaila B, Thongjuea S. Transitions in lineage specification and gene regulatory networks in hematopoietic stem/progenitor cells over human development. Cell Rep 2021; 36:109698. [PMID: 34525349 PMCID: PMC8456780 DOI: 10.1016/j.celrep.2021.109698] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023] Open
Abstract
Human hematopoiesis is a dynamic process that starts in utero 18-21 days post-conception. Understanding the site- and stage-specific variation in hematopoiesis is important if we are to understand the origin of hematological disorders, many of which occur at specific points in the human lifespan. To unravel how the hematopoietic stem/progenitor cell (HSPC) compartment changes during human ontogeny and the underlying gene regulatory mechanisms, we compare 57,489 HSPCs from 5 different tissues spanning 4 developmental stages through the human lifetime. Single-cell transcriptomic analysis identifies significant site- and developmental stage-specific transitions in cellular architecture and gene regulatory networks. Hematopoietic stem cells show progression from cycling to quiescence and increased inflammatory signaling during ontogeny. We demonstrate the utility of this dataset for understanding aberrant hematopoiesis through comparison to two cancers that present at distinct time points in postnatal life-juvenile myelomonocytic leukemia, a childhood cancer, and myelofibrosis, which classically presents in older adults.
Collapse
Affiliation(s)
- Anindita Roy
- Department of Paediatrics, Children's Hospital, John Radcliffe Hospital, and MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK.
| | - Guanlin Wang
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; Centre for Computational Biology, Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, Oxford OX3 9DS, UK
| | - Deena Iskander
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Sorcha O'Byrne
- Department of Paediatrics, Children's Hospital, John Radcliffe Hospital, and MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Natalina Elliott
- Department of Paediatrics, Children's Hospital, John Radcliffe Hospital, and MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Jennifer O'Sullivan
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Gemma Buck
- Department of Paediatrics, Children's Hospital, John Radcliffe Hospital, and MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Elisabeth F Heuston
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Wei Xiong Wen
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; Centre for Computational Biology, Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, Oxford OX3 9DS, UK
| | - Alba Rodriguez Meira
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; Centre for Computational Biology, Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, Oxford OX3 9DS, UK
| | - Peng Hua
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Adam J Mead
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| | - David M Bodine
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Irene Roberts
- Department of Paediatrics, Children's Hospital, John Radcliffe Hospital, and MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Bethan Psaila
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK.
| | - Supat Thongjuea
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK; Centre for Computational Biology, Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
39
|
Delhase M. Identification of genes differentially expressed between a somatotrope and a lactotrope pituitary cell lines by representational difference analysis. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2021.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
40
|
Gül D, Habtemichael N, Dietrich D, Dietrich J, Gößwein D, Khamis A, Deuss E, Künzel J, Schneider G, Strieth S, Stauber RH. Identification of cytokeratin24 as a tumor suppressor for the management of head and neck cancer. Biol Chem 2021; 403:869-890. [PMID: 34450690 DOI: 10.1515/hsz-2021-0287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
To improve management of head and neck squamous cell carcinoma patients, we need to increase our understanding of carcinogenesis, to identify biomarkers, and drug targets. This study aimed to identify novel biomarkers by providing transcriptomics profiles of matched primary tumors, lymph node metastasis, and non-malignant tissue of 20 HNSCC patients as well as by bioinformatic analyses of a TCGA HNSCC cohort, comprising 554 patients. We provide cancer cell signaling networks differentially expressed in tumors versus metastases, such as mesenchymal-epithelial transition, and structural integrity networks. As a proof of principle study, we exploited the data sets and performed functional analyses of a novel cytokeratin, cytokeratin24 (cKRT24), which had not been described as biomarker for tumors before. Survival analysis revealed that low cKRT24 expression correlated with poor overall survival in HNSCC. Experimentally, downregulation of cKRT24 in primary tumors, metastases, and HNSCC cell lines was verified on mRNA and protein level. Cloning and ectopic overexpression of cKRT24 not only affected viability and growth of HNSSC cell lines, but also inhibited tumor growth in murine xenograft studies. We conclude that cKRT24 functions as a tumor suppressor in HNSCC, and may serve as an additional prognostic biomarker and novel target to support current HNSCC treatments.
Collapse
Affiliation(s)
- Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Negusse Habtemichael
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Dorothee Gößwein
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Aya Khamis
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Eric Deuss
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany.,Department of Otorhinolaryngology Head and Neck Surgery, University Hospital, D-45147Essen, Germany
| | - Julian Künzel
- Ear, Nose and Throat Department, University Hospital, D-93053Regensburg, Germany
| | - Günter Schneider
- Ear, Nose and Throat Department, University Hospital, D-93053Regensburg, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Roland H Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| |
Collapse
|
41
|
Jain AP, Radhakrishnan A, Pinto S, Patel K, Kumar M, Nanjappa V, Raja R, Keshava Prasad TS, Mathur PP, Sidransky D, Chatterjee A, Gowda H. How to Achieve Therapeutic Response in Erlotinib-Resistant Head and Neck Squamous Cell Carcinoma? New Insights from Stable Isotope Labeling with Amino Acids in Cell Culture-Based Quantitative Tyrosine Phosphoproteomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:605-616. [PMID: 34432535 DOI: 10.1089/omi.2021.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Resistance to cancer chemotherapy is a major global health burden. Epidermal growth factor receptor (EGFR) is a proven therapeutic target for multiple cancers of epithelial origin. Despite its overexpression in >90% of head and neck squamous cell carcinoma (HNSCC) patients, tyrosine kinase inhibitors such as erlotinib have shown a modest response in clinical trials. Cellular heterogeneity is thought to play an important role in HNSCC therapeutic resistance. Genomic alterations alone cannot explain all resistance mechanisms at play in a heterogeneous system. It is thus important to understand the biochemical mechanisms associated with drug resistance to determine potential strategies to achieve clinical response. We investigated tyrosine kinase signaling networks in erlotinib-resistant cells using quantitative tyrosine phosphoproteomics approach. We observed altered phosphorylation of proteins involved in cell adhesion and motility in erlotinib-resistant cells. Bioinformatics analysis revealed enrichment of pathways related to regulation of the actin cytoskeleton, extracellular matrix (ECM)-receptor interaction, and endothelial migration. Of importance, enrichment of the focal adhesion kinase (PTK2) signaling pathway downstream of EGFR was also observed in erlotinib-resistant cells. To the best of our knowledge, we present the first report of tyrosine phosphoproteome profiling in erlotinib-resistant HNSCC, with an eye to inform new ways to achieve clinical response. Our findings suggest that common signaling networks are at play in driving resistance to EGFR-targeted therapies in HNSCC and other cancers. Most notably, our data suggest that the PTK2 pathway genes may potentially play a significant role in determining clinical response to erlotinib in HNSCC tumors.
Collapse
Affiliation(s)
- Ankit P Jain
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | | | - Sneha Pinto
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Manish Kumar
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | | | - Remya Raja
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.,Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Premendu P Mathur
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India.,Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
42
|
Li J. Context-Dependent Roles of Claudins in Tumorigenesis. Front Oncol 2021; 11:676781. [PMID: 34354941 PMCID: PMC8329526 DOI: 10.3389/fonc.2021.676781] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The barrier and fence functions of the claudin protein family are fundamental to tissue integrity and human health. Increasing evidence has linked claudins to signal transduction and tumorigenesis. The expression of claudins is frequently dysregulated in the context of neoplastic transformation. Studies have uncovered that claudins engage in nearly all aspects of tumor biology and steps of tumor development, suggesting their promise as targets for treatment or biomarkers for diagnosis and prognosis. However, claudins can be either tumor promoters or tumor suppressors depending on the context, which emphasizes the importance of taking various factors, including organ type, environmental context and genetic confounders, into account when studying the biological functions and targeting of claudins in cancer. This review discusses the complicated roles and intrinsic and extrinsic determinants of the context-specific effects of claudins in cancer.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|
43
|
He J, Zhang W, Li F, Yu Y. Development of metastasis-associated seven gene signature for predicting lung adenocarcinoma prognosis using single-cell RNA sequencing data. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:5959-5977. [PMID: 34517518 DOI: 10.3934/mbe.2021298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metastasis is the primary cause of lung adenocarcinoma (LUAD)-related death. This study evaluated the metastasis-associated genes (MAGs) in single-cell RNA sequencing (scRNA-seq) data from LUAD tissues and developed a MAG signature to predict overall survival (OS) of LUAD patients. The LUAD scRNA-seq data was downloaded from the Gene Expression Omnibus (GEO) Database and MAGs were identified from LUAD scRNA-seq data. The LUAD transcriptomic and clinical data were obtained from The Cancer Genome Atlas (TCGA). Cox and LASSO regression analyses were performed to identify differentially expressed MAGs (DEMAGs) with prognostic value that were then used to construct a MAG signature and MAG-nomogram model. Finally, a functional enrichment analysis was performed via Gene Set Enrichment Analysis (GSEA). 414 MAGs and 22 prognostic DEMAGs were revealed in the study. Multivariate Cox proportional hazards regression analysis was utilized to construct a 7-MAG signature for predicting the OS of LUAD patients. Patients with high risk scores had a significantly worse OS than those with low risk scores in the training group (n = 236), and the 7-MAG signature was successfully confirmed in the testing group (n = 232) and the entire TCGA-LUAD cohort (n = 468). Furthermore, univariate and multivariate Cox regression suggested that the 7-MAG signature was an independent prognostic indicator. Additionally, based on the 7-MAG signature, a nomogram was established that could more intuitively help to predict the OS of LUAD patients. The GSEA revealed the underlying molecular mechanisms of the 7-MAG signature in LUAD metastasis. In conclusion, a 7-MAG signature was developed based on LUAD scRNA-seq data that could effectively predict LUAD patient prognosis and provide novel insights for therapeutic targets and the potential molecular mechanism of metastatic LUAD.
Collapse
Affiliation(s)
- Jinqi He
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Wenjing Zhang
- Department of Hematology Oncology, The Central Hospital of Shaoyang, Shaoyang 422000, China
| | - Faxiang Li
- Department of Hematology Oncology, The Central Hospital of Shaoyang, Shaoyang 422000, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| |
Collapse
|
44
|
Elbalasy I, Mollenkopf P, Tutmarc C, Herrmann H, Schnauß J. Keratins determine network stress responsiveness in reconstituted actin-keratin filament systems. SOFT MATTER 2021; 17:3954-3962. [PMID: 33724291 DOI: 10.1039/d0sm02261f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cytoskeleton is a major determinant of cell mechanics, and alterations in the central mechanical aspects of cells are observed during many pathological situations. Therefore, it is essential to investigate the interplay between the main filament systems of the cytoskeleton in the form of composite networks. Here, we investigate the role of keratin intermediate filaments (IFs) in network strength by studying in vitro reconstituted actin and keratin 8/18 composite filament networks via bulk shear rheology. We co-polymerized these structural proteins in varying ratios and recorded how their relative content affects the overall mechanical response of the various composites. For relatively small deformations, we found that all composites exhibited an intermediate linear viscoelastic behaviour compared to that of the pure networks. In stark contrast, when larger deformations were imposed the composites displayed increasing strain stiffening behaviour with increasing keratin content. The extent of strain stiffening is much more pronounced than in corresponding experiments performed with vimentin IF as a composite network partner for actin. Our results provide new insights into the mechanical interplay between actin and keratin filaments in which keratin provides reinforcement to actin. This interplay may contribute to the overall integrity of cells. Hence, the high keratin 8/18 content of mechanically stressed simple epithelial cell layers, as found in the lung and the intestine, provides an explanation for their exceptional stability.
Collapse
Affiliation(s)
- Iman Elbalasy
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
45
|
Leggett SE, Hruska AM, Guo M, Wong IY. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal 2021; 19:32. [PMID: 33691719 PMCID: PMC7945251 DOI: 10.1186/s12964-021-00713-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is intrinsically linked to alterations of the intracellular cytoskeleton and the extracellular matrix. After EMT, cells acquire an elongated morphology with front/back polarity, which can be attributed to actin-driven protrusion formation as well as the gain of vimentin expression. Consequently, cells can deform and remodel the surrounding matrix in order to facilitate local invasion. In this review, we highlight recent bioengineering approaches to elucidate EMT and functional changes in the cytoskeleton. First, we review transitions between multicellular clusters and dispersed individuals on planar surfaces, which often exhibit coordinated behaviors driven by leader cells and EMT. Second, we consider the functional role of vimentin, which can be probed at subcellular length scales and within confined spaces. Third, we discuss the role of topographical patterning and EMT via a contact guidance like mechanism. Finally, we address how multicellular clusters disorganize and disseminate in 3D matrix. These new technologies enable controlled physical microenvironments and higher-resolution spatiotemporal measurements of EMT at the single cell level. In closing, we consider future directions for the field and outstanding questions regarding EMT and the cytoskeleton for human cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Susan E Leggett
- Department of Chemical and Biological Engineering, Princeton University, William St, Princeton, NJ, 08544, USA
| | - Alex M Hruska
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA.
| |
Collapse
|
46
|
Levine F, Ogunwobi OO. Targeting PVT1 Exon 9 Re-Expresses Claudin 4 Protein and Inhibits Migration by Claudin-Low Triple Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:1046. [PMID: 33801373 PMCID: PMC7958609 DOI: 10.3390/cancers13051046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
PVT1 is a long non-coding RNA transcribed from a gene located at the 8q24 chromosomal region that has been implicated in multiple cancers including breast cancer (BC). Amplification of the 8q24 chromosomal region is a common event in BC and is associated with poor clinical outcomes. Claudin-low (CL) triple negative breast cancer (TNBC) is a subtype of BC with a particularly dismal outcome. We assessed PVT1 exon 9 expression in the T47D estrogen receptor positive BC cell line, and in the MDA MB 468 and MDA MB 231 TNBC cell lines, followed by the assessment of the expression of claudins 1, 3, 4 and 7, in MDA MB 468 and MDA MB 231 (TNBC) cells. We found that MDA MB 231 TNBC cells significantly express less claudin 1, 3, 4, and 7 than MDA MB 468 TNBC cells. PVT1 exon 9 is significantly upregulated in MDA MB 231 CL TNBC cells, and significantly downregulated in MDA MB 468 claudin high (CH) TNBC cells, in comparison to T47D estrogen receptor positive BC cells. We then analyzed the functional consequences of siRNA targeting of PVT1 exon 9 expression in the MDA MB 231 CL TNBC cells. Notably, siRNA targeting of PVT1 exon 9 expression in the MDA MB 231 CL TNBC cells led to a significant reduction in migration and the re-expression of claudin 4. Taken together, our data indicate that PVT1 exon 9 regulates claudin 4 expression and migration in CL TNBC cells, and may have clinical implications in CL TNBC.
Collapse
Affiliation(s)
- Fayola Levine
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA;
| | - Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA;
- The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| |
Collapse
|
47
|
Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
|
48
|
Wang PB, Chen Y, Ding GR, Du HW, Fan HY. Keratin 18 induces proliferation, migration, and invasion in gastric cancer via the MAPK signalling pathway. Clin Exp Pharmacol Physiol 2021; 48:147-156. [PMID: 32860257 DOI: 10.1111/1440-1681.13401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Keratin 18 (KRT18) is a cytoskeleton protein that plays a key role in multiple cancers. The present study aims to further investigate the roles of KRT18 in gastric cancer (GC) tissues and cells. METHODS The KRT18 protein expression levels of GC tissues and cells were detected using immunohistochemistry and western blot. The relationship between KRT18 expression levels and the prognosis of GC patients was further analyzed. To explore this relationship, small interfering RNA (siRNA) was used to inhibit the endogenous expression of KRT18 in GC cells. Furthermore, the effects of KRT18 on the proliferation, invasion, migration, and apoptosis of GC cells were analyzed in vitro. In addition, the role of KRT18 in GC-specific processes was investigated. RESULTS Keratin 18 expression was shown to be up-regulated in GC tissues and associated with poor prognosis. Following KRT18 silencing with siRNA, the proliferation, invasion, and migration ability of GC cells were significantly inhibited, while the apoptotic process was promoted. Furthermore, the activation of the MAPK signalling pathway was identified as the potential mechanism through which KRT18 influenced GC processes. CONCLUSIONS Keratin 18 plays a cancer-promoting role and might be a potential therapeutic target in the treatment of GC.
Collapse
Affiliation(s)
- Peng-Bin Wang
- Department of Gastroenterology, Lanzhou Second People's Hospital, Lanzhou, China
| | - Yan Chen
- Department of Gastroenterology, Characteristic Medical Center of Strategic Support Army, Beijing, China
| | - Guang-Rong Ding
- Department of Gastroenterology, Lanzhou Second People's Hospital, Lanzhou, China
| | - Hong-Wei Du
- Department of Gastroenterology, Lanzhou Second People's Hospital, Lanzhou, China
| | - Hong-Yan Fan
- Department of Gastroenterology, Lanzhou Second People's Hospital, Lanzhou, China
| |
Collapse
|
49
|
Liu T, Liu H, Wang P, Hu Y, Yang R, Liu F, Kim HG, Dong Z, Liu K. Honokiol Inhibits Melanoma Growth by Targeting Keratin 18 in vitro and in vivo. Front Cell Dev Biol 2020; 8:603472. [PMID: 33330500 PMCID: PMC7732543 DOI: 10.3389/fcell.2020.603472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Honokiol, a natural compound, derived from Magnolia officinalis, has been shown to have anti-cancer effect in several cancer types. However, the underlying molecular mechanism associated with its anti-cancer properties has not been fully elucidated. In the current study, we showed that honokiol inhibited the growth of melanoma cells in a dose and time-dependent manner. Mechanistically, it directly interacts with keratin 18 (KRT18) protein and induces its degradation through ubiquitination. Furthermore, the expression of KRT18 was found to be higher in melanoma tissues compared to the normal skin tissues. In addition, KRT18 overexpression significantly promoted melanoma cell proliferation and growth. Our results showed that honokiol treatment significantly decreased KRT18 protein level and suppressed the tumor growth in melanoma cell-derived xenograft mice models. Hence, KRT18 plays an oncogenic role in melanoma and honokiol can be an inhibitor for KRT18.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Penglei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yamei Hu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Yang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Fangfang Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Hong Gyum Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.,State Key Laboratory for the Prevention and Treatment of Esophageal Cancer, Zhengzhou University, Zhengzhou, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| |
Collapse
|
50
|
Wu JS, Jiang J, Chen BJ, Wang K, Tang YL, Liang XH. Plasticity of cancer cell invasion: Patterns and mechanisms. Transl Oncol 2020; 14:100899. [PMID: 33080522 PMCID: PMC7573380 DOI: 10.1016/j.tranon.2020.100899] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cell migration and invasion are integral components of metastatic disease, which is the major cause of death in cancer patients. Cancer cells can disseminate and migrate via several alternative mechanisms including amoeboid cell migration, mesenchymal cell migration, and collective cell migration. These diverse movement strategies display certain specific and distinct hallmarks in cell-cell junctions, actin cytoskeleton, matrix adhesion, and protease activity. During tumor progression, cells pass through complex microenvironments and adapt their migration strategies by reversible mesenchymal-amoeboid and individual-collective transitions. This plasticity in motility patterns enables cancer cells disseminate further and thus limit the efficiency of anti-metastasis therapies. In this review, we discuss the modes and mechanisms of cancer cell migration and focus on the plasticity of tumor cell movement as well as potential emerging therapeutic options for reducing cancer cell invasion.
Collapse
Affiliation(s)
- Jia-Shun Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bing-Jun Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|