1
|
Lu S, Wang P, Wang Q, Deng P, Yuan Y, Fu X, Yang Y, Tan L, Yang K, Qi X. Biodegradable high-nitrogen iron alloy anastomotic staples: In vitro and in vivo studies. Bioact Mater 2024; 40:34-46. [PMID: 38910967 PMCID: PMC11190430 DOI: 10.1016/j.bioactmat.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/26/2024] [Accepted: 06/01/2024] [Indexed: 06/25/2024] Open
Abstract
For gastrointestinal anastomosis, metallic biodegradable staples have a broad application potential. However, both magnesium and zinc alloys have relatively low strength to withstand the repeated peristalsis of the gastrointestinal tract. In this study, we developed a novel kind of biodegradable high-nitrogen iron (HN-Fe) alloy wires (0.23 mm), which were fabricated into the staples. The tensile results showed that the ultimate tensile strength and elongation of HN-Fe wires were 1023.2 MPa and 51.0 %, respectively, which was much higher than those of other biodegradable wires. The degradation rate in vitro of HN-Fe wires was slightly higher than that of pure Fe wires. After 28 days of immersion, the tensile strength of HN-Fe wires remained not less than 240 MPa, meeting the clinical requirements. Furthermore, sixteen rabbits were enrolled to conduct a comparison experiment using HN-Fe and clinical Ti staples for gastroanastomosis. After 6 months of implantation, a homogeneous degradation product layer on HN-Fe staples was observed and no fracture occurred. The degradation rate of HN-Fe staples in vivo was significantly higher than that in vitro, and they were expected to be completely degraded in 2 years. Meanwhile, both benign cutting and closure performance of HN-Fe staples ensured that all the animals did not experience hemorrhage and anastomotic fistula during the observation. The anastomosis site healed without histopathological change, inflammatory reaction and abnormal blood routine and biochemistry, demonstrating good biocompatibility of HN-Fe staples. Thereby, the favorable performance makes the HN-Fe staples developed in this work a promising candidate for gastrointestinal anastomosis.
Collapse
Affiliation(s)
- Sihan Lu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Peng Wang
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qingchuan Wang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Peng Deng
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yonghui Yuan
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Clinical Research Center for Malignant Tumor of Liaoning Province, Shenyang, 110801, China
| | - Xiaoqing Fu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yinghui Yang
- Silvan Medical Device Co., Ltd., Suzhou, 215004, China
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xun Qi
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
2
|
Oliveira-Paula GH, Martins AC, Ferrer B, Tinkov AA, Skalny AV, Aschner M. The impact of manganese on vascular endothelium. Toxicol Res 2024; 40:501-517. [PMID: 39345740 PMCID: PMC11436708 DOI: 10.1007/s43188-024-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Manganese (Mn) is an essential trace element involved in various physiological processes, but excessive exposure may lead to toxicity. The vascular endothelium, a monolayer of endothelial cells within blood vessels, is a primary target of Mn toxicity. This review provides a comprehensive overview of the impact of Mn on vascular endothelium, focusing on both peripheral and brain endothelial cells. In vitro studies have demonstrated that high concentrations of Mn can induce endothelial cell cytotoxicity, increase permeability, and disrupt cell-cell junctions through mechanisms involving oxidative stress, mitochondrial damage, and activation of signaling pathways, such as Smad2/3-Snail. Conversely, low concentrations of Mn may protect endothelial cells from the deleterious effects of high glucose and advanced glycation end-products. In the central nervous system, Mn can cross the blood-brain barrier (BBB) and accumulate in the brain parenchyma, leading to neurotoxicity. Several transport mechanisms, including ZIP8, ZIP14, and SPCA1, have been identified for Mn uptake by brain endothelial cells. Mn exposure can impair BBB integrity by disrupting tight junctions and increasing permeability. In vivo studies have corroborated these findings, highlighting the importance of endothelial barriers in mediating Mn toxicity in the brain and kidneys. Maintaining optimal Mn homeostasis is crucial for preserving endothelial function, and further research is needed to develop targeted therapeutic strategies to prevent or mitigate the adverse effects of Mn overexposure. Graphical Abstract
Collapse
Affiliation(s)
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
3
|
Wu A, Li J, Yuan J, Zhang N, Zhang Y, Li M, Zhu T. Association of Blood Manganese and Preeclampsia: A Systematic Review and Meta-analysis. Biol Trace Elem Res 2024; 202:1843-1855. [PMID: 37612487 DOI: 10.1007/s12011-023-03796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
A systematic review and meta-analysis was performed to comprehensively evaluate the association between manganese (Mn) level and preeclampsia (PE) during pregnancy. Relevant observational studies were retrieved by searching Medline, Web of Science, Embase, and Cochrane Library from database inception to May 25, 2023. Pooling results was performed using a random-effects model incorporating heterogeneity. This meta-analysis incorporated 18 observational studies, which included 1113 women with PE and 5480 normotensive pregnant women. Pooled results showed that compared to normotensive control, women with PE had significantly lower blood Mn concentration (standardized mean difference: -0.36, 95% confidence interval: -0.50 to -0.22, p < 0.001; I2 = 67%). Subgroup analysis showed that the results were not significantly affected by study country (African, Asian, or Western), timing of blood sampling (before, at, or after the diagnosis of PE), mean blood Mn level of controls, or numbers of confounding factors adjusted (p for subgroup analysis all > 0.05), while methods for measuring blood Mn levels might affect the results (p for subgroup difference < 0.001). Finally, pooled results of three studies showed that a high level of blood Mn was related to a low risk of PE with blood Mn analyzed in continuous (risk ratio [RR]: 0.71, 95% CI: 0.59 to 0.85, p < 0.001; I2 = 0%) and categorized variables (RR: 0.50, 95% CI: 0.30 to 0.82, p = 0.006; I2 = 32%). In conclusion, a low blood level of Mn may be associated with PE in pregnant women.
Collapse
Affiliation(s)
- Aifang Wu
- Department of Gynecology and Obstetrics, The 960th Hospital of the People's Liberation Army of China, 25 Shifan Road, Jinan, 250031, China
| | - Jingna Li
- Department of Gynecology and Obstetrics, The 960th Hospital of the People's Liberation Army of China, 25 Shifan Road, Jinan, 250031, China
| | - Jing Yuan
- Department of Medical Information, The 960th Hospital of the People's Liberation Army of China, Jinan, 250031, China
| | - Ningning Zhang
- Department of Gynecology and Obstetrics, The 960th Hospital of the People's Liberation Army of China, 25 Shifan Road, Jinan, 250031, China
| | - Ying Zhang
- Department of Gynecology and Obstetrics, The 960th Hospital of the People's Liberation Army of China, 25 Shifan Road, Jinan, 250031, China
| | - Min Li
- Department of Gynecology and Obstetrics, The 960th Hospital of the People's Liberation Army of China, 25 Shifan Road, Jinan, 250031, China
| | - Tongyu Zhu
- Department of Gynecology and Obstetrics, The 960th Hospital of the People's Liberation Army of China, 25 Shifan Road, Jinan, 250031, China.
| |
Collapse
|
4
|
Bapputty R, Sapa H, Masaru M, Gubitosi-Klug RA. Diabetes Modulates Iodothyronine Deiodinase 2 Expression in the Mouse Retina: A Role for Thyroid Hormone in the Pathogenesis of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2023; 64:3. [PMID: 38038617 PMCID: PMC10697172 DOI: 10.1167/iovs.64.15.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Purpose Clinical investigations associate hypothyroidism with an increased risk for microvascular complications, yet the mechanism by which thyroid hormone regulates the development of diabetic retinopathy is not clearly understood. We investigated the role of iodothyronine deiodinase 2 (DIO2) in the pathogenesis of diabetic retinopathy. Methods Retinas from streptozotocin-induced diabetic and nondiabetic mice were evaluated by RNA sequencing, RT-PCR, and immunostaining. Media and cell lysates from mouse retinal microvascular endothelial cells and retinal astrocytes exposed to physiologic (5 mM) and high glucose (25 mM) containing media were assessed by liquid chromatography-tandem mass spectrometry to measure tetraiodothyronine (T4) and tri-iodothyronine (T3) concentrations and by Western blot analysis to determine the relationship of T4/T3 to oxidative stress and inflammatory mediators. Cell death was determined by Trypan Blue exclusion assay. Results At 12 weeks of diabetes duration, retinas from diabetic mice compared with nondiabetic mice demonstrated a significant decrease in Dio2 transcripts and Dio2 gene and protein (P < 0.05) expression. When cultured in the presence of high glucose, both mouse retinal astrocytes and microvascular endothelial cells demonstrated a significant reduction of DIO2 protein compared with cells cultured in physiologic glucose. High glucose inhibited generation of T3, leading to a significantly increased T4/T3 (P < 0.0079). Supplementation of cells with T3, but not T4, prevented the high glucose-induced rise in endothelial nitric oxide synthase, intercellular cell adhesion molecule 1, and endothelial cell death (P < 0.0079). Conclusions Decreased intraretinal T3 owing to diabetes-induced loss of DIO2 may lead to dysfunction and death of cells in the retina, thereby contributing to the pathogenesis of early diabetic retinopathy.
Collapse
Affiliation(s)
- Reena Bapputty
- Department of Pediatrics, Case Western Reserve University School of Medicine/Rainbow Babies and Children's Hospital, Cleveland, Ohio, United States
| | - Hima Sapa
- Department of Nephrology and Hypertension, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Miyagi Masaru
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Rose A. Gubitosi-Klug
- Department of Pediatrics, Case Western Reserve University School of Medicine/Rainbow Babies and Children's Hospital, Cleveland, Ohio, United States
| |
Collapse
|
5
|
Sun Z, Shao Y, Yan K, Yao T, Liu L, Sun F, Wu J, Huang Y. The Link between Trace Metal Elements and Glucose Metabolism: Evidence from Zinc, Copper, Iron, and Manganese-Mediated Metabolic Regulation. Metabolites 2023; 13:1048. [PMID: 37887373 PMCID: PMC10608713 DOI: 10.3390/metabo13101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Trace metal elements are of vital importance for fundamental biological processes. They function in various metabolic pathways after the long evolution of living organisms. Glucose is considered to be one of the main sources of biological energy that supports biological activities, and its metabolism is tightly regulated by trace metal elements such as iron, zinc, copper, and manganese. However, there is still a lack of understanding of the regulation of glucose metabolism by trace metal elements. In particular, the underlying mechanism of action remains to be elucidated. In this review, we summarize the current concepts and progress linking trace metal elements and glucose metabolism, particularly for the trace metal elements zinc, copper, manganese, and iron.
Collapse
Affiliation(s)
- Zhendong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuzhuo Shao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kunhao Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianzhao Yao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lulu Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
6
|
Zhang Q, Song S, Jiang R, Zhang J, Na L. Protective effect of manganese treatment on insulin resistance in HepG2 hepatocytes. NUTR HOSP 2023; 40:746-754. [PMID: 37409718 DOI: 10.20960/nh.04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Introduction Objectives: manganese (Mn) is closely related to type 2 diabetes mellitus and insulin resistance (IR), but the exact mechanism is unclear. This study aimed to explore the regulatory effects and mechanism of Mn on IR using hepatocyte IR model induced by high palmitate (PA), high glucose (HG) or insulin. Methods: HepG2 cells were exposed to PA (200 μM), HG (25 mM) or insulin (100 nM) respectively, alone or with 5 μM Mn for 24 hours. The expression of key proteins in insulin signaling pathway, intracellular glycogen content and glucose accumulation, reactive oxygen species (ROS) level and Mn superoxide dismutase (MnSOD) activity were detected. Results: compared with control group, the expression of phosphorylated protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β) and forkhead box O1 (FOXO1) in the three IR groups was declined, and this decrease was reversed by Mn. The reduction of intracellular glycogen content and increase in glucose accumulation in IR groups were also inhibited by Mn. Additionally, the production of ROS was increased in IR models, compared with normal control group, while Mn reduced the excessive production of ROS induced by PA, HG or insulin. However, Mn did not alter the activity of MnSOD in the three IR models. Conclusion: this study demonstrated that Mn treatment can improve IR in hepatocytes. The mechanism is probably by reducing the level of intracellular oxidative stress, enhancing the activity of Akt/GSK-3β/FOXO1 signal pathway, promoting glycogen synthesis, and inhibiting gluconeogenesis.
Collapse
Affiliation(s)
| | - Shili Song
- Linping District Center for Disease Control and Prevention
| | - Ruyue Jiang
- Publich Health College. Harbin Medical University
| | - Jingyi Zhang
- College of Public Health. Shanghai University of Medicine and Health Sciences
| | - Lixin Na
- Collaborative Innovation Center. Shanghai University of Medicine and Health Sciences
| |
Collapse
|
7
|
Tuell DS, Los EA, Ford GA, Stone WL. The Role of Natural Antioxidant Products That Optimize Redox Status in the Prevention and Management of Type 2 Diabetes. Antioxidants (Basel) 2023; 12:1139. [PMID: 37371869 DOI: 10.3390/antiox12061139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
The worldwide prevalence of type 2 diabetes (T2D) and prediabetes is rapidly increasing, particularly in children, adolescents, and young adults. Oxidative stress (OxS) has emerged as a likely initiating factor in T2D. Natural antioxidant products may act to slow or prevent T2D by multiple mechanisms, i.e., (1) reducing mitochondrial oxidative stress, (2) preventing the damaging effects of lipid peroxidation, and (3) acting as essential cofactors for antioxidant enzymes. Natural antioxidant products should also be evaluated in the context of the complex physiological processes that modulate T2D-OxS such as glycemic control, postprandial OxS, the polyol pathway, high-calorie, high-fat diets, exercise, and sleep. Minimizing processes that induce chronic damaging OxS and maximizing the intake of natural antioxidant products may provide a means of preventing or slowing T2D progression. This "optimal redox" (OptRedox) approach also provides a framework in which to discuss the potential benefits of natural antioxidant products such as vitamin E, vitamin C, beta-carotene, selenium, and manganese. Although there is a consensus that early effective intervention is critical for preventing or reversing T2D progression, most research has focused on adults. It is critical, therefore, that future research include pediatric populations.
Collapse
Affiliation(s)
- Dawn S Tuell
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - Evan A Los
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - George A Ford
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - William L Stone
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| |
Collapse
|
8
|
Li A, Li Y, Mei Y, Zhao J, Zhou Q, Li K, Zhao M, Xu J, Ge X, Xu Q. Associations of metals and metals mixture with lipid profiles: A repeated-measures study of older adults in Beijing. CHEMOSPHERE 2023; 319:137833. [PMID: 36693480 DOI: 10.1016/j.chemosphere.2023.137833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metals inevitably and easily enter into human bodies and can induce a series of pathophysiological changes, such as oxidative stress damage and lipid peroxidation, which then may further induce dyslipidemia. However, the effects of metals and metals mixture on the lipid profiles are still unclear, especially in older adults. A three-visits repeated measurement of 201 older adults in Beijing was conducted from November 2016 to January 2018. Linear Mixed Effects models and Bayesian kernel machine regression models were used to estimate associations of eight blood metals and metals mixture with lipid profiles, including total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), Castelli risk indexes I (CRI-1), Castelli risk indexes II (CRI-2), atherogenic coefficient (AC), and non-HDL cholesterol (NHC). Cesium (Cs) was positively associated with TG (βCs = 0.14; 95% CI: 0.02, 0.26) whereas copper (Cu) was inversely related to TG (βCu = -0.65; 95%CI: -1.14, -0.17) in adjusted models. Manganese (Mn) was mainly related to higher HDL-C (βMn = 0.14; 95% CI: 0.07, 0.21) whereas molybdenum showed opposite association. Metals mixture was marginally positive associated with HDL-C, among which Mn played a crucial role. Our findings suggest that the effects of single metal on lipid profiles may be counteracted in mixtures in the context of multiple metal exposures; however, future studies with large sample size are still needed to focus on the detrimental effects of single metals on lipid profiles as well as to identify key components.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
9
|
Wu T, Li T, Zhang C, Huang H, Wu Y. Association between Plasma Trace Element Concentrations in Early Pregnancy and Gestational Diabetes Mellitus in Shanghai, China. Nutrients 2022; 15:115. [PMID: 36615774 PMCID: PMC9824253 DOI: 10.3390/nu15010115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
(1) Background: Trace elements play important roles in gestational diabetes mellitus (GDM), but the results from reported studies are inconsistent. This study aimed to examine the association between maternal exposure to V, Cr, Mn, Co, Ni, and Se in early pregnancy and GDM. (2) Methods: A nested case-control study with 403 GDM patients and 763 controls was conducted. Trace elements were measured using inductively coupled plasma-mass spectrometry in plasma collected from pregnant women in the first trimester of gestation. We used several statistical methods to explore the association between element exposure and GDM risk. (3) Results: Plasma V and Ni were associated with increased and decreased risk of GDM, respectively, in the single-element model. V and Mn were found to be positively, and Ni was found to be negatively associated with GDM risk in the multi-element model. Mn may be the main contributor to GDM risk and Ni the main protective factor against GDM risk in the quantile g computation (QGC). 6.89 μg/L~30.88 μg/L plasma Ni was identified as a safe window for decreased risk of GDM. (4) Conclusions: V was positively associated with GDM risk, while Ni was negatively associated. Ni has dual effects on GDM risk.
Collapse
Affiliation(s)
- Ting Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Tao Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Chen Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200030, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China
- Women’s Hospital, School of Medicine, The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou 310058, China
| | - Yanting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200030, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China
| |
Collapse
|
10
|
Application of Plant Polysaccharide Nanoparticles as Polymeric Carrier Materials for the Construction of Medicine Carriers. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Shaukat A, Hussain G, Irfan S, Ijaz MU, Anwar H. Therapeutic Potential of MgO and MnO Nanoparticles Within the Context of Thyroid Profile and Pancreatic Histology in a Diabetic Rat Model. Dose Response 2022; 20:15593258221128743. [PMID: 36158742 PMCID: PMC9500299 DOI: 10.1177/15593258221128743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/29/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022] Open
Abstract
Magnesium oxide (MgO) and manganese oxide (MnO) have been reported to be effective against Diabetes Mellitus (DM). However, their nanoparticulate form has not been evaluated for antidiabetic effect. MgO and MnO nanoparticles (15–35 nm) were synthesized and subsequently characterized by ultraviolet-visible spectroscopy (UV-VIS), zeta sizer, and scanning electron microscopy. 6–7 weeks old rats weighing 200–220 mg were divided into 07 equal groups (n = 8), namely, negative control (NC), positive control (PC), standard control (Std-C), MgO high dose group (MgO-300) and low dose group (MgO-150), and MnO nanoparticle high dose (MnO-30) and low dose group (MnO-15). Diabetes was chemically induced (streptozotocin 60 mg/kg B.W) in all groups except the NC. Animals were given CMD and water was ad libitum. Nanoparticles were supplemented for 30 days after the successful induction of diabetes. Blood and tissue samples were collected after the 30th day of the trial. The mean serum glucose, insulin, and glucagon levels were improved maximally in the MgO-300 group followed by MgO-150 and MnO-30 groups. Whereas the MnO-15 group fails to show any substantial improvement in the levels of glucose, insulin, and glucagon as compared to the positive control group. Interesting the serum triiodothyronine, thyroxine, and thyroid-stimulating hormone levels were markedly improved in all the nanoparticle treatment groups and were found to be similar to the standard control group. These results highlight the modulatory properties of MgO and MnO nanoparticles and merit further studies delineating the molecular mechanisms through which these nanoparticles induce antidiabetic effects.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Shahzad Irfan
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
12
|
Alami F, Mohseni GK, Ahmadzadeh M, Vahid F, Gholamalizadeh M, Masoumvand M, Shekari S, Alizadeh A, Shafaei H, Doaei S. The Association Between Fasting Blood Sugar and Index of Nutritional Quality in Adult Women. Front Nutr 2022; 9:883672. [PMID: 35811985 PMCID: PMC9263713 DOI: 10.3389/fnut.2022.883672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/31/2022] [Indexed: 01/04/2023] Open
Abstract
Aim It's unclear whether diet quality affects glycemic management. The index of nutritional quality (INQ) can examine diets both quantitatively and qualitatively (INQ). Hence, this study aimed to determine whether INQ and fasting blood sugar (FBS) are related among Iranian women. Methods This cross-sectional study was conducted on 360 adult Iranian women. Data were collected on the participants' general characteristics, medical history, anthropometric indices, physical activity, and dietary intake. For nutrient intake assessment, a valid food frequency questionnaire (FFQ) was used, and INQ was then calculated using the daily nutrient intake. Results After adjusting for age, FBS was significantly inverse associated with INQ for vitamins A (B = −0.193, p < 0.01), magnesium (B = −0.137, p < 0.01), phosphor (B = −0.175, p < 0.01), zinc (B = −0.113, p < 0.01), vitamin K (B = −0.197, p < 0.01), manganese (B = −0.111, p < 0.01) and selenium (B = −0.123, p < 0.01). The association between FBS and INQ for Se and Mn was disappeared after further adjustment for gender, body mass index (BMI), menopausal status, and total energy intake. Conclusion There was a significant inverse relationship between FBS and the INQ of vitamin A, manganese, phosphor, zinc, vitamin K, magnesium, and selenium. Prospective cohort studies should be conducted to establish a causal relationship between FBS and INQ.
Collapse
Affiliation(s)
- Farkhondeh Alami
- Department of Nutrition, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Golsa Khalatbari Mohseni
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ahmadzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Vahid
- Department of Population Health, Public Health Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Masoumvand
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soheila Shekari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Atiyeh Alizadeh
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hanieh Shafaei
- Urology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Wang X, Gao XQ, Wang XY, Fang YY, Xu L, Zhao KF, Huang B, Liu BL. Bioaccumulation of manganese and its effects on oxidative stress and immune response in juvenile groupers (Epinephelus moara ♀ × E. lanceolatus ♂). CHEMOSPHERE 2022; 297:134235. [PMID: 35271901 DOI: 10.1016/j.chemosphere.2022.134235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
We evaluated the effects of Mn in juvenile Yunlong groupers (Epinephelus moara ♀ × E. lanceolatus ♂). The groupers were exposed to Mn2+ (0, 0.5, 1, 2, and 4 mg/L) for 30 days after which they were assessed. The results indicate the accumulation of Mn in fish depended on dose and time. Mn2+ accumulation in tissues occurred in the following order: liver > gills > intestine > muscle. The concentrations of SOD and CAT in the fish significantly increased after 10 and 20 days of treatment with 4 mg/L Mn2+ but decreased after 30 days. Similarly, GSH and GPx levels increased after 10 days of exposure to 2 and 4 mg/L Mn2+ but decreased after 20 and 30 days of exposure. Additionally, malondialdehyde levels significantly increased after exposing the fish to 2 and 4 mg/L Mn2+ for 10, 20, and 30 days. In addition, liver HSP70 and HSP90 levels significantly increased at days 20 and 30 in all fish exposed to Mn2+. In addition, when Mn2+ concentration was 1, 2, and 4 mg/L, liver C3 and C4 levels were significantly increased after 10, 20, and 30 days. Conversely, the levels of LZM and IgM significantly decreased. Mn2+ also significantly upregulated the expression of genes associated with immunity (tlr3, tnf-α, il-1β, and il-6) in the fish, which suggests that it induces immunotoxicity by altering the immune response. Overall, the findings showed that Mn2+ can disrupt grouper health by bioaccumulating in the fish and subsequently inducing oxidative stress and immune responses. These results can help elucidate the mechanism by which manganese induces toxicity in marine fish. Additionally, they provide a new perspective regarding the detrimental effects of heavy metals in fish.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiao-Qiang Gao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xin-Yi Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Ying-Ying Fang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Liang Xu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Kui-Feng Zhao
- Yuhai Hongqi Ocean Engineering Co. LTD, Rizhao, 276800, China
| | - Bin Huang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Bao-Liang Liu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
14
|
Manganese Exposure and Metabolic Syndrome: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14040825. [PMID: 35215474 PMCID: PMC8876230 DOI: 10.3390/nu14040825] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Manganese (Mn) is an essential element acting as a co-factor of superoxide dismutase, and it is potentially beneficial for cardiometabolic health by reducing oxidative stress. Although some studies have examined the relationship between Mn and metabolic syndrome (MetS), no systematic review and meta-analysis has been presented to summarize the evidence. Therefore, the present review examined the association between dietary and environmental Mn exposure, and MetS risk. A total of nine cross-sectional studies and three case-control studies were included, which assessed Mn from diet, serum, urine, and whole blood. The association of the highest Mn level from diet (three studies, odds ratio (OR): 0.83, 95% confidence interval (C.I.) = 0.57, 1.21), serum (two studies, OR: 0.87, 95% C.I. = 0.66, 1.14), urine (two studies, OR: 0.84, 95% C.I. = 0.59, 1.19), and whole blood (two studies, OR: 0.92, 95% C.I. = 0.53, 1.60) were insignificant, but some included studies have suggested a non-linear relationship of urinary and blood Mn with MetS, and higher dietary Mn may associate with a lower MetS risk in some of the included studies. While more evidence from prospective cohorts is needed, future studies should use novel statistical approaches to evaluate relative contribution of Mn on MetS risk along with other inter-related exposures.
Collapse
|
15
|
Meishuo O, Eshak ES, Muraki I, Cui R, Shirai K, Iso H, Tamakoshi A. Association between Dietary Manganese Intake and Mortality from Cardiovascular Disease in Japanese Population: The Japan Collaborative Cohort Study. J Atheroscler Thromb 2022; 29:1432-1447. [PMID: 35082202 PMCID: PMC9529386 DOI: 10.5551/jat.63195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ouyang Meishuo
- Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Ehab S. Eshak
- Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Isao Muraki
- Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Renzhe Cui
- Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Kokoro Shirai
- Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Akiko Tamakoshi
- Public Health, Department of Social Medicine, Faculty of Medicine, Hokkaido University
| |
Collapse
|
16
|
Tijani AS, David OO, Farombi EO. Manganese mitigates against hepatorenal oxidative stress, inflammation and caspase-3 activation in rats exposed to hexachlorobenzene. Drug Chem Toxicol 2021; 45:2748-2757. [PMID: 34670467 DOI: 10.1080/01480545.2021.1986061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study investigated the individual and collective effect of organochlorinated fungicide hexachlorobenzene (HCB) and manganese (Mn), a metal, on the hepatorenal function in adult rats. Rats were divided into four groups of rats comprising of control, HCB alone (15 mg/kg), Mn alone (10 mg/kg) and co-exposure group that were orally treated for 25 consecutive days. After sacrifice, hepatorenal damage and antioxidant status markers, myeloperoxidase (MPO) activity, levels of nitric oxide, total antioxidant capacity (TAC), total oxidative stress (TOS) and lipid peroxidation (LPO) were analyzed spectrophotometrically. Levels of tumor necrosis factor alpha (TNF-α), interleukin-1 β (IL-1β) and caspase-3 activity were assessed using ELISA. Results revealed that the HCB administration significantly (p < 0.05) increased the biomarkers of hepatorenal toxicity, decreased the antioxidant status and TAC, raised the levels of TOS and LPO as well as increased the levels of TNF-α, IL-1β and caspase-3 activity. Rats co-exposed to HCB and Mn showed decreased biomarkers of hepatorenal damage, increased antioxidant status and TAC with simultaneous reduction in the levels of TOS and LPO significantly (p < 0.05). Furthermore, the increased levels of TNF-α, IL-1β and caspase-3 activity were significantly (p < 0.05) reduced in the liver and kidney of rats' co-expose to HCB and Mn. Histological examination showed that damages induced by HCB were assuaged in rats co-treated with HCB and Mn. In conclusion, the results demonstrated that co-treatment of HCB and Mn in rats' alleviated HCB-induced oxidative stress, inflammation and caspase-3 activation in the liver and kidney of the rats.
Collapse
Affiliation(s)
- Abiola S Tijani
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olori O David
- Department of Biochemistry, Bowen University of Iwo, Iwo, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
17
|
Haque S, Tripathy S, Patra CR. Manganese-based advanced nanoparticles for biomedical applications: future opportunity and challenges. NANOSCALE 2021; 13:16405-16426. [PMID: 34586121 DOI: 10.1039/d1nr04964j] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology is the most promising technology to evolve in the last decade. Recent research has shown that transition metal nanoparticles especially manganese (Mn)-based nanoparticles have great potential for various biomedical applications due to their unique fundamental properties. Therefore, globally, scientists are concentrating on the development of various new manganese-based nanoparticles (size and shape dependent) due to their indispensable utilities. Although numerous reports are available regarding the use of manganese nanoparticles, there is no comprehensive review highlighting the recent development of manganese-based nanomaterials and their potential applications in the area of biomedical sciences. The present review article provides an overall survey on the recent advancement of manganese nanomaterials in biomedical nanotechnology and other fields. Further, the future perspectives and challenges are also discussed to explore the wider application of manganese nanoparticles in the near future. Overall, this review presents a fundamental understanding and the role of manganese in various fields, which will attract a wider spectrum of the scientific community.
Collapse
Affiliation(s)
- Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| |
Collapse
|
18
|
Lo K, Yang JL, Chen CL, Liu L, Huang YQ, Feng YQ, Yang AM. Associations between blood and urinary manganese with metabolic syndrome and its components: Cross-sectional analysis of National Health and Nutrition Examination Survey 2011-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146527. [PMID: 33774283 DOI: 10.1016/j.scitotenv.2021.146527] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Manganese (Mn) may improve cardiometabolic health with its anti-oxidative ability. However, epidemiological evidence on the overall and sex-specific relationship between Mn exposure and metabolic syndrome (MetS) has been inconclusive. We evaluated the associations of urinary (n = 1713) and blood (n = 3335) Mn levels with the prevalence of MetS, its components (elevated waist circumference, impaired glucose metabolism, elevated blood pressure and dyslipidemia) and sex-dependent heterogeneities among participants in the United States National Health and Nutrition Examination Survey 2011-2016. After adjusting for multiple covariates and the levels of other metals (Arsenic, Barium, Cadmium, Mercury, Molybdenum, Tin and Uranium), urinary Mn at the third quartile associated with a lower odd of MetS (odds ratio [OR] = 0.55, 95% confidence interval [C.I.] = 0.32-0.97), elevated waist circumference (OR = 0.56, 95% C.I. = 0.36-0.86) and elevated fasting plasma glucose (OR = 0.46, 95% C.I. = 0.27-0.76) among overall participants, and lower odds of MetS (OR = 0.40, 95% C.I. = 0.16-0.99), elevated waist circumference (OR = 0.39, 95% C.I. = 0.19-0.81) and elevated fasting plasma glucose (OR = 0.44, 95% C.I. = 0.22-0.90) among men. The U-shaped dose-response relationship between urinary Mn and MetS (P non-linear = 0.008) was observed among all participants. We did not observe the significant associations of blood Mn with the prevalence of MetS. Compared with other metals, urinary Mn played a less important role in development of MetS (posterior inclusion probabilities [PIP] = 0.49 for Mn versus 0.54 to 0.91 for other metals), but the contribution of blood Mn (PIP = 0.59 versus 0.60 to 0.61) was similar to other blood metals (Cadmium, Lead, Mercury and Selenium). These findings have provided new evidence of the potential roles of Mn in cardiometabolic health, and the needs to explore how Mn interacts with multiple metals in sex-specific manner.
Collapse
Affiliation(s)
- Kenneth Lo
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Epidemiology, Centre for Global Cardio-Metabolic Health, Brown University, Providence, RI, USA; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jing-Li Yang
- College of Earth and Environmental Sciences, Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Chao-Lei Chen
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lin Liu
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Qing Huang
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying-Qing Feng
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Ai-Min Yang
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
19
|
Karganov MY, Alchinova IB, Tinkov AA, Medvedeva YS, Lebedeva MA, Ajsuvakova OP, Polyakova MV, Skalnaya MG, Burtseva TI, Notova SV, Khlebnikova NN, Skalny AV. Streptozotocin (STZ)-Induced Diabetes Affects Tissue Trace Element Content in Rats in a Dose-Dependent Manner. Biol Trace Elem Res 2020; 198:567-574. [PMID: 32144716 DOI: 10.1007/s12011-020-02090-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
The objective of the present study was investigation of tissue trace element distribution in a streptozotocin model of DM1 in rats. DM1 was modeled in 2-month-old male Wistar rats (n = 30) using intraperitoneal injection of 45 mg/kg b.w. (STZ1) and 55 mg/kg b.w. streptozotocin (STZ2), whereas control animals were injected with physiological saline. The rats were subjected to oral glucose tolerance test (OGTT) and HbA1c level assessment at day 14. At day 30, blood serum, liver, kidney, and heart samples were collected for tissue trace element assessment using inductively coupled plasma mass spectrometry (ICP-MS). STZ-treated rats were characterized by lack of significant weight gain and elevated HbA1c and blood glucose levels. ICP-MS analysis demonstrated a dose-dependent accumulation of Cu, Mn, Mo, and Se levels in the liver. Correspondingly, the dose-dependent increase in renal Cu, Mn, V, and Zn levels was significant, whereas the observed trend for kidney V and Mo accumulation was nearly significant. The patterns of trace element content in the myocardium of STZ-exposed rats were quite different from those observed for liver and kidney. Only cardiac Zn content was characterized by a significant decrease. Serum Co, Cr, Cu, Se, V, and Mo levels were characterized by a significant decrease in response to STZ-induced diabetes. Generally, the obtained data demonstrate that diabetes is associated with altered copper, manganese, molybdenum, chromium, and vanadium handling. In turn, only altered Zn status may provide a link to diabetic cardiotoxicity. However, the particular mechanisms of both impaired metal handling in STZ diabetes and their potential anti-diabetic activity require further investigation.
Collapse
Affiliation(s)
| | - Irina B Alchinova
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - Alexey A Tinkov
- Yaroslavl State University, 150003, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, 119146, Moscow, Russia
| | - Yulia S Medvedeva
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - Marina A Lebedeva
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - Olga P Ajsuvakova
- Yaroslavl State University, 150003, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, 119146, Moscow, Russia
| | | | | | - Tatiana I Burtseva
- IM Sechenov First Moscow State Medical University, 119146, Moscow, Russia
- Orenburg State University, Pobedy Ave. 13, 460352, Orenburg, Russia
| | - Svetlana V Notova
- IM Sechenov First Moscow State Medical University, 119146, Moscow, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 460000, Orenburg, Russia
| | | | - Anatoly V Skalny
- Yaroslavl State University, 150003, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, 119146, Moscow, Russia
| |
Collapse
|
20
|
Gong JH, Lo K, Liu Q, Li J, Lai S, Shadyab AH, Arcan C, Snetselaar L, Liu S. Dietary Manganese, Plasma Markers of Inflammation, and the Development of Type 2 Diabetes in Postmenopausal Women: Findings From the Women's Health Initiative. Diabetes Care 2020; 43:1344-1351. [PMID: 32295807 PMCID: PMC7245351 DOI: 10.2337/dc20-0243] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/22/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To examine the association between manganese intake and the risk of type 2 diabetes in postmenopausal women and determine whether this association is mediated by circulating markers of inflammation. RESEARCH DESIGN AND METHODS We included 84,285 postmenopausal women without a history of diabetes from the national Women's Health Initiative Observational Study (WHI-OS). Replication analysis was then conducted among 62,338 women who participated in the WHI-Clinical Trial (WHI-CT). Additionally, data from a case-control study of 3,749 women nested in the WHI-OS with information on biomarkers of inflammation and endothelial dysfunction were examined using mediation analysis to determine the relative contributions of these known biomarkers by which manganese affects type 2 diabetes risk. RESULTS Compared with the lowest quintile of energy-adjusted dietary manganese, WHI-OS participants in the highest quintile had a 30% lower risk of type 2 diabetes (hazard ratio [HR] 0.70 [95% CI 0.65, 0.76]). A consistent association was also confirmed in the WHI-CT (HR 0.79 [95% CI 0.73, 0.85]). In the nested case-control study, higher energy-adjusted dietary manganese was associated with lower circulating levels of inflammatory biomarkers that significantly mediated the association between dietary manganese and type 2 diabetes risk. Specifically, 19% and 12% of type 2 diabetes risk due to manganese were mediated through interleukin 6 and hs-CRP, respectively. CONCLUSIONS Higher intake of manganese was directly associated with a lower type 2 diabetes risk independent of known risk factors. This association may be partially mediated by inflammatory biomarkers.
Collapse
Affiliation(s)
- Jung Ho Gong
- Department of Epidemiology, Brown University, Providence, RI.,Center for Global Cardiometabolic Health, Brown University, Providence, RI
| | - Kenneth Lo
- Department of Epidemiology, Brown University, Providence, RI.,Department of Cardiology, Guangdong Cardiovascular Institute, Hypertension Research Laboratory, Guangdong Provincial People's Hospital, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Academy of Medical Sciences, South China University of Technology School of Medicine, Guangzhou, China
| | - Qing Liu
- Department of Epidemiology, Brown University, Providence, RI.,Center for Global Cardiometabolic Health, Brown University, Providence, RI
| | - Jie Li
- Department of Epidemiology, Brown University, Providence, RI.,Department of Cardiology, Guangdong Cardiovascular Institute, Hypertension Research Laboratory, Guangdong Provincial People's Hospital, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Academy of Medical Sciences, South China University of Technology School of Medicine, Guangzhou, China
| | - Shuiqing Lai
- Department of Epidemiology, Brown University, Providence, RI.,Department of Cardiology, Guangdong Cardiovascular Institute, Hypertension Research Laboratory, Guangdong Provincial People's Hospital, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Academy of Medical Sciences, South China University of Technology School of Medicine, Guangzhou, China
| | - Aladdin H Shadyab
- Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, CA
| | - Chrisa Arcan
- Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Linda Snetselaar
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA
| | - Simin Liu
- Department of Epidemiology, Brown University, Providence, RI .,Center for Global Cardiometabolic Health, Brown University, Providence, RI.,Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
21
|
Dalisson B, Barralet J. Bioinorganics and Wound Healing. Adv Healthc Mater 2019; 8:e1900764. [PMID: 31402608 DOI: 10.1002/adhm.201900764] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Wound dressings and the healing enhancement (increasing healing speed and quality) are two components of wound care that lead to a proper healing. Wound care today consists mostly of providing an optimal environment by removing waste and necrotic tissues from a wound, preventing infections, and keeping the wounds adequately moist. This is however often not enough to re-establish the healing process in chronic wounds; with the local disruption of vascularization, the local environment is lacking oxygen, nutrients, and has a modified ionic and molecular concentration which limits the healing process. This disruption may affect cellular ionic pumps, energy production, chemotaxis, etc., and will affect the healing process. Biomaterials for wound healing range from simple absorbents to sophisticated bioactive delivery vehicles. Often placing a material in or on a wound can change multiple parameters such as pH, ionic concentration, and osmolarity, and it can be challenging to pinpoint key mechanism of action. This article reviews the literature of several inorganic ions and molecules and their potential effects on the different wound healing phases and their use in new wound dressings.
Collapse
Affiliation(s)
| | - Jake Barralet
- Faculty of DentistryMcGill University Montreal H3A 1G1 QC Canada
- Division of OrthopaedicsDepartment of SurgeryFaculty of MedicineMcGill University Montreal H4A 0A9 QC Canada
| |
Collapse
|
22
|
Li H, Chen LP, Wang T, Wang SG, Liu JH. Calpain inhibition improves erectile function in diabetic mice via upregulating endothelial nitric oxide synthase expression and reducing apoptosis. Asian J Androl 2019; 20:342-348. [PMID: 29319007 PMCID: PMC6038160 DOI: 10.4103/aja.aja_63_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calpain activation contributes to hyperglycemia-induced endothelial dysfunction and apoptosis. This study was designed to investigate the role of calpain inhibition in improving diabetic erectile dysfunction (ED) in mice. Thirty-eight-week-old male C57BL/6J mice were divided into three groups: (1) nondiabetic control group, (2) diabetic mice + vehicle group, and (3) diabetic mice + MDL28170 (an inhibitor of calpain) group. Type 1 diabetes was induced by intraperitoneal injection of streptozotocin at 60 mg kg−1 body weight for 5 consecutive days. Thirteen weeks later, diabetic mice were treated with MDL28170 or vehicle for 4 weeks. The erectile function was assessed by electrical stimulation of the cavernous nerve. Penile tissues were collected for measurement of calpain activity and the endothelial nitric oxide synthase (eNOS)-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway. Terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeling (TUNEL) staining was used to evaluate apoptosis. Caspase-3 expression and activity were also measured to determine apoptosis. Our results showed that erectile function was enhanced by MDL28170 treatment in diabetic mice compared with the vehicle diabetic group. No differences in calpain-1 and calpain-2 expressions were observed among the three groups. However, calpain activity was increased in the diabetic group and reduced by MDL28170. The eNOS-NO-cGMP pathway was upregulated by MDL28170 treatment in diabetic mice. Additionally, MDL28170 could attenuate apoptosis and increase the endothelium and smooth muscle levels in corpus cavernosum. Inhibition of calpain could improve erectile function, probably by upregulating the eNOS-NO-cGMP pathway and reducing apoptosis.
Collapse
Affiliation(s)
- Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Ping Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ji-Hong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
23
|
Du S, Wu X, Han T, Duan W, Liu L, Qi J, Niu Y, Na L, Sun C. Dietary manganese and type 2 diabetes mellitus: two prospective cohort studies in China. Diabetologia 2018; 61:1985-1995. [PMID: 29971528 DOI: 10.1007/s00125-018-4674-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS The association between dietary Mn and type 2 diabetes is unclear. We aimed to elucidate whether dietary Mn is associated with type 2 diabetes, to investigate whether this association is independent of dietary total antioxidant capacity (TAC) and to explore the underlying mechanisms in their association. METHODS Two prospective cohorts of 3350 and 7133 Chinese adults (20-74 years old) were enrolled including, respectively, 244 and 578 individuals newly diagnosed with type 2 diabetes, with mean values of 4.2 and 5.3 years of follow-up. Cox's proportional-hazards regression and linear regression were performed to investigate the association between dietary Mn and type 2 diabetes (diagnosed by OGTT) or HbAlc and to analyse the joint association between dietary Mn and TAC. Restricted cubic spline (RCS) regression was applied to the non-linear association between dietary Mn and incidence of type 2 diabetes. Mediation analysis was applied to explore potential mediators in their association in a subgroup of 500 participants. RESULTS Dietary Mn intakes were 4.58 ± 1.04 and 4.61 ± 1.08 (mean ± SD) mg/day in the two cohorts. Dietary Mn was inversely associated with type 2 diabetes incidence and HbAlc concentration in both cohorts (ptrend < 0.01 and <0.01 for type 2 diabetes, and ptrend < 0.01 and =0.02 for HbAlc, respectively, in each cohort) independent of TAC, adjusted for age, sex, BMI, tobacco use, alcohol consumption, physical activity, diabetes inheritance, total energy, carbohydrate, total fatty acids, fibre, calcium, Mg, hypertension, hyperlipidaemia, and impaired glucose tolerance or FBG (all at baseline). Their inverse association was stronger in the presence of diets with high, compared with low, TAC. In RCS, intakes of >6.01 and 6.10-6.97 mg/day were associated with a significantly lower type 2 diabetes incidence in the two respective cohorts. Mediation analysis showed that high plasma Mn and low oxidative stress (increased Mn superoxide dismutase and decreased 8-hydroxydeoxyguanosine) contributed to the association between dietary Mn and both type 2 diabetes and HbAlc. CONCLUSIONS/INTERPRETATION Dietary Mn was inversely associated with type 2 diabetes independently of TAC. In addition, this association was stronger in a high- rather than low-TAC diet. Plasma Mn and oxidative stress were mediators in the association between dietary Mn and type 2 diabetes. Future studies on absolute Mn intake should be conducted to study the potential non-linearity and optimal levels of dietary Mn and type 2 diabetes.
Collapse
Affiliation(s)
- Shanshan Du
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Xiaoyan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Tianshu Han
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Wei Duan
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Lei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Jiayue Qi
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Lixin Na
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China.
| |
Collapse
|
24
|
Zhu MR, Zhou J, Jin Y, Gao LH, Li L, Yang JR, Lu CM, Zhao QH, Xie MJ. A manganese-salen complex as dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Int J Biol Macromol 2018; 120:1232-1239. [PMID: 30171949 DOI: 10.1016/j.ijbiomac.2018.08.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
A manganese Schiff base complex with N,N'-1,2-phenylenediamine-bis(salicyladimine) was synthesized and characterized by X-ray crystallography. This complex was administered intragastrically to alloxan-diabetic mice 3 weeks. In vivo tests showed that the complex significantly lowered serum glucose levels in alloxan-diabetic mice at doses of 77 mg V kg-1. Meanwhile, this complex was investigated as dipeptidyl peptidase IV (DPP-IV) inhibitor for the treatment of type 2 diabetes. The compound exhibit moderate inhibition against DPP-IV and possessed an IC50 value of 30 μM. Lineweaver-Burk transformation of the inhibition kinetics data demonstrated that it was a noncompetitive inhibitor of DPP-IV and Ki value was 136.3 μM. Moreover, molecular modeling studies suggested that the complex could fit well within the active-site cleft of DPP-IV. An acute toxicity study showed that animals treated intragastically with complex 1 at a dose of 5.0 g/kg did not show any significantly abnormal signs. These preliminary results suggest that the manganese Schiff base complex can induce a hypoglycemic effect in alloxan-diabetic mice.
Collapse
Affiliation(s)
- Ming-Rong Zhu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Jie Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Yi Jin
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Li-Hui Gao
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Jun-Ru Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Chun-Mei Lu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Qi Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Ming-Jin Xie
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China.
| |
Collapse
|
25
|
The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7580707. [PMID: 29849912 PMCID: PMC5907490 DOI: 10.1155/2018/7580707] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/10/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is an essential element that is involved in the synthesis and activation of many enzymes and in the regulation of the metabolism of glucose and lipids in humans. In addition, Mn is one of the required components for Mn superoxide dismutase (MnSOD) that is mainly responsible for scavenging reactive oxygen species (ROS) in mitochondrial oxidative stress. Both Mn deficiency and intoxication are associated with adverse metabolic and neuropsychiatric effects. Over the past few decades, the prevalence of metabolic diseases, including type 2 diabetes mellitus (T2MD), obesity, insulin resistance, atherosclerosis, hyperlipidemia, nonalcoholic fatty liver disease (NAFLD), and hepatic steatosis, has increased dramatically. Previous studies have found that ROS generation, oxidative stress, and inflammation are critical for the pathogenesis of metabolic diseases. In addition, deficiency in dietary Mn as well as excessive Mn exposure could increase ROS generation and result in further oxidative stress. However, the relationship between Mn and metabolic diseases is not clear. In this review, we provide insights into the role Mn plays in the prevention and development of metabolic diseases.
Collapse
|
26
|
Cross-talk between renal lithogenesis and atherosclerosis: an unveiled link between kidney stone formation and cardiovascular diseases. Clin Sci (Lond) 2018; 132:615-626. [PMID: 29559506 DOI: 10.1042/cs20171574] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/19/2022]
Abstract
The prevalence of kidney stones and cardiovascular diseases (CVDs) are increasing throughout the world. Both diseases are chronic and characterized by accumulation of oxidized proteins and lipids in the renal tissue and arterial wall, respectively. Emerging studies have revealed a positive association between nephrolithiasis and CVDs. Based on preclinical and clinical evidences, this review discusses: (i) stone forming risk factors, crystal nucleation, aggregation, injury-induced crystal retention, and stone formation, (ii) CVD risk factors such as dyslipidemia, perturbation of gut microbiome, obesity, free radical-induced lipoprotein oxidation, and retention in the arterial wall, subsequent foam cell formation, and atherosclerosis, (iii) mechanism by which stone forming risk factors such as oxalate, calcium, uric acid, and infection contribute toward CVDs, and (iv) how CVD risk factors, such as cholesterol, phospholipids, and uric acid, contribute to kidney stone formation are described.
Collapse
|
27
|
Affiliation(s)
- Callum Livingstone
- Clinical Biochemistry Department, Royal Surrey County Hospital, NHS Foundation Trust, Guildford, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
28
|
Sonowal H, Pal PB, Shukla K, Ramana KV. Aspalatone Prevents VEGF-Induced Lipid Peroxidation, Migration, Tube Formation, and Dysfunction of Human Aortic Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2769347. [PMID: 28243353 PMCID: PMC5294669 DOI: 10.1155/2017/2769347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Accepted: 12/25/2016] [Indexed: 01/05/2023]
Abstract
Although aspalatone (acetylsalicylic acid maltol ester) is recognized as an antithrombotic agent with antioxidative and antiplatelet potential; its efficacy in preventing endothelial dysfunction is not known. In this study, we examined the antiangiogenic, antioxidative, and anti-inflammatory effect of aspalatone in human aortic endothelial cells (HAECs). Specifically, the effect of aspalatone on VEGF-induced HAECs growth, migration, tube formation, and levels of lipid peroxidation-derived malondialdehyde (MDA) was examined. Our results indicate that the treatment of HAECs with aspalatone decreased VEGF-induced cell migration, tube formation, and levels of MDA. Aspalatone also inhibited VEGF-induced decrease in the expression of eNOS and increase in the expression of iNOS, ICAM-1, and VCAM-1. Aspalatone also prevented the VEGF-induced adhesion of monocytes to endothelial cells. Furthermore, aspalatone also prevented VEGF-induced release of inflammatory markers such as Angiopoietin-2, Leptin, EGF, G-CSF, HB-EGF, and HGF in HAECs. Thus, our results suggest that aspalatone could be used to prevent endothelial dysfunction, an important process in the pathophysiology of cardiovascular diseases.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pabitra B. Pal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kirtikar Shukla
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V. Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
29
|
Manganese supplementation increases adiponectin and lowers ICAM-1 and creatinine blood levels in Zucker type 2 diabetic rats, and downregulates ICAM-1 by upregulating adiponectin multimerization protein (DsbA-L) in endothelial cells. Mol Cell Biochem 2017; 429:1-10. [PMID: 28083716 DOI: 10.1007/s11010-016-2931-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/23/2016] [Indexed: 12/15/2022]
Abstract
Blood and tissue levels of manganese (Mn) are lower in type 2 diabetic and atherosclerosis patients compared with healthy subjects. Adiponectin has anti-diabetic and anti-atherogenic properties. Impairment in Disulfide bond A-like protein (DsbA-L) is associated with low adiponectin levels and diabetes. This study investigates the hypothesis that the beneficial effects of Mn supplementation are mediated by adiponectin and DsbA-L. At 6 weeks of age, Male Zucker diabetic fatty rats (ZDF) were randomly divided into two groups: diabetic controls and Mn-supplemented diabetic rats. Each rat was supplemented with Mn (D+Mn, 16 mg/kg BW) or water (placebo, D+P) daily for 7 weeks by oral gavage. For cell culture studies, Human Umbilical Vein Endothelial Cells (HUVEC) or 3T3L1 adipocytes were pretreated with Mn (0-10 µM MnCl2) for 24 h, followed by high glucose (HG, 25 mM) or normal glucose (5 mM) exposure for another 24 h. Mn supplementation resulted in higher adiponectin (p = 0.01), and lower ICAM-1 (p = 0.04) and lower creatinine (p = 0.04) blood levels compared to those in control ZDF rats. Mn-supplemented rats also caused reduced oxidative stress (ROS) and NADPH oxidase, and higher DsbA-L expression in the liver (p = 0.03) of ZDF rats compared to those in livers of control rats; however, Fe levels in liver were lower but not significant (p = 0.08). Similarly, treatment with high glucose (25 mM) caused a decrease in DsbA-L, which was prevented by Mn supplementation in HUVEC and adipocytes. Mechanistic studies with DsbA-L siRNA showed that the beneficial effects of Mn supplementation on ROS, NOX4, and ICAM-1 expression were abolished in DsbA-L knock-down HUVEC. These studies demonstrate that DsbA-L-linked adiponectin mediates the beneficial effects observed with Mn supplementation and provides evidence for a novel mechanism by which Mn supplementation can increase adiponectin and reduce the biomarkers of endothelial dysfunction in diabetes.
Collapse
|
30
|
Freeland-Graves JH, Mousa TY, Kim S. International variability in diet and requirements of manganese: Causes and consequences. J Trace Elem Med Biol 2016; 38:24-32. [PMID: 27264059 DOI: 10.1016/j.jtemb.2016.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022]
Abstract
Manganese (Mn) is an essential trace element that is critical for human health and development. At the turn of the century when diets were based on whole grains, cereals and other traditional foods, Mn intakes (8-9mg/d) were much greater than that prevalent today (2mg/d). As societies have developed, diets have shifted as part of a nutrition transition, to those that are high in processed foods, fat, and sugar. These foods are virtually devoid of Mn. Thus, dietary Mn has declined substantially throughout the world, as confirmed by several wide-scale, total diet studies. International variability in dietary Mn is considerable, due to tremendous diversity in food and culture. In countries where fruit and vegetable intake may be limited, i.e. the United Kingdom, populations may ingest much lower levels of Mn (1.4mg/d) as compared to Asian cultures (4mg/d) which have an abundance of plant foods in their food supply and cuisine. The bioavailability of Mn must be considered, including chemical form, oxidation state, mineral-mineral interactions, presence of dietary components and traditional food processing techniques (milling, germination, malting, fermentation). Manganese toxicity is a public health problem that results from exposure to a naturally high water source or contaminated environment of the soil and/or drinking water. In contrast, inadequate intake is associated with adverse health effects such as diabetes, metabolic syndrome, poor birth outcomes and possibly, cancer. Future studies are recommended to set dietary standards for this mineral in countries that lack recommendations to help achieve optimal health.
Collapse
Affiliation(s)
| | - Tamara Y Mousa
- Department of Nutritional Sciences, University of Texas at Austin, USA
| | - Sangyoung Kim
- Department of Nutritional Sciences, University of Texas at Austin, USA
| |
Collapse
|
31
|
Shan Z, Chen S, Sun T, Luo C, Guo Y, Yu X, Yang W, Hu FB, Liu L. U-Shaped Association between Plasma Manganese Levels and Type 2 Diabetes. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1876-1881. [PMID: 27258818 PMCID: PMC5132633 DOI: 10.1289/ehp176] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/04/2016] [Accepted: 05/13/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Manganese is both an essential element and a known toxicant, and it plays important roles in many mechanisms in relation to type 2 diabetes (T2D). However, epidemiological studies of this relationship are rare. OBJECTIVE We investigated the association between plasma manganese and newly diagnosed T2D as well as whether the association could be modified by manganese superoxide dismutase (MnSOD) polymorphisms. METHODS We conducted a case-control study of 3,228 participants in China: 1,614 T2D patients and 1,614 controls. Concentrations of plasma magnesium were measured, and all participants were genotyped for the MnSOD Val16Ala polymorphism (rs4880). RESULTS A U-shaped association was observed between plasma manganese and T2D, with increased odds ratios (ORs) in relation to either low or high plasma manganese levels. Compared with the middle tertile, the multivariate-adjusted ORs [95% confidence intervals (CIs)] of T2D associated with the lowest tertile and the highest tertile of plasma manganese were 1.89 (1.53, 2.33) and 1.56 (1.23, 1.97), respectively. In spline analysis, the U-shaped association was consistently indicated, with the lowest odds of T2D at the plasma manganese concentration of 4.95 μg/L. Minor allele frequencies (C allele) of the MnSOD Val16Ala polymorphism (rs4880) in the normal glucose tolerance (NGT) and the T2D groups were 13.57% and 14.50%, respectively. The MnSOD rs4880 polymorphism was not associated with T2D, and no interaction was found between plasma manganese and the MnSOD rs4880 polymorphism in relation to T2D. CONCLUSIONS Our results suggested a U-shaped association between plasma manganese and T2D; both low and high levels of plasma manganese were associated with higher odds of newly diagnosed T2D. The U-shaped association was not modified by the MnSOD rs4880 polymorphism. Citation: Shan Z, Chen S, Sun T, Luo C, Guo Y, Yu X, Yang W, Hu FB, Liu L. 2016. U-shaped association between plasma manganese levels and type 2 diabetes. Environ Health Perspect 124:1876-1881; http://dx.doi.org/10.1289/EHP176.
Collapse
Affiliation(s)
- Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijing Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taoping Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Luo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Guo
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Frank B. Hu
- Department of Nutrition, and
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Inhibition of calpain reduces oxidative stress and attenuates endothelial dysfunction in diabetes. Cardiovasc Diabetol 2014; 13:88. [PMID: 24886224 PMCID: PMC4045988 DOI: 10.1186/1475-2840-13-88] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/25/2014] [Indexed: 12/25/2022] Open
Abstract
Aims The present study was to investigate the role of calpain in reactive oxygen species (ROS) production in endothelial cells and endothelium-dependent vascular dysfunction under experimental conditions of diabetes. Methods and results Exposure to high glucose activated calpain, induced apoptosis and reduced nitric oxide (NO) production without changing eNOS protein expression, its phosphorylation and dimers formation in primary human umbilical vein endothelial cells (HUVECs). These effects of high glucose correlated with intracellular ROS production and mitochondrial superoxide generation. Selectively scavenging mitochondrial superoxide increased NO production in high glucose-stimulated HUVECs. Inhibition of calpain using over-expression of calpastatin or pharmacological calpain inhibitor prevented high glucose-induced ROS production, mitochondrial superoxide generation and apoptosis, which were concurrent with an elevation of NO production in HUVECs. In mouse models of streptozotocin-induced type-1 diabetes and OVE26 type-1 diabetic mice, calpain activation correlated with an increase in ROS production and peroxynitrite formation in aortas. Transgenic over-expression of calpastatin reduced ROS production and peroxynitrite formation in diabetic mice. In parallel, diabetes-induced reduction of endothelium-dependent relaxation in aortic ring was reversed by over-expression of calpastatin in mouse models of diabetes. However, the protective effect of calpastatin on endothelium-dependent relaxation was abrogated by eNOS deletion in diabetic mice. Conclusions This study suggests that calpain may play a role in vascular endothelial cell ROS production and endothelium-dependent dysfunction in diabetes. Thus, calpain may be an important therapeutic target to overcome diabetes-induced vascular dysfunction.
Collapse
|
33
|
Zhao R, Le K, Li W, Ren S, Moghadasian MH, Beta T, Shen GX. Effects of Saskatoon berry powder on monocyte adhesion to vascular wall of leptin receptor-deficient diabetic mice. J Nutr Biochem 2014; 25:851-7. [PMID: 24925752 DOI: 10.1016/j.jnutbio.2014.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 12/23/2022]
Abstract
HYPOTHESIS Atherosclerotic cardiovascular complications are the leading cause of death in diabetic patients. Monocyte adhesion is an early event for atherogenesis. Previous studies demonstrated that dark-skin berries had cardiovascular protective effects. We hypothesize that Saskatoon berry (SB) powder may reduce monocyte adhesion in leptin receptor-deficient (db/db) diabetic mice. METHODS Wild-type and db/db mice were fed with chow or supplemented with SB powder. Anthocyanins in SB powder were identified using mass spectrometry. Mouse monocytes were incubated with mouse aorta. Monocyte adhesion was counted under microscopy. Inflammatory or metabolic markers in blood or tissue were analyzed using immunological or biochemical methods. RESULTS SB powder significantly reduced monocyte adhesion to aorta from diabetic db/db mice compared to regular chow. The increased monocyte adhesion to aorta was normalized in db/db mice treated with ≥5% of SB powder for 4 weeks. Increased contents of Nicotinamide adenine dinucleotide phosphate oxidase (NADPH) oxidase-4, heat shock factor-1, monocyte chemotactic protein (MCP)-1, intracellular adhesion molecule (ICAM)-1, P-selectin, tumor necrosis factor-α, plasminogen activator inhibitor (PAI)-1 and urokinase plasminogen activator in aorta or heart apex, elevated plasma PAI-1 and MCP-1 were detected in db/db mice on chow compared to wild-type mice on the same diet; 5% SB powder inhibited the increases of inflammatory, fibrinolytic or stress regulators in aorta or heart apex of db/db mice. Monocyte adhesion positively correlated with blood glucose, cholesterol, body weight, heart MCP-1, PAI-1 or ICAM-1. CONCLUSION The findings suggest that SB powder attenuated monocyte adhesion to aorta of db/db mice, which was potentially mediated through inhibiting the inflammatory, stress and/or fibrinolyic regulators.
Collapse
Affiliation(s)
- Ruozhi Zhao
- Department of Internal Medicine and Physiology; Xiangya Boai Rehabilitation Hospital, Changsha, Hunan, China
| | - Khuong Le
- Department of Human Nutritional Sciences
| | - Wende Li
- Department of Food Sciences, University of Winnipeg, Manitoba, Canada
| | - Song Ren
- Department of Internal Medicine and Physiology
| | | | - Trust Beta
- Department of Food Sciences, University of Winnipeg, Manitoba, Canada
| | | |
Collapse
|
34
|
l-Cysteine supplementation reduces high-glucose and ketone-induced adhesion of monocytes to endothelial cells by inhibiting ROS. Mol Cell Biochem 2014; 391:251-6. [DOI: 10.1007/s11010-014-2009-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/25/2014] [Indexed: 12/12/2022]
|
35
|
Koh ES, Kim SJ, Yoon HE, Chung JH, Chung S, Park CW, Chang YS, Shin SJ. Association of blood manganese level with diabetes and renal dysfunction: a cross-sectional study of the Korean general population. BMC Endocr Disord 2014; 14:24. [PMID: 24606630 PMCID: PMC3973834 DOI: 10.1186/1472-6823-14-24] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 03/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to evaluate the association between blood manganese levels and the prevalence of chronic diseases in the Korean population. METHODS This was a cross-sectional study based on the Korean National Health and Nutrition Examination Survey (KNAHNES). The study included 3996 participants 20 years of age or older whose blood manganese levels had been measured. The participants were also evaluated for the presence of five chronic diseases: diabetes, renal dysfunction, hypertension, ischemic heart disease, and stroke. RESULTS Blood manganese levels were significantly lower in the diabetes group compared with the non-diabetes group (1.26 ± 0.02 vs. 1.35 ± 0.01 μg/dL; p = 0.001) and the renal dysfunction group compared with those with normal renal function (1.28 ± 0.03 vs. 1.35 ± 0.01 μg/dL; p = 0.04). There was no significant association between blood manganese levels and the presence of ischemic heart disease or stroke. A multivariate logistic regression analysis adjusted for age, sex, and body mass index was performed; the odds ratio was 0.652 (95% CI: 0.46-0.92) for diabetes and 0.589 (95% CI: 0.39-0.88) for renal dysfunction when comparing the higher quartiles (Q2-4) with the lowest quartile (Q1) of blood manganese level. The prevalence of diabetes was 7.6% in Q1 and 5.3% in Q2-4 (p = 0.02). Similarly, the prevalence of renal dysfunction was 6.8% in Q1, compared with 4.6% in Q2-4 (p = 0.02). CONCLUSION The prevalence of diabetes and renal dysfunction increased in participants with low blood manganese levels, suggesting that blood manganese may play a role in glucose homeostasis and renal function.
Collapse
Affiliation(s)
- Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul 137-701, Republic of Korea
- Division of Nephrology, The Catholic University of Korea Yeouido St. Mary’s Hospital, 10, 63-ro, Yeongdeungpo-gu, Seoul 150-713, Republic of Korea
| | - Sung Jun Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul 137-701, Republic of Korea
- Division of Nephrology, The Catholic University of Korea Incheon St. Mary’s Hospital, 56, Dongsu-ro, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Hye Eun Yoon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul 137-701, Republic of Korea
- Division of Nephrology, The Catholic University of Korea Incheon St. Mary’s Hospital, 56, Dongsu-ro, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Jong Hee Chung
- Department of Statistics, The Graduate School of Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul 137-701, Republic of Korea
- Division of Nephrology, The Catholic University of Korea Yeouido St. Mary’s Hospital, 10, 63-ro, Yeongdeungpo-gu, Seoul 150-713, Republic of Korea
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul 137-701, Republic of Korea
- Division of Nephrology, The Catholic University of Korea Seoul St. Mary’s Hospital, 222, Banpo-daero, Seoul 137-701, Republic of Korea
| | - Yoon Sik Chang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul 137-701, Republic of Korea
- Division of Nephrology, The Catholic University of Korea Yeouido St. Mary’s Hospital, 10, 63-ro, Yeongdeungpo-gu, Seoul 150-713, Republic of Korea
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul 137-701, Republic of Korea
- Division of Nephrology, The Catholic University of Korea Incheon St. Mary’s Hospital, 56, Dongsu-ro, Bupyeong-gu, Incheon 403-720, Republic of Korea
| |
Collapse
|