1
|
Lu F, Zhang S, Dong S, Wang M, Pang K, Zhao Y, Huang J, Kang J, Liu N, Zhang X, Zhao D, Lu F, Zhang W. Exogenous hydrogen sulfide enhances myogenic differentiation of C2C12 myoblasts under high palmitate stress. Heliyon 2024; 10:e38661. [PMID: 39416846 PMCID: PMC11481675 DOI: 10.1016/j.heliyon.2024.e38661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Skeletal muscle atrophy was one of main complications of type 2 diabetes mellitus. Hydrogen sulfide (H2S) is involved in various physiological functions, such as anti-hypertension and anti-oxidant. Skeletal muscle atrophy caused by type 2 diabetes could lead to the regeneration of muscle fibers. Wnt signaling pathway plays a crucial important role in this process. H2S maybe regulate the Wnt signaling pathway to alleviate skeletal muscle atrophy, however, this role has not been clarified. The aim of this study is to investigate the potential regulatory role of H2S in the Wnt signaling pathway. C2C12 myoblasts treated with 500 μmol palmitate as an in vitro model. Western blot was used to detect the levels of CSE, PKM1, β-catenin, MuRF1, MYOG, MYF6 and MYOD1. In addition, MuRF1 was mutated at Cys44 and MuRF1 S-sulfhydration was detected by biotin switch assay. The interaction between PKM1 and MuRF1 was assessed via Co-immunoprecipitation. Differentiation of C2C12 myoblasts was evaluated using LAMININ staining. These data showed the levels of CSE, β-catenin, PKM1, MYOG, MYF6 and MYOD1 were decreased in pal group, compared with control and pal + NaHS groups. MuRF1 Cys44 mutants increased the protein levels of β-catenin, MYOG, MYF6 and MYOD1 in pal group. Our results suggest that H2S regulates the S-sulfhydration levels of MuRF1 at Cys44, influencing the ubiquitination levels of PKM1 and ultimately promoting myoblast differentiation.
Collapse
Affiliation(s)
- Fangping Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, China
| | - Shiwu Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Mengyi Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Kemiao Pang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jiayi Huang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jiaxin Kang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Xueya Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Dechao Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Sharma T, Olea-Flores M, Imbalzano AN. Regulation of the Wnt signaling pathway during myogenesis by the mammalian SWI/SNF ATPase BRG1. Front Cell Dev Biol 2023; 11:1160227. [PMID: 37484913 PMCID: PMC10360407 DOI: 10.3389/fcell.2023.1160227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Skeletal muscle differentiation is a tightly regulated process, and the importance of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling family for regulation of genes involved in skeletal myogenesis is well-established. Our prior work showed that bromodomains of mSWI/SNF ATPases BRG1 and BRM contribute to myogenesis by facilitating the binding of mSWI/SNF enzymes to regulatory regions of myogenic and other target genes. Here, we report that pathway analyses of differentially expressed genes from that study identified an additional role for mSWI/SNF enzymes via the regulation of the Wnt signaling pathway. The Wnt pathway has been previously shown to be important for skeletal muscle development. To investigate the importance of mSWI/SNF enzymes for the regulation of the Wnt pathway, individual and dual knockdowns were performed for BRG1 and BRM followed by RNA-sequencing. The results show that BRG1, but not BRM, is a regulator of Wnt pathway components and downstream genes. Reactivation of Wnt pathway by stabilization of β-catenin could rescue the defect in myogenic gene expression and differentiation due to BRG1 knockdown or bromodomain inhibition using a specific small molecule inhibitor, PFI-3. These results demonstrate that BRG1 is required upstream of β-catenin function. Chromatin immunoprecipitation of BRG1, BRM and β-catenin at promoters of Wnt pathway component genes showed binding of BRG1 and β-catenin, which provides further mechanistic insight to the transcriptional regulation of these genes.
Collapse
Affiliation(s)
| | | | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
3
|
Gao X, Wang S, Shen S, Wang S, Xie M, Storey KB, Yu C, Lefai E, Song W, Chang H, Yang C. Differential bone remodeling mechanism in hindlimb unloaded and hibernating Daurian ground squirrels: a comparison between artificial and natural disuse within the same species. J Comp Physiol B 2023; 193:329-350. [PMID: 36988658 DOI: 10.1007/s00360-023-01482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/06/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Loss of bone mass can occur in mammals after prolonged disuse but the situation for hibernators that are in a state of torpor for many months of the year is not yet fully understood. The present study assesses the bone remodeling mechanisms present in Daurian ground squirrels (Spermophilus dauricus) during hibernation as compared with a model of hindlimb disuse. Differences in microstructure, mechanical properties, bone remodeling-related proteins (Runx2, OCN, ALP, RANKL, CTK and MMP-9) and key proteins of Wnt/β-catenin signaling pathway (GSK-3β and phospho-β-catenin) were evaluated in ground squirrels under 3 conditions: summer active (SA) vs. hibernation (HIB) vs. hindlimb unloaded (HLU). The results indicated that the body weight in HLU ground squirrels was lower than the SA group, and the middle tibia diameter in the HLU group was lower than that in SA and HIB groups. The thickness of cortical and trabecular bone in femurs from HLU ground squirrels was lower than in SA and HIB groups. Most parameters of the tibia in the HLU group were lower than those in SA and HIB groups, which indicated cortical bone loss in ground squirrels. Moreover, our data showed that the changes in microscopic parameters in the femur were more obvious than those in the tibia in HLU and HIB ground squirrels. The levels of Runx2 and ALP were lower in HLU ground squirrels than SA and HIB groups. The protein levels of OCN were unchanged in the three groups, but the protein levels of ALP were lower in the HLU group than in SA and HIB groups. RANKL, CTK and MMP-9 protein levels were significantly decreased in tibia of HLU ground squirrels as compared with SA and HIB groups. In addition, the protein expression levels of RANKL, CTK and MMP-9 showed no statistical difference between SA and HIB ground squirrels. Thus, the mechanisms involved in the balance between bone formation and resorption in hibernating and hindlimb unloading ground squirrels may be different. The present study showed that in femur, the Wnt signaling pathway was inhibited, the protein level of GSK-3β was increased, and the protein expression of phospho-β-catenin was decreased in the HIB group as compared with the SA group, which indicates that the Wnt signaling pathway has a great influence on the femur of the HIB group. In conclusion, the natural anti-osteoporosis properties of Daurian ground squirrels are seasonal. The squirrels do not experience bone loss when they are inactive for a long time during hibernation, but the mechanisms of anti-osteoporosis did not work in HLU summer active squirrels.
Collapse
Affiliation(s)
- Xuli Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Siqi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Siqi Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Shuyao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Manjiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 710032, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Caiyong Yu
- Military Medical Innovation Center, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, UMR 1019, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Wenqian Song
- Northwest University Hospital, Xi'an, 710069, People's Republic of China
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China.
| | - Changbin Yang
- Military Medical Innovation Center, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
4
|
Hardy S, Choo YM, Hamann M, Cray J. Manzamine-A Alters In Vitro Calvarial Osteoblast Function. Mar Drugs 2022; 20:647. [PMID: 36286470 PMCID: PMC9604769 DOI: 10.3390/md20100647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Manzamine-A is a marine-derived alkaloid which has anti-viral and anti-proliferative properties and is currently being investigated for its efficacy in the treatment of certain viruses (malaria, herpes, HIV-1) and cancers (breast, cervical, colorectal). Manzamine-A has been found to exert effects via modulation of SIX1 gene expression, a gene critical to craniofacial development via the WNT, NOTCH, and PI3K/AKT pathways. To date little work has focused on Manzamine-A and how its use may affect bone. We hypothesize that Manzamine-A, through SIX1, alters bone cell activity. Here, we assessed the effects of Manzamine-A on cells that are responsible for the generation of bone, pre-osteoblasts and osteoblasts. PCR, qrtPCR, MTS cell viability, Caspase 3/7, and functional assays were used to test the effects of Manzamine-A on these cells. Our data suggests Six1 is highly expressed in osteoblasts and their progenitors. Further, osteoblast progenitors and osteoblasts exhibit great sensitivity to Manzamine-A treatment exhibited by a significant decrease in cell viability, increase in cellular apoptosis, and decrease in alkaline phosphatase activity. In silico binding experiment showed that manzamine A potential as an inhibitor of cell proliferation and survival proteins, i.e., Iκb, JAK2, AKT, PKC, FAK, and Bcl-2. Overall, our data suggests Manzamine-A may have great effects on bone health overall and may disrupt skeletal development, homeostasis, and repair.
Collapse
Affiliation(s)
- Samantha Hardy
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mark Hamann
- Departments of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James Cray
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Biosciences, The Ohio State College of Dentistry, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Li Q, Wang Y, Hu X, Zhang Y, Li H, Zhang Q, Cai W, Wang Z, Zhu B, Xu L, Gao X, Chen Y, Gao H, Li J, Zhang L. Transcriptional states and chromatin accessibility during bovine myoblasts proliferation and myogenic differentiation. Cell Prolif 2022; 55:e13219. [PMID: 35362202 PMCID: PMC9136495 DOI: 10.1111/cpr.13219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives Although major advances have been made in bovine epigenome study, the epigenetic basis for fetal skeletal muscle development still remains poorly understood. The aim is to recapitulated the time course of fetal skeletal muscle development in vitro, and explore the dynamic changes of chromatin accessibility and gene expression during bovine myoblasts proliferation and differentiation. Methods PDGFR‐ cells were isolated from bovine fetal skeletal muscle, then cultured and induced myogenic differentiation in vitro in a time‐course study (P, D0, D2,and D4). The assay for transposase‐accessible chromatin sequencing (ATAC‐seq) and RNA sequencing (RNA‐seq) were performed. Results Among the enriched transcriptional factors with high variability, we determined the effects of MAFF, ZNF384, and KLF6 in myogenesis using RNA interference (RNAi). In addition, we identified both stage‐specific genes and chromatin accessibility regions to reveal the sequential order of gene expression, transcriptional regulatory, and signal pathways involved in bovine skeletal muscle development. Further investigation integrating chromatin accessibility and transcriptome data was conducted to explore cis‐regulatory regions in line with gene expression. Moreover, we combined bovine GWAS results of growth traits with regulatory regions defined by chromatin accessibility, providing a suggestive means for a more precise annotation of genetic variants of bovine growth traits. Conclusion Overall, these findings provide valuable information for understanding the stepwise regulatory mechanisms in skeletal muscle development and conducting beef cattle genetic improvement programs.
Collapse
Affiliation(s)
- Qian Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yahui Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xin Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yapeng Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongwei Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wentao Cai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zezhao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bo Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lingyang Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xue Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Huijiang Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Junya Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lupei Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
6
|
Wang Z, Yang Y, Hu S, He J, Wu Z, Qi Z, Huang M, Liu R, Lin Y, Tan C, Xu M, Zhang Z. Short-form RON (sf-RON) enhances glucose metabolism to promote cell proliferation via activating β-catenin/SIX1 signaling pathway in gastric cancer. Cell Biol Toxicol 2021; 37:35-49. [PMID: 32399910 PMCID: PMC7851020 DOI: 10.1007/s10565-020-09525-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Recepteur d'origine nantais (RON) has been implicated in cell proliferation, metastasis, and chemoresistance of various human malignancies. The short-form RON (sf-RON) encoded by RON transcripts was overexpressed in gastric cancer tissues, but its regulatory functions remain illustrated. Here, we found that sf-RON promoted gastric cancer cell proliferation by enhancing glucose metabolism. Furthermore, sf-RON was proved to induce the β-catenin expression level through the AKT1/GSK3β signaling pathway. Meanwhile, the binding sites of β-catenin were identified in the promoter region of SIX1 and it was also demonstrated that β-catenin positively regulated SIX1 expression. SIX1 enhanced the promoter activity of key proteins in glucose metabolism, such as GLUT1 and LDHA. Results indicated that sf-RON regulated the cell proliferation and glucose metabolism of gastric cancer by participating in a sf-RON/β-catenin/SIX1 signaling axis and had significant implications for choosing the therapeutic target of gastric cancer.
Collapse
Affiliation(s)
- Ziliang Wang
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Medicine, Shanghai, 200092 China
| | - Yufei Yang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Shuang Hu
- Department of Pharmacy, Eye & Ent Hospital of Fudan University, Shanghai, 200031 China
| | - Jian He
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Zheng Wu
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| | - Zihao Qi
- Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Mingzhu Huang
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| | - Rujiao Liu
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| | - Ying Lin
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| | - Cong Tan
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 China
| | - Midie Xu
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 China
| | - Zhe Zhang
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| |
Collapse
|
7
|
alinejad H, abbassi daloii A, farzanegi P, abdi A. Response of Cardiac Tissue β-catenin and GSK-3β to Aerobic Training and Hyaluronic Acid in Knee OA Model Rats. MEDICAL LABORATORY JOURNAL 2021. [DOI: 10.29252/mlj.15.1.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
8
|
Acidic Compartment Size, Positioning, and Function during Myogenesis and Their Modulation by the Wnt/Beta-Catenin Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6404230. [PMID: 32685512 PMCID: PMC7322607 DOI: 10.1155/2020/6404230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Lysosomes and acidic compartments are involved in breaking down of macromolecules, membrane recycling, and regulation of signaling pathways. Here, we analyzed the role of acidic compartments during muscle differentiation and the involvement of the Wnt/beta-catenin pathway in lysosomal function during myogenesis. Acridine orange was used to localize and quantify acidic cellular compartments in primary cultures of embryonic muscle cells from Gallus gallus. Our results show an increase in acidic compartment size and area, as well as changes in their positioning during the initial steps of myogenesis. The inhibition of lysosomal function by either the chloroquine Lys05 or the downregulation of LAMP-2 with siRNA impaired chick myogenesis, by inhibiting myoblast fusion. Two activators of the Wnt/beta-catenin pathway, BIO and Wnt3a, were able to rescue the inhibitory effects of Lys05 in myogenesis. These results suggest a new role for the Wnt/beta-catenin pathway in the regulation of acidic compartment size, positioning, and function in muscle cells.
Collapse
|
9
|
Liu D, Li S, Cui Y, Tong H, Li S, Yan Y. Podocan affects C2C12 myogenic differentiation by enhancing Wnt/β-catenin signaling. J Cell Physiol 2019; 234:11130-11139. [PMID: 30652305 DOI: 10.1002/jcp.27763] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Podocan, a small leucine-rich repeat protein, is a negative regulator of cell proliferation. In this study, we demonstrated that podocan is involved in the differentiation of C2C12 murine myoblasts. Podocan expression increased with the progression of C2C12 differentiation. As expect, siRNA-mediated podocan knockdown inhibited C2C12 differentiation, as indicated by inhibition of MYOG, MYH2, and desmin expression, as well as reductions in the differentiation and fusion indices. Overexpression of podocan using dCas9 technology promoted C2C12 cell differentiation. In addition, supplementation of culture medium with podocan influenced C2C12 differentiation. Podocan knockdown reduced Wnt/β-catenin signaling, characterized by a reduction in the nuclear translocation of β-catenin, whereas podocan overexpression had the opposite effect. Furthermore, treatment with XAV939, an inhibitor of Wnt/β-catenin, reduced the podocan-mediated promotion of C2C12 differentiation. Induction of muscle injury in mice by bupivacaine administration suggested that podocan may play a role in muscle regeneration. In summary, our results suggest that podocan is required for normal C2C12 differentiation and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Dan Liu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuang Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yafeng Cui
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huili Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shufeng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yunqin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Saleh A, Subramaniam G, Raychaudhuri S, Dhawan J. Cytoplasmic sequestration of the RhoA effector mDiaphanous1 by Prohibitin2 promotes muscle differentiation. Sci Rep 2019; 9:8302. [PMID: 31165762 PMCID: PMC6549159 DOI: 10.1038/s41598-019-44749-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
Muscle differentiation is controlled by adhesion and growth factor-dependent signalling through common effectors that regulate muscle-specific transcriptional programs. Here we report that mDiaphanous1, an effector of adhesion-dependent RhoA-signalling, negatively regulates myogenesis at the level of Myogenin expression. In myotubes, over-expression of mDia1ΔN3, a RhoA-independent mutant, suppresses Myogenin promoter activity and expression. We investigated mDia1-interacting proteins that may counteract mDia1 to permit Myogenin expression and timely differentiation. Using yeast two-hybrid and mass-spectrometric analysis, we report that mDia1 has a stage-specific interactome, including Prohibitin2, MyoD, Akt2, and β-Catenin, along with a number of proteosomal and mitochondrial components. Of these interacting partners, Prohibitin2 colocalises with mDia1 in cytoplasmic punctae in myotubes. We mapped the interacting domains of mDia1 and Phb2, and used interacting (mDia1ΔN3/Phb2 FL or mDia1ΔN3/Phb2-Carboxy) and non-interacting pairs (mDia1H + P/Phb2 FL or mDia1ΔN3/Phb2-Amino) to dissect the functional consequences of this partnership on Myogenin promoter activity. Co-expression of full-length as well as mDia1-interacting domains of Prohibitin2 reverse the anti-myogenic effects of mDia1ΔN3, while non-interacting regions do not. Our results suggest that Prohibitin2 sequesters mDia1, dampens its anti-myogenic activity and fine-tunes RhoA-mDia1 signalling to promote differentiation. Overall, we report that mDia1 is multi-functional signalling effector whose anti-myogenic activity is modulated by a differentiation-dependent interactome. The data have been deposited to the ProteomeXchange with identifier PXD012257.
Collapse
Affiliation(s)
- Amena Saleh
- Institute for Stem Cell Science & Regenerative Medicine, Bangalore, Karnataka, 560065, India
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gunasekaran Subramaniam
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Swasti Raychaudhuri
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Science & Regenerative Medicine, Bangalore, Karnataka, 560065, India.
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
11
|
Cui S, Li L, Yu RT, Downes M, Evans RM, Hulin JA, Makarenkova HP, Meech R. β-Catenin is essential for differentiation of primary myoblasts via cooperation with MyoD and α-catenin. Development 2019; 146:dev.167080. [PMID: 30683662 DOI: 10.1242/dev.167080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
Canonical Wnts promote myoblast differentiation; however, the role of β-catenin in adult myogenesis has been contentious, and its mechanism(s) unclear. Using CRISPR-generated β-catenin-null primary adult mouse myoblasts, we found that β-catenin was essential for morphological differentiation and timely deployment of the myogenic gene program. Alignment, elongation and fusion were grossly impaired in null cells, and myogenic gene expression was not coordinated with cytoskeletal and membrane remodeling events. Rescue studies and genome-wide analyses extended previous findings that a β-catenin-TCF/LEF interaction is not required for differentiation, and that β-catenin enhances MyoD binding to myogenic loci. We mapped cellular pathways controlled by β-catenin and defined novel targets in myoblasts, including the fusogenic genes myomaker and myomixer. We also showed that interaction of β-catenin with α-catenin was important for efficient differentiation. Overall the study suggests dual roles for β-catenin: a TCF/LEF-independent nuclear function that coordinates an extensive network of myogenic genes in cooperation with MyoD; and an α-catenin-dependent membrane function that helps control cell-cell interactions. β-Catenin-TCF/LEF complexes may function primarily in feedback regulation to control levels of β-catenin and thus prevent precocious/excessive myoblast fusion.
Collapse
Affiliation(s)
- Shuang Cui
- Department of Clinical Pharmacology, Flinders University, Bedford Park, SA 5042, Australia.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Liang Li
- Department of Biochemistry, Flinders University, Bedford Park, SA 5042 and Department of Biochemistry, University of Adelaide, North Tce, Adelaide, SA 5005, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037, USA.,Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037, USA
| | - Julie-Ann Hulin
- Department of Clinical Pharmacology, Flinders University, Bedford Park, SA 5042, Australia
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robyn Meech
- Department of Clinical Pharmacology, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
12
|
Song W, Ma J, Lei B, Yuan X, Cheng B, Yang H, Wang M, Feng Z, Wang L. Sine oculis homeobox 1 promotes proliferation and migration of human colorectal cancer cells through activation of Wnt/β-catenin signaling. Cancer Sci 2019; 110:608-616. [PMID: 30548112 PMCID: PMC6361609 DOI: 10.1111/cas.13905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 12/11/2022] Open
Abstract
Sine oculis homeobox 1 (Six1) is a homeodomain transcription factor that is aberrantly expressed in a variety of human cancers, including colorectal cancer (CRC). Six1 has been reported to play a key role in the proliferation and migration of CRC cells but the underlying molecular mechanisms are still poorly characterized. In the present study, we found that Six1 overexpression promoted the proliferation and migration of CRC cells. Consistently, Six1 knockdown (KD) significantly inhibited proliferation and migration of CRC cells. In addition, we showed that Six1 promoted proliferation and migration of CRC cells through activation of Wnt/β‐catenin signaling, as evidenced by promotion of nuclear localization of β‐catenin. Silencing of β‐catenin expression with siRNA or inhibiting Wnt signaling with a specific inhibitor, xav939, significantly blocked Six1‐induced nuclear localization of β‐catenin and mitigated Six1‐promoted proliferation and migration of CRC cells. We further confirmed the involvement of β‐catenin in Six1‐promoted proliferation and migration of CRC cells by activation of Wnt signaling with lithium chloride (LiCl) in Six1 KD CRC cells and results showed that LiCl restores defective β‐catenin nuclear localization and proliferation and migration of CRC cells. Taken together, these results suggest that Six1 homeoprotein promotes the proliferation and migration of CRC cells by activating the Wnt/β‐catenin signaling pathway, and strategies targeting Six1 may be promising for the treatment of CRC.
Collapse
Affiliation(s)
- Wenxin Song
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jian Ma
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Bingbing Lei
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xin Yuan
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Binfeng Cheng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Haijie Yang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Mian Wang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Zhiwei Feng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
13
|
Zhang LS, Kang X, Lu J, Zhang Y, Wu X, Wu G, Zheng J, Tuladhar R, Shi H, Wang Q, Morlock L, Yao H, Huang LJS, Maire P, Kim J, Williams N, Xu J, Chen C, Zhang CC, Lum L. Installation of a cancer promoting WNT/SIX1 signaling axis by the oncofusion protein MLL-AF9. EBioMedicine 2019; 39:145-158. [PMID: 30528456 PMCID: PMC6354558 DOI: 10.1016/j.ebiom.2018.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Chromosomal translocation-induced expression of the chromatin modifying oncofusion protein MLL-AF9 promotes acute myelocytic leukemia (AML). Whereas WNT/β-catenin signaling has previously been shown to support MLL-AF9-driven leukemogenesis, the mechanism underlying this relationship remains unclear. METHODS We used two novel small molecules targeting WNT signaling as well as a genetically modified mouse model that allow targeted deletion of the WNT protein chaperone Wntless (WLS) to evaluate the role of WNT signaling in AML progression. ATAC-seq and transcriptome profiling were deployed to understand the cellular consequences of disrupting a WNT signaling in leukemic initiating cells (LICs). FINDINGS We identified Six1 to be a WNT-controlled target gene in MLL-AF9-transformed leukemic initiating cells (LICs). MLL-AF9 alters the accessibility of Six1 DNA to the transcriptional effector TCF7L2, a transducer of WNT/β-catenin gene expression changes. Disruption of WNT/SIX1 signaling using inhibitors of the Wnt signaling delays the development of AML. INTERPRETATION By rendering TCF/LEF-binding elements controlling Six1 accessible to TCF7L2, MLL-AF9 promotes WNT/β-catenin-dependent growth of LICs. Small molecules disrupting WNT/β-catenin signaling block Six1 expression thereby disrupting leukemia driven by MLL fusion proteins.
Collapse
Affiliation(s)
- Li-Shu Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xunlei Kang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jianming Lu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaofeng Wu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junke Zheng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rubina Tuladhar
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heping Shi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiaoling Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lorraine Morlock
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiyu Yao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lily Jun-Shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pascal Maire
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR, 8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - James Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jian Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chuo Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lawrence Lum
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Bem J, Grabowska I, Daniszewski M, Zawada D, Czerwinska AM, Bugajski L, Piwocka K, Fogtman A, Ciemerych MA. Transient MicroRNA Expression Enhances Myogenic Potential of Mouse Embryonic Stem Cells. Stem Cells 2018; 36:655-670. [PMID: 29314416 DOI: 10.1002/stem.2772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are known regulators of various cellular processes, including pluripotency and differentiation of embryonic stem cells (ESCs). We analyzed differentiation of two ESC lines-D3 and B8, and observed significant differences in the expression of miRNAs and genes involved in pluripotency and differentiation. We also examined if transient miRNA overexpression could serve as a sufficient impulse modulating differentiation of mouse ESCs. ESCs were transfected with miRNA Mimics and differentiated in embryoid bodies and embryoid body outgrowths. miRNAs involved in differentiation of mesodermal lineages, such as miR145 and miR181, as well as miRNAs regulating myogenesis (MyomiRs)-miR1, miR133a, miR133b, and miR206 were tested. Using such approach, we proved that transient overexpression of molecules selected by us modulated differentiation of mouse ESCs. Increase in miR145 levels upregulated Pax3, Pax7, Myod1, Myog, and MyHC2, while miR181 triggered the expression of such crucial myogenic factors as Myf5 and MyHC2. As a result, the ability of ESCs to initiate myogenic differentiation and form myotubes was enhanced. Premature expression of MyomiRs had, however, an adverse effect on myogenic differentiation of ESCs. Stem Cells 2018;36:655-670.
Collapse
Affiliation(s)
- Joanna Bem
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Maciej Daniszewski
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Dorota Zawada
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Areta M Czerwinska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Lukasz Bugajski
- Laboratory of Cytometry, Nencki Institute of Experimental Biology
| | | | - Anna Fogtman
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| |
Collapse
|
15
|
Hulin JA, Nguyen TDT, Cui S, Marri S, Yu RT, Downes M, Evans RM, Makarenkova H, Meech R. Barx2 and Pax7 Regulate Axin2 Expression in Myoblasts by Interaction with β-Catenin and Chromatin Remodelling. Stem Cells 2016; 34:2169-82. [PMID: 27144473 PMCID: PMC5019118 DOI: 10.1002/stem.2396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/15/2016] [Accepted: 04/14/2016] [Indexed: 12/13/2022]
Abstract
Satellite cells are the resident stem cells of skeletal muscle; quiescent in adults until activated by injury to generate proliferating myoblasts. The canonical Wnt signalling pathway, mediated by T-cell factor/lymphoid enhancer factor (TCF/LEF) and β-catenin effector proteins, controls myoblast differentiation in vitro, and recent work suggests that timely termination of the Wnt/β-catenin signal is important for normal adult myogenesis. We recently identified the Barx2 and Pax7 homeobox proteins as novel components of the Wnt effector complex. Here, we examine molecular and epigenetic mechanisms by which Barx2 and Pax7 regulate the canonical Wnt target gene Axin2, which mediates critical feedback to terminate the transcriptional response to Wnt signals. Barx2 is recruited to the Axin2 gene via TCF/LEF binding sites, recruits β-catenin and the coactivator GRIP-1, and induces local H3K-acetylation. Barx2 also promotes nuclear localization of β-catenin. Conversely, Pax7 represses Axin2 promoter/intron activity and inhibits Barx2-mediated H3K-acetylation via the corepressor HDAC1. Wnt3a not only induces Barx2 mRNA, but also stabilises Barx2 protein in myoblasts; conversely, Wnt3a potently inhibits Pax7 protein expression. As Barx2 promotes myogenic differentiation and Pax7 suppresses it, this novel posttranscriptional regulation of Barx2 and Pax7 by Wnt3a may be involved in the specification of differentiation-competent and -incompetent myoblast populations. Finally, we propose a model for dual function of Barx2 downstream of Wnt signals: activation of myogenic target genes in association with canonical myogenic regulatory factors, and regulation of the negative feedback loop that limits the response of myoblasts to Wnt signals via direct interaction of Barx2 with the TCF/β-catenin complex. Stem Cells 2016;34:2169-2182.
Collapse
Affiliation(s)
- Julie-Ann Hulin
- Department of Clinical Pharmacology, Flinders University, Bedford Park, South Australia, Australia
| | - Thi Diem Tran Nguyen
- Department of Clinical Pharmacology, Flinders University, Bedford Park, South Australia, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | - Shuang Cui
- Department of Clinical Pharmacology, Flinders University, Bedford Park, South Australia, Australia
| | - Shashikanth Marri
- Department of Molecular Medicine, Flinders University, Bedford Park, South Australia, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute, La Jolla, California, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute, La Jolla, California, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute, La Jolla, California, USA.,Howard Hughes Medical Institute, Salk Institute, La Jolla, California, USA
| | - Helen Makarenkova
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Robyn Meech
- Department of Clinical Pharmacology, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
16
|
Liu F, Liang Z, Xu J, Li W, Zhao D, Zhao Y, Yan C. Activation of the wnt/β-Catenin Signaling Pathway in Polymyositis, Dermatomyositis and Duchenne Muscular Dystrophy. J Clin Neurol 2016; 12:351-60. [PMID: 27165423 PMCID: PMC4960221 DOI: 10.3988/jcn.2016.12.3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The wnt/β-catenin signaling pathway plays a critical role in embryonic development and adult-tissue homeostasis. Recent investigations implicate the importance of wnt/β-catenin signaling in normal wound healing and its sustained activation being associated with fibrogenesis. We investigated the immunolocalization and activation of wnt/β-catenin in polymyositis (PM), dermatomyositis (DM), and Duchenne muscular dystrophy (DMD). METHODS Immunofluorescence staining and Western blot analysis of β-catenin were performed in muscle specimens from 6 PM, 8 DM, and 6 DMD subjects. The β-catenin/Tcf4 DNA-binding activity in muscle was studied using an electrophoretic mobility shift assay (EMSA), and serum wnt/β-catenin/Tcf transcriptional activity was measured using a luciferase reporter gene assay. RESULTS Immunoreactivity for β-catenin was found in the cytoplasm and nuclei of muscle fibers in PM, DM, and DMD. The protein level of β-catenin was elevated, and EMSA analysis confirmed the activation of wnt/β-catenin signaling. The transcriptional activities of β-catenin/Tcf in the circulation were increased in patients with PM, DM, and DMD, especially in those with interstitial lung disease, and these transcriptional activities decreased when PM or DM patients exhibited obvious clinical improvements. CONCLUSIONS Our findings indicate that wnt/β-catenin signaling is activated in PM, DM, and DMD. Its activation in muscle tissue and the circulation may play a role in modulating muscle regeneration and be at least partly involved in the process of muscle and pulmonary fibrosis.
Collapse
Affiliation(s)
- Fuchen Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China.,Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Zonglai Liang
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China
| | - Jingwen Xu
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China
| | - Wei Li
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China
| | - Dandan Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China
| | - Yuying Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China.,Key Laboratory for Experimental Teratology of the Ministry of Education, School of Medicine, Shandong University, Jian, China.,Brain Science Research Institute, Shandong University, Jian, China.
| |
Collapse
|
17
|
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
18
|
Świerczek B, Ciemerych MA, Archacka K. From pluripotency to myogenesis: a multistep process in the dish. J Muscle Res Cell Motil 2015; 36:363-75. [PMID: 26715014 PMCID: PMC4762919 DOI: 10.1007/s10974-015-9436-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells (PSCs), such as embryonic stem cells or induced pluripotent stem cells are a promising source of cells for regenerative medicine as they can differentiate into all cell types building a mammalian body. However, protocols leading to efficient and safe in vitro generation of desired cell types must be perfected before PSCs can be used in cell therapies or tissue engineering. In vivo, i.e. in developing mouse embryo or teratoma, PSCs can differentiate into skeletal muscle, but in vitro their spontaneous differentiation into myogenic cells is inefficient. Numerous attempts have been undertaken to enhance this process. Many of them involved mimicking the interactions occurring during embryonic myogenesis. The key regulators of embryonic myogenesis, such as Wnts proteins, fibroblast growth factor 2, and retinoic acid, have been tested to improve the frequency of in vitro myogenic differentiation of PSCs. This review summarizes the current state of the art, comparing spontaneous and directed myogenic differentiation of PSCs as well as the protocols developed this far to facilitate this process.
Collapse
Affiliation(s)
- Barbara Świerczek
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
19
|
Ozawa M. E-cadherin cytoplasmic domain inhibits cell surface localization of endogenous cadherins and fusion of C2C12 myoblasts. Biol Open 2015; 4:1427-35. [PMID: 26453620 PMCID: PMC4728358 DOI: 10.1242/bio.013938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myoblast fusion is a highly regulated process that is essential for skeletal muscle formation during muscle development and regeneration in mammals. Much remains to be elucidated about the molecular mechanism of myoblast fusion although cadherins, which are Ca(2+)-dependent cell-cell adhesion molecules, are thought to play a critical role in this process. Mouse myoblasts lacking either N-cadherin or M-cadherin can still fuse to form myotubes, indicating that they have no specific function in this process and may be functionally replaced by either M-cadherin or N-cadherin, respectively. In this study, we show that expressing the E-cadherin cytoplasmic domain ectopically in C2C12 myoblasts inhibits cell surface localization of endogenous M-cadherin and N-cadherin, as well as cell-cell fusion. This domain, however, does not inhibit myoblast differentiation according to microarray-based gene expression analysis. In contrast, expressing a dominant-negative β-catenin mutant ectopically, which suppresses Wnt/β-catenin signaling, did not inhibit cell-cell fusion. Therefore, the E-cadherin cytoplasmic domain inhibits cell-cell fusion by inhibiting cell surface localization of endogenous cadherins and not by inhibiting Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Masayuki Ozawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
20
|
He S, Lu Y, Liu X, Huang X, Keller ET, Qian CN, Zhang J. Wnt3a: functions and implications in cancer. CHINESE JOURNAL OF CANCER 2015; 34:554-62. [PMID: 26369691 PMCID: PMC4593336 DOI: 10.1186/s40880-015-0052-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/18/2015] [Indexed: 12/30/2022]
Abstract
Wnt3a, one of Wnt family members, plays key roles in regulating pleiotropic cellular functions, including self-renewal, proliferation, differentiation, and motility. Accumulating evidence has suggested that Wnt3a promotes or suppresses tumor progression via the canonical Wnt signaling pathway depending on cancer type. In addition, the roles of Wnt3a signaling can be inhibited by multiple proteins or chemicals. Herein, we summarize the latest findings on Wnt3a as an important therapeutic target in cancer.
Collapse
Affiliation(s)
- Sha He
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Yi Lu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xin Huang
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Evan T Keller
- Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Chao-Nan Qian
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 51006, P.R. China.
| | - Jian Zhang
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China. .,Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
21
|
McCoy CR, Stadelman BS, Brumaghim JL, Liu JT, Bain LJ. Arsenic and Its Methylated Metabolites Inhibit the Differentiation of Neural Plate Border Specifier Cells. Chem Res Toxicol 2015; 28:1409-21. [PMID: 26024302 DOI: 10.1021/acs.chemrestox.5b00036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Exposure to arsenic in food and drinking water has been correlated with adverse developmental outcomes, such as reductions in birth weight and neurological deficits. Additionally, studies have shown that arsenic suppresses sensory neuron formation and skeletal muscle myogenesis, although the reason why arsenic targets both of these cell types in unclear. Thus, P19 mouse embryonic stem cells were used to investigate the mechanisms by which arsenic could inhibit cellular differentiation. P19 cells were exposed to 0, 0.1, or 0.5 μM sodium arsenite and induced to form embryoid bodies over a period of 5 days. The expression of transcription factors necessary to form neural plate border specifier (NPBS) cells, neural crest cells and their progenitors, and myocytes and their progenitors were examined. Early during differentiation, arsenic significantly reduced the transcript and protein expression of Msx1 and Pax3, both needed for NPBS cell formation. Arsenic also significantly reduced the protein expression of Sox 10, needed for neural crest progenitor cell production, by 31-50%, and downregulated the protein and mRNA levels of NeuroD1, needed for neural crest cell differentiation, in a time- and dose-dependent manner. While the overall protein expression of transcription factors in the skeletal muscle lineage was not changed, arsenic did alter their nuclear localization. MyoD nuclear translocation was significantly reduced on days 2-5 between 15 and 70%. At a 10-fold lower concentration, monomethylarsonous acid (MMA III) appeared to be just as potent as inorganic arsenic at reducing the mRNA levels Pax3 (79% vs84%), Sox10 (49% vs 65%), and Msx1 (56% vs 56%). Dimethylarsinous acid (DMA III) also reduced protein and transcript expression, but the changes were less dramatic than those with MMA or arsenite. All three arsenic species reduced the nuclear localization of MyoD and NeuroD1 in a similar manner. The early changes in the differentiation of neural plate border specifier cells may provide a mechanism for arsenic to suppress both neurogenesis and myogenesis.
Collapse
Affiliation(s)
- Christopher R McCoy
- †Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, South Carolina 29634, United States
| | - Bradley S Stadelman
- ‡Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | - Julia L Brumaghim
- ‡Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | - Jui-Tung Liu
- §Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, South Carolina 29634, United States
| | - Lisa J Bain
- †Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, South Carolina 29634, United States.,§Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, South Carolina 29634, United States
| |
Collapse
|
22
|
Wnt3a signal pathways activate MyoD expression by targeting cis-elements inside and outside its distal enhancer. Biosci Rep 2015; 35:BSR20140177. [PMID: 25651906 PMCID: PMC4370097 DOI: 10.1042/bsr20140177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Wnt proteins are secreted cytokines and several Wnts are expressed in the developing somites and surrounding tissues. Without proper Wnt stimulation, the organization of the dermomyotome and myotome can become defective. These Wnt signals received by somitic cells can lead to activation of Pax3/Pax7 and myogenic regulatory factors (MRFs), especially Myf5 and MyoD. However, it is currently unknown whether Wnts activate Myf5 and MyoD through direct targeting of their cis-regulatory elements or via indirect pathways. To clarify this issue, in the present study, we tested the regulation of MyoD cis-regulatory elements by Wnt3a secreted from human embryonic kidney (HEK)-293T cells. We found that Wnt3a activated the MyoD proximal 6.0k promoter (P6P) only marginally, but highly enhanced the activity of the composite P6P plus distal enhancer (DE) reporter through canonical and non-canonical pathways. Further screening of the intervening fragments between the DE and the P6P identified a strong Wnt-response element (WRE) in the upstream −8 to −9k region (L fragment) that acted independently of the DE, but was dependent on the P6P. Deletion of a Pax3/Pax7-targeted site in the L fragment significantly reduced its response to Wnt3a, implying that Wnt3a activates the L fragment partially through Pax3/Pax7 action. Binding of β-catenin and Pax7 to their target sites in the DE and the L fragment respectively was also demonstrated by ChIP. These observations demonstrated the first time that Wnt3a can directly activate MyoD expression through targeting cis-elements in the DE and the L fragment. We found that Wnt3a can directly activate MyoD expression through targeting cis-elements in the distal enhancer and in the upstream −8 to −9k region. A novel Pax3/Pax7-involved pathway and both canonical and non-canonical Wnt pathways are involved in this activation.
Collapse
|
23
|
Wu W, Huang R, Wu Q, Li P, Chen J, Li B, Liu H. The role of Six1 in the genesis of muscle cell and skeletal muscle development. Int J Biol Sci 2014; 10:983-9. [PMID: 25210496 PMCID: PMC4159689 DOI: 10.7150/ijbs.9442] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/06/2014] [Indexed: 02/06/2023] Open
Abstract
The sine oculis homeobox 1 (Six1) gene encodes an evolutionarily conserved transcription factor. In the past two decades, much research has indicated that Six1 is a powerful regulator participating in skeletal muscle development. In this review, we summarized the discovery and structural characteristics of Six1 gene, and discussed the functional roles and molecular mechanisms of Six1 in myogenesis and in the formation of skeletal muscle fibers. Finally, we proposed areas of future interest for understanding Six1 gene function.
Collapse
Affiliation(s)
- Wangjun Wu
- 1. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; ; 2. Huaian Academy of Nanjing Agricultural University, Huaian, Jiangsu, 223001, China
| | - Ruihua Huang
- 1. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; ; 2. Huaian Academy of Nanjing Agricultural University, Huaian, Jiangsu, 223001, China
| | - Qinghua Wu
- 3. College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, China. ; 4. Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kradec Kralove, Hradec Kralove, Czech Republic
| | - Pinghua Li
- 1. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; ; 2. Huaian Academy of Nanjing Agricultural University, Huaian, Jiangsu, 223001, China
| | - Jie Chen
- 1. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bojiang Li
- 1. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honglin Liu
- 1. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
24
|
Shelton M, Metz J, Liu J, Carpenedo RL, Demers SP, Stanford WL, Skerjanc IS. Derivation and expansion of PAX7-positive muscle progenitors from human and mouse embryonic stem cells. Stem Cell Reports 2014; 3:516-29. [PMID: 25241748 PMCID: PMC4266001 DOI: 10.1016/j.stemcr.2014.07.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 12/25/2022] Open
Abstract
Cell therapies treating pathological muscle atrophy or damage requires an adequate quantity of muscle progenitor cells (MPCs) not currently attainable from adult donors. Here, we generate cultures of approximately 90% skeletal myogenic cells by treating human embryonic stem cells (ESCs) with the GSK3 inhibitor CHIR99021 followed by FGF2 and N2 supplements. Gene expression analysis identified progressive expression of mesoderm, somite, dermomyotome, and myotome markers, following patterns of embryonic myogenesis. CHIR99021 enhanced transcript levels of the pan-mesoderm gene T and paraxial-mesoderm genes MSGN1 and TBX6; immunofluorescence confirmed that 91% ± 6% of cells expressed T immediately following treatment. By 7 weeks, 47% ± 3% of cells were MYH(+ve) myocytes/myotubes surrounded by a 43% ± 4% population of PAX7(+ve) MPCs, indicating 90% of cells had achieved myogenic identity without any cell sorting. Treatment of mouse ESCs with these factors resulted in similar enhancements of myogenesis. These studies establish a foundation for serum-free and chemically defined monolayer skeletal myogenesis of ESCs.
Collapse
Affiliation(s)
- Michael Shelton
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jeff Metz
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jun Liu
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Richard L Carpenedo
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Faculty of Graduate and Postdoctoral Studies, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Simon-Pierre Demers
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Faculty of Graduate and Postdoctoral Studies, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - William L Stanford
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Faculty of Graduate and Postdoctoral Studies, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Ilona S Skerjanc
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
25
|
WNT3A promotes myogenesis of human embryonic stem cells and enhances in vivo engraftment. Sci Rep 2014; 4:5916. [PMID: 25084050 PMCID: PMC5379990 DOI: 10.1038/srep05916] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/10/2014] [Indexed: 02/08/2023] Open
Abstract
The ability of human embryonic stem cells (hESCs) to differentiate into skeletal muscle cells is an important criterion in using them as a cell source to ameliorate skeletal muscle impairments. However, differentiation of hESCs into skeletal muscle cells still remains a challenge, often requiring introduction of transgenes. Here, we describe the use of WNT3A protein to promote in vitro myogenic commitment of hESC-derived cells and their subsequent in vivo function. Our findings show that the presence of WNT3A in culture medium significantly promotes myogenic commitment of hESC-derived progenitors expressing a mesodermal marker, platelet-derived growth factor receptor-α (PDGFRA), as evident from the expression of myogenic markers, including DES, MYOG, MYH1, and MF20. In vivo transplantation of these committed cells into cardiotoxin-injured skeletal muscles of NOD/SCID mice reveals survival and engraftment of the donor cells. The cells contributed to the regeneration of damaged muscle fibers and the satellite cell compartment. In lieu of the limited cell source for treating skeletal muscle defects, the hESC-derived PDGFRA(+) cells exhibit significant in vitro expansion while maintaining their myogenic potential. The results described in this study provide a proof-of-principle that myogenic progenitor cells with in vivo engraftment potential can be derived from hESCs without genetic manipulation.
Collapse
|
26
|
Szarek M, Li R, Vikraman J, Southwell B, Hutson JM. Molecular signals governing cremaster muscle development: clues for cryptorchidism. J Pediatr Surg 2014; 49:312-6; discussion 316. [PMID: 24528975 DOI: 10.1016/j.jpedsurg.2013.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/10/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND/AIM Cryptorchidism affects 2-4% of newborn boys. Testicular descent requires the gubernaculum to differentiate into cremaster muscle (CM) during androgen-mediated inguino-scrotal descent, but the cellular mechanisms regulating this remodeling remain elusive. β-Catenin, a marker of canonical Wnt signaling, promotes myogenic genes and cellular adhesion. We aimed to determine if androgen receptor (AR) blockade altered β-catenin and its downstream myogenic proteins within the CM. METHOD Gubernacula from male rats (n=12) and rats treated with anti-androgen, flutamide (n=12) at E19, D0, D2 were processed for immunohistochemistry. Antibodies against β-catenin, embryonic myosin, and myogenin were visualized by confocal microscopy. RESULTS At E19, β-catenin immuno-reactivity (IR) localized to the CM membrane. By D2, cytoplasmic β-catenin-IR was noted with overall β-catenin-IR decreasing. Myogenic proteins resided primarily in cells containing β-catenin on their plasma membrane. Embryonic myosin-IR was high at E19 and then decreased by D2, while myogenin-IR increased. AR blockade increased cytoplasmic β-catenin at D2 and reduced levels of both myogenic proteins. CONCLUSION Myogenic proteins are present in CM cells containing β-catenin. AR blockade did not alter cellular adhesion via β-catenin. In contrast, blocking AR prevented β-catenin entering the nucleus and impaired CM myogenesis. Mutations in this pathway may result in idiopathic cryptorchidism.
Collapse
Affiliation(s)
- Maciej Szarek
- Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Ruili Li
- Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jaya Vikraman
- Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia
| | - Bridget Southwell
- Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia
| | - John M Hutson
- Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia; Urology Department, Royal Children's Hospital, Melbourne, Australia.
| |
Collapse
|
27
|
Characterization of Wnt/β-catenin signaling in rhabdomyosarcoma. J Transl Med 2013; 93:1090-9. [PMID: 23999248 DOI: 10.1038/labinvest.2013.97] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/06/2013] [Accepted: 07/07/2013] [Indexed: 11/09/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and accounts for about 5% of all malignant paediatric tumours. β-Catenin, a multifunctional nuclear transcription factor in the canonical Wnt signaling pathway, is active in myogenesis and embryonal somite patterning. Dysregulation of Wnt signaling facilitates tumour invasion and metastasis. This study characterizes Wnt/β-catenin signaling and functional activity in paediatric embryonal and alveolar RMS. Immunohistochemical assessment of paraffin-embedded tissues from 44 RMS showed β-catenin expression in 26 cases with cytoplasmic/membranous expression in 9/14 cases of alveolar RMS, and 15/30 cases of embryonal RMS, whereas nuclear expression was only seen in 2 cases of embryonal RMS. The potential functional significance of β-catenin expression was tested in four RMS cell lines, two derived from embryonal (RD and RD18) RMS and two from alveolar (Rh4 and Rh30) RMS. Western blot analysis demonstrated the expression of Wnt-associated proteins including β-catenin, glycogen synthase kinase-3β, disheveled, axin-1, naked, LRP-6 and cadherins in all cell lines. Cell fractionation and immunofluorescence studies of the cell lines (after stimulation by human recombinant Wnt3a) showed reduced phosphorylation of β-catenin, stabilization of the active cytosolic form and nuclear translocation of β-catenin. Reporter gene assay demonstrated a T-cell factor/lymphoid-enhancing factor-mediated transactivation in these cells. In response to human recombinant Wnt3a, the alveolar RMS cells showed a significant decrease in proliferation rate and induction of myogenic differentiation (myogenin, MyoD1 and myf5). These data indicate that the central regulatory components of canonical Wnt/β-catenin signaling are expressed and that this pathway is functionally active in a significant subset of RMS tumours and might represent a novel therapeutic target.
Collapse
|
28
|
Interaction of Wnt Signaling with BMP/Smad Signaling during the Transition from Cell Proliferation to Myogenic Differentiation in Mouse Myoblast-Derived Cells. Int J Cell Biol 2013; 2013:616294. [PMID: 23864860 PMCID: PMC3705783 DOI: 10.1155/2013/616294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/03/2013] [Indexed: 11/17/2022] Open
Abstract
Background. Wnt signaling is involved in muscle formation through β-catenin-dependent or -independent pathways, but interactions with other signaling pathways including transforming growth factor β/Smad have not been precisely elucidated. Results. As Wnt4 stimulates myogenic differentiation by antagonizing myostatin (GDF8) activity, we examined the role of Wnt4 signaling during muscle differentiation in the C2C12 myoblast cell line. Among several extrinsic signaling molecules examined in a microarray analysis of C2C12 cells during the transition from cell proliferation to differentiation after mitogen deprivation, bone morphogenetic protein 4 (BMP4) expression was prominently increased. Wnt4 overexpression had similar effects on BMP4 expression. BMP4 was able to inhibit muscle differentiation when added to the culture medium. BMP4 and noggin had no effects on the cellular localization of β-catenin induced by Wnt3a; however, the BMP4-induced phosphorylation of Smad1/5/8 was enhanced by Wnt4, but not by Wnt3a. The BMP antagonist noggin effectively stimulated muscle differentiation through binding to endogenous BMPs, and the effect of noggin was enhanced by the presence of Wnt3a and Wnt4. Conclusion. These results suggest that BMP/Smad pathways are modified through Wnt signaling during the transition from progenitor cell proliferation to myogenic differentiation, although Wnt/β-catenin signaling is not modified with BMP/Smad signaling.
Collapse
|
29
|
Volloch V, Olsen BR. Why cellular stress suppresses adipogenesis in skeletal tissue, but is ineffective in adipose tissue: control of mesenchymal cell differentiation via integrin binding sites in extracellular matrices. Matrix Biol 2013; 32:365-71. [PMID: 23792045 DOI: 10.1016/j.matbio.2013.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 01/16/2023]
Abstract
This Perspective addresses one of the major puzzles of adipogenesis in adipose tissue, namely its resistance to cellular stress. It introduces a concept of "density" of integrin binding sites in extracellular matrix, proposes a cellular signaling explanation for the observed effects of matrix elasticity and of cell shape on mesenchymal stem cell differentiation, and discusses how specialized integrin binding sites in collagen IV-containing matrices guard two pivotal physiological and evolutionary processes: stress-resistant adipogenesis in adipose tissues and preservation of pluripotency of mesenchymal stem-like cells in their storage niches. Finally, it proposes strategies to suppress adipogenesis in adipose tissues.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
| | | |
Collapse
|
30
|
Wong J, Mehta V, Voronova A, Coutu J, Ryan T, Shelton M, Skerjanc IS. β-catenin is essential for efficient in vitro premyogenic mesoderm formation but can be partially compensated by retinoic acid signalling. PLoS One 2013; 8:e57501. [PMID: 23460868 PMCID: PMC3583846 DOI: 10.1371/journal.pone.0057501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/24/2013] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that P19 cells expressing a dominant negative β-catenin mutant (β-cat/EnR) cannot undergo myogenic differentiation in the presence or absence of muscle-inducing levels of retinoic acid (RA). While RA could upregulate premyogenic mesoderm expression, including Pax3/7 and Meox1, only Pax3/7 and Gli2 could be upregulated by RA in the presence of β-cat/EnR. However, the use of a dominant negative construct that cannot be compensated by other factors is limiting due to the possibility of negative chromatin remodelling overriding compensatory mechanisms. In this study, we set out to determine if β-catenin function is essential for myogenesis with and without RA, by creating P19 cells with reduced β-catenin transcriptional activity using an shRNA approach, termed P19[shβ-cat] cells. The loss of β-catenin resulted in a reduction of skeletal myogenesis in the absence of RA as early as premyogenic mesoderm, with the loss of Pax3/7, Eya2, Six1, Meox1, Gli2, Foxc1/2, and Sox7 transcript levels. Chromatin immunoprecipitation identified an association of β-catenin with the promoter region of the Sox7 gene. Differentiation of P19[shβ-cat] cells in the presence of RA resulted in the upregulation or lack of repression of all of the precursor genes, on day 5 and/or 9, with the exception of Foxc2. However, expression of Sox7, Gli2, the myogenic regulatory factors and terminal differentiation markers remained inhibited on day 9 and overall skeletal myogenesis was reduced. Thus, β-catenin is essential for in vitro formation of premyogenic mesoderm, leading to skeletal myogenesis. RA can at least partially compensate for the loss of β-catenin in the expression of many myogenic precursor genes, but not for myoblast gene expression or overall myogenesis.
Collapse
Affiliation(s)
- Jacob Wong
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Virja Mehta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Anastassia Voronova
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Josée Coutu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tammy Ryan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Shelton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilona S. Skerjanc
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
31
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
32
|
Hudson NJ, Lyons RE, Reverter A, Greenwood PL, Dalrymple BP. Inferring the in vivo cellular program of developing bovine skeletal muscle from expression data. Gene Expr Patterns 2013; 13:109-25. [PMID: 23419240 DOI: 10.1016/j.gep.2013.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/01/2022]
Abstract
We outline an in vivo cellular program of bovine longissimus muscle development inferred from expression data from 60 days post conception to 3months postnatal. Analytic challenges included changes in cellular composition, ambiguous 'diagnostic' markers of cell type and contrasts between cattle human and mouse myogenesis. Nevertheless, the expression profiles of the myosin isoforms support slow and fast muscle fibres emanating from primary and secondary myogenesis respectively, while expression of the prenatal myosin subunits is down regulated prior to birth. Of the canonical pro-myogenic transcription factors (TF), MYF6 and MYF5 are negatively co-expressed, with MYF6 displaying higher expression in the post-natal samples and MYF5, MYOG, HES6 and PAX7 displaying higher expression in early development. A set of TFs (SIX1, EYA2 and DACH2) considered important in undifferentiated murine cells were equally abundant in differentiated bovine cells. An examination of mammalian regulators of fibre composition, muscle mass and muscle metabolism, underscored the roles of PPARGC1A, TGFβ signalling and the NHR4 Nuclear Hormone Receptors on bovine muscle development. Enriched among the most variably expressed genes from the entire data set were molecules regulating mitochondrial metabolism of carbohydrate (PDK4), fat (UCP3), protein (AGXT2L1) and high energy phosphate (CKMT2). The dramatic increase in the expression of these transcripts, which may enable the peri-natal transition to metabolic independence critical for new-born herbivores, provides surprising evidence for substantial developmental remodelling of muscle mitochondria and reflects changes in nutrient availability. Overall, despite differences in size, metabolism and physiology, the muscle structural subunit expression program appears very similar in ruminants, rodents and humans.
Collapse
Affiliation(s)
- Nicholas J Hudson
- Computational and Systems Biology Group, CSIRO Food Futures and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, QLD 4072, Australia.
| | | | | | | | | |
Collapse
|
33
|
Li YH, Chen HY, Li YW, Wu SY, Wangta-Liu, Lin GH, Hu SY, Chang ZK, Gong HY, Liao CH, Chiang KY, Huang CW, Wu JL. Progranulin regulates zebrafish muscle growth and regeneration through maintaining the pool of myogenic progenitor cells. Sci Rep 2013; 3:1176. [PMID: 23378909 PMCID: PMC3560382 DOI: 10.1038/srep01176] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/09/2013] [Indexed: 11/20/2022] Open
Abstract
Myogenic progenitor cell (MPC) is responsible for postembryonic muscle growth and regeneration. Progranulin (PGRN) is a pluripotent growth factor that is correlated with neuromuscular disease, which is characterised by denervation, leading to muscle atrophy with an abnormal quantity and functional ability of MPC. However, the role of PGRN in MPC biology has yet to be elucidated. Here, we show that knockdown of zebrafish progranulin A (GrnA) resulted in a reduced number of MPC and impaired muscle growth. The decreased number of Pax7-positive MPCs could be restored by the ectopic expression of GrnA or MET. We further confirmed the requirement of GrnA in MPC activation during muscle regeneration by knockdown and transgenic line with muscle-specific overexpression of GrnA. In conclusion, we demonstrate a critical role for PGRN in the maintenance of MPC and suggest that muscle atrophy under PGRN loss may begin with MPC during postembryonic myogenesis.
Collapse
Affiliation(s)
- Yen-Hsing Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Voronova A, Coyne E, Al Madhoun A, Fair JV, Bosiljcic N, St-Louis C, Li G, Thurig S, Wallace VA, Wiper-Bergeron N, Skerjanc IS. Hedgehog signaling regulates MyoD expression and activity. J Biol Chem 2012; 288:4389-404. [PMID: 23266826 PMCID: PMC3567689 DOI: 10.1074/jbc.m112.400184] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibition of MyoD expression is important for obtaining muscle progenitors that can replenish the satellite cell niche during muscle repair. Progenitors could be derived from either embryonic stem cells or satellite cells. Hedgehog (Hh) signaling is important for MyoD expression during embryogenesis and adult muscle regeneration. To date, the mechanistic understanding of MyoD regulation by Hh signaling is unclear. Here, we demonstrate that the Hh effector, Gli2, regulates MyoD expression and associates with MyoD gene elements. Gain- and loss-of-function experiments in pluripotent P19 cells show that Gli2 activity is sufficient and required for efficient MyoD expression during skeletal myogenesis. Inhibition of Hh signaling reduces MyoD expression during satellite cell activation in vitro. In addition to regulating MyoD expression, Hh signaling regulates MyoD transcriptional activity, and MyoD activates Hh signaling in myogenic conversion assays. Finally, Gli2, MyoD, and MEF2C form a protein complex, which enhances MyoD activity on skeletal muscle-related promoters. We therefore link Hh signaling to the function and expression of MyoD protein during myogenesis in stem cells.
Collapse
Affiliation(s)
- Anastassia Voronova
- Department of Biochemistry, Microbiology, and Immunology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Andres-Mateos E, Mejias R, Soleimani A, Lin BM, Burks TN, Marx R, Lin B, Zellars RC, Zhang Y, Huso DL, Marr TG, Leinwand LA, Merriman DK, Cohn RD. Impaired skeletal muscle regeneration in the absence of fibrosis during hibernation in 13-lined ground squirrels. PLoS One 2012; 7:e48884. [PMID: 23155423 PMCID: PMC3498346 DOI: 10.1371/journal.pone.0048884] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 10/02/2012] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes to the regeneration of muscle, but whether satellite cells play a role in hibernation is unknown. In the hibernating 13-lined ground squirrel we show that muscles ablated of satellite cells were still protected against atrophy, demonstrating that satellite cells are not involved in the maintenance of skeletal muscle during hibernation. Additionally, hibernating skeletal muscle showed extremely slow regeneration in response to injury, due to repression of satellite cell activation and myoblast differentiation caused by a fine-tuned interplay of p21, myostatin, MAPK, and Wnt signaling pathways. Interestingly, despite long periods of inflammation and lack of efficient regeneration, injured skeletal muscle from hibernating animals did not develop fibrosis and was capable of complete recovery when animals emerged naturally from hibernation. We propose that hibernating squirrels represent a new model system that permits evaluation of impaired skeletal muscle remodeling in the absence of formation of tissue fibrosis.
Collapse
Affiliation(s)
- Eva Andres-Mateos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rebeca Mejias
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Arshia Soleimani
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Brian M. Lin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tyesha N. Burks
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ruth Marx
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Benjamin Lin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard C. Zellars
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Yonggang Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - David L. Huso
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tom G. Marr
- Hiberna Corporation, Boulder, Colorado, United States of America
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Dana K. Merriman
- Department of Biology and Microbiology, University of Wisconsin, Oshkosh, Wisconsin, United States of America
| | - Ronald D. Cohn
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
36
|
Key signalling factors and pathways in the molecular determination of skeletal muscle phenotype. Animal 2012; 1:681-98. [PMID: 22444469 DOI: 10.1017/s1751731107702070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The molecular basis and control of the biochemical and biophysical properties of skeletal muscle, regarded as muscle phenotype, are examined in terms of fibre number, fibre size and fibre types. A host of external factors or stimuli, such as ligand binding and contractile activity, are transduced in muscle into signalling pathways that lead to protein modifications and changes in gene expression which ultimately result in the establishment of the specified phenotype. In skeletal muscle, the key signalling cascades include the Ras-extracellular signal regulated kinase-mitogen activated protein kinase (Erk-MAPK), the phosphatidylinositol 3'-kinase (PI3K)-Akt1, p38 MAPK, and calcineurin pathways. The molecular effects of external factors on these pathways revealed complex interactions and functional overlap. A major challenge in the manipulation of muscle of farm animals lies in the identification of regulatory and target genes that could effect defined and desirable changes in muscle quality and quantity. To this end, recent advances in functional genomics that involve the use of micro-array technology and proteomics are increasingly breaking new ground in furthering our understanding of the molecular determinants of muscle phenotype.
Collapse
|
37
|
Geetha-Loganathan P, Nimmagadda S, Scaal M. Wnt signaling in limb organogenesis. Organogenesis 2012; 4:109-15. [PMID: 19279722 DOI: 10.4161/org.4.2.5857] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 11/19/2022] Open
Abstract
Secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development of a wide range of taxa from Hydra to humans. The most extensively studied Wnt signaling pathway is the canonical Wnt pathway, which controls gene expression by stabilizing beta-catenin, and regulates a multitude of developmental processes. More recently, noncanonical Wnt pathways, which are beta-catenin-independent, have been found to be important developmental regulators. Understanding the mechanisms of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. Limb development is a paradigm to study the principles of Wnt signaling in various developmental contexts. In the developing vertebrate limb, Wnt signaling has been shown to have important functions during limb bud initiation, limb outgrowth, early limb patterning, and later limb morphogenesis events. This review provides a brief overview on the diversity of Wnt-dependent signaling events during embryonic development of the vertebrate limb.
Collapse
Affiliation(s)
- Poongodi Geetha-Loganathan
- Institute of Anatomy and Cell Biology; Department of Molecular Embryology; University of Freiburg; Freiburg, Germany
| | | | | |
Collapse
|
38
|
Retinoic acid enhances skeletal myogenesis in human embryonic stem cells by expanding the premyogenic progenitor population. Stem Cell Rev Rep 2012; 8:482-93. [PMID: 21735106 DOI: 10.1007/s12015-011-9284-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human embryonic stem cells (hESCs) are a potential source of material for cell therapy of muscle diseases. To date, it has proven difficult to generate skeletal muscle from hESCs in high yields and within a reasonable timeframe. Further, a hESC-derived Pax3/7-positive skeletal muscle progenitor population has not yet been described. Previous studies have shown that Pax3/7-positive progenitor cells can repopulate the satellite cell niche, indicating the importance of this population for therapy. We sought to optimize the differentiation of hESCs into skeletal muscle in order to characterize myogenesis at a molecular level and shorten the time course. We treated hESCs with retinoic acid (RA) and found an enhancement of skeletal myogenesis, and the expression of the myogenic regulatory factors (MRFs) MyoD and myogenin by day 25. Furthermore, we found that RA treatment expanded the muscle progenitor pool, which occurred as a distinct Pax3(+ve) population prior to MRF expression. Non-skeletal muscle tissue types were not significantly affected. Therefore, we have identified a differentiation pathway in hESCs that provides a skeletal muscle progenitor population which can undergo myogenesis more efficiently. We propose that RA could fit into a directed culture method for deriving skeletal muscle from hESCs.
Collapse
|
39
|
Yang KF, Shen XH, Cai W. Prenatal and early postnatal exposure to high-saturated-fat diet represses Wnt signaling and myogenic genes in offspring rats. Exp Biol Med (Maywood) 2012; 237:912-8. [PMID: 22875341 DOI: 10.1258/ebm.2012.011395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The prenatal and early postnatal period is a key developmental window for nutrition status, and high-fat exposure in this period has been shown to be associated with type 2 diabetes, obesity and other features of metabolic disorders later in life. The present study was designed to investigate the underlying molecular mechanisms and role of relative genes involved in this process. We investigated the impact of prenatal and early postnatal exposure to a high-saturated-fat diet on the regulation of the Wnt signaling pathway and myogenic genes in skeletal muscle of rat offspring as well as the serum and muscle physiological outcomes. Timed-pregnant Sprague-Dawley rats were fed either a control (C, 16% kcal fat) or high-saturated-fat diet (HF, 45% kcal fat) throughout gestation and lactation. After weaning, female offspring were fed a control diet to generate two offspring groups: control diet-fed offspring of control diet-fed dams (C/C) and control diet-fed offspring of HF diet-fed dams (HF/C). The serum glucose of the HF/C offspring (5.58 ± 0.26 mmol/L) was significantly higher than that of C/C offspring (4.97 ± 0.28 mmol/L), and the Homeostasis Model Assessment-Insulin Resistance of HF/C offspring (2.00 ± 0.11) was also significantly higher when compared with C/C (1.84 ± 0.09). Furthermore, HF/C offspring presented excessive intramuscular fat accumulation (1.8-fold, P < 0.05) and decreased muscle glycogen (1.3-fold, P < 0.05), as well as impairment of muscle development at the age of 12 weeks. Meanwhile, we observed the repression of Wnt/β-catenin signaling and myogenic genes in HF/C offspring. The present study indicates that prenatal and early postnatal exposure to a high-saturated-fat diet suppresses the development of skeletal muscle and myogenic genes via Wnt/β-catenin signaling, and the inappropriate muscle development could potentially contribute to the predisposition of offspring to develop metabolic-syndrome-like phenotype in adulthood.
Collapse
Affiliation(s)
- Ke-Feng Yang
- Clinical Nutrition Center, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | | | | |
Collapse
|
40
|
Hong GM, Bain LJ. Arsenic exposure inhibits myogenesis and neurogenesis in P19 stem cells through repression of the β-catenin signaling pathway. Toxicol Sci 2012; 129:146-56. [PMID: 22641621 DOI: 10.1093/toxsci/kfs186] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epidemiological studies have correlated embryonic arsenic exposure with adverse developmental outcomes such as stillbirths, neonatal mortality, and low birth weight. Additionally, arsenic exposure reduces neuronal cell migration and maturation, and reduces skeletal muscle cell formation, alters muscle fiber subtype, and changes locomotor activity. This study used P19 mouse embryonic stem cells to examine whether arsenic exposure could alter their differentiation into skeletal muscles and neurons. When P19 cells were exposed to 0.1, 0.5, or 1.0 μM sodium arsenite, embryoid body (EB) formation was not altered. However, arsenic suppressed their differentiation into muscles and neurons, as evidenced by morphological changes accompanied by a significant reduction in myosin heavy chain and Tuj1 expression. Real-time PCR, immunofluorescence, and immunoblotting were used to confirm that the altered differentiation was due to the repression of muscle- and neuron-specific transcription factors such as Pax3, Myf5, MyoD, myogenin, neurogenin 1, neurogenin 2, and NeuroD in the arsenite-exposed cells. The reductions in transcription factors expression appear to be caused by repressed Wnt/β-catenin signaling pathways in early embryogenesis, as evidenced by decreased β-catenin expression in the arsenic-exposed EBs on differentiation days 2 and 5. Interestingly, the expression of Nanog, a transcription factor that maintains the pluripotency of stem cells, was increased after arsenite exposure, indicating that arsenite inhibits their differentiation but not proliferation. This study demonstrates that arsenic can perturb the embryonic differentiation process by repressing the Wnt/β-catenin signaling pathway. More importantly, this study may provide insight into how arsenic exposure affects skeletal and neuronal differentiation during embryogenesis.
Collapse
Affiliation(s)
- Gia-Ming Hong
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, South Carolina 29634, USA
| | | |
Collapse
|
41
|
Sanchez-Ferras O, Coutaud B, Djavanbakht Samani T, Tremblay I, Souchkova O, Pilon N. Caudal-related homeobox (Cdx) protein-dependent integration of canonical Wnt signaling on paired-box 3 (Pax3) neural crest enhancer. J Biol Chem 2012; 287:16623-35. [PMID: 22457346 DOI: 10.1074/jbc.m112.356394] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the earliest events in neural crest development takes place at the neural plate border and consists in the induction of Pax3 expression by posteriorizing Wnt·β-catenin signaling. The molecular mechanism of this regulation is not well understood, but several observations suggest a role for posteriorizing Cdx transcription factors (Cdx1/2/4) in this process. Cdx genes are known as integrators of posteriorizing signals from Wnt, retinoic acid, and FGF pathways. In this work, we report that Wnt-mediated regulation of murine Pax3 expression is indirect and involves Cdx proteins as intermediates. We show that Pax3 transcripts co-localize with Cdx proteins in the posterior neurectoderm and that neural Pax3 expression is reduced in Cdx1-null embryos. Using Wnt3a-treated P19 cells and neural crest-derived Neuro2a cells, we demonstrate that Pax3 expression is induced by the Wnt-Cdx pathway. Co-transfection analyses, electrophoretic mobility shift assays, chromatin immunoprecipitation, and transgenic studies further indicate that Cdx proteins operate via direct binding to an evolutionarily conserved neural crest enhancer of the Pax3 proximal promoter. Taken together, these results suggest a novel neural function for Cdx proteins within the gene regulatory network controlling neural crest development.
Collapse
Affiliation(s)
- Oraly Sanchez-Ferras
- Molecular Genetics of Development, Department of Biological Sciences, and BioMed Research Center, Faculty of Sciences, University of Quebec, Montreal, Quebec H2X 3Y7, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Kanungo J, Chandrasekharappa SC. Menin induces endodermal differentiation in aggregated P19 stem cells by modulating the retinoic acid receptors. Mol Cell Biochem 2012; 359:95-104. [PMID: 21833538 PMCID: PMC3412628 DOI: 10.1007/s11010-011-1003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
Abstract
Menin, a ubiquitously expressed protein, is the product of the multiple endocrine neoplasia type I (Men1) gene, mutations of which cause tumors primarily of the parathyroid, endocrine pancreas, and anterior pituitary. Menin-null mice display early embryonic lethality, and thus imply a critical role for menin in early development. In this study, using the P19 embryonic carcinoma stem cells, we studied menin's role in cell differentiation. Menin expression is induced in P19 cell aggregates by retinoic acid (RA). Menin over-expressing stable clones proliferated in a significantly reduced rate compared to the empty vector harboring cells. RA induced cell death in aggregated menin over-expressing cells. However, in the absence of RA, specific populations of the aggregated menin over-expressing cells displayed the characteristic of an endodermal phenotype by the acquisition of cytokeratin Endo A expression (TROMA-1), a marker for the primitive endoderm, with a concomitant loss of the stem cell marker SSEA-1. Menin's ability to induce endodermal differentiation in specific populations of the aggregated cells in the absence of RA implied that menin could substitute RA by inducing a set of target genes that are RA responsive. Menin over-expressing cells upon aggregation showed a robust expression of RA receptors (RAR), RARα, β, and γ relative to the empty vector-harboring cells. Moreover, endodermal differentiation was inhibited by the pan-RAR antagonist Ro41-5253, suggesting that menin could induce endodermal differentiation of uncommitted cells by functionally modulating the RARs.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Dr, Bldg 50, Room 5232, Bethesda, MD 20892, USA.
| | | |
Collapse
|
43
|
Voronova A, Al Madhoun A, Fischer A, Shelton M, Karamboulas C, Skerjanc IS. Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro. Nucleic Acids Res 2011; 40:3329-47. [PMID: 22199256 PMCID: PMC3333882 DOI: 10.1093/nar/gkr1232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The transcription factors Gli2 (glioma-associated factor 2), which is a transactivator of Sonic Hedgehog (Shh) signalling, and myocyte enhancer factor 2C (MEF2C) play important roles in the development of embryonic heart muscle and enhance cardiomyogenesis in stem cells. Although the physiological importance of Shh signalling and MEF2 factors in heart development is well known, the mechanistic understanding of their roles is unclear. Here, we demonstrate that Gli2 and MEF2C activated each other's expression while enhancing cardiomyogenesis in differentiating P19 EC cells. Furthermore, dominant-negative mutant proteins of either Gli2 or MEF2C repressed each other's expression, while impairing cardiomyogenesis in P19 EC cells. In addition, chromatin immunoprecipitation (ChIP) revealed association of Gli2 to the Mef2c gene, and of MEF2C to the Gli2 gene in differentiating P19 cells. Finally, co-immunoprecipitation studies showed that Gli2 and MEF2C proteins formed a complex, capable of synergizing on cardiomyogenesis-related promoters containing both Gli- and MEF2-binding elements. We propose a model whereby Gli2 and MEF2C bind each other's regulatory elements, activate each other's expression and form a protein complex that synergistically activates transcription, enhancing cardiac muscle development. This model links Shh signalling to MEF2C function during cardiomyogenesis and offers mechanistic insight into their in vivo functions.
Collapse
Affiliation(s)
- Anastassia Voronova
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Tanaka S, Terada K, Nohno T. Canonical Wnt signaling is involved in switching from cell proliferation to myogenic differentiation of mouse myoblast cells. J Mol Signal 2011; 6:12. [PMID: 21970630 PMCID: PMC3198762 DOI: 10.1186/1750-2187-6-12] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 10/05/2011] [Indexed: 11/29/2022] Open
Abstract
Background Wnt/β-catenin signaling is involved in various aspects of skeletal muscle development and regeneration. In addition, Wnt3a and β-catenin are required for muscle-specific gene transcription in embryonic carcinoma cells and satellite-cell proliferation during adult skeletal muscle regeneration. Downstream targets of canonical Wnt signaling are cyclin D1 and c-myc. However both target genes are suppressed during differentiation of mouse myoblast cells, C2C12. Underlying molecular mechanisms of β-catenin signaling during myogenic differentiation remain unknown. Results Using C2C12 cells, we examined intracellular signaling and gene transcription during myoblast proliferation and differentiation. We confirmed that several Wnt signaling components, including Wnt9a, Sfrp2 and porcupine, were consistently upregulated in differentiating C2C12 cells. Troponin T-positive myotubes were decreased by Wnt3a overexpression, but not Wnt4. TOP/FOP reporter assays revealed that co-expression with Wnt4 reduced Wnt3a-induced luciferase activity, suggesting that Wnt4 signaling counteracted Wnt3a signaling in myoblasts. FH535, a small-molecule inhibitor of β-catenin/Tcf complex formation, reduced basal β-catenin in the cytoplasm and decreased myoblast proliferation. K252a, a protein kinase inhibitor, increased both cytosolic and membrane-bound β-catenin and enhanced myoblast fusion. Treatments with K252a or Wnt4 resulted in increased cytoplasmic vesicles containing phosphorylated β-catenin (Tyr654) during myogenic differentiation. Conclusions These results suggest that various Wnt ligands control subcellular β-catenin localization, which regulate myoblast proliferation and myotube formation. Wnt signaling via β-catenin likely acts as a molecular switch that regulates the transition from cell proliferation to myogenic differentiation.
Collapse
Affiliation(s)
- Shingo Tanaka
- Department of Molecular and Developmental Biology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan.
| | | | | |
Collapse
|
45
|
Bayoussef Z, Dixon JE, Stolnik S, Shakesheff KM. Aggregation promotes cell viability, proliferation, and differentiation in an in vitro model of injection cell therapy. J Tissue Eng Regen Med 2011; 6:e61-73. [PMID: 21932267 DOI: 10.1002/term.482] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 02/23/2011] [Accepted: 07/11/2011] [Indexed: 11/11/2022]
Abstract
Many cell therapy approaches aim to deliver high-density single-cell suspensions to diseased or injured sites in the body. Long term clinical success will in part be dependent on the cells that remain viable and that assume correct functionality post-administration. The research presented in this paper focuses on the potential of cell aggregate delivery to generate a more supportive environment for cells than single cell suspensions. An in vitro model of injection delivery of C2C12 myoblast cells showed a significant difference in cell function and phenotype between adhesive collagen and non-adhesive alginate, indicating that in vitro assays based on this approach can discriminate between cell-cell/cell-matrix interactions and could be valuable when assessing cell therapy systems. Contrary to single cells, aggregates maintain viability, cellular activity, and phenotype beyond that of single cells, even in non-adhesive matrices, enabling delivery of higher cell densities with enhanced proliferative and differentiation capacity.
Collapse
Affiliation(s)
- Zahia Bayoussef
- Tissue Engineering, Wolfson Centre for Stem Cells, Tissue Engineering, Modelling (STEM), Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | | |
Collapse
|
46
|
Le May M, Mach H, Lacroix N, Hou C, Chen J, Li Q. Contribution of retinoid X receptor signaling to the specification of skeletal muscle lineage. J Biol Chem 2011; 286:26806-12. [PMID: 21653693 PMCID: PMC3143641 DOI: 10.1074/jbc.m111.227058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pluripotent stem cells possess a tremendous potential for the treatment of many diseases because of their capacity to differentiate into a variety of cell lineages. However, they provide little promise for muscle-related diseases, mainly because of the lack of small molecule inducers to efficiently direct myogenic conversion. Retinoic acid, acting through the retinoic acid receptor (RAR) and retinoid X receptor (RXR), affects stem cell fate determination in a concentration-dependent manner, but it only has a modest efficacy on the commitment of ES cells into skeletal muscle lineage. The RXR is very important for embryonic development but is generally considered to act as a silent partner of RAR in a non-permissive mode. In this study, we have examined whether activation of the RXR by rexinoid or RXR-specific signaling play a role in the specification of stem cells into muscle lineage. Our findings demonstrate that mouse ES cells generate skeletal myocytes effectively upon treatment with rexinoid at the early stage of differentiation and that on a molecular level, rexinoid-enhanced myogenesis simulates the sequential events observed in vivo. Moreover, RXR-mediated myogenic conversion requires the function of β-catenin but not RAR. Our studies establish the feasibility of applying the RXR agonist in cell-based therapies to treat muscle-related diseases. The aptitude of mouse ES cells to generate skeletal myocytes following rexinoid induction also provides a model system to study the convergence of different signaling pathways in myogenesis.
Collapse
Affiliation(s)
- Melanie Le May
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Zhao JX, Yue WF, Zhu MJ, Du M. AMP-activated protein kinase regulates beta-catenin transcription via histone deacetylase 5. J Biol Chem 2011; 286:16426-34. [PMID: 21454484 DOI: 10.1074/jbc.m110.199372] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; it is inhibited under obese conditions and is activated by exercise and by many anti-diabetic drugs. Emerging evidence also suggests that AMPK regulates cell differentiation, but the underlying mechanisms are unclear. We hypothesized that AMPK regulates cell differentiation via altering β-catenin expression, which involves phosphorylation of class IIa histone deacetylase 5 (HDAC5). In both C3H10T1/2 cells and mouse embryonic fibroblasts (MEFs), AMPK activity was positively correlated with β-catenin content. Chemical inhibition of HDAC5 increased β-catenin mRNA expression. HDAC5 overexpression reduced and HDAC5 knockdown increased H3K9 acetylation and cellular β-catenin content. HDAC5 formed a complex with myocyte enhancer factor-2 to down-regulate β-catenin mRNA expression. AMPK phosphorylated HDAC5, which promoted HDAC5 exportation from the nucleus; mutation of two phosphorylation sites in HDAC5, Ser-259 and -498, abolished the regulatory role of AMPK on β-catenin expression. In conclusion, AMPK promotes β-catenin expression through phosphorylation of HDAC5, which reduces HDAC5 interaction with the β-catenin promoter via myocyte enhancer factor-2. Thus, the data indicate that AMPK regulates cell differentiation and development via cross-talk with the wingless and Int (Wnt)/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jun-Xing Zhao
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | | | |
Collapse
|
48
|
Punch VG, Jones AE, Rudnicki MA. Transcriptional networks that regulate muscle stem cell function. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 1:128-140. [PMID: 20835986 DOI: 10.1002/wsbm.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Muscle stem cells comprise different populations of stem and progenitor cells found in embryonic and adult tissues. A number of signaling and transcriptional networks are responsible for specification and survival of these cell populations and regulation of their behavior during growth and regeneration. Muscle progenitor cells are mostly derived from the somites of developing embryos, while satellite cells are the progenitor cells responsible for the majority of postnatal growth and adult muscle regeneration. In resting muscle, these stem cells are quiescent, but reenter the cell cycle during their activation, whereby they undergo decisions to self-renew, proliferate, or differentiate and fuse into multinucleated myofibers to repair damaged muscle. Regulation of muscle stem cell activity is under the precise control of a number of extrinsic signaling pathways and active transcriptional networks that dictate their behavior, fate, and regenerative potential. Here, we review the networks responsible for these different aspects of muscle stem cell biology and discuss prevalent parallels between mechanisms regulating the activity of embryonic muscle progenitor cells and adult satellite cells.
Collapse
Affiliation(s)
- Vincent G Punch
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- The Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Andrew E Jones
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- The Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Michael A Rudnicki
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- The Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| |
Collapse
|
49
|
Gianakopoulos PJ, Mehta V, Voronova A, Cao Y, Yao Z, Coutu J, Wang X, Waddington MS, Tapscott SJ, Skerjanc IS. MyoD directly up-regulates premyogenic mesoderm factors during induction of skeletal myogenesis in stem cells. J Biol Chem 2010; 286:2517-25. [PMID: 21078671 DOI: 10.1074/jbc.m110.163709] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gain- and loss-of-function experiments have illustrated that the family of myogenic regulatory factors is necessary and sufficient for the formation of skeletal muscle. Furthermore, MyoD required cellular aggregation to induce myogenesis in P19 embryonal carcinoma stem cells. To determine the mechanism by which stem cells can be directed into skeletal muscle, a time course of P19 cell differentiation was examined in the presence and absence of exogenous MyoD. By quantitative PCR, the first MyoD up-regulated transcripts were the premyogenic mesoderm factors Meox1, Pax7, Six1, and Eya2 on day 4 of differentiation. Subsequently, the myoblast markers myogenin, MEF2C, and Myf5 were up-regulated, leading to skeletal myogenesis. These results were corroborated by Western blot analysis, showing up-regulation of Pax3, Six1, and MEF2C proteins, prior to myogenin protein expression. To determine at what stage a dominant-negative MyoD/EnR mutant could inhibit myogenesis, stable cell lines were created and examined. Interestingly, the premyogenic mesoderm factors, Meox1, Pax3/7, Six1, Eya2, and Foxc1, were down-regulated, and as expected, skeletal myogenesis was abolished. Finally, to identify direct targets of MyoD in this system, chromatin immunoprecipitation experiments were performed. MyoD was observed associated with regulatory regions of Meox1, Pax3/7, Six1, Eya2, and myogenin genes. Taken together, MyoD directs stem cells into the skeletal muscle lineage by binding and activating the expression of premyogenic mesoderm genes, prior to activating myoblast genes.
Collapse
Affiliation(s)
- Peter J Gianakopoulos
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nishimura I, Ohishi Y, Oda Y, Kishimoto J, Yasunaga M, Okuma E, Kobayashi H, Wake N, Tsuneyoshi M. Expression and localization of E-cadherin and β-catenin in uterine carcinosarcoma. Virchows Arch 2010; 458:85-94. [PMID: 21046151 DOI: 10.1007/s00428-010-1002-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 10/10/2010] [Accepted: 10/14/2010] [Indexed: 12/31/2022]
Abstract
This study was designed to analyze the subcellular localization of E-cadherin and β-catenin both of which play a critical role in cell-cell adhesion in uterine carcinosarcoma (UCS). We performed an immunohistochemical reaction analysis of the subcellular localization of E-cadherin and β-catenin proteins in 46 cases of UCSs consisting of 28 UCSs with heterologous sarcoma and 18 UCSs with homologous sarcoma and compared their clinicopathological features. In most UCSs, membranous expression of E-cadherin and β-catenin was completely lost in sarcomatous components, but it was preserved in carcinomatous components. Nuclear β-catenin expression was observed significantly more frequently in sarcomatous components (31/46, 67.4%) than in carcinomatous components (22/46, 47.8%; P = 0.0025). In sarcomatous components, nuclear β-catenin expression was found significantly more frequently in heterologous sarcoma (23/28, 82.1%) than in homologous sarcoma (8/18, 44.4%; P = 0.0279). The stage was the only independent prognostic significant factor. These results suggest that reduced membranous expression of E-cadherin and β-catenin may contribute to the biphasic morphology of UCS. Furthermore, although the precise mechanism is unclear, nuclear β-catenin expression in sarcomatous components may also be associated with biphasic morphology and heterologous sarcomatous differentiation.
Collapse
Affiliation(s)
- Izumi Nishimura
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|