1
|
Rieneck K, Rasmussen KK, Schoof EM, Clausen FB, Holze H, Bergholt T, Jørgensen MH, Christensen VB, Almaas R, Jordal PL, Locard-Paulet M, Runager K, Nielsen LK, Schlotmann BC, Weischenfeldt JL, Jensen LJ, Dziegiel MH. Hunting for the elusive target antigen in gestational alloimmune liver disease (GALD). PLoS One 2023; 18:e0286432. [PMID: 37862305 PMCID: PMC10588877 DOI: 10.1371/journal.pone.0286432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/16/2023] [Indexed: 10/22/2023] Open
Abstract
The prevailing concept is that gestational alloimmune liver disease (GALD) is caused by maternal antibodies targeting a currently unknown antigen on the liver of the fetus. This leads to deposition of complement on the fetal hepatocytes and death of the fetal hepatocytes and extensive liver injury. In many cases, the newborn dies. In subsequent pregnancies early treatment of the woman with intravenous immunoglobulin can be instituted, and the prognosis for the fetus will be excellent. Without treatment the prognosis can be severe. Crucial improvements of diagnosis require identification of the target antigen. For this identification, this work was based on two hypotheses: 1. The GALD antigen is exclusively expressed in the fetal liver during normal fetal life in all pregnancies; 2. The GALD antigen is an alloantigen expressed in the fetal liver with the woman being homozygous for the minor allele and the father being, most frequently, homozygous for the major allele. We used three different experimental approaches to identify the liver target antigen of maternal antibodies from women who had given birth to a baby with the clinical GALD diagnosis: 1. Immunoprecipitation of antigens from either a human liver cell line or human fetal livers by immunoprecipitation with maternal antibodies followed by mass spectrometry analysis of captured antigens; 2. Construction of a cDNA expression library from human fetal liver mRNA and screening about 1.3 million recombinants in Escherichia coli using antibodies from mothers of babies diagnosed with GALD; 3. Exome/genome sequencing of DNA from 26 presumably unrelated women who had previously given birth to a child with GALD with husband controls and supplementary HLA typing. In conclusion, using the three experimental approaches we did not identify the GALD target antigen and the exome/genome sequencing results did not support the hypothesis that the GALD antigen is an alloantigen, but the results do not yield basis for excluding that the antigen is exclusively expressed during fetal life., which is the hypothesis we favor.
Collapse
Affiliation(s)
- Klaus Rieneck
- Laboratory of Blood Genetics, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | - Karen Koefoed Rasmussen
- Laboratory of Blood Genetics, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
- Department of Technology, Faculty of Health and Technology, University College Copenhagen, Copenhagen, Denmark
| | - Erwin M. Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frederik Banch Clausen
- Laboratory of Blood Genetics, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | - Henrietta Holze
- Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark
| | - Thomas Bergholt
- Department of Obstetrics and Gynecology, Herlev Hospital, Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | - Leif Kofoed Nielsen
- Department of Technology, Faculty of Health and Technology, University College Copenhagen, Copenhagen, Denmark
| | | | | | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark
| | - Morten Hanefeld Dziegiel
- Laboratory of Blood Genetics, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Siswanto FM, Okukawa K, Tamura A, Oguro A, Imaoka S. Hydrogen peroxide activates APE1/Ref-1 via NF-κB and Parkin: A role in liver cancer resistance to oxidative stress. Free Radic Res 2023:1-31. [PMID: 37364176 DOI: 10.1080/10715762.2023.2229509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Cancer cells exhibit an altered redox balance and aberrant redox signaling due to genetic, metabolic, and microenvironment-associated reprogramming. Persistently elevated levels of reactive oxygen species (ROS) contribute to many aspects of tumor development and progression. Emerging studies demonstrated the vital role of apurinic/apyrimidinic endonuclease 1 or reduction/oxidation (redox) factor 1(APE1/Ref-1) in the oxidative stress response and survival of cancer cells. APE1/Ref-1 is a multifunctional enzyme involved in the DNA damage response and functions as a redox regulator of transcription factors. We herein demonstrated that basal hydrogen peroxide (H2O2) and APE1/Ref-1 expression levels were markedly higher in cancer cell lines than in non-cancerous cells. Elevated APE1/Ref-1 levels were associated with shorter survival in liver cancer patients. Mechanistically, we showed that H2O2 activated nuclear factor-κB (NF-κB). RelA/p65 inhibited the expression of the E3 ubiquitin ligase Parkin, possibly by interfering with ATF4 activity. Parkin was responsible for the ubiquitination and proteasomal degradation of APE1/Ref-1; therefore, the H2O2-induced suppression of Parkin expression increased APE1/Ref-1 levels. The probability of survival was lower in liver cancer patients with low Parkin and high RelA expression levels. Additionally, Parkin and RelA expression levels negatively and positively correlated with APE1/Ref-1 levels, respectively, in the TCGA liver cancer cohort. We concluded that increases in APE1/Ref-1 via the NF-κB and Parkin pathways are critical for cancer cell survival under oxidative stress. The present results show the potential of the NF-κB-Parkin-APE1/Ref-1 axis as a prognostic factor and therapeutic strategy to eradicate liver cancer.
Collapse
Affiliation(s)
- Ferbian Milas Siswanto
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
- Department of Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Kenta Okukawa
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Akiyoshi Tamura
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ami Oguro
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
3
|
Siswanto FM, Mitsuoka Y, Nakamura M, Oguro A, Imaoka S. Nrf2 and Parkin-Hsc70 regulate the expression and protein stability of p62/SQSTM1 under hypoxia. Sci Rep 2022; 12:21265. [PMID: 36481701 PMCID: PMC9731985 DOI: 10.1038/s41598-022-25784-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Solid tumors often contain regions with very low oxygen concentrations or hypoxia resulting from altered metabolism, uncontrolled proliferation, and abnormal tumor blood vessels. Hypoxia leads to resistance to both radio- and chemotherapy and a predisposition to tumor metastases. Under hypoxia, sequestosome 1 (SQSTM1/p62), a multifunctional stress-inducible protein involved in various cellular processes, such as autophagy, is down-regulated. The hypoxic depletion of p62 is mediated by autophagic degradation. We herein demonstrated that hypoxia down-regulated p62 in the hepatoma cell line Hep3B at the transcriptional and post-translational levels. At the transcriptional level, hypoxia down-regulated p62 mRNA by inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2). The overexpression of Nrf2 and knockdown of Siah2, a negative regulator of Nrf2 under hypoxia, diminished the effects of hypoxia on p62 mRNA. At the post-translational level, the proteasome inhibitor MG132, but not the lysosomal inhibitors ammonium chloride and bafilomycin, prevented the hypoxic depletion of p62, suggesting the involvement of the proteasome pathway. Under hypoxia, the expression of the E3 ubiquitin ligase Parkin was up-regulated in a hypoxia-inducible factor 1α-dependent manner. Parkin ubiquitinated p62 and led to its proteasomal degradation, ensuring low levels of p62 under hypoxia. We demonstrated that the effects of Parkin on p62 required heat shock cognate 71 kDa protein (Hsc70). We also showed that the overexpression of Nrf2 and knockdown of Parkin or Hsc70 induced the accumulation of p62 and reduced the viability of cells under hypoxia. We concluded that a decrease in p62, which involves regulation at the transcriptional and post-translational levels, is critical for cell survival under hypoxia. The present results show the potential of targeting Nrf2/Parkin-Hsc70-p62 as a novel strategy to eradicate hypoxic solid tumors.
Collapse
Affiliation(s)
- Ferbian Milas Siswanto
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Yumi Mitsuoka
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Misato Nakamura
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan.
| |
Collapse
|
4
|
Suppression of the doxorubicin response by hypoxia-inducible factor-1α is strictly dependent on oxygen concentrations under hypoxic conditions. Eur J Pharmacol 2022; 920:174845. [PMID: 35202675 DOI: 10.1016/j.ejphar.2022.174845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 01/10/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) and p53 are involved in anticancer drug resistance under hypoxic conditions. Here, we found that the cytotoxicity of anticancer drugs (doxorubicin, gemcitabine, and cisplatin) was lower at 1% O2 than at 5% O2. We examined the effects of these drugs on HIF-1α and p53 expression under different hypoxic oxygen concentrations. At 5% O2, the drugs decreased HIF-1α expression and increased p53 levels. At 1% O2, the drugs increased HIF-1α expression but did not alter p53 levels. When the HIF-1α protein was stabilized by DMOG under normoxic conditions, doxorubicin did not increase the level of p53 expression. These results show that the maintenance of HIF-1α expression blocked doxorubicin-dependent increases in p53 expression. We hypothesized the mechanism of HIF-1α protein translation might be different between at 5% and at 1% O2, because many reports indicate that the same mechanism of HIF-1α protein stabilization occurs under hypoxic conditions, such as 5% and 1% O2. The level of phosphorylated-4E-BP1, which causes translation of HIF-1α, was higher at 1% O2 than at 5% O2. Our results suggest that the sensitivity of tumor cells to anticancer drugs is dependent oxygen concentrations under hypoxic conditions, and involves 4E-BP1-dependent stabilization of the HIF-1α protein.
Collapse
|
5
|
The regulation of Hypoxia-Inducible Factor-1 (HIF-1alpha) expression by Protein Disulfide Isomerase (PDI). PLoS One 2021; 16:e0246531. [PMID: 33539422 PMCID: PMC7861413 DOI: 10.1371/journal.pone.0246531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/20/2021] [Indexed: 01/05/2023] Open
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha), a transcription factor, plays a critical role in adaption to hypoxia, which is a major feature of diseases, including cancer. Protein disulfide isomerase (PDI) is up-regulated in numerous cancers and leads to cancer progression. PDI, a member of the TRX superfamily, regulates the transcriptional activities of several transcription factors. To investigate the mechanisms by which PDI affects the function of HIF-1alpha, the overexpression or knockdown of PDI was performed. The overexpression of PDI decreased HIF-1alpha expression in the human hepatocarcinoma cell line, Hep3B, whereas the knockdown of endogenous PDI increased its expression. NH4Cl inhibited the decrease in HIF-1alpha expression by PDI overexpression, suggesting that HIF-1alpha was degraded by the lysosomal pathway. HIF-1alpha is transferred to lysosomal membranes by heat shock cognate 70 kDa protein (HSC70). The knockdown of HSC70 abolished the decrease, and PDI facilitated the interaction between HIF-1alpha and HSC70. HIF-1alpha directly interacted with PDI. PDI exists not only in the endoplasmic reticulum (ER), but also in the cytosol. Hypoxia increased cytosolic PDI. We also investigated changes in the redox state of HIF-1alpha using PEG-maleimide, which binds to thiols synthesized from disulfide bonds by reduction. An up-shift in the HIF-1alpha band by the overexpression of PDI was detected, suggesting that PDI formed disulfide bond in HIF-1alpha. HIF-1alpha oxidized by PDI was not degraded in HSC70-knockdown cells, indicating that the formation of disulfide bond in HIF-1alpha was important for decreases in HIF-1alpha expression. To the best of our knowledge, this is the first study to show the regulation of the expression and redox state of HIF-1alpha by PDI. We also demonstrated that PDI formed disulfide bonds in HIF-1alpha 1–245 aa and decreased its expression. In conclusion, the present results showed that PDI is a novel factor regulating HIF-1alpha through lysosome-dependent degradation by changes in its redox state.
Collapse
|
6
|
Kobayashi Y, Oguro A, Imaoka S. Feedback of hypoxia-inducible factor-1alpha (HIF-1alpha) transcriptional activity via redox factor-1 (Ref-1) induction by reactive oxygen species (ROS). Free Radic Res 2021; 55:154-164. [PMID: 33410354 DOI: 10.1080/10715762.2020.1870685] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) is important for adaptation to hypoxia. Hypoxia is a common feature of cancer and inflammation, by which HIF-1alpha increases. However, prolonged hypoxia decreases HIF-1alpha, and the underlying mechanisms currently remain unclear. Cellular reactive oxygen species (ROS) increases in cancer and inflammation. In the present study, we demonstrated that prolonged hypoxia increased ROS, which induced prolyl hydroxylase domain-containing protein 2 (PHD2) and factor inhibiting HIF-1 (FIH-1), major regulators of HIF-1alpha. Cellular stress response (CSR) increased HIF-1alpha transcriptional activity by scavenging endogenous ROS. PHD2 and FIH-1 were induced by external hydrogen peroxide (H2O2) but were suppressed by ROS-scavenging catalase. We investigated the mechanisms by which PHD2 and FIH-1 are regulated by ROS. The knockdown of HIF-1alpha decreased PHD2 and FIH-1 mRNA levels, suggesting their regulation by HIF-1alpha. We then focused on redox factor-1 (Ref-1), which is a regulator of HIF-1alpha transcriptional activity. The knockdown of Ref-1 decreased PHD2 and FIH-1. Ref-1 was regulated by ROS. Prolonged hypoxia and the addition of H2O2 induced the expression of Ref-1. Furthermore, the knockdown of p65, a component of kappa-light-chain enhancer of activated B cells (NF-κB), efficiently inhibited the induction of Ref-1 by ROS. Collectively, the present results showed that prolonged hypoxia or increased ROS levels induced Ref-1, leading to the activation of HIF-1alpha transcriptional activity, while the activation of HIF-1alpha via Ref-1 induced PHD2 and FIH-1, causing the feedback of HIF-1alpha. To the best of our knowledge, this is the first study to demonstrate the regulation of HIF-1alpha via Ref-1 by ROS.
Collapse
Affiliation(s)
- Yukino Kobayashi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Ami Oguro
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
7
|
Chou PL, Chen KH, Chang TC, Chien CT. Repetitively hypoxic preconditioning attenuates ischemia/reperfusion-induced liver dysfunction through upregulation of hypoxia-induced factor-1 alpha-dependent mitochondrial Bcl-xl in rat. CHINESE J PHYSIOL 2020; 63:68-76. [PMID: 32341232 DOI: 10.4103/cjp.cjp_74_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Repetitive hypoxic preconditioning (HP) enforces protective effects to subsequently severe hypoxic/ischemic stress. We hypothesized that HP may provide protection against ischemia/reperfusion (I/R) injury in rat livers via hypoxia-induced factor-1 alpha (HIF-1α)/reactive oxygen species (ROS)-dependent defensive mechanisms. Female Wistar rats were exposed to hypoxia (15 h/day) in a hypobaric hypoxic chamber (5500 m) for HP induction, whereas the others were kept in sea level. These rats were subjected to 45 min of hepatic ischemia by portal vein occlusion followed by 6 h of reperfusion. We evaluated HIF-1α in nuclear extracts, MnSOD, CuZnSOD, catalase, Bad/Bcl-xL/caspase 3/poly-(ADP-ribose)-polymerase (PARP), mitochondrial Bcl-xL, and cytosolic cytochrome C expression with Western blot and nitroblue tetrazolium/3-nitrotyrosine stain. Kupffer cell infiltration and terminal deoxynucleotidyl transferase-mediated nick-end labeling method apoptosis were determined by immunocytochemistry. The ROS value from liver surface and bile was detected by an ultrasensitive chemiluminescence-amplification method. Hepatic function was assessed with plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. HP increased nuclear translocation of HIF-1α and enhanced Bcl-xL, MnSOD, CuZnSOD, and catalase protein expression in a time-dependent manner. The response of HP enhanced hepatic HIF-1α, and Bcl-xL expression was abrogated by a HIF-1α inhibitor YC-1. Hepatic I/R increased ROS levels, myeloperoxidase activity, Kupffer cell infiltration, ALT and AST levels associated with the enhancement of cytosolic Bad translocation to mitochondria, release of cytochrome C to cytosol, and activation of caspase 3/PARP-mediated apoptosis. HP significantly ameliorated hepatic I/R-enhanced oxidative stress, apoptosis, and mitochondrial and hepatic dysfunction. In summary, HP enhances HIF-1α/ROS-dependent cascades to upregulate mitochondrial Bcl-xL protein expression and to confer protection against I/R injury in the livers.
Collapse
Affiliation(s)
- Pei-Lei Chou
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsin Chen
- Department of Surgery, Division of General Surgery, Far-Eastern Memorial Hospital; Department of Electrical Engineering, Yuan Ze University, Taoyuan City, Taiwan
| | - Tzu-Ching Chang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chiang-Ting Chien
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
8
|
Pedersen MH, Hood BL, Ehmsen S, Beck HC, Conrads TP, Bak M, Ditzel HJ, Leth‐Larsen R. CYPOR is a novel and independent prognostic biomarker of recurrence‐free survival in triple‐negative breast cancer patients. Int J Cancer 2018; 144:631-640. [DOI: 10.1002/ijc.31798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/24/2018] [Accepted: 08/02/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Martin H. Pedersen
- Department of Cancer and Inflammation ResearchInstitute of Molecular Medicine, University of Southern Denmark Odense Denmark
| | - Brian L. Hood
- Womens Health Integrated Research Center at Inova Health System; Gynecologic Cancer Center of ExcellenceHenry Jackson Foundation for the Advancement of Military Medicine Annandale VA
| | - Sidse Ehmsen
- Department of Cancer and Inflammation ResearchInstitute of Molecular Medicine, University of Southern Denmark Odense Denmark
| | - Hans C. Beck
- Department of Clinical Biochemistry and PharmacologyOdense University Hospital Odense Denmark
| | - Thomas P. Conrads
- Womens Health Integrated Research Center at Inova Health System; Gynecologic Cancer Center of ExcellenceHenry Jackson Foundation for the Advancement of Military Medicine Annandale VA
- Inova Schar Cancer InstituteInova Center for Personalized Health Fairfax VA
| | - Martin Bak
- Department of PathologyOdense University Hospital Odense Denmark
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation ResearchInstitute of Molecular Medicine, University of Southern Denmark Odense Denmark
- Department of OncologyOdense University Hospital Odense Denmark
| | - Rikke Leth‐Larsen
- Department of Cancer and Inflammation ResearchInstitute of Molecular Medicine, University of Southern Denmark Odense Denmark
- Department of Regional Health ResearchUniversity of Southern Denmark Odense Denmark
| |
Collapse
|
9
|
Oguro A, Inoue T, Kudoh SN, Imaoka S. 14,15-epoxyeicosatrienoic acid produced by cytochrome P450s enhances neurite outgrowth of PC12 and rat hippocampal neuronal cells. Pharmacol Res Perspect 2018; 6:e00428. [PMID: 30237892 PMCID: PMC6141511 DOI: 10.1002/prp2.428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 01/07/2023] Open
Abstract
Polyunsaturated fatty acids, such as arachidonic acid, are accumulated in brain and induce neuronal differentiation. Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs) by cytochrome P450s. In this study, we found that 14,15-EET and 20-HETE-enhanced NGF-induced rat pheochromocytoma PC12 cell neurite outgrowth even at the concentration of 100 nmol L-1. LC-MS analysis revealed that 14,15-EET was effectively produced from arachidonic acid by rat CYP2C11, 2C13, and 2C23, and these P450s were expressed in PC12 cells. An inhibitor of these P450s, ketoconazole, inhibited neurite outgrowth, whereas inhibition of soluble epoxide hydrolase, which hydrolyzes EETs to their corresponding diols enhanced neurite outgrowth. To determine the mechanism of neurite formation enhancement by arachidonic acid metabolites, we focused on transient receptor potential (TRP) channels expressed in PC12 cells. The TRPV4 inhibitor HC067047, but not the TRPV1 inhibitor capsazepine, inhibited the effects of 14,15-EET on neurite outgrowth of PC12. Furthermore, 14,15-EET increased the cytosolic calcium ion concentration and this increase was inhibited by HC067047. 14,15-EET also enhanced neurite outgrowth of primary cultured neuron from rat hippocampus. This study suggests that arachidonic acid metabolites produced by P450 contribute to neurite outgrowth through calcium influx.
Collapse
Affiliation(s)
- Ami Oguro
- Department of Biomedical ChemistrySchool of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| | - Takumi Inoue
- Department of Human‐System InteractionSchool of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| | - Suguru N. Kudoh
- Department of Human‐System InteractionSchool of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| | - Susumu Imaoka
- Department of Biomedical ChemistrySchool of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| |
Collapse
|
10
|
Kobayashi Y, Oguro A, Imaoka S. Bisphenol A and Its Derivatives Induce Degradation of HIF-1alpha via the Lysosomal Pathway in Human Hepatocarcinoma Cell Line, Hep3B. Biol Pharm Bull 2018; 41:374-382. [PMID: 29491214 DOI: 10.1248/bpb.b17-00693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bisphenol A (BPA, 2,2-bis(4-hydroxyphenyl)propane), one of the phenolic compounds widely used in the manufacture of plastic and epoxy resins, is known as an endocrine disruptor. In a previous study, we found that BPA induced hypoxia inducible factor-1alpha (HIF-1alpha) degradation by dissociation from heat shock protein 90 (Hsp90). In this study, to investigate the structural requirements for degradation of HIF-1alpha, we estimated the effect of BPA derivatives (BPE, BPF, BPB, Dimethyl butylidene diphenol (DMBDP), Ethyl hexylidene diphenol (EHDP), Bishydroxyphenyl cyclohexane (BHCH), and Methyl benzylidene bisphenol (MBBP)) on HIF-1alpha protein degradation, using human hepatocarcinoma cell line, Hep3B. BPB, DMBDP, BHCH, and MBBP decreased HIF-1alpha protein levels more efficiently than BPA, but BPE, BPF, and EHDP did not affect HIF-1alpha protein levels. BPA degraded HIF-1alpha even in the presence of MG132, a proteasome inhibitor. In this study, we found that ammonium chloride (NH4Cl), a lysosomal enzyme inhibitor, efficiently restored the decrease in HIF-1alpha protein levels by BPA. Recent studies indicated that HIF-1alpha is degraded by the lysosomal pathway as well as the proteasomal pathway. Therefore, we investigated the levels of heat shock cognate 70 kDa protein (HSC70) protein after treatment with BPA. We found that BPA induced HSC70 protein and overexpression of HSC70 enhanced HIF-1alpha degradation in Hep3B cells. These results suggested that BPA causes the degradation of HIF-1alpha by induction of HSC70, leading lysosomal degradation of HIF-1alpha.
Collapse
Affiliation(s)
- Yukino Kobayashi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Ami Oguro
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
11
|
A cellular stress response (CSR) that interacts with NADPH-P450 reductase (NPR) is a new regulator of hypoxic response. Biochem Biophys Res Commun 2014; 445:43-7. [DOI: 10.1016/j.bbrc.2014.01.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 12/17/2022]
|
12
|
Baba K, Muraguchi T, Imaoka S. Role of the hypoxia response pathway in lens formation during embryonic development of Xenopus laevis. FEBS Open Bio 2013; 3:490-5. [PMID: 24282676 PMCID: PMC3839852 DOI: 10.1016/j.fob.2013.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/18/2013] [Accepted: 10/18/2013] [Indexed: 12/01/2022] Open
Abstract
The RING finger ubiquitin ligase seven in absentia homolog 2 (Siah2) was identified in the R7 photoreceptor cells of Drosophila melanogaster, and it regulates the stability of prolyl hydroxylase domains (PHDs), with a concomitant effect on HIF-1α availability in the hypoxia response pathway. We previously reported that the hypoxia response pathway contributes to eye development during the embryonic development of Xenopus laevis. In this paper, the role of Siah2-mediated hypoxia response pathway in eye development of X. laevis embryos was further characterized. Xenopus Siah2 (xSiah2) mRNA was detected in lens tissue and xSiah2 overexpression caused a thickened lens placode, leading to loss of the optic lens. In embryos overexpressing xSiah2, lens marker gene transcription was reduced, suggesting that xSiah2 contributes to lens formation. xSiah2 overexpression decreased Xenopus PHD accumulation and increased Xenopus HIF-1α (xHIF-1α) accumulation. xHIF-1α degeneration with resveratrol restored the optical abnormality caused by xSiah2 overexpression, suggesting that the xSiah2-mediated hypoxia response pathway contributes to lens formation. Moreover, xSiah2 overexpression decreased endothelial–mesenchymal transition (EMT)-related Notch signaling-responsive genes transcription during the invasion of the lens placode. Our results suggest that the hypoxia response pathway plays an important role in the regulation of the EMT via the Notch signaling pathway during lens formation. The ubiquitin lyase Siah2 regulates HIF-1α availability in the hypoxia response pathway. xSiah2 overexpression causes loss of the lens of Xenopus laevis. xSiah2 mRNA is detected in the lens placode from embryonic stage 30. xHIF-1α overexpression at stage 38 causes loss of the lens of Xenopus laevis. xSiah2 overexpression suppresses endothelial–mesenchymal transition-related genes.
Collapse
Key Words
- E. coli, Escherichia coli
- EMT
- EMT, endothelial mesenchymal transition
- HIF-1α
- HIF-1α, hypoxia-inducible factor-1α
- Lens formation
- MBS, Modified Birth’s Solution
- NBT, nitro-blue tetrazolium chloride
- PCR, polymerase chain reaction
- PHDs, prolyl hydroxylase domains
- PLE, presumptive lens ectoderm
- SDS, sodium dodecylsulfate
- Siah2
- Siah2, seven in absentia homolog 2
- VEGF, vascular endothelial growth factor
- pBS, pBluescriptII+
- pVHL, von Hippel–Lindau tumor suppressor protein
Collapse
Affiliation(s)
- Kazunobu Baba
- Research Center for Environmental Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, Japan
| | | | | |
Collapse
|
13
|
Abstract
Oxygen-sensing pathways have been extensively explored in the context of homeostatic responses to hypoxic episodes; however, little is known of their involvement in the morphogenesis of respiratory structures (mitochondria, placenta, lung) during development in utero. This review identifies four essential loci where oxygen signalling pathways may cue the development of respiratory structures as: (i). mitochondrial biogenesis coupled with muted oxidative function dependent on the hypoxia-sustained production of NO; (ii). the generation of oxygen gradients which drive trophoblast differentiation and the formation of the chorionic gas exchange interface of the placenta; (iii). the proliferation and epithelial/endothelial differentiation of mesenchyme during the initiation of lung morphogenesis; and (iv). the regulation of epithelial fluid secretion/absorption in the lung. The identification of these oxygen-regulated developmental stages clarifies the close association between oxygen availability, reactive oxygen species and the morphogenesis of gas exchange structures and bears with it the implication that these pathways set the scope for aerobic metabolic performance throughout life.
Collapse
Affiliation(s)
- Stephen C Land
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
| |
Collapse
|
14
|
Baba K, Morimoto H, Imaoka S. Seven in absentia homolog 2 (Siah2) protein is a regulator of NF-E2-related factor 2 (Nrf2). J Biol Chem 2013; 288:18393-405. [PMID: 23645672 DOI: 10.1074/jbc.m112.438762] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Under pathological conditions such as ischemia-reperfusion, Nrf2 acts as a key regulator of cellular oxidative response. Provided that Nrf2 is sensitive to hypoxia during ischemia, Nrf2 may affect reactive oxygen species metabolism during reoxygenation. In this study, hypoxia suppressed Nrf2 protein, and its hypoxic suppression was not recovered with knockdown of the Nrf2 repressor Keap1. Moreover, an Nrf2 mutant lacking the Keap1 binding domain was suppressed under hypoxia, suggesting that Keap1 does not contribute to hypoxic Nrf2 suppression. HIF-1α and Siah2 are both key regulators of hypoxic responses. Hypoxia induced the Siah2 protein. Although inhibition or knockdown of Siah2 prevented the suppression of Nrf2, knockdown of HIF-1α did not. Moreover, Siah2 interacted with Nrf2 through a binding motif, suggesting that Siah2 contributes to the suppression of Nrf2. Some cytosolic kinases also play important roles in Nrf2 regulation. In this study, PKC phosphorylates serine residues of Nrf2 during hypoxia. Knockdown of Siah2 rescued hypoxic decreases in an Nrf2 mutant that mimicked phosphorylation at serine 40 or lacked this phosphorylation site, suggesting that Siah2 contributes to the degradation of Nrf2 irrespective of its phosphorylation status. Moreover, knockdown of Siah2 attenuated ubiquitination of the Nrf2 mutant, suggesting that association of Siah2 with Nrf2 causes proteasome-mediated degradation of Nrf2.
Collapse
Affiliation(s)
- Kazunobu Baba
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669 1337, Japan
| | | | | |
Collapse
|
15
|
Spatially resolved regression analysis of pre-treatment FDG, FLT and Cu-ATSM PET from post-treatment FDG PET: an exploratory study. Radiother Oncol 2012; 105:41-8. [PMID: 22682748 DOI: 10.1016/j.radonc.2012.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 05/08/2012] [Accepted: 05/18/2012] [Indexed: 11/22/2022]
Abstract
PURPOSE To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. MATERIALS AND METHODS Ten canine sinonasal cancer patients underwent PET/CT scans of [(18)F]FDG (FDG(pre)), [(18)F]FLT (FLT(pre)), and [(61)Cu]Cu-ATSM (Cu-ATSM(pre)). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at 3 months (FDG(post)). Regression of standardized uptake values in baseline FDG(pre), FLT(pre) and Cu-ATSM(pre) tumour voxels to those in FDG(post) images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R(2). Hypothesis testing of coefficients over the patient population was performed. RESULTS Multivariate linear model fits of FDG(pre) to FDG(post) were significantly positive over the population (FDG(post) ~ 0.17 · FDG(pre), p = 0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p = 0.01). Generalized-linear model fits related FDG(pre) to FDG(post) by a linear power law (FDG(post) ~ FDG(pre)(0.93),p<0.001). Univariate mixture model fits of FDG(pre) improved R(2) from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. CONCLUSIONS Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent.
Collapse
|
16
|
Oguro A, Sakamoto K, Funae Y, Imaoka S. Overexpression of CYP3A4, but not of CYP2D6, promotes hypoxic response and cell growth of Hep3B cells. Drug Metab Pharmacokinet 2011; 26:407-15. [PMID: 21566342 DOI: 10.2133/dmpk.dmpk-11-rg-017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450s (P450s) contribute to carcinogenesis by activating procarcinogens and also metabolize anti-cancer drugs. The activity and protein levels of P450s are important in cancer risk and in cancer therapy. In this study, we found that overexpression of CYP3A4 induced growth of a human hepatoma cell line, Hep3B. Overexpression of CYP2D6, by comparison, decreased cell growth. An inhibitor of CYP3A4, ketoconazole, significantly suppressed the growth of Hep3B cells overexpressing CYP3A4, but an inhibitor of CYP2D6, quinidine, did not restore Hep3B cell growth to baseline levels. Overexpression of CYP3A4 increased the production of reactive oxygen species, but this was not the cause of the CYP3A4-induced growth. Previously, we showed that CYP3A4 can produce epoxyeicosatrienoic acids (EETs) from arachidonic acid. The CYP3A4-enhanced cell growth was attenuated by a putative EET receptor antagonist, 14,15-EEZE. CYP3A4 promoted progression of the cell cycle from the G1 to the S phase. CYP3A4 also induced a hypoxic response of Hep3B cells, detected as enhanced erythropoietin gene expression (a typical hypoxic response). The cell growth promoted by CYP3A4 was inhibited by PI3K inhibitor LY294002. These results suggest that CYP3A4 plays an important role in tumor progression, independent of the activation of carcinogens and metabolism of anti-cancer drugs.
Collapse
Affiliation(s)
- Ami Oguro
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | | | | | | |
Collapse
|
17
|
Bowen SR, van der Kogel AJ, Nordsmark M, Bentzen SM, Jeraj R. Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling. Nucl Med Biol 2011; 38:771-80. [PMID: 21843774 DOI: 10.1016/j.nucmedbio.2011.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 01/06/2023]
Abstract
PURPOSE Unique uptake and retention mechanisms of positron emission tomography (PET) hypoxia tracers make in vivo comparison between them challenging. Differences in imaged uptake of two common hypoxia radiotracers, [(61)Cu]Cu-ATSM and [(18)F]FMISO, were characterized via computational modeling to address these challenges. MATERIALS AND METHODS An electrochemical formalism describing bioreductive retention mechanisms of these tracers under steady-state conditions was adopted to relate time-averaged activity concentration to tissue partial oxygen tension (PO(2)), a common metric of hypoxia. Chemical equilibrium constants of product concentration to reactant concentration ratios were determined from free energy changes and reduction potentials of pertinent reactions reported in the literature. Resulting transformation functions between tracer uptake and PO(2) were compared against measured values in preclinical models. Additionally, calculated PO(2) distributions from imaged Cu-ATSM tracer activity concentrations of 12 head and neck squamous cell carcinoma (HNSCC) patients were validated against microelectrode PO(2) measurements in 69 HNSCC patients. RESULTS Both Cu-ASTM- and FMISO-modeled PO(2) transformation functions were in agreement with preclinical measured values within single-deviation confidence intervals. High correlation (r(2)=0.94, P<.05) was achieved between modeled PO(2) distributions and measured distributions in the patient populations. On average, microelectrode hypoxia thresholds (2.5 and 5.0 mmHg) corresponded to higher Cu-ATSM uptake [2.5 and 2.0 standardized uptake value (SUV)] and lower FMISO uptake (2.0 and 1.4 SUV). Uncertainties in the models were dominated by variations in the estimated specific activity and intracellular acidity. CONCLUSIONS Results indicated that the high dynamic range of Cu-ATSM uptake was representative of a narrow range of low oxygen tension whose values were dependent on microenvironment acidity, while FMISO uptake was representative of a wide range of PO(2) values that were independent of acidity. The models shed light on possible causes of these discrepancies, particularly as it pertains to image contrast, and may prove to be a useful methodology in quantifying relationships between other hypoxia tracers. Comprehensive and robust assessment of tumor hypoxia prior to as well as in response to therapy may be best provided by imaging of multiple hypoxia markers that provide complementary rather than interchangeable information.
Collapse
Affiliation(s)
- Stephen R Bowen
- University of Wisconsin School of Medicine and Public Health, Department of Medical Physics, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
18
|
Osada-Oka M, Hashiba Y, Akiba S, Imaoka S, Sato T. Glucose is necessary for stabilization of hypoxia-inducible factor-1α under hypoxia: Contribution of the pentose phosphate pathway to this stabilization. FEBS Lett 2010; 584:3073-9. [DOI: 10.1016/j.febslet.2010.05.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/10/2010] [Accepted: 05/22/2010] [Indexed: 01/22/2023]
|
19
|
Oguro A, Fujita N, Imaoka S. Regulation of Soluble Epoxide Hydrolase (sEH) in Mice with Diabetes: High Glucose Suppresses sEH Expression. Drug Metab Pharmacokinet 2009; 24:438-45. [DOI: 10.2133/dmpk.24.438] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Oguro A, Sakamoto K, Suzuki S, Imaoka S. Contribution of Hydrolase and Phosphatase Domains in Soluble Epoxide Hydrolase to Vascular Endothelial Growth Factor Expression and Cell Growth. Biol Pharm Bull 2009; 32:1962-7. [DOI: 10.1248/bpb.32.1962] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ami Oguro
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Koichi Sakamoto
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Sachiko Suzuki
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Susumu Imaoka
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
21
|
Suzuki S, Oguro A, Osada-Oka M, Funae Y, Imaoka S. Epoxyeicosatrienoic acids and/or their metabolites promote hypoxic response of cells. J Pharmacol Sci 2008; 108:79-88. [PMID: 18776712 DOI: 10.1254/jphs.08122fp] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs), including 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET, are produced by cytochrome P450 (P450) such as CYP2C8 and 2C9; and they are hydrolyzed to dihydroxyeicosatrienoic acids (DHETs) by epoxide hydrolase. Particular interest in the epoxygenase reaction has developed because of the potent biological activities (modulation of vascular tone and anti-inflammatory activity, etc.) attributed to EETs. We focused on a new biological function of EETs and DHETs, which induce vascular endothelial growth factor (VEGF) and erythropoietin (EPO) under hypoxia. Human hepatoma cells, Hep3B, and human umbilical artery endothelial cells (HUAEC) were used in this study. An inhibitor of phospholipase A(2), methyl arachidonyl fluorophosphonate (MAFP), and inhibitors of P450s inhibited the VEGF and EPO induction of HUAEC and Hep3B, respectively, under hypoxia. Overexpression of CYP2C8 in Hep3B induced EPO and VEGF under hypoxia. Sulfaphenazole, an inhibitor of CYP2C8/2C9 suppressed luciferase promoter activity with the hypoxia response element (HRE) of VEGF in HUAEC. Exogenous 11,12-EET and 14,15-DHET induced reporter activity in HUAEC and Hep3B cells concomitant with increased levels of hypoxia-inducible factor-1alpha (HIF-1alpha), which is a key factor in the hypoxia response, but 11,12-DHET and 14,15-EET did not. These results suggested that EETs and DHETs play an important role in the hypoxia response of cells.
Collapse
Affiliation(s)
- Sachiko Suzuki
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Japan
| | | | | | | | | |
Collapse
|
22
|
Osada-Oka M, Ikeda T, Akiba S, Sato T. Hypoxia stimulates the autocrine regulation of migration of vascular smooth muscle cells via HIF-1α-dependent expression of thrombospondin-1. J Cell Biochem 2008; 104:1918-26. [DOI: 10.1002/jcb.21759] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
MafG controls the hypoxic response of cells by accumulating HIF-1α in the nuclei. FEBS Lett 2008; 582:2357-64. [DOI: 10.1016/j.febslet.2008.05.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/19/2008] [Accepted: 05/23/2008] [Indexed: 11/18/2022]
|
24
|
Osada-Oka M, Ikeda T, Imaoka S, Akiba S, Sato T. VEGF-enhanced proliferation under hypoxia by an autocrine mechanism in human vascular smooth muscle cells. J Atheroscler Thromb 2008; 15:26-33. [PMID: 18270456 DOI: 10.5551/jat.e533] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Atherosclerotic lesions are reported to be hypoxic. Since hypoxia is known to induce the production of growth factors, such as vascular endothelial growth factor (VEGF), we examined the implication of hypoxia-induced VEGF in the proliferation of human coronary artery smooth muscle cells (CASMCs). METHODS Cells were cultured under hypoxic conditions (1% O(2), 5% CO(2)) and several responses were measured. RESULTS Under hypoxic conditions, the mRNA and protein levels of VEGF, and the mRNA level of VEGF receptor-1 (VEGFR-1) increased with an increase in hypoxia-inducible factor-1alpha (HIF-1alpha) protein, and considerable amounts of VEGF were secreted. Hypoxia enhanced the incorporation of [(3)H]-thymidine by CASMCs, which was completely inhibited by a neutralizing antibody against VEGF. A neutralizing antibody against NADPH-cytochrome P-450 reductase (NPR), which contributes to the stabilization of HIF-1alpha, also attenuated hypoxia-stimulated proliferation. In NPR-knockdown cells, the expression of VEGF, proliferation, and transcriptional activity were attenuated, whereas in NPR-overexpressing cells, they were enhanced. CONCLUSION Hypoxia-induced proliferation of CASMCs is mediated through the expressions of VEGF and VEGFR-1 in an autocrine mechanism. Their expressions are dependent on the stabilization of HIF-1alpha, which is regulated by NPR. We suggest that hypoxia and hypoxia-induced VEGF expression are involved in the pathogenesis of progressive atherosclerosis.
Collapse
Affiliation(s)
- Mayuko Osada-Oka
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
25
|
Guise CP, Wang AT, Theil A, Bridewell DJ, Wilson WR, Patterson AV. Identification of human reductases that activate the dinitrobenzamide mustard prodrug PR-104A: a role for NADPH:cytochrome P450 oxidoreductase under hypoxia. Biochem Pharmacol 2007; 74:810-20. [PMID: 17645874 DOI: 10.1016/j.bcp.2007.06.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 05/26/2007] [Accepted: 06/11/2007] [Indexed: 11/26/2022]
Abstract
Hypoxia is a common trait found in many solid tumours and thus represents a therapeutic target with considerable potential. PR-104, a hypoxia-activated prodrug currently in clinical trial, is a water-soluble phosphate ester which is converted in vivo to the corresponding alcohol, PR-104A. This 3,5-dinitrobenzamide-2-nitrogen mustard is activated by reduction to the corresponding 5-hydroxylamine (PR-104H) and 5-amine (PR-104M) in hypoxic cells. The clinical effectiveness of PR-104 will depend in part on the expression of reductases within tumours that can effect this reduction. Here, we evaluate the roles of NADPH:cytochrome P450 oxidoreductase (CYPOR; E.C.1.6.2.4) and NAD(P)H:quinone oxidoreductase (NQO1; E.C.1.6.99.2) as candidate PR-104A reductases. A weak correlation was observed between NQO1 activity and aerobic cytotoxicity in a panel of eight tumour cell lines. However, overexpression of human NQO1 did not increase cytotoxicity of PR-104A or the formation of PR-104H/M, showing that PR-104A is not a substrate for NQO1. Overexpression of human CYPOR did, however, increase the hypoxic cytotoxicity of PR-104A, and its metabolism to PR-104H and PR-104M, demonstrating it to be a PR-104A reductase. To assess the contribution of CYPOR to overall activation of PR-104A in hypoxic SiHa cells, a combination of siRNA transfection and antisense expression were used to suppress CYPOR protein by 91% (+/-3%), a phenotype which conferred 45% (+/-7%) decrease in cytotoxic potency of PR-104A. Regression analysis of all CYPOR depletion data was found to correlate with cytoprotection and metabolism (p<0.001). Residual PR-104A reductase activity could be inhibited by the flavoprotein inhibitor diphenyliodonium. We conclude that CYPOR is an important PR-104A reductase, but that other flavoenzymes also contribute to its activation in hypoxic SiHa cells.
Collapse
Affiliation(s)
- Chris P Guise
- Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
26
|
Imaoka S, Muraguchi T, Kinoshita T. Isolation of Xenopus HIF-prolyl 4-hydroxylase and rescue of a small-eye phenotype caused by Siah2 over-expression. Biochem Biophys Res Commun 2007; 355:419-25. [PMID: 17303083 DOI: 10.1016/j.bbrc.2007.01.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 01/31/2007] [Indexed: 01/24/2023]
Abstract
Hypoxia is an important physiological condition during embryonic development. Hypoxia-inducible factor (HIF) is the mediator of hypoxic response of cells. The prolyl hydroxylase (PHD) of HIF plays a key role in stabilizing of HIF and the oxygen homeostasis of organisms. In this study, we isolated two PHD proteins, PHD45 and PHD28, and characterized them during the embryonic development of Xenopus laevis, which is an excellent model for embryonic development because of the ease of embryonic manipulation and the feasibility of transgenesis. Based on amino acid sequences, Xenopus PHD45 and PHD28 were homologous with human PHD2 and PHD3, respectively. In embryonic development, PHD45 expression was complementary to that of PHD28. xHIF-1alpha protein level was at a maximum around stage 20 when expression of PHD45 disappeared, while expression of PHD28 reached a maximum at stage 20, suggesting that PHD28 is inducible by HIF-1alpha. Recently, Siah2 was found to be an ubiquitin ligase of PHD proteins and to regulate degradation of PHD proteins. Over-expression of xSiah2 decreased PHD45 but not PHD28 and caused the small-eye phenotype of Xenopus. Additional over-expression of PHD47 rescued the abnormality caused by xSiah2, suggesting that the level of expression or activity of PHD proteins is important to the maintenance of homeostasis in embryonic development.
Collapse
Affiliation(s)
- Susumu Imaoka
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan.
| | | | | |
Collapse
|
27
|
Hart SN, Li Y, Nakamoto K, Wesselman C, Zhong XB. Novel SNPs in Cytochrome P450 Oxidoreductase. Drug Metab Pharmacokinet 2007; 22:322-6. [PMID: 17827787 DOI: 10.2133/dmpk.22.322] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 oxidoreductase (POR) is the single flavoprotein which donates electrons to the microsomal cytochrome P450 enzymes for oxidation of their substrates. In this study, we sequenced all 15 exons and the surrounding intronic sequences of POR in 100 human liver samples to identify novel and confirm known genetic polymorphisms in POR. Thirty-four single nucleotide polymorphisms (SNPs) were identified including 9 in the coding exons (5 synonymous and 4 nonsynonymous), 20 in the intronic regions, and 5 in the 3'-UTR. Of these, 9 were novel SNPs, including three nonsynonymous SNPs, SNH313003 (817733G>C; K49N), SNH313020 (848661C>A; L420M), and SNH313029 (849577T>C; L577P) with minor allele frequencies of 0.005, 0.045, and 0.020, respectively. We also confirmed a previously reported non-synonymous SNP rs1057868 (A503V) as well as five synonymous SNPs (G5G, T29T, P129P, S485S, and S572S) all with allele frequencies similar to those previously reported. Structurally, these polymorphisms occur in different regions: SNH313003 (K49N) in the amino-terminal tail, SNH313020 (L420M) in the connecting domain, SNH313029 (L577P) in the NADPH-binding domain, and rs1057868 (A503V) in the FAD binding domain.
Collapse
Affiliation(s)
- Steven N Hart
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, KS 66160, USA
| | | | | | | | | |
Collapse
|
28
|
Osada-Oka M, Takahashi M, Akiba S, Sato T. Involvement of Ca2+-independent phospholipase A2 in the translocation of hypoxia-inducible factor-1α to the nucleus under hypoxic conditions. Eur J Pharmacol 2006; 549:58-62. [PMID: 16979159 DOI: 10.1016/j.ejphar.2006.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 08/12/2006] [Accepted: 08/18/2006] [Indexed: 01/01/2023]
Abstract
We investigated the role of Ca2+-independent phospholipase A2 (iPLA2) as well as cytosolic phospholipase A2 (cPLA2) in hypoxia-inducible factor-1 (HIF-1)-dependent gene expression. An inhibitor of both iPLA2 and cPLA2, methyl arachidonyl fluorophosphonate (MAFP), prevented hypoxia-induced erythropoietin mRNA expression without affecting HIF-1alpha accumulation in Hep3B cells. The DNA-binding of HIF-1alpha was suppressed by MAFP as confirmed by luciferase reporter gene assays with the hypoxia response element. Translocation of HIF-1alpha to the nucleus assessed by its presence in the nuclear extracts of cells exposed to hypoxia, was diminished by MAFP. However, hypoxia-dependent gene expression was not affected in mesangial cells obtained from cPLA2alpha null mice. Furthermore, a specific iPLA2 inhibitor, bromoenol lactone, suppressed erythropoietin mRNA expression and HIF-1alpha translocation to the nucleus under hypoxic conditions. Thus, iPLA2, but not cPLA2alpha, may play an important role in regulating the transport of HIF-1alpha to the nucleus.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Arachidonic Acids/pharmacology
- Calcium/metabolism
- Cell Hypoxia/physiology
- Cell Line, Tumor
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytosol/enzymology
- Dose-Response Relationship, Drug
- Erythropoietin/genetics
- Erythropoietin/metabolism
- Gene Expression/genetics
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunoblotting
- Luciferases/genetics
- Luciferases/metabolism
- Mesangial Cells/cytology
- Mesangial Cells/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organophosphonates/pharmacology
- Phospholipases A/genetics
- Phospholipases A/metabolism
- Phospholipases A2
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Mayuko Osada-Oka
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | | | |
Collapse
|
29
|
Mori T, Yamazaki A, Kinoshita T, Imaoka S. Purification of NADPH-P450 reductase (NPR) from Xenopus laevis and the developmental change in NPR expression. Life Sci 2006; 79:247-51. [PMID: 16483612 DOI: 10.1016/j.lfs.2005.12.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 12/03/2005] [Accepted: 12/28/2005] [Indexed: 10/25/2022]
Abstract
NADPH-P450 reductase (NPR) was purified from hepatic microsomes of Xenopus laevis. The electron transfer activity of purified NPR was 23.8 units/min/mg with horse cytochrome c. The aminopyrine demethylation activity of rat CYP2B1 with Xenopus NPR was 58.1 nmol/min/nmol. The corresponding cDNA was isolated from Xenopus liver. The homology in amino acid sequence deduced from NPR cDNA isolated from Xenopus liver was 80%, 78%, and 81% with human, rat, and rabbit NPR, respectively. Antibody against Xenopus NPR was prepared. The expression of NPR was investigated in various tissues and in early development by Western blotting. NPR was most abundantly expressed in the kidney, followed by the liver, lung, and heart. The brain had very low levels of NPR. The level of NPR protein was almost the same at all stages, 2-cell stage (st. 2), blastula (st. 8), gastrula (st. 12), tail bud (st. 26) and larva (st.35), examined in this study. We further investigated the distribution of NPR using whole-mount in situ hybridization. NPR mRNA was expressed in cement gland, lens placode, ear vesicle, mesencephalon, rhombencephalon, lymphatic vessel, and heart anlage in the embryo at stage 29. Xenopus NPR has similar properties to mouse and rat NPRs. Localization of NPR in Xenopus embryo was consistent with the abnormal region caused by NPR deficiency in mice.
Collapse
Affiliation(s)
- Tomohiro Mori
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | | | | | | |
Collapse
|
30
|
Laderoute KR. The interaction between HIF-1 and AP-1 transcription factors in response to low oxygen. Semin Cell Dev Biol 2005; 16:502-13. [PMID: 16144688 DOI: 10.1016/j.semcdb.2005.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a critical regulator of the transcriptional response to low oxygen conditions (hypoxia/anoxia) experienced by mammalian cells in both physiological and pathophysiological circumstances. As our understanding of the biology and biochemistry of HIF-1 has grown, it has become apparent that cells adapt to signals generated by low oxygen through a network of stress responsive transcription factors or complexes, which are influenced by HIF-1 activity. This review summarizes our current understanding of the interaction of HIF-1 with AP-1, a classic example of a family of pleiotropic transcription factors that impact on diverse cellular processes and phenotypes, including the adaptation to low oxygen stress. The review focuses on experimental studies involving cultured cells exposed to hypoxia/anoxia, and describes both established and possible interactions between HIF-1 and AP-1 at different levels of cellular organization.
Collapse
Affiliation(s)
- Keith R Laderoute
- Biosciences Division, SRI International, Bldg. L, Rm. A258, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| |
Collapse
|
31
|
Kim HP, Wang X, Galbiati F, Ryter SW, Choi AMK. Caveolae compartmentalization of heme oxygenase-1 in endothelial cells. FASEB J 2005; 18:1080-9. [PMID: 15226268 DOI: 10.1096/fj.03-1391com] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The heme oxygenase (HO) and nitric oxide synthase (NOS) enzymes generate the gaseous signaling molecules carbon monoxide (CO) and nitric oxide, respectively. Constitutive NOSs localize to caveolae, and their activities are modulated by caveolin-1. Nothing is known of the localization of the inducible heme oxygenase-1 (HO-1) in plasma membrane caveolae. Thus, we examined the distribution and subcellular localization of HO-1, biliverdin reductase (BVR), and NADPH:cytochrome P450 reductase (NPR) in pulmonary artery endothelial cells. Each of these proteins localized in part to plasma membrane caveolae in endothelial cells. Inducers of HO-1 or overexpression of HO-1 increased the content of this protein in a detergent-resistant fraction containing caveolin-1. Inducible HO activity appeared in plasma membrane, cytosol, and isolated caveolae. In addition, caveolae contained endogenous BVR activity, supporting the same compartmentalization of both enzymes. Caveolin-1 physically interacted with HO-1, as shown by coimmunoprecipitation studies. HO activity dramatically increased in cells expressing caveolin-1 antisense transcripts, suggesting a negative regulatory role for caveolin-1. Conversely, caveolin-1 expression attenuated LPS-inducible HO activity. Since their initial characterization in 1969, HO enzymes have been described as endoplasmic reticulum-associated proteins. We demonstrate for the first time the localization of heme degradation enzymes to plasma membrane caveolae, and present novel evidence that caveolin-1 interacts with and modulates HO activity.
Collapse
Affiliation(s)
- Hong Pyo Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Dept. of Medicine, MUH 628NW, 3459 Fifth Ave., Pittsburgh, PA, 15213, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Throughout gestation, low oxygen tensions are a dominant feature of the fetal environment and so may be important in sustaining a normal pattern of lung morphogenesis until the moment of birth. As breathing begins, the equilibration of the lung lumen to postnatal PO2 evokes a series of physiologic and morphogenic maturation events that are partially reversible by hypoxia. In this review, we discuss the experimental evidence that fetal and perinatal oxygen tensions differently influence lung morphogenesis through oxygen- and redox-responsive signaling pathways and identify five loci at which this regulation may occur: (I) proliferation of undifferentiated lung mesenchyme as governed by hypoxia-regulated transcription factors (HIF-1alpha, C/EBPbeta); (II) transient production of reactive oxygen species (ROS) and nuclear oxidation of the perinatal lung epithelium; (III) nuclear transport and oxidation of thioredoxin in hand with the acute activation of nuclear factor- kappaB (NF-kappaB); (IV) ROS-evoked chronic rise in intracellular glutathione and thioredoxin redox buffering capacity; and (V) NF-kappaB-dependent increase in transepithelial Na+ transport and lung lumenal fluid clearance. Although not exhaustive, this analysis leads us to the conclusion that redox events that occur in the lung during gestation, parturition, and the early neonatal period may dramatically influence the expression of genes and physiological events that are crucial to the successful transition from fetal to postnatal lung maturation.
Collapse
Affiliation(s)
- Stephen C Land
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK.
| | | |
Collapse
|
33
|
Osada M, Imaoka S, Funae Y. Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1alpha protein. FEBS Lett 2004; 575:59-63. [PMID: 15388333 DOI: 10.1016/j.febslet.2004.08.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 08/17/2004] [Accepted: 08/18/2004] [Indexed: 12/01/2022]
Abstract
Apigenin, a plant-derived flavone, is a potent inhibitor of cell proliferation and angiogenesis, but the mechanisms leading to the pathological anti-angiogenic effects of apigenin are still unclear. In this study, we found that apigenin inhibited the hypoxia-induced expression of vascular endothelial growth factor (VEGF) mRNA in human umbilical artery endothelial cells. Apigenin also suppressed the expression of erythropoietin mRNA, which is a typical hypoxia-inducible gene, via the degradation of hypoxia-inducible factor 1 (HIF-1) alpha. We investigated the effect of apigenin on the interaction of HIF-1alpha with heat shock protein 90 (Hsp90), which is reported to be important for the stabilization of HIF-1alpha, and found that VEGF expression was inhibited via degradation of HIF-1alpha through interference with the function of Hsp90.
Collapse
Affiliation(s)
- Mayuko Osada
- Department of Chemical Biology, Osaka City University Medical School, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585 Japan
| | | | | |
Collapse
|
34
|
Kubo T, Maezawa N, Osada M, Katsumura S, Funae Y, Imaoka S. Bisphenol A, an environmental endocrine-disrupting chemical, inhibits hypoxic response via degradation of hypoxia-inducible factor 1alpha (HIF-1alpha): structural requirement of bisphenol A for degradation of HIF-1alpha. Biochem Biophys Res Commun 2004; 318:1006-11. [PMID: 15147973 DOI: 10.1016/j.bbrc.2004.04.125] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Indexed: 11/17/2022]
Abstract
Bisphenol A (BpA), an endocrine-disrupting chemical, is known to be a xenoestrogen and to affect the reproductive functions of animals. Recent reports have documented BpA-induced developmental abnormalities in the neuronal systems of humans and animals, and these effects appear to be non-estrogenic. In this study, we found that BpA inhibited the hypoxic response of human hepatoma cells. The expression of hypoxic response genes such as the erythropoietin (EPO) gene is done via a hypoxia inducible factor 1 (HIF-1)-dependent signaling pathway. To investigate possible structural requirements for this inhibitory effect, several BpA analogs were synthesized and added to this system. The blocking of two phenol groups in BpA did not change the effect, but the inhibition completely disappeared by the removal of two central methyl groups in BpA (the resulting compound is designated BpF). BpA, but not BpF, promoted degradation of the HIF-1alpha protein, which is a component of HIF-1, followed by inhibition of EPO induction. An immunoprecipitation assay indicated that BpA dissociated heat shock protein 90 (Hsp90) from HIF-1alpha and destabilized HIF-1alpha protein. HIF-1alpha is usually degraded first by ubiquitination and then by the proteasome pathway. Cobalt ion inhibits ubiquitination of HIF-1alpha and stabilizes it. In the present study, BpA promoted HIF-1alpha degradation in the presence of cobalt and in the presence of proteasome inhibitor. These results suggest that BpA degraded HIF-1alpha via a currently unknown pathway, and that this phenomenon required two methyl groups in BpA.
Collapse
Affiliation(s)
- Tomoko Kubo
- Department of Bioscience and Nanobiotechnology Research Center, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Otto DME, Henderson CJ, Carrie D, Davey M, Gundersen TE, Blomhoff R, Adams RH, Tickle C, Wolf CR. Identification of novel roles of the cytochrome p450 system in early embryogenesis: effects on vasculogenesis and retinoic Acid homeostasis. Mol Cell Biol 2003; 23:6103-16. [PMID: 12917333 PMCID: PMC180925 DOI: 10.1128/mcb.23.17.6103-6116.2003] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytochrome P450-dependent monooxygenase system catalyzes the metabolism of xenobiotics and endogenous compounds, including hormones and retinoic acid. In order to establish the role of these enzymes in embryogenesis, we have inactivated the system through the deletion of the gene for the electron donor to all microsomal P450 proteins, cytochrome P450 reductase (Cpr). Mouse embryos homozygous for this deletion died in early to middle gestation (approximately 9.5 days postcoitum [dpc]) and exhibited a number of novel phenotypes, including the severe inhibition of vasculogenesis and hematopoiesis. In addition, defects in the brain, limbs, and cell types where CPR was shown to be expressed were observed. Some of the observed abnormalities have been associated with perturbations in retinoic acid homeostasis in later embryogenesis. Consistent with this possibility, embryos at 9.5 dpc had significantly elevated levels of retinoic acid and reduced levels of retinol. Further, some of the observed phenotypes could be either reversed or exacerbated by decreasing or increasing maternal retinoic acid exposure, respectively. Detailed analysis demonstrated a close relationship between the observed phenotype and the expression of genes controlling vasculogenesis. These data demonstrate that the cytochrome P450 system plays a key role in early embryonic development; this process appears to be, at least in part, controlled by regional concentrations of retinoic acid and has profound effects on blood vessel formation.
Collapse
Affiliation(s)
- Diana M E Otto
- Cancer Research UK, Molecular Pharmacology Unit, Biomedical Research Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Baines AD, Ho P. O(2) affinity of cross-linked hemoglobins modifies O(2) metabolism in proximal tubules. J Appl Physiol (1985) 2003; 95:563-70. [PMID: 12716868 DOI: 10.1152/japplphysiol.00223.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous experiments using cross-linked tetrameric hemoglobins (XLHb) to perfuse isolated rat kidneys showed that high-O2-affinity XLHb improved proximal tubule function more effectively than low-O2-affinity XLHb. To determine how function was improved, proximal tubule fragments were incubated with albumin, Hb34 [half-saturation point (P50) 34 Torr], or Hb13 (P50 13 Torr) with Po2 values ranging from 22 to 147 Torr. ATP content reflected O2 delivery to mitochondria. Both XLHb increased ATP, Hb34 with Po2 >or= 47 Torr and Hb13 with Po2 <or= 47 Torr. XLHb increased Na-K-ATPase activity (86Rb uptake) in similar Po2-dependent patterns. O2 consumption (Qo2) was measured in a closed, well-stirred chamber. Ouabain- and oligomycin-inhibited Qo2, reflecting Na-K-ATPase activity and oxidative phosphorylation, respectively, mirrored the Po2-dependent patterns of ATP and 86Rb uptake. As Po2 fell below the midpoint of XLHb desaturation, Qo2, uncoupled from oxidative phosphorylation, transiently increased. The increase was most pronounced with Hb34. Nitro-l-arginine methyl ester had no effect on Qo2. Inhibitors of NAD(P)H oxidases and diamine oxidase partially prevented the Qo2 surge with Hb34. In conclusion, facilitated diffusion accounts for Po2-dependent XLHb effects on ATP content and Na-K-ATPase and for Hb13's effectiveness in hypoxic perfused kidneys. NO scavenging was not a factor. O2-binding characteristics influence XLHb effects on mitochondria and O2-sensitive enzymes such as oxidases.
Collapse
Affiliation(s)
- A D Baines
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|