1
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
2
|
De Vecchis D, Schäfer LV. Coupling the role of lipids to the conformational dynamics of the ABC transporter P-glycoprotein. Biophys J 2024; 123:2522-2536. [PMID: 38909280 PMCID: PMC11365111 DOI: 10.1016/j.bpj.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
The ATP-binding cassette transporter P-glycoprotein (P-gp) is a multidrug efflux pump that is overexpressed in a variety of cancers and associated with the drug-resistance phenomenon. P-gp structures were previously determined in detergent and in nanodiscs, in which different transmembrane helix conformations were found, "straight" and "kinked," respectively, indicating a possible role of the lipid environment on the P-gp structural ensemble. Here, we investigate the dynamic conformational ensembles and protein-lipid interactions of two human P-gp inward-open conformers, straight and kinked, employing all-atom molecular dynamics (MD) simulations in asymmetric multicomponent lipid bilayers that mimic the highly specialized hepatocyte membrane in which P-gp is expressed. The two conformers are found to differ in terms of the accessibility of the substrate cavity. The MD simulations show how cholesterol and different lipid species wedge, snorkel, and partially enter into the cavity of the straight P-gp conformer solved in detergent. However, access to the cavity of the kinked P-gp conformer solved in nanodiscs is restricted. Furthermore, the volume and dynamic fluctuations of the substrate cavity largely differ between the two P-gp conformers and are modulated by the presence (or absence) of cholesterol in the membrane and/or of ATP. From the mechanistic perspective, the findings indicate that the straight conformer likely precedes the kinked conformer in the functional working cycle of P-gp, with the latter conformation representing a post substrate-bound state. The inaccessibility of the main transmembrane cavity in the kinked conformer might be crucial in preventing substrate disengagement and transport withdrawal. Remarkably, in our unbiased MD simulations, one transmembrane helix (TM10) of the straight conformer underwent a spontaneous transition to a kinked conformation, underlining the relevance of both conformations in a native phospholipid environment and revealing structural descriptors defining the transition between the two P-gp conformers.
Collapse
Affiliation(s)
- Dario De Vecchis
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany.
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Gao Y, Wei C, Luo L, Tang Y, Yu Y, Li Y, Xing J, Pan X. Membrane-assisted tariquidar access and binding mechanisms of human ATP-binding cassette transporter P-glycoprotein. Front Mol Biosci 2024; 11:1364494. [PMID: 38560519 PMCID: PMC10979361 DOI: 10.3389/fmolb.2024.1364494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
The human multidrug transporter P-glycoprotein (P-gp) is physiologically essential and of key relevance to biomedicine. Recent structural studies have shed light on the mode of inhibition of the third-generation inhibitors for human P-gp, but the molecular mechanism by which these inhibitors enter the transmembrane sites remains poorly understood. In this study, we utilized all-atom molecular dynamics (MD) simulations to characterize human P-gp dynamics under a potent inhibitor, tariquidar, bound condition, as well as the atomic-level binding pathways in an explicit membrane/water environment. Extensive unbiased simulations show that human P-gp remains relatively stable in tariquidar-free and bound states, while exhibiting a high dynamic binding mode at either the drug-binding pocket or the regulatory site. Free energy estimations by partial nudged elastic band (PNEB) simulations and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) method identify two energetically favorable binding pathways originating from the cytoplasmic gate with an extended tariquidar conformation. Interestingly, free tariquidar in the lipid membrane predominantly adopts extended conformations similar to those observed at the regulatory site. These results suggest that membrane lipids may preconfigure tariquidar into an active ligand conformation for efficient binding to the regulatory site. However, due to its conformational plasticity, tariquidar ultimately moves toward the drug-binding pocket in both pathways, explaining how it acts as a substrate at low concentrations. Our molecular findings propose a membrane-assisted mechanism for the access and binding of the third-generation inhibitors to the binding sites of human P-gp, and offer deeper insights into the molecule design of more potent inhibitors against P-gp-mediated drug resistance.
Collapse
Affiliation(s)
- Yingjie Gao
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Caiyan Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lanxin Luo
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Tang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yongzhen Yu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Juan Xing
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Xianchao Pan
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Agostini M, Traldi P, Hamdan M. Mass Spectrometry Investigation of Some ATP-Binding Cassette (ABC) Proteins. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:200. [PMID: 38399488 PMCID: PMC10890348 DOI: 10.3390/medicina60020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
Drug resistance remains one of the main causes of poor outcome in cancer therapy. It is also becoming evident that drug resistance to both chemotherapy and to antibiotics is driven by more than one mechanism. So far, there are at least eight recognized mechanisms behind such resistance. In this review, we choose to discuss one of these mechanisms, which is known to be partially driven by a class of transmembrane proteins known as ATP-binding cassette (ABC) transporters. In normal tissues, ABC transporters protect the cells from the toxic effects of xenobiotics, whereas in tumor cells, they reduce the intracellular concentrations of anticancer drugs, which ultimately leads to the emergence of multidrug resistance (MDR). A deeper understanding of the structures and the biology of these proteins is central to current efforts to circumvent resistance to both chemotherapy, targeted therapy, and antibiotics. Understanding the biology and the function of these proteins requires detailed structural and conformational information for this class of membrane proteins. For many years, such structural information has been mainly provided by X-ray crystallography and cryo-electron microscopy. More recently, mass spectrometry-based methods assumed an important role in the area of structural and conformational characterization of this class of proteins. The contribution of this technique to structural biology has been enhanced by its combination with liquid chromatography and ion mobility, as well as more refined labelling protocols and the use of more efficient fragmentation methods, which allow the detection and localization of labile post-translational modifications. In this review, we discuss the contribution of mass spectrometry to efforts to characterize some members of the ATP-binding cassette (ABC) proteins and why such a contribution is relevant to efforts to clarify the link between the overexpression of these proteins and the most widespread mechanism of chemoresistance.
Collapse
Affiliation(s)
| | - Pietro Traldi
- Corso Stati Uniti 4, Istituto di Ricerca Pediatrica Città della Speranza, 35100 Padova, Italy; (M.A.)
| | | |
Collapse
|
5
|
Di Cesare M, Kaplan E, Rendon J, Gerbaud G, Valimehr S, Gobet A, Ngo TAT, Chaptal V, Falson P, Martinho M, Dorlet P, Hanssen E, Jault JM, Orelle C. The transport activity of the multidrug ABC transporter BmrA does not require a wide separation of the nucleotide-binding domains. J Biol Chem 2024; 300:105546. [PMID: 38072053 PMCID: PMC10821409 DOI: 10.1016/j.jbc.2023.105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins responsible for the translocation of a wide diversity of substrates across biological membranes. Some of them confer multidrug or antimicrobial resistance to cancer cells and pathogenic microorganisms, respectively. Despite a wealth of structural data gained in the last two decades, the molecular mechanism of these multidrug efflux pumps remains elusive, including the extent of separation between the two nucleotide-binding domains (NBDs) during the transport cycle. Based on recent outward-facing structures of BmrA, a homodimeric multidrug ABC transporter from Bacillus subtilis, we introduced a cysteine mutation near the C-terminal end of the NBDs to analyze the impact of disulfide-bond formation on BmrA function. Interestingly, the presence of the disulfide bond between the NBDs did not prevent the ATPase, nor did it affect the transport of Hoechst 33342 and doxorubicin. Yet, the 7-amino-actinomycin D was less efficiently transported, suggesting that a further opening of the transporter might improve its ability to translocate this larger compound. We solved by cryo-EM the apo structures of the cross-linked mutant and the WT protein. Both structures are highly similar, showing an intermediate opening between their NBDs while their C-terminal extremities remain in close proximity. Distance measurements obtained by electron paramagnetic resonance spectroscopy support the intermediate opening found in these 3D structures. Overall, our data suggest that the NBDs of BmrA function with a tweezers-like mechanism distinct from the related lipid A exporter MsbA.
Collapse
Affiliation(s)
- Margot Di Cesare
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Elise Kaplan
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Julia Rendon
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France
| | | | - Sepideh Valimehr
- Ian Holmes Imaging Center and Department of Biochemistry and Pharmacology and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Alexia Gobet
- Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Thu-Anh Thi Ngo
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Vincent Chaptal
- Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Pierre Falson
- Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | | | - Pierre Dorlet
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France
| | - Eric Hanssen
- Ian Holmes Imaging Center and Department of Biochemistry and Pharmacology and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Jean-Michel Jault
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France.
| | - Cédric Orelle
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France.
| |
Collapse
|
6
|
Jorgensen C, Ulmschneider MB, Searson PC. Modeling Substrate Entry into the P-Glycoprotein Efflux Pump at the Blood-Brain Barrier. J Med Chem 2023; 66:16615-16627. [PMID: 38097510 DOI: 10.1021/acs.jmedchem.3c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
We report molecular dynamics simulations of rhodamine entry into the central binding cavity of P-gp in the inward open conformation. Rhodamine can enter the inner volume via passive transport across the luminal membrane or lateral diffusion in the lipid bilayer. Entry into the inner volume is determined by the aperture angle at the apex of the protein, with a critical angle of 27° for rhodamine. The central binding cavity has an aqueous phase with a few lipids, which significantly reduces substrate diffusion. Within the central binding cavity, we identified regions with relatively weak binding, suggesting that the combination of reduced mobility and weak substrate binding confines rhodamine to enable the completion of the efflux cycle. Tariquidar, a P-gp inhibitor, aggregates at the lower arms of the P-gp, suggesting that inhibition involves steric hindrance of entry into the inner volume and/or steric hindrance of access of ATP to the nucleotide-binding domains.
Collapse
Affiliation(s)
- Christian Jorgensen
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Peter C Searson
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Tóth Á, Crespi V, Janaszkiewicz A, Di Meo F. Computational and structural insights into the pre- and post-hydrolysis states of bovine multidrug resistance-associated protein 1. Basic Clin Pharmacol Toxicol 2023; 133:508-525. [PMID: 37038087 DOI: 10.1111/bcpt.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
ATP-binding cassette C-family drug membrane transporters play an important role in local pharmacokinetics, that is, drug concentration in cellular compartments. From the structural point of view, only the bovine ortholog of the multidrug resistance-associated protein 1 (bMRP1) has been resolved. We here used μs-scaled molecular dynamics simulations to investigate the structure and dynamics of the bovine multidrug resistance-associated protein 1 in pre- and post-hydrolysis functional states. The present work aims to examine the slight but likely relevant structural differences between pre- and post-hydrolysis states of outward-facing conformations as well as the interactions between the multidrug resistance-associated protein 1 and the surrounding lipid bilayer. Global conformational dynamics show unfavourable extracellular opening associated with nucleotide-binding domain dimerization indicating that the post-hydrolysis state adopts a close-cleft conformation rather than an outward-open conformation. Our present simulations also highlight persistent interactions with annular cholesterol molecules and the expected active role of lipid bilayer in the allosteric communication between distant domains of the transporter.
Collapse
Affiliation(s)
- Ágota Tóth
- Inserm UMR 1248 Pharmacology & Transplantation, Univ. Limoges, Limoges, France
| | - Veronica Crespi
- Inserm UMR 1248 Pharmacology & Transplantation, Univ. Limoges, Limoges, France
| | | | - Florent Di Meo
- Inserm UMR 1248 Pharmacology & Transplantation, Univ. Limoges, Limoges, France
| |
Collapse
|
8
|
Schäfer J, Klösgen VJ, Omer EA, Kadioglu O, Mbaveng AT, Kuete V, Hildebrandt A, Efferth T. In Silico and In Vitro Identification of P-Glycoprotein Inhibitors from a Library of 375 Phytochemicals. Int J Mol Sci 2023; 24:10240. [PMID: 37373385 DOI: 10.3390/ijms241210240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer therapy with clinically established anticancer drugs is frequently hampered by the development of drug resistance of tumors and severe side effects in normal organs and tissues. The demand for powerful, but less toxic, drugs is high. Phytochemicals represent an important reservoir for drug development and frequently exert less toxicity than synthetic drugs. Bioinformatics can accelerate and simplify the highly complex, time-consuming, and expensive drug development process. Here, we analyzed 375 phytochemicals using virtual screenings, molecular docking, and in silico toxicity predictions. Based on these in silico studies, six candidate compounds were further investigated in vitro. Resazurin assays were performed to determine the growth-inhibitory effects towards wild-type CCRF-CEM leukemia cells and their multidrug-resistant, P-glycoprotein (P-gp)-overexpressing subline, CEM/ADR5000. Flow cytometry was used to measure the potential to measure P-gp-mediated doxorubicin transport. Bidwillon A, neobavaisoflavone, coptisine, and z-guggulsterone all showed growth-inhibitory effects and moderate P-gp inhibition, whereas miltirone and chamazulene strongly inhibited tumor cell growth and strongly increased intracellular doxorubicin uptake. Bidwillon A and miltirone were selected for molecular docking to wildtype and mutated P-gp forms in closed and open conformations. The P-gp homology models harbored clinically relevant mutations, i.e., six single missense mutations (F336Y, A718C, Q725A, F728A, M949C, Y953C), three double mutations (Y310A-F728A; F343C-V982C; Y953A-F978A), or one quadruple mutation (Y307C-F728A-Y953A-F978A). The mutants did not show major differences in binding energies compared to wildtypes. Closed P-gp forms generally showed higher binding affinities than open ones. Closed conformations might stabilize the binding, thereby leading to higher binding affinities, while open conformations may favor the release of compounds into the extracellular space. In conclusion, this study described the capability of selected phytochemicals to overcome multidrug resistance.
Collapse
Affiliation(s)
- Julia Schäfer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Vincent Julius Klösgen
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
- Institute of Bioinformatics, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Armelle T Mbaveng
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Andreas Hildebrandt
- Institute of Bioinformatics, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
9
|
Badiee SA, Isu UH, Khodadadi E, Moradi M. The Alternating Access Mechanism in Mammalian Multidrug Resistance Transporters and Their Bacterial Homologs. MEMBRANES 2023; 13:568. [PMID: 37367772 PMCID: PMC10305233 DOI: 10.3390/membranes13060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Multidrug resistance (MDR) proteins belonging to the ATP-Binding Cassette (ABC) transporter group play a crucial role in the export of cytotoxic drugs across cell membranes. These proteins are particularly fascinating due to their ability to confer drug resistance, which subsequently leads to the failure of therapeutic interventions and hinders successful treatments. One key mechanism by which multidrug resistance (MDR) proteins carry out their transport function is through alternating access. This mechanism involves intricate conformational changes that enable the binding and transport of substrates across cellular membranes. In this extensive review, we provide an overview of ABC transporters, including their classifications and structural similarities. We focus specifically on well-known mammalian multidrug resistance proteins such as MRP1 and Pgp (MDR1), as well as bacterial counterparts such as Sav1866 and lipid flippase MsbA. By exploring the structural and functional features of these MDR proteins, we shed light on the roles of their nucleotide-binding domains (NBDs) and transmembrane domains (TMDs) in the transport process. Notably, while the structures of NBDs in prokaryotic ABC proteins, such as Sav1866, MsbA, and mammalian Pgp, are identical, MRP1 exhibits distinct characteristics in its NBDs. Our review also emphasizes the importance of two ATP molecules for the formation of an interface between the two binding sites of NBD domains across all these transporters. ATP hydrolysis occurs following substrate transport and is vital for recycling the transporters in subsequent cycles of substrate transportation. Specifically, among the studied transporters, only NBD2 in MRP1 possesses the ability to hydrolyze ATP, while both NBDs of Pgp, Sav1866, and MsbA are capable of carrying out this reaction. Furthermore, we highlight recent advancements in the study of MDR proteins and the alternating access mechanism. We discuss the experimental and computational approaches utilized to investigate the structure and dynamics of MDR proteins, providing valuable insights into their conformational changes and substrate transport. This review not only contributes to an enhanced understanding of multidrug resistance proteins but also holds immense potential for guiding future research and facilitating the development of effective strategies to overcome multidrug resistance, thus improving therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (U.H.I.); (E.K.)
| |
Collapse
|
10
|
Tóth Á, Janaszkiewicz A, Crespi V, Di Meo F. On the interplay between lipids and asymmetric dynamics of an NBS degenerate ABC transporter. Commun Biol 2023; 6:149. [PMID: 36737455 PMCID: PMC9898250 DOI: 10.1038/s42003-023-04537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Multidrug resistance-associated proteins are ABC C-family exporters. They are crucial in pharmacology as they transport various substrates across membranes. However, the role of the degenerate nucleotide-binding site (NBS) remains unclear likewise the interplay with the surrounding lipid environment. Here, we propose a dynamic and structural overview of MRP1 from ca. 110 μs molecular dynamics simulations. ATP binding to NBS1 is likely maintained along several transport cycles. Asymmetric NBD behaviour is ensured by lower signal transduction from NBD1 to the rest of the protein owing to the absence of ball-and-socket conformation between NBD1 and coupling helices. Even though surrounding lipids play an active role in the allosteric communication between the substrate-binding pocket and NBDs, our results suggest that lipid composition has a limited impact, mostly by affecting transport kinetics. We believe that our work can be extended to other degenerate NBS ABC proteins and provide hints for deciphering mechanistic differences among ABC transporters.
Collapse
Affiliation(s)
- Ágota Tóth
- grid.9966.00000 0001 2165 4861Inserm U1248 Pharmacology & Transplantation, ΩHealth Institute—Univ. Limoges, 2 rue du Prof. Descottes, 87000 F Limoges, France
| | - Angelika Janaszkiewicz
- grid.9966.00000 0001 2165 4861Inserm U1248 Pharmacology & Transplantation, ΩHealth Institute—Univ. Limoges, 2 rue du Prof. Descottes, 87000 F Limoges, France
| | - Veronica Crespi
- grid.9966.00000 0001 2165 4861Inserm U1248 Pharmacology & Transplantation, ΩHealth Institute—Univ. Limoges, 2 rue du Prof. Descottes, 87000 F Limoges, France
| | - Florent Di Meo
- Inserm U1248 Pharmacology & Transplantation, ΩHealth Institute-Univ. Limoges, 2 rue du Prof. Descottes, 87000 F, Limoges, France.
| |
Collapse
|
11
|
Manoharan JP, Nirmala Karunakaran K, Vidyalakshmi S, Dhananjayan K. Computational binding affinity and molecular dynamic characterization of annonaceous acetogenins at nucleotide binding domain (NBD) of multi-drug resistance ATP-binding cassette sub-family B member 1 (ABCB1). J Biomol Struct Dyn 2023; 41:821-832. [PMID: 34907862 DOI: 10.1080/07391102.2021.2013321] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multi drug resistance (MDR) in tumor might be caused leading to the overexpression of transporters, such as ATP-binding cassette sub-family B member 1 (ABCB1). A combination of non-toxic and potent ABC inhibitors along with conventional anti-cancer drugs is needed to reverse MDR in tumors. A variety of phytochemicals have been previously shown to reverse MDR. Annonaceous acetogenins (AAs) with C35/C37 long-chain fatty acids were reported for their anti-tumor activity, however, their effect on reversing MDR is not yet investigated. We aimed to investigate some selective AAs against the B1 subtype of ABC transporter using computational studies. Various modules of Maestro software were utilized for our in-silico analysis. Few well-characterized AAs were screened for their drug-likeness properties and tested for binding affinity at ATP and drug binding sites of ABCB1 through molecular docking. The stability of the ligand-protein complex (lowest docking score) was then determined by a molecular dynamic (MD) simulation study. Out of 24 AAs, Annonacin A (-8.10 kcal/mol) and Annohexocin (-10.49 kcal/mol) docked with a greater binding affinity at the ATP binding site than the first-generation inhibitor of ABCB1 (Verapamil: -3.86 kcal/mol). MD simulation of Annonacin A: ABCB1 complex for 100 ns also indicated that Annonacin A would stably bind to the ATP binding site. We report that Annonacin A binds at a greater affinity with ABCB1 and might act as a potential drug lead to reverse MDR in tumor cells. Communicated by Ramaswamy H. Sarma.
Collapse
|
12
|
Interaction of a Homologous Series of Amphiphiles with P-glycoprotein in a Membrane Environment-Contributions of Polar and Non-Polar Interactions. Pharmaceutics 2023; 15:pharmaceutics15010174. [PMID: 36678803 PMCID: PMC9862096 DOI: 10.3390/pharmaceutics15010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
The transport of drugs by efflux transporters in biomembranes limits their bioavailability and is a major determinant of drug resistance development by cancer cells and pathogens. A large number of chemically dissimilar drugs are transported, and despite extensive studies, the molecular determinants of substrate specificity are still not well understood. In this work, we explore the role of polar and non-polar interactions on the interaction of a homologous series of fluorescent amphiphiles with the efflux transporter P-glycoprotein. The interaction of the amphiphiles with P-glycoprotein is evaluated through effects on ATPase activity, efficiency in inhibition of [125I]-IAAP binding, and partition to the whole native membranes containing the transporter. The results were complemented with partition to model membranes with a representative lipid composition, and details on the interactions established were obtained from MD simulations. We show that when the total concentration of amphiphile is considered, the binding parameters obtained are apparent and do not reflect the affinity for P-gp. A new formalism is proposed that includes sequestration of the amphiphiles in the lipid bilayer and the possible binding of several molecules in P-gp's substrate-binding pocket. The intrinsic binding affinity thus obtained is essentially independent of amphiphile hydrophobicity, highlighting the importance of polar interactions. An increase in the lipophilicity and amphiphilicity led to a more efficient association with the lipid bilayer, which maintains the non-polar groups of the amphiphiles in the bilayer, while the polar groups interact with P-gp's binding pocket. The presence of several amphiphiles in this orientation is proposed as a mechanism for inhibition of P-pg function.
Collapse
|
13
|
Rasouli A, Yu Q, Dehghani-Ghahnaviyeh S, Wen PC, Kowal J, Locher KP, Tajkhorshid E. Differential dynamics and direct interaction of bound ligands with lipids in multidrug transporter ABCG2. Proc Natl Acad Sci U S A 2023; 120:e2213437120. [PMID: 36580587 PMCID: PMC9910490 DOI: 10.1073/pnas.2213437120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/20/2022] [Indexed: 12/31/2022] Open
Abstract
ABCG2 is an ATP-binding cassette (ABC) transporter that extrudes a wide range of xenobiotics and drugs from the cell and contributes to multidrug resistance in cancer cells. Following our recent structural characterization of topotecan-bound ABCG2, here, we present cryo-EM structures of ABCG2 under turnover conditions in complex with a special modulator and slow substrate, tariquidar, in nanodiscs. The structures reveal that similar to topotecan, tariquidar induces two distinct ABCG2 conformations under turnover conditions (turnover-1 and turnover-2). μs-scale molecular dynamics simulations of drug-bound and apo ABCG2 in native-like lipid bilayers, in both topotecan- and tariquidar-bound states, characterize the ligand size as a major determinant of its binding stability. The simulations highlight direct lipid-drug interactions for the smaller topotecan, which exhibits a highly dynamic binding mode. In contrast, the larger tariquidar occupies most of the available volume in the binding pocket, thus leaving little space for lipids to enter the cavity and interact with it. Similarly, when simulating ABCG2 in the apo inward-open state, we also observe spontaneous penetration of phospholipids into the binding cavity. The captured phospholipid diffusion pathway into ABCG2 offers a putative general path to recruit any hydrophobic/amphiphilic substrates directly from the membrane. Our simulations also reveal that ABCG2 rejects cholesterol as a substrate, which is omnipresent in plasma membranes that contain ABCG2. At the same time, cholesterol is found to prohibit the penetration of phospholipids into ABCG2. These molecular findings have direct functional ramifications on ABCG2's function as a transporter.
Collapse
Affiliation(s)
- Ali Rasouli
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, University of Illinois, Urbana, IL61801
- Center for Biophysics and Quantitative Biology University of Illinois, Urbana, IL61801
| | - Qin Yu
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Sepehr Dehghani-Ghahnaviyeh
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, University of Illinois, Urbana, IL61801
- Center for Biophysics and Quantitative Biology University of Illinois, Urbana, IL61801
| | - Po-Chao Wen
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, University of Illinois, Urbana, IL61801
- Center for Biophysics and Quantitative Biology University of Illinois, Urbana, IL61801
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Kaspar P. Locher
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, University of Illinois, Urbana, IL61801
- Center for Biophysics and Quantitative Biology University of Illinois, Urbana, IL61801
| |
Collapse
|
14
|
Ogden DS, Moradi M. Atomic-level characterization of the conformational transition pathways in SARS-CoV-1 and SARS-CoV-2 spike proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.29.518406. [PMID: 36482979 PMCID: PMC9727763 DOI: 10.1101/2022.11.29.518406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Severe acute respiratory syndrome (SARS) coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2) derive transmissibility from spike protein activation in the receptor binding domain (RBD) and binding to the host cell angiotensin converting enzyme 2 (ACE2). However, the mechanistic details that describe the large-scale conformational changes associated with spike protein activation or deactivation are still somewhat unknown. Here, we have employed an extensive set of nonequilibrium all-atom molecular dynamics (MD) simulations, utilizing a novel protocol, for the SARS-CoV-1 (CoV-1) and SARS-CoV-2 (CoV-2) prefusion spike proteins in order to characterize the conformational pathways associated with the active-to-inactive transition. Our results indicate that both CoV-1 and CoV-2 spike proteins undergo conformational transitions along pathways unique to each protein. We have identified a number of key residues that form various inter-domain saltbridges, suggesting a multi-stage conformational change along the pathways. We have also constructed the free energy profiles along the transition pathways for both CoV-1 and CoV-2 spike proteins. The CoV-2 spike protein must overcome larger free energy barriers to undergo conformational changes towards protein activation or deactivation, when compared to CoV-1.
Collapse
|
15
|
Kapoor K, Thangapandian S, Tajkhorshid E. Extended-ensemble docking to probe dynamic variation of ligand binding sites during large-scale structural changes of proteins. Chem Sci 2022; 13:4150-4169. [PMID: 35440993 PMCID: PMC8985516 DOI: 10.1039/d2sc00841f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Proteins can sample a broad landscape as they undergo conformational transition between different functional states. At the same time, as key players in almost all cellular processes, proteins are important drug targets. Considering the different conformational states of a protein is therefore central for a successful drug-design strategy. Here we introduce a novel docking protocol, termed extended-ensemble docking, pertaining to proteins that undergo large-scale (global) conformational changes during their function. In its application to multidrug ABC-transporter P-glycoprotein (Pgp), extensive non-equilibrium molecular dynamics simulations employing system-specific collective variables are first used to describe the transition cycle of the transporter. An extended set of conformations (extended ensemble) representing the full transition cycle between the inward- and the outward-facing states is then used to seed high-throughput docking calculations of known substrates, non-substrates, and modulators of the transporter. Large differences are predicted in the binding affinities to different conformations, with compounds showing stronger binding affinities to intermediate conformations compared to the starting crystal structure. Hierarchical clustering of the binding modes shows all ligands preferably bind to the large central cavity of the protein, formed at the apex of the transmembrane domain (TMD), whereas only small binding populations are observed in the previously described R and H sites present within the individual TMD leaflets. Based on the results, the central cavity is further divided into two major subsites, first preferably binding smaller substrates and high-affinity inhibitors, whereas the second one shows preference for larger substrates and low-affinity modulators. These central subsites along with the low-affinity interaction sites present within the individual TMD leaflets may respectively correspond to the proposed high- and low-affinity binding sites in Pgp. We propose further an optimization strategy for developing more potent inhibitors of Pgp, based on increasing its specificity to the extended ensemble of the protein, instead of using a single protein structure, as well as its selectivity for the high-affinity binding site. In contrast to earlier in silico studies using single static structures of Pgp, our results show better agreement with experimental studies, pointing to the importance of incorporating the global conformational flexibility of proteins in future drug-discovery endeavors.
Collapse
Affiliation(s)
- Karan Kapoor
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Sundar Thangapandian
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
16
|
Clouser AF, Atkins WM. Long Range Communication between the Drug-Binding Sites and Nucleotide Binding Domains of the Efflux Transporter ABCB1. Biochemistry 2022; 61:730-740. [PMID: 35384651 PMCID: PMC9022228 DOI: 10.1021/acs.biochem.2c00056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The ABC efflux pump
P-glycoprotein (P-gp) transports a wide variety
of drugs and is inhibited by others. Some drugs stimulate ATP hydrolysis
at the nucleotide binding domains (NBDs) and are transported, others
uncouple ATP hydrolysis and transport, and others inhibit ATP hydrolysis.
The molecular basis for the different behavior of these drugs is not
well understood despite the availability of several structural models
of P-gp complexes with ligands bound. Hypothetically, ligands differentially
alter the conformational dynamics of peptide segments that mediate
the coupling between the drug binding sites and the NBDs. Here, we
explore by hydrogen-deuterium exchange mass spectrometry the dynamic
consequences of a classic substrate and inhibitor, vinblastine and
zosuquidar, binding to mouse P-gp (mdr1a) in lipid nanodiscs. The
dynamics of P-gp in nucleotide-free, pre-hydrolysis, and post-hydrolysis
states in the presence of each drug reveal distinct mechanisms of
ATPase stimulation and implications for transport. For both drugs,
there are common regions affected in a similar manner, suggesting
that particular networks are the key to stimulating ATP hydrolysis.
However, drug binding effects diverge in the post-hydrolysis state,
particularly in the intracellular helices (ICHs 3 and 4) and neighboring
transmembrane helices. The local dynamics and conformational equilibria
in this region are critical for the coupling of drug binding and ATP
hydrolysis and are differentially modulated in the catalytic cycle.
Collapse
Affiliation(s)
- Amanda F Clouser
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| |
Collapse
|
17
|
Structural insights into the catalytic cycle of a bacterial multidrug ABC efflux pump. J Mol Biol 2022; 434:167541. [DOI: 10.1016/j.jmb.2022.167541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
|
18
|
Chaptal V, Zampieri V, Wiseman B, Orelle C, Martin J, Nguyen KA, Gobet A, Di Cesare M, Magnard S, Javed W, Eid J, Kilburg A, Peuchmaur M, Marcoux J, Monticelli L, Hogbom M, Schoehn G, Jault JM, Boumendjel A, Falson P. Substrate-bound and substrate-free outward-facing structures of a multidrug ABC exporter. SCIENCE ADVANCES 2022; 8:eabg9215. [PMID: 35080979 DOI: 10.1101/2021.03.12.435132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multidrug ABC transporters translocate drugs across membranes by a mechanism for which the molecular features of drug release are so far unknown. Here, we resolved three ATP-Mg2+-bound outward-facing conformations of the Bacillus subtilis (homodimeric) BmrA by x-ray crystallography and single-particle cryo-electron microscopy (EM) in detergent solution, one of them with rhodamine 6G (R6G), a substrate exported by BmrA when overexpressed in B. subtilis. Two R6G molecules bind to the drug-binding cavity at the level of the outer leaflet, between transmembrane (TM) helices 1-2 of one monomer and TM5'-6' of the other. They induce a rearrangement of TM1-2, highlighting a local flexibility that we confirmed by hydrogen/deuterium exchange and molecular dynamics simulations. In the absence of R6G, simulations show a fast postrelease occlusion of the cavity driven by hydrophobicity, while when present, R6G can move within the cavity, maintaining it open.
Collapse
Affiliation(s)
- Vincent Chaptal
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Veronica Zampieri
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Benjamin Wiseman
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Cédric Orelle
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Juliette Martin
- Modeling Biological Macromolecules Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Kim-Anh Nguyen
- University of Grenoble Alpes, INSERM, LRB, 38000 Grenoble, France
| | - Alexia Gobet
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Margot Di Cesare
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Sandrine Magnard
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Waqas Javed
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Jad Eid
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Arnaud Kilburg
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Marine Peuchmaur
- University of Grenoble Alpes, CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Luca Monticelli
- Modeling Biological Macromolecules Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Martin Hogbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Guy Schoehn
- University of Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Jean-Michel Jault
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | | | - Pierre Falson
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| |
Collapse
|
19
|
Chaptal V, Zampieri V, Wiseman B, Orelle C, Martin J, Nguyen KA, Gobet A, Di Cesare M, Magnard S, Javed W, Eid J, Kilburg A, Peuchmaur M, Marcoux J, Monticelli L, Hogbom M, Schoehn G, Jault JM, Boumendjel A, Falson P. Substrate-bound and substrate-free outward-facing structures of a multidrug ABC exporter. SCIENCE ADVANCES 2022; 8:eabg9215. [PMID: 35080979 PMCID: PMC8791611 DOI: 10.1126/sciadv.abg9215] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Multidrug ABC transporters translocate drugs across membranes by a mechanism for which the molecular features of drug release are so far unknown. Here, we resolved three ATP-Mg2+-bound outward-facing conformations of the Bacillus subtilis (homodimeric) BmrA by x-ray crystallography and single-particle cryo-electron microscopy (EM) in detergent solution, one of them with rhodamine 6G (R6G), a substrate exported by BmrA when overexpressed in B. subtilis. Two R6G molecules bind to the drug-binding cavity at the level of the outer leaflet, between transmembrane (TM) helices 1-2 of one monomer and TM5'-6' of the other. They induce a rearrangement of TM1-2, highlighting a local flexibility that we confirmed by hydrogen/deuterium exchange and molecular dynamics simulations. In the absence of R6G, simulations show a fast postrelease occlusion of the cavity driven by hydrophobicity, while when present, R6G can move within the cavity, maintaining it open.
Collapse
Affiliation(s)
- Vincent Chaptal
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Veronica Zampieri
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Benjamin Wiseman
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Cédric Orelle
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Juliette Martin
- Modeling Biological Macromolecules Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Kim-Anh Nguyen
- University of Grenoble Alpes, INSERM, LRB, 38000 Grenoble, France
| | - Alexia Gobet
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Margot Di Cesare
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Sandrine Magnard
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Waqas Javed
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Jad Eid
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Arnaud Kilburg
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Marine Peuchmaur
- University of Grenoble Alpes, CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Luca Monticelli
- Modeling Biological Macromolecules Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Martin Hogbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Guy Schoehn
- University of Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Jean-Michel Jault
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | | | - Pierre Falson
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
- Corresponding author.
| |
Collapse
|
20
|
Wang L, O'Mara ML. Effect of the Force Field on Molecular Dynamics Simulations of the Multidrug Efflux Protein P-Glycoprotein. J Chem Theory Comput 2021; 17:6491-6508. [PMID: 34506133 DOI: 10.1021/acs.jctc.1c00414] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular dynamics (MD) simulations have been used extensively to study P-glycoprotein (P-gp), a flexible multidrug transporter that is a key player in the development of multidrug resistance to chemotherapeutics. A substantial body of literature has grown from simulation studies that have employed various simulation conditions and parameters, including AMBER, CHARMM, OPLS, GROMOS, and coarse-grained force fields, drawing conclusions from simulations spanning hundreds of nanoseconds. Each force field is typically parametrized and validated on different data and observables, usually of small molecules and peptides; there have been few comparisons of force field performance on large protein-membrane systems. Here we compare the conformational ensembles of P-gp embedded in a POPC/cholesterol bilayer generated over 500 ns of replicate simulation with five force fields from popular biomolecular families: AMBER 99SB-ILDN, CHARMM 36, OPLS-AA/L, GROMOS 54A7, and MARTINI. We find considerable differences among the ensembles with little conformational overlap, although they correspond to similar extents to structural data obtained from electron paramagnetic resonance and cross-linking studies. Moreover, each trajectory was still sampling new conformations at a high rate after 500 ns of simulation, suggesting the need for more sampling. This work highlights the need to consider known limitations of the force field used (e.g., biases toward certain secondary structures) and the simulation itself (e.g., whether sufficient sampling has been achieved) when interpreting accumulated results of simulation studies of P-gp and other transport proteins.
Collapse
Affiliation(s)
- Lily Wang
- Research School of Chemistry, College of Science, Australian National University, Canberra, ACT 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
21
|
Kapoor K, Pant S, Tajkhorshid E. Active participation of membrane lipids in inhibition of multidrug transporter P-glycoprotein. Chem Sci 2021; 12:6293-6306. [PMID: 34084427 PMCID: PMC8115088 DOI: 10.1039/d0sc06288j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
P-glycoprotein (Pgp) is a major efflux pump in humans, overexpressed in a variety of cancers and associated with the development of multi-drug resistance. Allosteric modulation by various ligands (e.g., transport substrates, inhibitors, and ATP) has been biochemically shown to directly influence structural dynamics, and thereby, the function of Pgp. However, the molecular details of such effects, particularly with respect to the role and involvement of the surrounding lipids, are not well established. Here, we employ all-atom molecular dynamics (MD) simulations to study the conformational landscape of Pgp in the presence of a high-affinity, third-generation inhibitor, tariquidar, in comparison to the nucleotide-free (APO) and the ATP-bound states, in order to characterize the mechanical effects of the inhibitor that might be of relevance to its blocking mechanism of Pgp. Simulations in a multi-component lipid bilayer show a dynamic equilibrium between open(er) and more closed inward-facing (IF) conformations in the APO state, with binding of ATP shifting the equilibrium towards conformations more prone to ATP hydrolysis and subsequent events in the transport cycle. In the presence of the inhibitor bound to the drug-binding pocket within the transmembrane domain (TMD), Pgp samples more open IF conformations, and the nucleotide binding domains (NBDs) become highly dynamic. Interestingly, and reproduced in multiple independent simulations, the inhibitor is observed to facilitate recruitment of lipid molecules into the Pgp lumen through the two proposed drug-entry portals, where the lipid head groups from the cytoplasmic leaflet penetrate into and, in some cases, translocate inside the TMD, while the lipid tails remain extended into the bulk lipid environment. These "wedge" lipids likely enhance the inhibitor-induced conformational restriction of the TMD leading to the differential modulation of coupling pathways observed with the NBDs downstream. We suggest a novel inhibitory mechanism for tariquidar, and potentially for related third-generation Pgp inhibitors, where lipids are seen to enhance the inhibitory role in the catalytic cycle of membrane transporters.
Collapse
Affiliation(s)
- Karan Kapoor
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
22
|
Xing J, Huang S, Heng Y, Mei H, Pan X. Computational Insights into Allosteric Conformational Modulation of P-Glycoprotein by Substrate and Inhibitor Binding. Molecules 2020; 25:molecules25246006. [PMID: 33353070 PMCID: PMC7766389 DOI: 10.3390/molecules25246006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter P-glycoprotein (P-gp) is a physiologically essential membrane protein that protects many tissues against xenobiotic molecules, but limits the access of chemotherapeutics into tumor cells, thus contributing to multidrug resistance. The atomic-level mechanism of how substrates and inhibitors differentially affect the ATP hydrolysis by P-gp remains to be elucidated. In this work, atomistic molecular dynamics simulations in an explicit membrane/water environment were performed to explore the effects of substrate and inhibitor binding on the conformational dynamics of P-gp. Distinct differences in conformational changes that mainly occurred in the nucleotide-binding domains (NBDs) were observed from the substrate- and inhibitor-bound simulations. The binding of rhodamine-123 can increase the probability of the formation of an intermediate conformation, in which the NBDs were closer and better aligned, suggesting that substrate binding may prime the transporter for ATP hydrolysis. By contrast, the inhibitor QZ-Leu stabilized NBDs in a much more separated and misaligned conformation, which may result in the deficiency of ATP hydrolysis. The significant differences in conformational modulation of P-gp by substrate and inhibitor binding provided a molecular explanation of how these small molecules exert opposite effects on the ATPase activity. A further structural analysis suggested that the allosteric communication between transmembrane domains (TMDs) and NBDs was primarily mediated by two intracellular coupling helices. Our computational simulations provide not only valuable insights into the transport mechanism of P-gp substrates, but also for the molecular design of P-gp inhibitors.
Collapse
Affiliation(s)
- Juan Xing
- College of Basic Medical Science and College of Pharmacy, Southwest Medical University, Luzhou 646000, China;
| | - Shuheng Huang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China; (S.H.); (Y.H.); (H.M.)
| | - Yu Heng
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China; (S.H.); (Y.H.); (H.M.)
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China; (S.H.); (Y.H.); (H.M.)
| | - Xianchao Pan
- College of Basic Medical Science and College of Pharmacy, Southwest Medical University, Luzhou 646000, China;
- Correspondence: ; Tel.: +86-830-3162291
| |
Collapse
|
23
|
Stockner T, Gradisch R, Schmitt L. The role of the degenerate nucleotide binding site in type I ABC exporters. FEBS Lett 2020; 594:3815-3838. [PMID: 33179257 PMCID: PMC7756269 DOI: 10.1002/1873-3468.13997] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
ATP‐binding cassette (ABC) transporters are fascinating molecular machines that are capable of transporting a large variety of chemically diverse compounds. The energy required for translocation is derived from binding and hydrolysis of ATP. All ABC transporters share a basic architecture and are composed of two transmembrane domains and two nucleotide binding domains (NBDs). The latter harbor all conserved sequence motifs that hallmark the ABC transporter superfamily. The NBDs form the nucleotide binding sites (NBSs) in their interface. Transporters with two active NBSs are called canonical transporters, while ABC exporters from eukaryotic organisms, including humans, frequently have a degenerate NBS1 containing noncanonical residues that strongly impair ATP hydrolysis. Here, we summarize current knowledge on degenerate ABC transporters. By integrating structural information with biophysical and biochemical evidence of asymmetric function, we develop a model for the transport cycle of degenerate ABC transporters. We will elaborate on the unclear functional advantages of a degenerate NBS.
Collapse
Affiliation(s)
- Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ralph Gradisch
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
24
|
Zhao ZJ, Gao XY, Zeng JC, Zhang SL, Meng XM, Shen YJ, Sheng XH. Theoretical Insights into the Cotransport Mechanism of GSH with Anticancer Drugs by MRP1. J Phys Chem B 2020; 124:9803-9811. [DOI: 10.1021/acs.jpcb.0c06662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Zi-Jing Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xin-Ying Gao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jia-Cheng Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shao-Long Zhang
- College of Physics and Electronics, Shandong Normal University, 88 Wenhuadonglu, Jinan, Shandong 250014, China
| | - Xian-Mai Meng
- College of Physics and Electronics, Shandong Normal University, 88 Wenhuadonglu, Jinan, Shandong 250014, China
| | - Yan-Jun Shen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Xie-Huang Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
25
|
Wang C, Cao C, Wang N, Wang X, Wang X, Zhang XC. Cryo-electron microscopy structure of human ABCB6 transporter. Protein Sci 2020; 29:2363-2374. [PMID: 33007128 DOI: 10.1002/pro.3960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023]
Abstract
Human ATP-binding cassette transporter 6 of subfamily B (ABCB6) is an ABC transporter involved in the translocation toxic metals and anti-cancer drugs. Using cryo-electron microscopy, we determined the molecular structure of full-length ABCB6 in an apo state. The structure of ABCB6 unravels the architecture of a full-length ABCB transporter that harbors two N-terminal transmembrane domains which is indispensable for its ATPase activity in our in vitro assay. A slit-like substrate binding pocket of ABCB6 may accommodate the planar shape of porphyrins, and the existence of a secondary cavity near the mitochondrial intermembrane space side would further facilitate substrate release. Furthermore, the ATPase activity of ABCB6 stimulated with a variety of porphyrin substrates showed different profiles in the presence of glutathione (GSH), suggesting the action of a distinct substrate translocation mechanism depending on the use of GSH as a cofactor.
Collapse
Affiliation(s)
- Chunyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangxi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianping Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Goda K, Dönmez-Cakil Y, Tarapcsák S, Szalóki G, Szöllősi D, Parveen Z, Türk D, Szakács G, Chiba P, Stockner T. Human ABCB1 with an ABCB11-like degenerate nucleotide binding site maintains transport activity by avoiding nucleotide occlusion. PLoS Genet 2020; 16:e1009016. [PMID: 33031417 PMCID: PMC7544095 DOI: 10.1371/journal.pgen.1009016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 07/29/2020] [Indexed: 11/28/2022] Open
Abstract
Several ABC exporters carry a degenerate nucleotide binding site (NBS) that is unable to hydrolyze ATP at a rate sufficient for sustaining transport activity. A hallmark of a degenerate NBS is the lack of the catalytic glutamate in the Walker B motif in the nucleotide binding domain (NBD). The multidrug resistance transporter ABCB1 (P-glycoprotein) has two canonical NBSs, and mutation of the catalytic glutamate E556 in NBS1 renders ABCB1 transport-incompetent. In contrast, the closely related bile salt export pump ABCB11 (BSEP), which shares 49% sequence identity with ABCB1, naturally contains a methionine in place of the catalytic glutamate. The NBD-NBD interfaces of ABCB1 and ABCB11 differ only in four residues, all within NBS1. Mutation of the catalytic glutamate in ABCB1 results in the occlusion of ATP in NBS1, leading to the arrest of the transport cycle. Here we show that despite the catalytic glutamate mutation (E556M), ABCB1 regains its ATP-dependent transport activity, when three additional diverging residues are also replaced. Molecular dynamics simulations revealed that the rescue of ATPase activity is due to the modified geometry of NBS1, resulting in a weaker interaction with ATP, which allows the quadruple mutant to evade the conformationally locked pre-hydrolytic state to proceed to ATP-driven transport. In summary, we show that ABCB1 can be transformed into an active transporter with only one functional catalytic site by preventing the formation of the ATP-locked pre-hydrolytic state in the non-canonical site. ABC transporters are one of the largest membrane protein superfamilies, present in all organisms from archaea to humans. They transport a wide range of molecules including amino acids, sugars, vitamins, nucleotides, peptides, lipids, metabolites, antibiotics, and xenobiotics. ABC transporters energize substrate transport by hydrolyzing ATP in two symmetrically arranged nucleotide binding sites (NBSs). The human multidrug resistance transporter ABCB1 has two active NBSs, and it is generally believed that integrity and cooperation of both sites are needed for transport. Several human ABC transporters, such as the bile salt transporter ABCB11, have one degenerate NBS, which has significantly reduced ATPase activity. Interestingly, unilateral mutations affecting one of the two NBSs completely abolish the function of symmetrical ABC transporters. Here we engineered an ABCB1 variant with a degenerate, ABCB11-like NBS1, which can nevertheless transport substrates. Our results indicate that ABCB1 can mediate active transport with a single active site, questioning the validity of models assuming strictly alternating catalysis.
Collapse
Affiliation(s)
- Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Yaprak Dönmez-Cakil
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Maltepe, Istanbul, Turkey
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Gábor Szalóki
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
| | - Zahida Parveen
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Dóra Türk
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja, Budapest, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja, Budapest, Hungary
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse, Vienna, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- * E-mail: (PC); (TS)
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- * E-mail: (PC); (TS)
| |
Collapse
|
27
|
Ford RC, Hellmich UA. What monomeric nucleotide binding domains can teach us about dimeric ABC proteins. FEBS Lett 2020; 594:3857-3875. [PMID: 32880928 DOI: 10.1002/1873-3468.13921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The classic conceptualization of ATP binding cassette (ABC) transporter function is an ATP-dependent conformational change coupled to transport of a substrate across a biological membrane via the transmembrane domains (TMDs). The binding of two ATP molecules within the transporter's two nucleotide binding domains (NBDs) induces their dimerization. Despite retaining the ability to bind nucleotides, isolated NBDs frequently fail to dimerize. ABC proteins without a TMD, for example ABCE and ABCF, have NBDs tethered via elaborate linkers, further supporting that NBD dimerization does not readily occur for isolated NBDs. Intriguingly, even in full-length transporters, the NBD-dimerized, outward-facing state is not as frequently observed as might be expected. This leads to questions regarding what drives NBD interaction and the role of the TMDs or linkers. Understanding the NBD-nucleotide interaction and the subsequent NBD dimerization is thus pivotal for understanding ABC transporter activity in general. Here, we hope to provide new insights into ABC protein function by discussing the perplexing issue of (missing) NBD dimerization in isolation and in the context of full-length ABC proteins.
Collapse
Affiliation(s)
- Robert C Ford
- Faculty of Biology Medicine and Health, The University of Manchester, UK
| | - Ute A Hellmich
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt, Germany
| |
Collapse
|
28
|
Göddeke H, Schäfer LV. Capturing Substrate Translocation in an ABC Exporter at the Atomic Level. J Am Chem Soc 2020; 142:12791-12801. [PMID: 32578427 DOI: 10.1021/jacs.0c05502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
ATP-binding cassette (ABC) transporters chemomechanically couple ATP binding and hydrolysis to large-scale conformational changes, ultimately leading to substrate translocation across biological membranes. Despite recent progress in the structure determination of substrate-bound ABC exporters, the inherently dynamic mechanism of substrate transport remains unclear at the atomic level. In this work, we capture substrate translocation in the heterodimeric ABC exporter TM287/288 from the hyperthermophilic bacterium Thermotoga maritima using all-atom molecular dynamics (MD) simulations. Unguided multimicrosecond simulations at 375 K show how the drugs daunorubicin and verapamil, which were initially docked into the ABC transporter, get translocated through the exporter by following its large-scale alternating access conformational transitions between an inward-facing (IF) and an outward-facing (OF) conformation. Triggered by the affinity difference due to differential solvation of the binding cavity in the IF and OF conformations, the substrates unbind from the OF transporter and partition into the lipid bilayer. While daunorubicin is stably inserted into the outer leaflet of the bilayer, verapamil dynamically flip flops between the bilayer leaflets, possibly rendering its net transport futile.
Collapse
Affiliation(s)
- Hendrik Göddeke
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Lars V Schäfer
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
29
|
Zhang B, Zhang J, Kang Z, Liang L, Liu Y, Wang Q. On interactions of P-glycoprotein with various anti-tumor drugs by binding free energy calculations. J Biomol Struct Dyn 2020; 39:5335-5347. [PMID: 32608321 DOI: 10.1080/07391102.2020.1786456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
P-glycoprotein (P-gp, MDR1), one of ATP-binding cassette transporters, may confer tumor cells cross-resistance to chemotherapeutics. A large amount of P-gp inhibitors were designed to inhibit the multidrug resistance (MDR) feature of P-gp. However, no sufficient researches were reported to explore the correlation between binding capacity and drug property by experiment. Without particular drug property found to inhibit the MDR feature of P-gp, the orientation of drug design is indefinite. In this work, 10 representative cancer drugs with various properties are used to bind with P-gp by molecular dynamics simulation. Binding free energy between P-gp and 10 drugs ranges -139 to -253 kJ/mol. It reveals that the promiscuity nature of P-gp is in light of the similar binding free energy in separate P-gp-ligand binding systems. The binding effect of P-gp and drugs correlates well with the size of drugs and has no apparent correlation with the polarity of each drug. The key reason is that van der Waal's interaction occupies most of the total binding free energy, and it is led by the number of atoms in the drugs. Two transmembrane segments (TM6 and TM12) and three types of amino acids (PHE, MET, and GLN) are vital in binding drugs with van der Waal's energy, which evident the influence between binding stability and size of drugs. This work provides the cause and theoretical basis for the promiscuity nature of P-gp.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Junqiao Zhang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhengzhong Kang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Lijun Liang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Yingchun Liu
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Qi Wang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
30
|
Bonito CA, Ferreira RJ, Ferreira MJU, Gillet JP, Cordeiro MNDS, Dos Santos DJVA. Theoretical insights on helix repacking as the origin of P-glycoprotein promiscuity. Sci Rep 2020; 10:9823. [PMID: 32555203 PMCID: PMC7300024 DOI: 10.1038/s41598-020-66587-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
P-glycoprotein (P-gp, ABCB1) overexpression is, currently, one of the most important multidrug resistance (MDR) mechanisms in tumor cells. Thus, modulating drug efflux by P-gp has become one of the most promising approaches to overcome MDR in cancer. Yet, more insights on the molecular basis of drug specificity and efflux-related signal transmission mechanism between the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) are needed to develop molecules with higher selectivity and efficacy. Starting from a murine P-gp crystallographic structure at the inward-facing conformation (PDB ID: 4Q9H), we evaluated the structural quality of the herein generated human P-gp homology model. This initial human P-gp model, in the presence of the “linker” and inserted in a suitable lipid bilayer, was refined through molecular dynamics simulations and thoroughly validated. The best human P-gp model was further used to study the effect of four single-point mutations located at the TMDs, experimentally related with changes in substrate specificity and drug-stimulated ATPase activity. Remarkably, each P-gp mutation is able to induce transmembrane α-helices (TMHs) repacking, affecting the drug-binding pocket volume and the drug-binding sites properties (e.g. volume, shape and polarity) finally compromising drug binding at the substrate binding sites. Furthermore, intracellular coupling helices (ICH) also play an important role since changes in the TMHs rearrangement are shown to have an impact in residue interactions at the ICH-NBD interfaces, suggesting that identified TMHs repacking affect TMD-NBD contacts and interfere with signal transmission from the TMDs to the NBDs.
Collapse
Affiliation(s)
- Cátia A Bonito
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Ricardo J Ferreira
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, B-5000, Namur, Belgium
| | - M Natália D S Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Daniel J V A Dos Santos
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal. .,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
31
|
Carey Hulyer AR, Briggs DA, O'Mara ML, Kerr ID, Harmer JR, Callaghan R. Cross-linking, DEER-spectroscopy and molecular dynamics confirm the inward facing state of P-glycoprotein in a lipid membrane. J Struct Biol 2020; 211:107513. [PMID: 32339763 DOI: 10.1016/j.jsb.2020.107513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
The drug efflux pump P-glycoprotein (P-gp) displays a complex transport mechanism involving multiple drug binding sites and two centres for nucleotide hydrolysis. Elucidating the molecular mechanism of transport remains elusive and the availability of P-gp structures in distinct natural and ligand trapped conformations will accelerate our understanding. The present investigation sought to provide biochemical data to validate specific features of these structures; with particular focus on the transmembrane domain that provides the transport conduit. Hence our focus was on transmembrane helices six and twelve (TM6/TM12), which are believed to participate in drug binding, as they line the central transport conduit and provide a direct link to the catalytic centres. A series of P-gp mutants were generated with a single cysteine in both TM6 and TM12 to facilitate measurement of inter-helical distances using cross-linking and DEER strategies. Experimental results were compared to published structures per se and those refined by MD simulations. This analysis revealed that the refined inward-facing murine structure (4M1M) of P-gp provides a good representation of the proximity, topography and relative motions of TM6 and TM12 in reconstituted human P-gp.
Collapse
Affiliation(s)
- Alex R Carey Hulyer
- Research School of Biology, and the Medical School, Australian National University, Canberra, ACT 2601, Australia
| | - Deborah A Briggs
- Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Megan L O'Mara
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Ian D Kerr
- Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Jeffrey R Harmer
- The Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Richard Callaghan
- Research School of Biology, and the Medical School, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
32
|
Thangapandian S, Kapoor K, Tajkhorshid E. Probing cholesterol binding and translocation in P-glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183090. [PMID: 31676371 PMCID: PMC6934093 DOI: 10.1016/j.bbamem.2019.183090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 01/01/2023]
Abstract
P-glycoprotein (Pgp) is a biomedically important member of the ABC transporter superfamily that mediates multidrug resistance in various cancer types. Substrate binding and transport in Pgp are modulated by the presence of cholesterol in the membrane. Structural information on cholesterol binding sites and mechanistic details of its redistribution are, however, largely unknown. In this study, a set of 40 independent molecular dynamics (MD) simulations of Pgp embedded in cholesterol-rich lipid bilayers are reported, totaling 8 μs, enabling extensive sampling of cholesterol-protein interactions in Pgp. Clustering analyses of the ensemble of cholesterol molecules (∼5740) sampled around Pgp in these simulations reveal specific and asymmetric cholesterol-binding regions formed by the transmembrane (TM) helices TM1-6 and TM8. Notably, not all the putative cholesterol binding sites identified by MD can be predicted by the primary sequence based cholesterol-recognition amino acid consensus (CRAC) or inverted CRAC (CARC) motifs, an observation that we attribute to inadequacy of these motifs to account for binding sites formed by remote amino acids in the sequence that can still be spatially adjacent to each other. Binding of cholesterol to Pgp occurs more frequently through its rough β-face formed by the two protruding methyl groups, whereas the opposite smooth α-face prefers packing alongside the membrane lipids. One full and two partial cholesterol flipping events between the two leaflets of the bilayer mediated by the surface of Pgp are also captured in these simulations. All flipping events are observed in a region formed by helices TM1, TM2, and TM11, featuring two full and two partial CRAC/CARC motifs, with Tyr49 and Tyr126 identified as key residues interacting with cholesterol during this event. Our study is the first to report direct observation of unconventional cholesterol translocation on the surface of Pgp, providing a secondary transport model for the known flippase activity of ABC exporters of cholesterol. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Sundar Thangapandian
- NIH Center for Molecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karan Kapoor
- NIH Center for Molecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Molecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
33
|
Multidrug ABC transporters in bacteria. Res Microbiol 2019; 170:381-391. [DOI: 10.1016/j.resmic.2019.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
|
34
|
Tolios A, De Las Rivas J, Hovig E, Trouillas P, Scorilas A, Mohr T. Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions. Drug Resist Updat 2019; 48:100662. [PMID: 31927437 DOI: 10.1016/j.drup.2019.100662] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Like physics in the 19th century, biology and molecular biology in particular, has been fertilized and enhanced like few other scientific fields, by the incorporation of mathematical methods. In the last decades, a whole new scientific field, bioinformatics, has developed with an output of over 30,000 papers a year (Pubmed search using the keyword "bioinformatics"). Huge databases of mass throughput data have been established, with ArrayExpress alone containing more than 2.7 million assays (October 2019). Computational methods have become indispensable tools in molecular biology, particularly in one of the most challenging areas of cancer research, multidrug resistance (MDR). However, confronted with a plethora of different algorithms, approaches, and methods, the average researcher faces key questions: Which methods do exist? Which methods can be used to tackle the aims of a given study? Or, more generally, how do I use computational biology/bioinformatics to bolster my research? The current review is aimed at providing guidance to existing methods with relevance to MDR research. In particular, we provide an overview on: a) the identification of potential biomarkers using expression data; b) the prediction of treatment response by machine learning methods; c) the employment of network approaches to identify gene/protein regulatory networks and potential key players; d) the identification of drug-target interactions; e) the use of bipartite networks to identify multidrug targets; f) the identification of cellular subpopulations with the MDR phenotype; and, finally, g) the use of molecular modeling methods to guide and enhance drug discovery. This review shall serve as a guide through some of the basic concepts useful in MDR research. It shall give the reader some ideas about the possibilities in MDR research by using computational tools, and, finally, it shall provide a short overview of relevant literature.
Collapse
Affiliation(s)
- A Tolios
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Institute of Clinical Chemistry and Laboratory Medicine, Heinrich Heine University, Duesseldorf, Germany.
| | - J De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain.
| | - E Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital and Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway.
| | - P Trouillas
- UMR 1248 INSERM, Univ. Limoges, 2 rue du Dr Marland, 87052, Limoges, France; RCPTM, University Palacký of Olomouc, tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| | - A Scorilas
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | - T Mohr
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria; ScienceConsult - DI Thomas Mohr KG, Guntramsdorf, Austria.
| |
Collapse
|
35
|
Srikant S, Gaudet R. Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters. Nat Struct Mol Biol 2019; 26:792-801. [PMID: 31451804 DOI: 10.1038/s41594-019-0280-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 07/17/2019] [Indexed: 01/27/2023]
Abstract
Much structural information has been amassed on ATP-binding cassette (ABC) transporters, including hundreds of structures of isolated domains and an increasing array of full-length transporters. The structures capture different steps in the transport cycle and have aided in the design and interpretation of computational simulations and biophysics experiments. These data provide a maturing, although still incomplete, elucidation of the protein dynamics and mechanisms of substrate selection and transit through the transporters. We present an updated view of the classical alternating-access mechanism as it applies to eukaryotic ABC transporters, focusing on type I exporters. Our model helps frame the progress in, and remaining questions about, transporter energetics, how substrates are selected and how ATP is consumed to perform work at the molecular scale. Many human ABC transporters are associated with disease; we highlight progress in understanding their pharmacology through the lens of structural biology and describe how this knowledge suggests approaches to pharmacologically targeting these transporters.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
36
|
Padayatti PS, Lee SC, Stanfield RL, Wen PC, Tajkhorshid E, Wilson IA, Zhang Q. Structural Insights into the Lipid A Transport Pathway in MsbA. Structure 2019; 27:1114-1123.e3. [PMID: 31130486 PMCID: PMC6610721 DOI: 10.1016/j.str.2019.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/12/2019] [Accepted: 04/10/2019] [Indexed: 11/27/2022]
Abstract
MsbA is an essential ATP-binding cassette transporter in Gram-negative bacteria that transports lipid A and lipopolysaccharide from the cytoplasmic leaflet to the periplasmic leaflet of the inner membrane. Here we report the X-ray structure of MsbA from Salmonella typhimurium at 2.8-Å resolution in an inward-facing conformation after cocrystallization with lipid A and using a stabilizing facial amphiphile. The structure displays a large amplitude opening in the transmembrane portal, which is likely required for lipid A to pass from its site of synthesis into the protein-enclosed transport pathway. Putative lipid A density is observed further inside the transmembrane cavity, consistent with a trap and flip model. Additional electron density attributed to lipid A is observed near an outer surface cleft at the periplasmic ends of the transmembrane helices. These findings provide new structural insights into the lipid A transport pathway through comparative analysis with existing MsbA structures.
Collapse
Affiliation(s)
- Pius S Padayatti
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sung Chang Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Po-Chao Wen
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
37
|
Lowrence RC, Subramaniapillai SG, Ulaganathan V, Nagarajan S. Tackling drug resistance with efflux pump inhibitors: from bacteria to cancerous cells. Crit Rev Microbiol 2019; 45:334-353. [PMID: 31248314 DOI: 10.1080/1040841x.2019.1607248] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug resistance is a serious concern in a clinical setting jeopardizing treatment for both infectious agents and cancers alike. The wide-spread emergence of multi-drug resistant (MDR) phenotypes from bacteria to cancerous cells necessitates the need to target resistance mechanisms and prevent the emergence of resistant mutants. Drug efflux seems to be one of the preferred approaches embraced by both microbial and mammalian cells alike, to thwart the action of chemotherapeutic agents thereby leading to a drug resistant phenotype. Relative to microbes, which predominantly employs proton motive force (PMF) powered, Major Facilitator Superfamily (MFS)/Resistance Nodulation and Division (RND) classes of efflux pumps to efflux drugs, cancerous cells preferentially use ATP fuelled ATP binding cassette (ABC) transporters to extrude chemotherapeutic agents. The prevalence, evolutionary characteristics and overlapping functions of ABC transporters have been highlighted in this review. Additionally, we outline the role of ABC pumps in conferring MDR phenotype to both bacteria and cancerous cells and underscore the importance of efflux pump inhibitors (EPI) to mitigate drug resistance. Based on the literature reports and analysis, we reason out feasibility of employing bacteria as a tool to screen for EPI's targeting ABC pumps of cancerous cells.
Collapse
Affiliation(s)
- Rene Christena Lowrence
- a Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield , UK
| | | | | | - Saisubramanian Nagarajan
- c Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University , Thanjavur , India
| |
Collapse
|
38
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
39
|
Lacabanne D, Orelle C, Lecoq L, Kunert B, Chuilon C, Wiegand T, Ravaud S, Jault JM, Meier BH, Böckmann A. Flexible-to-rigid transition is central for substrate transport in the ABC transporter BmrA from Bacillus subtilis. Commun Biol 2019; 2:149. [PMID: 31044174 PMCID: PMC6488656 DOI: 10.1038/s42003-019-0390-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/15/2019] [Indexed: 01/15/2023] Open
Abstract
ATP-binding-cassette (ABC) transporters are molecular pumps that translocate molecules across the cell membrane by switching between inward-facing and outward-facing states. To obtain a detailed understanding of their mechanism remains a challenge to structural biology, as these proteins are notoriously difficult to study at the molecular level in their active, membrane-inserted form. Here we use solid-state NMR to investigate the multidrug ABC transporter BmrA reconstituted in lipids. We identify the chemical-shift differences between the inward-facing, and outward-facing state induced by ATP:Mg2+:Vi addition. Analysis of an X-loop mutant, for which we show that ATPase and transport activities are uncoupled, reveals an incomplete transition to the outward-facing state upon ATP:Mg2+:Vi addition, notably lacking the decrease in dynamics of a defined set of residues observed in wild-type BmrA. This suggests that this stiffening is required for an efficient transmission of the conformational changes to allow proper transport of substrate by the pump.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Cédric Orelle
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Britta Kunert
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Claire Chuilon
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stéphanie Ravaud
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Beat H. Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| |
Collapse
|
40
|
Hydrogen-deuterium exchange mass spectrometry of membrane proteins in lipid nanodiscs. Chem Phys Lipids 2019; 220:14-22. [PMID: 30802434 DOI: 10.1016/j.chemphyslip.2019.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/31/2022]
Abstract
Hydrogen deuterium exchange mass spectrometry (H/DX MS) provides a quantitative comparison of the relative rates of exchange of amide protons for solvent deuterons. In turn, the rate of amide exchange depends on a complex combination of the stability of local secondary structure, solvent accessibility, and dynamics. H/DX MS has, therefore, been widely used to probe structure and function of soluble proteins, but its application to membrane proteins was limited previously to detergent solubilized samples. The large excess of lipids from model membranes, or from membrane fractions derived from in vivo samples, presents challenges with mass spectrometry. The lipid nanodisc platform, consisting of apolipoprotein A-derived membrane scaffold proteins, provides a native like membrane environment in which to capture analyte membrane proteins with a well defined, and low, ratio of lipid to protein. Membrane proteins in lipid nanodiscs are amenable to H/DX MS, and this is expected to lead to a rapid increase in the number of membrane proteins subjected to this analysis. Here we review the few literature examples of the application of H/DX MS to membrane proteins in nanodiscs. The incremental improvements in the experimental workflow of the H/DX MS are described and potential applications of this approach to study membrane proteins are described.
Collapse
|
41
|
Immadisetty K, Hettige J, Moradi M. Lipid-Dependent Alternating Access Mechanism of a Bacterial Multidrug ABC Exporter. ACS CENTRAL SCIENCE 2019; 5:43-56. [PMID: 30693324 PMCID: PMC6346382 DOI: 10.1021/acscentsci.8b00480] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 06/09/2023]
Abstract
By undergoing conformational changes, active membrane transporters alternate between an inward-facing (IF) and an outward-facing (OF) state to transport their substrates across cellular membrane. The conformational landscape of membrane transporters, however, could be influenced by their environment, and the dependence of the alternating access mechanism on the lipid composition has not been understood at the molecular level. We have performed an extensive set of microsecond-level all-atom molecular dynamics (MD) simulations on bacterial ATP binding cassette (ABC) exporter Sav1866 in six different phosphocholine (PC) and phosphoethanolamine (PE) lipid membrane environments. This study mainly focuses on the energetically downhill OF-to-IF conformational transition of Sav1866 upon the ATP hydrolysis. We observe that the transporter undergoes large-scale conformational changes in the PE environment, particularly in the POPE lipids, resulting in an IF-occluded conformation, a transition that does not occur when the transporter is embedded in any of the PC lipid bilayers. We propose that the PE lipids facilitate the closing of the protein on the periplasmic side due to their highly polar headgroups that mediate the interaction of the two transmembrane (TM) bundles by a network of lipid-lipid and lipid-protein hydrogen bonds. POPE lipids in particular facilitate the closure of periplasmic gate by promoting a hinge formation in TM helices and an interbundle salt bridge formation. This study explains how the alternating access mechanism and the flippase activity in ABC exporters could be lipid-dependent.
Collapse
|
42
|
Inward- and outward-facing X-ray crystal structures of homodimeric P-glycoprotein CmABCB1. Nat Commun 2019; 10:88. [PMID: 30622258 PMCID: PMC6325147 DOI: 10.1038/s41467-018-08007-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/05/2018] [Indexed: 01/24/2023] Open
Abstract
P-glycoprotein extrudes a large variety of xenobiotics from the cell, thereby protecting tissues from their toxic effects. The machinery underlying unidirectional multidrug pumping remains unknown, largely due to the lack of high-resolution structural information regarding the alternate conformational states of the molecule. Here we report a pair of structures of homodimeric P-glycoprotein: an outward-facing conformational state with bound nucleotide and an inward-facing apo state, at resolutions of 1.9 Å and 3.0 Å, respectively. Features that can be clearly visualized at this high resolution include ATP binding with octahedral coordination of Mg2+; an inner chamber that significantly changes in volume with the aid of tight connections among transmembrane helices (TM) 1, 3, and 6; a glutamate−arginine interaction that stabilizes the outward-facing conformation; and extensive interactions between TM1 and TM3, a property that distinguishes multidrug transporters from floppases. These structural elements are proposed to participate in the mechanism of the transporter. P-glycoprotein, an ATP-binding cassette (ABC) transporter, extrudes a large variety of xenobiotics from the cell which protects tissues from toxins. Here authors solve a pair of X-ray structures of homodimeric P-glycoprotein and resolve structural elements proposed to participate in the mechanism of the transporter.
Collapse
|
43
|
Thonghin N, Collins RF, Barbieri A, Shafi T, Siebert A, Ford RC. Novel features in the structure of P-glycoprotein (ABCB1) in the post-hydrolytic state as determined at 7.9 Å resolution. BMC STRUCTURAL BIOLOGY 2018; 18:17. [PMID: 30545335 PMCID: PMC6293506 DOI: 10.1186/s12900-018-0098-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND P-glycoprotein (ABCB1) is an ATP-binding cassette transporter that plays an important role in the clearance of drugs and xenobiotics and is associated with multi-drug resistance in cancer. Although several P-glycoprotein structures are available, these are either at low resolution, or represent mutated and/or quiescent states of the protein. RESULTS In the post-hydrolytic state the structure of the wild-type protein has been resolved at about 8 Å resolution. The cytosolic nucleotide-binding domains (NBDs) are separated but ADP remains bound, especially at the first NBD. Gaps in the transmembrane domains (TMDs) that connect to an inner hydrophilic cavity are filled by density emerging from the annular detergent micelle. The NBD-TMD linker is partly resolved, being located between the NBDs and close to the Signature regions involved in cooperative NBD dimerization. This, and the gap-filling detergent suggest steric impediment to NBD dimerization in the post-hydrolytic state. Two central regions of density lie in two predicted drug-binding sites, implying that the protein may adventitiously bind hydrophobic substances even in the post-hydrolytic state. The previously unresolved N-terminal extension was observed, and the data suggests these 30 residues interact with the headgroup region of the lipid bilayer. CONCLUSION The structural data imply that (i) a low basal ATPase activity is ensured by steric blockers of NBD dimerization and (ii) allocrite access to the central cavity may be structurally linked to NBD dimerization, giving insights into the mechanism of drug-stimulation of P-glycoprotein activity.
Collapse
Affiliation(s)
- Nopnithi Thonghin
- School of Biology, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard F Collins
- School of Biology, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alessandro Barbieri
- School of Biology, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Talha Shafi
- School of Biology, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alistair Siebert
- eBIC, Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Oxfordshire, Didcot, OX11 0DE, UK
| | - Robert C Ford
- School of Biology, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
44
|
Allosteric Role of Substrate Occupancy Toward the Alignment of P-glycoprotein Nucleotide Binding Domains. Sci Rep 2018; 8:14643. [PMID: 30279588 PMCID: PMC6168518 DOI: 10.1038/s41598-018-32815-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/15/2018] [Indexed: 01/16/2023] Open
Abstract
P-glycoprotein (Pgp) is an ATP-binding cassette transporter that eliminates toxins from the cell but causes multidrug resistance in chemotherapies. The crystal structures of Pgp revealed drug-like compounds bound to an inward-facing conformation in which the energy-harnessing nucleotide binding domains (NBDs) were widely separated with no interfacial interaction. Following drug binding, inward-facing Pgp must transition to an NBD dimer conformation to achieve ATP binding and hydrolysis at canonical sites defined by both halves of the interface. However, given the high degree of flexibility shown for this transporter, it is difficult to envision how NBDs overcome entropic considerations for achieving proper alignment in order to form the canonical ATP binding site. We explored the hypothesis that substrate occupancy of the polyspecific drug-binding cavity plays a role in the proper alignment of NBDs using computational approaches. We conducted twelve atomistic molecular dynamics (MD) simulations (100-300 ns) on inward-facing Pgp in a lipid bilayer with and without small molecule substrates to ascertain effects of drug occupancy on NBD dimerization. Both apo- and drug-occupied simulations showed NBDs approaching each other compared to the crystal structures. Apo-Pgp reached a pseudo-dimerization in which NBD signature motifs for ATP binding exhibited a significant misalignment during closure. In contrast, occupancy of three established substrates positioned by molecular docking achieved NBD alignment that was much more compatible with a canonical NBD dimerization trajectory. Additionally, aromatic amino acids, known to confer the polyspecific drug-binding characteristic of the internal pocket, may also govern polyspecific drug access to the cavity. The enrichment of aromatics comprising the TM4-TM6 portal suggested a preferential pathway over the aromatic-poor TM10-TM12 for lateral drug entry from the lipid bilayer. Our study also suggested that drug polyspecificity is enhanced due to a synergism between multiple drug-domain interactions involving 36 residues identified in TM1, 5, 6, 7, 11 and 12.
Collapse
|
45
|
Miyake MM, Nocera A, Miyake MM. P-glycoprotein and chronic rhinosinusitis. World J Otorhinolaryngol Head Neck Surg 2018; 4:169-174. [PMID: 30506047 PMCID: PMC6251952 DOI: 10.1016/j.wjorl.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 11/13/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous definition that includes different disease states that usually are associated with abnormal inflammatory responses. Besides being prevalent, the mechanisms involved in its pathogenesis are not clear and there are few therapeutic options with tolerable side effects. P-glycoprotein (P-gp) is an efflux pump responsible of extruding xenobiotics and cellular metabolites from multiple cell types. It has been widely studied in the cancer field, due to its ability to confer resistance to chemotherapy. It also promotes Type 2 helper T-cell polarizing cytokine secretion in CRS and may represent a potential target to differentiate subtypes of CRS and personalize treatment. This state-of-the-art review explores current knowledge on the participation of P-gp in the pathogenesis of CRS, the P-gp inhibition as a novel targeted therapeutic strategy and the exosomal P-gp test, a non-invasive biomarker that can represent an important advance in the field of rhinology.
Collapse
Affiliation(s)
- Marcel M Miyake
- Department of Otolaryngology, Santa Casa de Sao Paulo School of Medical Sciences, RuaDoutorCesário Motta Júnior, 61 - Vila Buarque, São Paulo, SP, 01221-020, Brazil
| | - Angela Nocera
- Department of Otolaryngology, Division of Rhinology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles St, Boston, MA, 02114, USA
| | - Michelle M Miyake
- Department of Otolaryngology, Santa Casa de Sao Paulo School of Medical Sciences, RuaDoutorCesário Motta Júnior, 61 - Vila Buarque, São Paulo, SP, 01221-020, Brazil
| |
Collapse
|
46
|
Thonghin N, Collins RF, Barbieri A, Shafi T, Siebert A, Ford. RC. Novel features in the structure of P-glycoprotein (ABCB1) in the post-hydrolytic state as determined at 7.9Å resolution.. [DOI: 10.1101/308114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractP-glycoprotein (ABCB1) is a ATP-binding cassette transporter that plays an important role in the removal of drugs and xenobiotic compounds from the cell. It is also associated with multi-drug resistance in cancer. Here we report novel features of the cryo-EM-derived structure of P-glycoprotein in the post-hydrolytic state: The cytosolic nucleotide-binding domains (NBDs) are separated despite ADP remaining bound to the NBDs. Gaps in the TMDs that connect to the inner hydrophilic cavity are back-filled by detergent head-groups from the annular detergent micelle and are close to two regions predicted to delineate two pseudo-symmetry-related drug-binding sites. In this conformation, the (newly-resolved) N-terminal extension, NBD-TMD linker region and gap-filling detergents all appear to impede NBD dimerisation. We propose a model for the mechanism of action of the exporter where ATP will be bound to the protein for most of the time, consistent with the high physiological ATP concentrationsin vivo.
Collapse
|
47
|
Göddeke H, Timachi MH, Hutter CAJ, Galazzo L, Seeger MA, Karttunen M, Bordignon E, Schäfer LV. Atomistic Mechanism of Large-Scale Conformational Transition in a Heterodimeric ABC Exporter. J Am Chem Soc 2018; 140:4543-4551. [DOI: 10.1021/jacs.7b12944] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hendrik Göddeke
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - M. Hadi Timachi
- EPR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Cedric A. J. Hutter
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Laura Galazzo
- EPR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Markus A. Seeger
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Mikko Karttunen
- Department of Chemistry and Department of Applied Mathematics, Western University, London, Ontario N6A 3K7, Canada
| | - Enrica Bordignon
- EPR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Lars V. Schäfer
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
48
|
Li MJ, Guttman M, Atkins WM. Conformational dynamics of P-glycoprotein in lipid nanodiscs and detergent micelles reveal complex motions on a wide time scale. J Biol Chem 2018; 293:6297-6307. [PMID: 29511086 DOI: 10.1074/jbc.ra118.002190] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp) is a highly substrate-promiscuous efflux transporter that plays a critical role in drug disposition. P-gp utilizes ATP hydrolysis by nucleotide-binding domains (NBDs) to drive transitions between inward-facing (IF) conformations that bind drugs and outward-facing (OF) conformations that release them to the extracellular solution. However, the details of the protein dynamics within either macroscopic IF or OF conformation remain uncharacterized, and the functional role of local dynamics has not been determined. In this work we measured the local dynamics of the IF state of P-gp in lipid nanodiscs and in detergent solution by hydrogen-deuterium (H/D) exchange MS. We observed "EX1 exchange kinetics," or bimodal kinetics, for several peptides distributed in both NBDs, particularly for P-gp in the lipid nanodiscs. Remarkably, the EX1 kinetics occurred on several time scales, ranging from seconds to hours, suggesting highly complex, and correlated, motions. The results indicate at least three distinct conformational states in the ligand-free P-gp and suggest a rough conformational landscape. Addition of excess ATP and vanadate, to favor the OF conformations, caused a generalized, but modest, decrease in H/D exchange throughout the NBDs and slowed the EX1 kinetic transitions of several peptides. The functional implications of the results are consistent with the possibility that conformational selection provides a source of substrate promiscuity.
Collapse
Affiliation(s)
- Mavis Jiarong Li
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - Miklos Guttman
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - William M Atkins
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| |
Collapse
|
49
|
Condic-Jurkic K, Subramanian N, Mark AE, O’Mara ML. The reliability of molecular dynamics simulations of the multidrug transporter P-glycoprotein in a membrane environment. PLoS One 2018; 13:e0191882. [PMID: 29370310 PMCID: PMC5785007 DOI: 10.1371/journal.pone.0191882] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/13/2018] [Indexed: 11/19/2022] Open
Abstract
Despite decades of research, the mechanism of action of the ABC multidrug transporter P-glycoprotein (P-gp) remains elusive. Due to experimental limitations, many researchers have turned to molecular dynamics simulation studies in order to investigate different aspects of P-gp function. However, such studies are challenging and caution is required when interpreting the results. P-gp is highly flexible and the time scale on which it can be simulated is limited. There is also uncertainty regarding the accuracy of the various crystal structures available, let alone the structure of the protein in a physiologically relevant environment. In this study, three alternative structural models of mouse P-gp (3G5U, 4KSB, 4M1M), all resolved to 3.8 Å, were used to initiate sets of simulations of P-gp in a membrane environment in order to determine: a) the sensitivity of the results to differences in the starting configuration; and b) the extent to which converged results could be expected on the times scales commonly simulated for this system. The simulations suggest that the arrangement of the nucleotide binding domains (NBDs) observed in the crystal structures is not stable in a membrane environment. In all simulations, the NBDs rapidly associated (within 10 ns) and changes within the transmembrane helices were observed. The secondary structure within the transmembrane domain was best preserved in the 4M1M model under the simulation conditions used. However, the extent to which replicate simulations diverged on a 100 to 200 ns timescale meant that it was not possible to draw definitive conclusions as to which structure overall was most stable, or to obtain converged and reliable results for any of the properties examined. The work brings into question the reliability of conclusions made in regard to the nature of specific interactions inferred from previous simulation studies on this system involving similar sampling times. It also highlights the need to demonstrate the statistical significance of any results obtained in simulations of large flexible proteins, especially where the initial structure is uncertain.
Collapse
Affiliation(s)
- Karmen Condic-Jurkic
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, ACT 4072, Australia
| | - Nandhitha Subramanian
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, ACT 4072, Australia
| | - Alan E. Mark
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, ACT 4072, Australia
| | - Megan L. O’Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
50
|
Szöllősi D, Szakács G, Chiba P, Stockner T. Dissecting the Forces that Dominate Dimerization of the Nucleotide Binding Domains of ABCB1. Biophys J 2018; 114:331-342. [PMID: 29401431 PMCID: PMC5984967 DOI: 10.1016/j.bpj.2017.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/11/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023] Open
Abstract
P-glycoprotein, also known as multidrug resistance protein 1 or ABCB1, can export a wide range of chemically unrelated compounds, including chemotherapeutic drugs. ABCB1 consists of two transmembrane domains that form the substrate binding and translocation domain, and of two cytoplasmic nucleotide binding domains (NBDs) that energize substrate transport by ATP binding and hydrolysis. ATP binding triggers dimerization of the NBDs, which switches the transporter from an inward facing to an outward facing transmembrane domain conformation. We performed MD simulations to study the dynamic behavior of the NBD dimer in the presence or absence of nucleotides. In the apo configuration, the NBDs were overall attractive to each other as shown in the potential of mean force profile, but the energy well was shallow and broad. In contrast, a sharp and deep energy minimum (∼-42 kJ/mol) was found in the presence of ATP, leading to a well-defined conformation. Motif interaction network analyses revealed that ATP stabilizes the NBD dimer by serving as the central hub for interdomain connections. Simulations showed that forces promoting dimerization are multilayered, dominated by electrostatic interactions between the nucleotide and conserved amino acids of the signature sequence and the Walker A motif. In addition, direct and water-bridged hydrogen bonds between NBDs provided conformation-defining interactions. Importantly, we characterized a largely unrecognized but essential contribution from hydrophobic interactions between the adenine moiety of the nucleotides and a hydrophobic surface of the X-loop to the stabilization of the nucleotide-bound NBD dimer. These hydrophobic interactions lead to a sharp energy minimum, thereby conformationally restricting the nucleotide-bound state.
Collapse
Affiliation(s)
- Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gergely Szakács
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|