1
|
Dangelmaier C, Vari HR, Vajipayajula DN, Elzoheiry M, Wright M, Iyer A, Tsygankov AY, Kunapuli SP. Phosphorylation of (Ser 291) in the linker insert of Syk negatively regulates ITAM signaling in platelets. Platelets 2024; 35:2369766. [PMID: 38904212 PMCID: PMC11322839 DOI: 10.1080/09537104.2024.2369766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Receptor-induced tyrosine phosphorylation of spleen tyrosine kinase (Syk) has been studied extensively in hematopoietic cells. Metabolic mapping and high-resolution mass spectrometry, however, indicate that one of the most frequently detected phosphorylation sites encompassed S297 (S291 in mice) located within the linker B region of Syk. It has been reported that Protein kinase C (PKC) phosphorylates Syk S297, thus influencing Syk activity. However, conflicting studies suggest that this phosphorylation enhances as well as reduces Syk activity. To clarify the function of this site, we generated Syk S291A knock-in mice. We used platelets as a model system as they possess Glycoprotein VI (GPVI), a receptor containing an immunoreceptor tyrosine-based activation motif (ITAM) which transduces signals through Syk. Our analysis of the homozygous mice indicated that the knock-in platelets express only one isoform of Syk, while the wild-type expresses two isoforms at 69 and 66 kDa. When the GPVI receptor was activated with collagen-related peptide (CRP), we observed an increase in functional responses and phosphorylations in Syk S291A platelets. This potentiation did not occur with AYPGKF or 2-MeSADP, although they also activate PKC isoforms. Although there was potentiation of platelet functional responses, there was no difference in tail bleeding times. However, the time to occlusion in the FeCl3 injury model was enhanced. These data indicate that the effects of Syk S291 phosphorylation represent a significant outcome on platelet activation and signaling in vitro but also reveals its multifaceted nature demonstrated by the differential effects on physiological responses in vivo.
Collapse
Affiliation(s)
- Carol Dangelmaier
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hymavathi Reddy Vari
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Dhruv N Vajipayajula
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Manal Elzoheiry
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Monica Wright
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ashvin Iyer
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Zou J, Zhang P, Solari FA, Schönichen C, Provenzale I, Mattheij NJA, Kuijpers MJE, Rauch JS, Swieringa F, Sickmann A, Zieger B, Jurk K, Heemskerk JWM. Suppressed ORAI1-STIM1-dependent Ca 2+ entry by protein kinase C isoforms regulating platelet procoagulant activity. J Biol Chem 2024; 300:107899. [PMID: 39424145 DOI: 10.1016/j.jbc.2024.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Agonist-induced rises in cytosolic Ca2+ control most platelet responses in thrombosis and hemostasis. In human platelets, we earlier demonstrated that the ORAI1-STIM1 pathway is a major component of extracellular Ca2+ entry, in particular when induced via the ITAM-linked collagen receptor, glycoprotein VI (GPVI). In the present article, using functionally defective platelets from patients with a loss-of-function mutation in ORAI1 or STIM1, we show that Ca2+ entry induced by the endoplasmic reticulum ATPase inhibitor, thapsigargin, fully relies on this pathway. We demonstrate that both the GPVI-induced and thapsigargin-induced Ca2+ entry are strongly suppressed by protein kinase C (PKC) activation while leaving intracellular Ca2+ mobilization unchanged. Comparing the effects of a PKC inhibitory panel pointed to redundant roles of beta and theta PKC isoforms in Ca2+-entry suppression. In contrast, tyrosine kinases positively regulated GPVI-induced Ca2+ entry and mobilization. Label-free and stable isotope phosphoproteome analysis of GPVI-stimulated platelets suggested a regulatory role of bridging integrator-2 (BIN2), known as an important mediator of the ORAI1-STIM1 pathway in mouse platelets. Identified were 25 to 45 regulated phospho-sites in BIN2 and 16 to 18 in STIM1. Five of these were characterized as direct substrates of the expressed PKC isoforms alpha, beta delta, and theta. Functional platelet testing indicated that the downregulation of Ca2+ entry by PKC resulted in suppressed phosphatidylserine exposure and plasmatic thrombin generation. Conclusively, our results indicate that in platelets multiple PKC isoforms constrain the store-regulated Ca2+ entry via ORAI1-BIN2-STIM1, and hence downregulate platelet-dependent coagulation.
Collapse
Affiliation(s)
- Jinmi Zou
- Synapse Research Institute Maastricht, Maastricht, The Netherlands; Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Pengyu Zhang
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Claudia Schönichen
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Isabella Provenzale
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Nadine J A Mattheij
- Department of Clinical Chemistry and Hematology, Maxima Medical Center Veldhoven, Veldhoven, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Julia S Rauch
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Frauke Swieringa
- Synapse Research Institute Maastricht, Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johan W M Heemskerk
- Synapse Research Institute Maastricht, Maastricht, The Netherlands; Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Zhang P, Solari FA, Heemskerk JWM, Kuijpers MJE, Sickmann A, Walter U, Jurk K. Differential Regulation of GPVI-Induced Btk and Syk Activation by PKC, PKA and PP2A in Human Platelets. Int J Mol Sci 2023; 24:ijms24097776. [PMID: 37175486 PMCID: PMC10178361 DOI: 10.3390/ijms24097776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Bruton's tyrosine kinase (Btk) and spleen tyrosine kinase (Syk) are major signaling proteins in human platelets that are implicated in atherothrombosis and thrombo-inflammation, but the mechanisms controlling their activities are not well understood. Previously, we showed that Syk becomes phosphorylated at S297 in glycoprotein VI (GPVI)-stimulated human platelets, which limits Syk activation. Here, we tested the hypothesis that protein kinases C (PKC) and A (PKA) and protein phosphatase 2A (PP2A) jointly regulate GPVI-induced Btk activation in platelets. The GPVI agonist convulxin caused rapid, transient Btk phosphorylation at S180 (pS180↑), Y223 and Y551, while direct PKC activation strongly increased Btk pS180 and pY551. This increase in Btk pY551 was also Src family kinase (SFK)-dependent, but surprisingly Syk-independent, pointing to an alternative mechanism of Btk phosphorylation and activation. PKC inhibition abolished convulxin-stimulated Btk pS180 and Syk pS297, but markedly increased the tyrosine phosphorylation of Syk, Btk and effector phospholipase Cγ2 (PLCγ2). PKA activation increased convulxin-induced Btk activation at Y551 but strongly suppressed Btk pS180 and Syk pS297. PP2A inhibition by okadaic acid only increased Syk pS297. Both platelet aggregation and PLCγ2 phosphorylation with convulxin stimulation were Btk-dependent, as shown by the selective Btk inhibitor acalabrutinib. Together, these results revealed in GPVI-stimulated platelets a transient Syk, Btk and PLCγ2 phosphorylation at multiple sites, which are differentially regulated by PKC, PKA or PP2A. Our work thereby demonstrated the GPVI-Syk-Btk signalosome as a tightly controlled protein kinase network, in agreement with its role in atherothrombosis.
Collapse
Affiliation(s)
- Pengyu Zhang
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Fiorella A Solari
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
- Synapse Research Institute Maastricht, 6217 KD Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
- Medizinische Fakultät, Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
4
|
Wang L, Liu G, Wu N, Dai B, Han S, Liu Q, Huang F, Chen Z, Xu W, Xia D, Gao C. mTOR regulates GPVI-mediated platelet activation. J Transl Med 2021; 19:201. [PMID: 33971888 PMCID: PMC8111939 DOI: 10.1186/s12967-021-02756-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Due to mTOR (mammalian/mechanistic target of rapamycin) gene-loss mice die during embryonic development, the role of mTOR in platelets has not been evaluated using gene knockout technology. Methods A mouse model with megakaryocyte/platelet-specific deletion of mTOR was established, and be used to evaluate the role of mTOR in platelet activation and thrombus formation. Results mTOR−/− platelets were deficient in thrombus formation when grown on low-concentration collagen-coated surfaces; however, no deficiency in thrombus formation was observed when mTOR−/− platelets were perfused on higher concentration collagen-coated surfaces. In FeCl3-induced mouse mesenteric arteriole thrombosis models, wild-type (WT) and mTOR−/− mice displayed significantly different responses to low-extent injury with respect to the ratio of occluded mice, especially within the first 40 min. Additionally, mTOR−/− platelets displayed reduced aggregation and dense granule secretion (ATP release) in response to low doses of the glycoprotein VI (GPVI) agonist collagen related peptide (CRP) and the protease-activated receptor-4 (PAR4) agonist GYPGKF-NH2; these deficiencies were overcame by stimulation with higher concentration agonists, suggesting dose dependence of the response. At low doses of GPVI or PAR agonist, the activation of αIIbβ3 in mTOR−/− platelets was reduced. Moreover, stimulation of mTOR−/− platelets with low-dose CRP attenuated the phosphorylation of S6K1, S6 and Akt Ser473, and increased the phosphorylation of PKCδ Thr505 and PKCε Ser729. Using isoform-specific inhibitors of PKCs (δ, ɛ, and α/β), we established that PKCδ/ɛ, and especially PKCδ but not PKCα/β or PKCθ, may be involved in low-dose GPVI-mediated/mTOR-dependent signaling. Conclusion These observations indicate that mTOR plays an important role in GPVI-dependent platelet activation and thrombus formation.
Collapse
Affiliation(s)
- Longsheng Wang
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Gang Liu
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.,Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Nannan Wu
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Baiyun Dai
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Shuang Han
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Qiaoyun Liu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Fang Huang
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Zhihua Chen
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Weihong Xu
- Zhejiang Hospital, 12 Lingyin Road, Hangzhou, 310013, China
| | - Dajing Xia
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Cunji Gao
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China. .,Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Milwaukee, WI, 53201, USA.
| |
Collapse
|
5
|
Dunster JL, Unsworth AJ, Bye AP, Haining EJ, Sowa MA, Di Y, Sage T, Pallini C, Pike JA, Hardy AT, Nieswandt B, García Á, Watson SP, Poulter NS, Gibbins JM, Pollitt AY. Interspecies differences in protein expression do not impact the spatiotemporal regulation of glycoprotein VI mediated activation. J Thromb Haemost 2020; 18:485-496. [PMID: 31680418 PMCID: PMC7027541 DOI: 10.1111/jth.14673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Accurate protein quantification is a vital prerequisite for generating meaningful predictions when using systems biology approaches, a method that is increasingly being used to unravel the complexities of subcellular interactions and as part of the drug discovery process. Quantitative proteomics, flow cytometry, and western blotting have been extensively used to define human platelet protein copy numbers, yet for mouse platelets, a model widely used for platelet research, evidence is largely limited to a single proteomic dataset in which the total amount of proteins was generally comparatively higher than those found in human platelets. OBJECTIVES To investigate the functional implications of discrepancies between levels of mouse and human proteins in the glycoprotein VI (GPVI) signalling pathway using a systems pharmacology model of GPVI. METHODS The protein copy number of mouse platelet receptors was determined using flow cytometry. The Virtual Platelet, a mathematical model of GPVI signalling, was used to determine the consequences of protein copy number differences observed between human and mouse platelets. RESULTS AND CONCLUSION Despite the small size of mouse platelets compared to human platelets they possessed a greater density of surface receptors alongside a higher concentration of intracellular signalling proteins. Surprisingly the predicted temporal profile of Syk activity was similar in both species with predictions supported experimentally. Super resolution microscopy demonstrates that the spatial distribution of Syk is similar between species, suggesting that the spatial distribution of receptors and signalling molecules in activated platelets, rather than their copy number, is important for signalling pathway regulation.
Collapse
Affiliation(s)
- Joanne L. Dunster
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
| | - Amanda J. Unsworth
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
- Department of Life SciencesSchool of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Alexander P. Bye
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
| | - Elizabeth J. Haining
- Institute of Cardiovascular Sciences (ICVS)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Marcin A. Sowa
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
- Platelet Proteomics GroupCenter for Research in Molecular Medicine and Chronic Diseases (CIMUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Ying Di
- Institute of Cardiovascular Sciences (ICVS)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Tanya Sage
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
| | - Chiara Pallini
- Institute of Cardiovascular Sciences (ICVS)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Jeremy A. Pike
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamMidlandsBirminghamUK
| | - Alexander T. Hardy
- Institute of Cardiovascular Sciences (ICVS)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Bernhard Nieswandt
- Department of Experimental BiomedicineUniversity HospitalUniversity of WürzburgWürzburgGermany
| | - Ángel García
- Platelet Proteomics GroupCenter for Research in Molecular Medicine and Chronic Diseases (CIMUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Steve P. Watson
- Institute of Cardiovascular Sciences (ICVS)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamMidlandsBirminghamUK
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences (ICVS)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamMidlandsBirminghamUK
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
| | - Alice Y. Pollitt
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
| |
Collapse
|
6
|
Feedback Regulation of Syk by Protein Kinase C in Human Platelets. Int J Mol Sci 2019; 21:ijms21010176. [PMID: 31881809 PMCID: PMC6981976 DOI: 10.3390/ijms21010176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023] Open
Abstract
The spleen tyrosine kinase (Syk) is essential for immunoreceptor tyrosine-based activation motif (ITAM)-dependent platelet activation, and it is stimulated by Src-family kinase (SFK)-/Syk-mediated phosphorylation of Y352 (interdomain-B) and Y525/526 (kinase domain). Additional sites for Syk phosphorylation and protein interactions are known but remain elusive. Since Syk S297 phosphorylation (interdomain-B) was detected in platelets, we hypothesized that this phosphorylation site regulates Syk activity via protein kinase C (PKC)-and cyclic adenosine monophosphate (cAMP)-dependent pathways. ADP, the GPVI-agonist convulxin, and the GPIbα-agonist echicetin beads (EB) were used to stimulate human platelets with/without effectors. Platelet aggregation and intracellular messengers were analyzed, along with phosphoproteins, by immunoblotting using phosphosite-specific antibodies or phos-tags. ADP, convulxin, and EB upregulated Syk S297 phosphorylation, which was inhibited by iloprost (cAMP pathway). Convulxin-stimulated Syk S297 phosphorylation was stoichiometric, transient, abolished by the PKC inhibitor GF109203X, and mimicked by the PKC activator PDBu. Convulxin/EB stimulated Syk S297, Y352, and Y525/526 phosphorylation, which was inhibited by SFK and Syk inhibitors. GFX and iloprost inhibited convulxin/EB-induced Syk S297 phosphorylation but enhanced Syk tyrosine (Y352/Y525/526) and substrate (linker adaptor for T cells (LAT), phospholipase γ2 (PLC γ2)) phosphorylation. GFX enhanced convulxin/EB-increases of inositol monophosphate/Ca2+. ITAM-activated Syk stimulates PKC-dependent Syk S297 phosphorylation, which is reduced by SFK/Syk/PKC inhibition and cAMP. Inhibition of Syk S297 phosphorylation coincides with enhanced Syk activation, suggesting that S297 phosphorylation represents a mechanism for feedback inhibition in human platelets.
Collapse
|
7
|
Fan Y, Zhang Z, Yao C, Bai J, Yang H, Ma P, Fan Y, Li S, Yuan J, Lin M, Hou Q. Amurensin H, a Derivative From Resveratrol, Ameliorates Lipopolysaccharide/Cigarette Smoke-Induced Airway Inflammation by Blocking the Syk/NF-κB Pathway. Front Pharmacol 2019; 10:1157. [PMID: 31636566 PMCID: PMC6787933 DOI: 10.3389/fphar.2019.01157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Amurensin H, a resveratrol dimer derived from Vitis amurensis Rupr, has several biological effects, including anti-inflammatory and antioxidant activities. Studies have found that amurensin H attenuated asthma-like allergic airway inflammation. However, its protective activity on chronic obstructive pulmonary disease (COPD) airway inflammation is not fully explored. The present study used a lipopolysaccharide (LPS)/cigarette smoke-induced mice model and an LPS-stimulated THP-1-derived macrophages model to measure the lung tissue's morphology changes. The results showed that amurensin H ameliorated the histological inflammatory alterations in the lung tissues, leading to a decrease in the expression of interleukin 6 (IL-6), IL-17A, tumor necrosis factor α (TNF-α), and interferon γ in bronchoalveolar lavage fluid. Amurensin H also significantly inhibited the release of IL-1β, IL-6, IL-8, and TNF-α in LPS-stimulated THP-1-derived macrophages. Furthermore, amurensin H markedly inhibited the expressions of p-Syk, nuclear factor κB (NF-κB), and p-NF-κB both in vivo and in vitro. Results from cotreatment with Syk inhibitor BAY61-3606 and NF-κB inhibitor BAY11-7082 in vitro revealed that amurensin H's protective effect against airway inflammation could be due partly to the inhibition of the Syk/NF-κB pathway. These findings suggest that amurensin H shows therapeutic effects on COPD airway inflammation, and inhibiting the Syk/NF-κB pathway might be part of its underlying mechanisms.
Collapse
Affiliation(s)
- Yannan Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunsuo Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinye Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiyao Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiqiao Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingbao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Makhoul S, Trabold K, Gambaryan S, Tenzer S, Pillitteri D, Walter U, Jurk K. cAMP- and cGMP-elevating agents inhibit GPIbα-mediated aggregation but not GPIbα-stimulated Syk activation in human platelets. Cell Commun Signal 2019; 17:122. [PMID: 31519182 PMCID: PMC6743169 DOI: 10.1186/s12964-019-0428-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022] Open
Abstract
Background The glycoprotein (GP) Ib-IX-V complex is a unique platelet plasma membrane receptor, which is essential for platelet adhesion and thrombus formation. GPIbα, part of the GPIb-IX-V complex, has several physiological ligands such as von Willebrand factor (vWF), thrombospondin and distinct coagulation factors, which trigger platelet activation. Despite having an important role, intracellular GPIb-IX-V signaling and its regulation by other pathways are not well defined. Our aim was to establish the intracellular signaling response of selective GPIbα activation in human platelets, in particular the role of the tyrosine kinase Syk and its regulation by cAMP/PKA and cGMP/PKG pathways, respectively. We addressed this using echicetin beads (EB), which selectively bind to GPIbα and induce platelet aggregation. Methods Purified echicetin from snake Echis carinatus venom was validated by mass spectrometry. Washed human platelets were incubated with EB, in the presence or absence of echicetin monomers (EM), Src family kinase (SFK) inhibitors, Syk inhibitors and the cAMP- and cGMP-elevating agents iloprost and riociguat, respectively. Platelet aggregation was analyzed by light transmission aggregometry, protein phosphorylation by immunoblotting. Intracellular messengers inositolmonophosphate (InsP1) and Ca2+i were measured by ELISA and Fluo-3 AM/FACS, respectively. Results EB-induced platelet aggregation was dependent on integrin αIIbβ3 and secondary mediators ADP and TxA2, and was antagonized by EM. EB stimulated Syk tyrosine phosphorylation at Y352, which was SFK-dependent and Syk-independent, whereas Y525/526 phosphorylation was SFK-dependent and partially Syk-dependent. Furthermore, phosphorylation of both Syk Y352 and Y525/526 was completely integrin αIIbβ3-independent but, in the case of Y525/526, was partially ADP/TxA2-dependent. Syk activation, observed as Y352/ Y525/Y526 phosphorylation, led to the phosphorylation of direct substrates (LAT Y191, PLCγ2 Y759) and additional targets (Akt S473). PKA/PKG pathways inhibited EB-induced platelet aggregation and Akt phosphorylation but, surprisingly, enhanced Syk and LAT/PLCγ2 tyrosine phosphorylation. A similar PKA/PKG effect was confirmed with convulxin−/GPVI-stimulated platelets. EB-induced InsP1 accumulation/InsP3 production and Ca2+-release were Syk-dependent, but only partially inhibited by PKA/PKG pathways. Conclusion EB and EM are specific agonists and antagonists, respectively, of GPIbα-mediated Syk activation leading to platelet aggregation. The cAMP/PKA and cGMP/PKG pathways do not inhibit but enhance GPIbα−/GPVI-initiated, SFK-dependent Syk activation, but strongly inhibit further downstream responses including aggregation. These data establish an important intracellular regulatory network induced by GPIbα. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0428-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie Makhoul
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Trabold
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stepan Gambaryan
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute for Immunology, University Medical Center Mainz, Mainz, Germany
| | | | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
9
|
Villaseñor T, Madrid-Paulino E, Maldonado-Bravo R, Pérez-Martínez L, Pedraza-Alva G. Mycobacterium bovis BCG promotes IL-10 expression by establishing a SYK/PKCα/β positive autoregulatory loop that sustains STAT3 activation. Pathog Dis 2019; 77:5512589. [PMID: 31175361 DOI: 10.1093/femspd/ftz032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/05/2019] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium ensures its survival inside macrophages and long-term infection by subverting the innate and adaptive immune response through the modulation of cytokine gene expression profiles. Different Mycobacterium species promote the expression of TGFβ and IL-10, which, at the early stages of infection, block the formation of the phagolysosome, thereby securing mycobacterial survival upon phagocytosis, and at later stages, antagonize IFNγ production and functions. Despite the key role of IL-10 in mycobacterium infection, the signal transduction pathways leading to IL-10 expression in infected macrophages are poorly understood. Here, we report that Mycobacterium bovis BCG promotes IL-10 expression and cytokine production by establishing a SYK/PKCα/β positive feedback loop that leads to STAT3 activation.
Collapse
Affiliation(s)
- Tomás Villaseñor
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| | - Edgardo Madrid-Paulino
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| | - Rafael Maldonado-Bravo
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| |
Collapse
|
10
|
Jayakumar T, Hsu CY, Khamrang T, Hsia CH, Hsia CW, Manubolu M, Sheu JR. Possible Molecular Targets of Novel Ruthenium Complexes in Antiplatelet Therapy. Int J Mol Sci 2018; 19:ijms19061818. [PMID: 29925802 PMCID: PMC6032250 DOI: 10.3390/ijms19061818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
In oncotherapy, ruthenium (Ru) complexes are reflected as potential alternatives for platinum compounds and have been proved as encouraging anticancer drugs with high efficacy and low side effects. Cardiovascular diseases (CVDs) are mutually considered as the number one killer globally, and thrombosis is liable for the majority of CVD-related deaths. Platelets, an anuclear and small circulating blood cell, play key roles in hemostasis by inhibiting unnecessary blood loss of vascular damage by making blood clot. Platelet activation also plays a role in cancer metastasis and progression. Nevertheless, abnormal activation of platelets results in thrombosis under pathological settings such as the rupture of atherosclerotic plaques. Thrombosis diminishes the blood supply to the heart and brain resulting in heart attacks and strokes, respectively. While currently used anti-platelet drugs such as aspirin and clopidogrel demonstrate efficacy in many patients, they exert undesirable side effects. Therefore, the development of effective therapeutic strategies for the prevention and treatment of thrombotic diseases is a demanding priority. Recently, precious metal drugs have conquered the subject of metal-based drugs, and several investigators have motivated their attention on the synthesis of various ruthenium (Ru) complexes due to their prospective therapeutic values. Similarly, our recent studies established that novel ruthenium-based compounds suppressed platelet aggregation via inhibiting several signaling cascades. Our study also described the structure antiplatelet-activity relationship (SAR) of three newly synthesized ruthenium-based compounds. This review summarizes the antiplatelet activity of newly synthesized ruthenium-based compounds with their potential molecular mechanisms.
Collapse
Affiliation(s)
- Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chia-Yuan Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| | - Themmila Khamrang
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India.
| | - Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Manjunath Manubolu
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43212, USA.
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
11
|
Zhou TT, Quan LL, Chen LP, Du T, Sun KX, Zhang JC, Yu L, Li Y, Wan P, Chen LL, Jiang BH, Hu LH, Chen J, Shen X. SP6616 as a new Kv2.1 channel inhibitor efficiently promotes β-cell survival involving both PKC/Erk1/2 and CaM/PI3K/Akt signaling pathways. Cell Death Dis 2016; 7:e2216. [PMID: 27148689 PMCID: PMC4917657 DOI: 10.1038/cddis.2016.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022]
Abstract
Kv2.1 as a voltage-gated potassium (Kv) channel subunit has a pivotal role in the regulation of glucose-stimulated insulin secretion (GSIS) and pancreatic β-cell apoptosis, and is believed to be a promising target for anti-diabetic drug discovery, although the mechanism underlying the Kv2.1-mediated β-cell apoptosis is obscure. Here, the small molecular compound, ethyl 5-(3-ethoxy-4-methoxyphenyl)-2-(4-hydroxy-3-methoxybenzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate (SP6616) was discovered to be a new Kv2.1 inhibitor. It was effective in both promoting GSIS and protecting β cells from apoptosis. Evaluation of SP6616 on either high-fat diet combined with streptozocin-induced type 2 diabetic mice or db/db mice further verified its efficacy in the amelioration of β-cell dysfunction and glucose homeostasis. SP6616 treatment efficiently increased serum insulin level, restored β-cell mass, decreased fasting blood glucose and glycated hemoglobin levels, and improved oral glucose tolerance. Mechanism study indicated that the promotion of SP6616 on β-cell survival was tightly linked to its regulation against both protein kinases C (PKC)/extracellular-regulated protein kinases 1/2 (Erk1/2) and calmodulin(CaM)/phosphatidylinositol 3-kinase(PI3K)/serine/threonine-specific protein kinase (Akt) signaling pathways. To our knowledge, this may be the first report on the underlying pathway responsible for the Kv2.1-mediated β-cell protection. In addition, our study has also highlighted the potential of SP6616 in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- T T Zhou
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - L L Quan
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - L P Chen
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - T Du
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - K X Sun
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - J C Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - L Yu
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Y Li
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - P Wan
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - L L Chen
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - B H Jiang
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - L H Hu
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - J Chen
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - X Shen
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Anti-miR-148a regulates platelet FcγRIIA signaling and decreases thrombosis in vivo in mice. Blood 2015; 126:2871-81. [PMID: 26516227 DOI: 10.1182/blood-2015-02-631135] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022] Open
Abstract
Fc receptor for IgG IIA (FcγRIIA)-mediated platelet activation is essential in heparin-induced thrombocytopenia (HIT) and other immune-mediated thrombocytopenia and thrombosis disorders. There is considerable interindividual variation in platelet FcγRIIA activation, the reasons for which remain unclear. We hypothesized that genetic variations between FcγRIIA hyper- and hyporesponders regulate FcγRIIA-mediated platelet reactivity and influence HIT susceptibility. Using unbiased genome-wide expression profiling, we observed that human hyporesponders to FcγRIIA activation showed higher platelet T-cell ubiquitin ligand-2 (TULA-2) mRNA expression than hyperresponders. Silent interfering RNA-mediated knockdown of TULA-2 resulted in hyperphosphorylation of spleen tyrosine kinase following FcγRIIA activation in HEL cells. Significantly, we found miR-148a-3p targeted and inhibited both human and mouse TULA-2 mRNA. Inhibition of miR-148a in FcγRIIA transgenic mice upregulated the TULA-2 level and reduced FcγRIIA- and glycoprotein VI-mediated platelet αIIbβ3 activation and calcium mobilization. Anti-miR-148a also reduced thrombus formation following intravascular platelet activation via FcγRIIA. These results show that TULA-2 is a target of miR-148a-3p, and TULA-2 serves as a negative regulator of FcγRIIA-mediated platelet activation. This is also the first study to show the effects of in vivo miRNA inhibition on platelet reactivity. Our work suggests that modulating miR-148a expression is a potential therapeutic approach for thrombosis.
Collapse
|
13
|
Bhavanasi D, Badolia R, Manne BK, Janapati S, Dangelmaier CT, Mazharian A, Jin J, Kim S, Zhang X, Chen X, Senis YA, Kunapuli SP. Cross talk between serine/threonine and tyrosine kinases regulates ADP-induced thromboxane generation in platelets. Thromb Haemost 2015; 114:558-68. [PMID: 25947062 DOI: 10.1160/th14-09-0775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/26/2015] [Indexed: 11/05/2022]
Abstract
ADP-induced thromboxane generation depends on Src family kinases (SFKs) and is enhanced with pan-protein kinase C (PKC) inhibitors, but it is not clear how these two events are linked. The aim of the current study is to investigate the role of Y311 phosphorylated PKCδ in regulating ADP-induced platelet activation. In the current study, we employed various inhibitors and murine platelets from mice deficient in specific molecules to evaluate the role of PKCδ in ADP-induced platelet responses. We show that, upon stimulation of platelets with 2MeSADP, Y311 on PKCδ is phosphorylated in a P2Y1/Gq and Lyn-dependent manner. By using PKCδ and Lyn knockout murine platelets, we also show that tyrosine phosphorylated PKCδ plays a functional role in mediating 2MeSADP-induced thromboxane generation. 2MeSADP-induced PKCδ Y311 phosphorylation and thromboxane generation were potentiated in human platelets pre-treated with either a pan-PKC inhibitor, GF109203X or a PKC α/β inhibitor and in PKC α or β knockout murine platelets compared to controls. Furthermore, we show that PKC α/β inhibition potentiates the activity of SFK, which further hyper-phosphorylates PKCδ and potentiates thromboxane generation. These results show for the first time that tyrosine phosphorylated PKCδ regulates ADP-induced thromboxane generation independent of its catalytic activity and that classical PKC isoforms α/β regulate the tyrosine phosphorylation on PKCδ and subsequent thromboxane generation through tyrosine kinase, Lyn, in platelets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Satya P Kunapuli
- Satya P. Kunapuli PhD, Department of Physiology and Sol Sherry Thrombosis Center,, Temple University School of Medicine,, 3420 North Broad street, MRB 414, Philadelphia PA, 19140, USA, Tel.: +1 215 707 4615, Fax: +1 215 707 6944, E-mail:
| |
Collapse
|
14
|
Slomiany BL, Slomiany A. Modulation of gastric mucosal inflammatory responses to Helicobacter pylori via ghrelin-induced protein kinase Cδ tyrosine phosphorylation. Inflammopharmacology 2014; 22:251-62. [PMID: 24840386 DOI: 10.1007/s10787-014-0206-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/29/2014] [Indexed: 12/13/2022]
Abstract
A peptide hormone, ghrelin, plays a key role in modulation of gastric mucosal inflammatory responses to Helicobacter pylori by controlling the activation of constitutive nitric oxide synthase via Src/Akt-dependent phosphorylation that requires phosphatidylinositol 3-kinase (PI3K) participation. Here, we examined the relationship among PI3K; its upstream effector, protein kinase C (PKC); and cSrc. We show that stimulation of gastric mucosal cells with H. pylori LPS leads to the activation and membrane translocation of Ser-phosphorylated PKCδ, while the effect of ghrelin is reflected in the phosphorylation of membrane-associated PKCδ on Tyr. Further, we demonstrate that in response to the LPS-induced PKCδ activation both PI3K and Src show a marked increase in their Ser phosphorylation, while the effect of ghrelin is manifested in the phosphorylation of PI3K and cSrc at Tyr. Moreover, whereas Tyr phosphorylation of PKCδ exhibited susceptibility to cSrc inhibitor (PP2), the inhibitor of PKC (GF109203X) but not that of cSrc (PP2) blocked the Tyr phosphorylation of PI3K, while ghrelin-induced cSrc phosphorylation at Tyr was subject to inhibition by the inhibitors of PKC and PI3K. Thus, our findings stipulate the prerequisite of PKCδ in the activation of PI3K as well as cSrc, and imply that PI3K activation provides an essential platform for ghrelin-induced cSrc activation through autophosphorylation at Tyr(416). We also reveal that ghrelin-elicited up-regulation in PKCδ activation by Tyr phosphorylation shows dependence on cSrc activity.
Collapse
Affiliation(s)
- B L Slomiany
- Research Center, C875, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103-2400, USA,
| | | |
Collapse
|
15
|
Young SH, Rey O, Sinnett-Smith J, Rozengurt E. Intracellular Ca2+ oscillations generated via the Ca2+-sensing receptor are mediated by negative feedback by PKCα at Thr888. Am J Physiol Cell Physiol 2013; 306:C298-306. [PMID: 24336654 DOI: 10.1152/ajpcell.00194.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To clarify the mechanism(s) underlying intracellular Ca(2+) concentration ([Ca(2+)]i) oscillations induced by an elevation in extracellular Ca(2+) concentration ([Ca(2+)]e) via the extracellular Ca(2+)-sensing receptor (CaR), we analyzed the pattern of [Ca(2+)]i response in multiple (2,303) individual HEK-293 cells transfected with the human CaR. An increase in the [Ca(2+)]e from 1.5 to 3 mM produced oscillatory fluctuations in [Ca(2+)]i in 70% of the cell population. To determine the role of PKC in the generation of [Ca(2+)]i oscillations, cells were exposed to increasing concentrations (0.5-5 μM) of the preferential PKC inhibitor Ro-31-8220 before stimulation by extracellular Ca(2+). Ro-31-8220 at 3-5 μM completely eliminated the [Ca(2+)]e-evoked [Ca(2+)]i oscillations and transformed the pattern to a peak and sustained plateau response. Treatment with other broad PKC inhibitors, including GFI or Gö6983, produced an identical response. Similarly, treatment with Ro-31-8220 or GFI eliminated [Ca(2+)]e-evoked [Ca(2+)]i oscillations in colon-derived SW-480 cells expressing the CaR. Treatment with inhibitors targeting classic PKCs, including Gö6976 and Ro-32-0432 as well as small interfering RNA-mediated knockdown of PKCα, strikingly reduced the proportion of cell displaying [Ca(2+)]e-evoked [Ca(2+)]i oscillations. Furthermore, none of the cells analyzed expressing a CaR mutant in which the major PKC phosphorylation site Thr(888) was converted to alanine (CaRT888A) showed [Ca(2+)]i oscillations after CaR activation. Our results show that [Ca(2+)]i oscillations induced by activation of the CaR in response to an increase in extracellular Ca(2+) or exposure to the calcimimetic R-568 result from negative feedback involving PKCα-mediated phosphorylation of the CaR at Thr(888).
Collapse
Affiliation(s)
- Steven H Young
- Division of Digestive Diseases, Department of Medicine, Center for Ulcer Research and Education: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California, Los Angeles, California; and
| | | | | | | |
Collapse
|