1
|
Bannazadeh Baghi H, Bayat M, Mehrasa P, Alavi SMA, Lotfalizadeh MH, Memar MY, Taghavi SP, Zarepour F, Hamblin MR, Sadri Nahand J, Hashemian SMR, Mirzaei H. Regulatory role of microRNAs in virus-mediated inflammation. J Inflamm (Lond) 2024; 21:43. [PMID: 39497125 PMCID: PMC11536602 DOI: 10.1186/s12950-024-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Viral infections in humans often cause excessive inflammation. In some viral infections, inflammation can be serious and even fatal, while in other infections it can promote viral clearance. Viruses can escape from the host immune system via regulating inflammatory pathways, thus worsening the illness. MicroRNAs (miRNAs) are tiny non-coding RNA molecules expressed within diverse tissues as well as cells and are engaged in different normal pathological and physiological pathways. Emerging proof suggests that miRNAs can impact innate and adaptive immunity, inflammatory responses, cell invasion, and the progression of viral infections. We discuss some intriguing new findings in the current work, focusing on the impacts of different miRNAs on host inflammatory responses and virus-mediated inflammation. A better understanding of dysregulated miRNAs in viral infections could improve the identification, prevention, and treatment of several serious diseases.
Collapse
Affiliation(s)
- Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Hong QM, Yang XJ, Zhang ME, Chen Q, Chen YH. Functional Characterization of A Deformed Epidermal Autoregulatory Factor 1 Gene in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105084. [PMID: 37858612 DOI: 10.1016/j.dci.2023.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Innate immunity is crucial for invertebrate defense against pathogenic infections. Numerous studies have indicated that the Toll-NF-κB pathway plays an important role in this process, particularly in anti-bacterial and anti-fungal immunity. Although the function of this pathway has been studied extensively, there are still uncertainties regarding its role in shrimp. In this study, we investigated the functions of Deformed Epidermal Autoregulatory Factor 1 (LvDEAF1) in Litopenaeus vannamei, a member of the Toll-NF-κB pathway. Our findings revealed that LvDEAF1 interacts with L. vannamei Pellino1 (LvPellino1). LvDEAF1 enhances the promoter activity of certain antimicrobial peptide genes, such as Metchnikowin and Drosomycin, in Drosophila Schneider 2 (S2) cells by binding to the NF-κB binding site. LvDEAF1 and LvPellino1 exhibit positive and synergistic effects. Additionally, the expression of LvDEAF1 is induced by Vibrio parahaemolyticus infection and lipopolysaccharides or zymosan treatment. Knockdown LvDEAF1 expression resulted in a decrease in Penaeidins 4 expression and an increase in the cumulative mortality of shrimp infected with V. parahaemolyticus. These findings indicate that LvDEAF1 plays an important role in the Toll-NF-κB pathway of L. vannamei and is essential for its immune response against pathogens.
Collapse
Affiliation(s)
- Qian-Ming Hong
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xin-Jun Yang
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Meng-En Zhang
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qi Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yi-Hong Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| |
Collapse
|
3
|
Yan L, Cui Y, Feng J. Biology of Pellino1: a potential therapeutic target for inflammation in diseases and cancers. Front Immunol 2023; 14:1292022. [PMID: 38179042 PMCID: PMC10765590 DOI: 10.3389/fimmu.2023.1292022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Pellino1 (Peli1) is a highly conserved E3 Ub ligase that exerts its biological functions by mediating target protein ubiquitination. Extensive evidence has demonstrated the crucial role of Peli1 in regulating inflammation by modulating various receptor signaling pathways, including interleukin-1 receptors, Toll-like receptors, nuclear factor-κB, mitogen-activated protein kinase, and phosphoinositide 3-kinase/AKT pathways. Peli1 has been implicated in the development of several diseases by influencing inflammation, apoptosis, necrosis, pyroptosis, autophagy, DNA damage repair, and glycolysis. Peli1 is a risk factor for most cancers, including breast cancer, lung cancer, and lymphoma. Conversely, Peli1 protects against herpes simplex virus infection, systemic lupus erythematosus, esophageal cancer, and toxic epidermolysis bullosa. Therefore, Peli1 is a potential therapeutic target that warrants further investigation. This comprehensive review summarizes the target proteins of Peli1, delineates their involvement in major signaling pathways and biological processes, explores their role in diseases, and discusses the potential clinical applications of Peli1-targeted therapy, highlighting the therapeutic prospects of Peli1 in various diseases.
Collapse
Affiliation(s)
| | | | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Harkin EF, Nasrallah G, Le François B, Albert PR. Transcriptional Regulation of the Human 5-HT1A Receptor Gene by Lithium: Role of Deaf1 and GSK3β. Int J Mol Sci 2023; 24:15620. [PMID: 37958600 PMCID: PMC10647674 DOI: 10.3390/ijms242115620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Serotonin 1A (5-HT1A) autoreceptors located on serotonin neurons inhibit their activity, and their upregulation has been implicated in depression, suicide and resistance to antidepressant treatment. Conversely, post-synaptic 5-HT1A heteroreceptors are important for antidepressant response. The transcription factor deformed epidermal autoregulatory factor 1 (Deaf1) acts as a presynaptic repressor and postsynaptic enhancer of 5-HT1A transcription, but the mechanism is unclear. Because Deaf1 interacts with and is phosphorylated by glycogen synthase kinase 3β (GSK3β)-a constitutively active protein kinase that is inhibited by the mood stabilizer lithium at therapeutic concentrations-we investigated the role of GSK3β in Deaf1 regulation of human 5-HT1A transcription. In 5-HT1A promoter-reporter assays, human HEK293 kidney and 5-HT1A-expressing SKN-SH neuroblastoma cells, transfection of Deaf1 reduced 5-HT1A promoter activity by ~45%. To identify potential GSK3β site(s) on Deaf1, point mutations of known and predicted phosphorylation sites on Deaf1 were tested. Deaf1 repressor function was not affected by any of the mutants tested except the Y300F mutant, which augmented Deaf1 repression. Both lithium and the selective GSK3 inhibitors CHIR-99021 and AR-014418 attenuated and reversed Deaf1 repression compared to vector. This inhibition was at concentrations that maximally inhibit GSK3β activity as detected by the GSK3β-sensitive TCF/LEF reporter construct. Our results support the hypothesis that GSK3β regulates the activity of Deaf1 to repress 5-HT1A transcription and provide a potential mechanism for actions of GSK3 inhibitors on behavior.
Collapse
Affiliation(s)
| | | | | | - Paul R. Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, 451 Smyth Road, Ottawa, ON K1H-8M5, Canada (B.L.F.)
| |
Collapse
|
5
|
Jensen LE. Pellino Proteins in Viral Immunity and Pathogenesis. Viruses 2023; 15:1422. [PMID: 37515108 PMCID: PMC10383966 DOI: 10.3390/v15071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Pellino proteins are a family of evolutionarily conserved ubiquitin ligases involved in intracellular signaling in a wide range of cell types. They are essential for microbe detection and the initiation of innate and adaptive immune responses. Some viruses specifically target the Pellino proteins as part of their immune evasion strategies. Through studies of mouse models of viral infections in the central nervous system, heart, lungs, and skin, the Pellino proteins have been linked to both beneficial and detrimental immune responses. Only in recent years have some of the involved mechanisms been identified. The objective of this review is to highlight the many diverse aspects of viral immunity and pathogenesis that the Pellino proteins have been associated with, in order to promote further research into their functions. After a brief introduction to the cellular signaling mechanisms involving Pellino proteins, their physiological roles in the initiation of immune responses, pathogenesis through excess inflammation, immune regulation, and cell death are presented. Known viral immune evasion strategies are also described. Throughout, areas that require more in-depth investigation are identified. Future research into the functions of the Pellino protein family may reveal fundamental insights into how our immune system works. Such knowledge may be leveraged in the fight against viral infections and their sequala.
Collapse
Affiliation(s)
- Liselotte E Jensen
- Department of Microbiology, Immunology and Inflammation, Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
6
|
Cai KQ, Shellhamer C, Akiyama T, Jensen LE. Pellino1 Restricts Herpes Simplex Virus Infections in the Epidermis and Dissemination to Sebaceous Glands. J Invest Dermatol 2023; 143:639-647.e2. [PMID: 36216205 PMCID: PMC10038864 DOI: 10.1016/j.jid.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
Nearly all adults are infected with one or more herpes viruses. The most common are herpes simplex virus (HSV)-1 and HSV-2, which upon reactivation can cause painful skin and mucosal erosions. Patients who are immune compromised often experience frequent, atypical, or chronic lesions and thus a greatly diminished QOL. Pellino1 is a ubiquitin ligase involved in IL-1 and toll-like receptor signaling; however, the role of Pellino1 in skin immunity against HSV is unknown. In this study, using the mouse-flank HSV-1 skin infection model, we show that Pellino1 has several critical functions during active viral replication. Peli1‒/‒ mice succumb more than wild-type mice to systemic disease and develop larger zosteriform skin lesions along affected dermatomes. In Pellino1-deficient mice, the virus spread extensively through the epidermis and follicular infundibulum into sebaceous glands where sebocytes were found positive for the virus. The latter did not appear to involve a shift in how the virus migrated through the nervous system. Immunohistochemistry revealed delayed recruitment of myeloid and T cells to the infected epidermis in Peli1‒/‒ mice. This was associated with decreased expression of the cytokine mRNAs Il1a, Il36b and 2610528A11Rik; the latter also known as Gpr15l. In conclusion, Pellino1 plays important roles in restricting viral dissemination, and the involved pathways may represent novel therapeutic targets in patients with frequent or chronic HSV infections.
Collapse
Affiliation(s)
- Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania, USA
| | - Caitlin Shellhamer
- Department of Microbiology, Immunology & Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Tasuku Akiyama
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, USA
| | - Liselotte E Jensen
- Department of Microbiology, Immunology & Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Khaw YM, Anwar S, Zhou J, Kawano T, Lin P, Otero A, Barakat R, Drnevich J, Takahashi T, Ko CJ, Inoue M. Estrogen receptor alpha signaling in dendritic cells modulates autoimmune disease phenotype in mice. EMBO Rep 2023; 24:e54228. [PMID: 36633157 PMCID: PMC9986829 DOI: 10.15252/embr.202154228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
Estrogen is a disease-modifying factor in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) via estrogen receptor alpha (ERα). However, the mechanisms by which ERα signaling contributes to changes in disease pathogenesis have not been completely elucidated. Here, we demonstrate that ERα deletion in dendritic cells (DCs) of mice induces severe neurodegeneration in the central nervous system in a mouse EAE model and resistance to interferon beta (IFNβ), a first-line MS treatment. Estrogen synthesized by extragonadal sources is crucial for controlling disease phenotypes. Mechanistically, activated ERα directly interacts with TRAF3, a TLR4 downstream signaling molecule, to degrade TRAF3 via ubiquitination, resulting in reduced IRF3 nuclear translocation and transcription of membrane lymphotoxin (mLT) and IFNβ components. Diminished ERα signaling in DCs generates neurotoxic effector CD4+ T cells via mLT-lymphotoxin beta receptor (LTβR) signaling. Lymphotoxin beta receptor antagonist abolished EAE disease symptoms in the DC-specific ERα-deficient mice. These findings indicate that estrogen derived from extragonadal sources, such as lymph nodes, controls TRAF3-mediated cytokine production in DCs to modulate the EAE disease phenotype.
Collapse
Affiliation(s)
- Yee Ming Khaw
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Shehata Anwar
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Department of Pathology, Faculty of Veterinary MedicineBeni‐Suef University (BSU)Beni‐SuefEgypt
| | - Jinyan Zhou
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Tasuku Kawano
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical SciencesTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Po‐Ching Lin
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Ashley Otero
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Radwa Barakat
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Department of Toxicology and Forensic MedicineCollege of Veterinary Medicine, Benha UniversityQalyubiaEgypt
| | - Jenny Drnevich
- Roy J. Carver Biotechnology CenterUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical SciencesTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - CheMyong Jay Ko
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Makoto Inoue
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUrbanaILUSA
| |
Collapse
|
8
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Zhang E, Li X. The Emerging Roles of Pellino Family in Pattern Recognition Receptor Signaling. Front Immunol 2022; 13:728794. [PMID: 35197966 PMCID: PMC8860249 DOI: 10.3389/fimmu.2022.728794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/14/2022] [Indexed: 12/03/2022] Open
Abstract
The Pellino family is a novel and well-conserved E3 ubiquitin ligase family and consists of Pellino1, Pellino2, and Pellino3. Each family member exhibits a highly conserved structure providing ubiquitin ligase activity without abrogating cell and structure-specific function. In this review, we mainly summarized the crucial roles of the Pellino family in pattern recognition receptor-related signaling pathways: IL-1R signaling, Toll-like signaling, NOD-like signaling, T-cell and B-cell signaling, and cell death-related TNFR signaling. We also summarized the current information of the Pellino family in tumorigenesis, microRNAs, and other phenotypes. Finally, we discussed the outstanding questions of the Pellino family in immunity.
Collapse
Affiliation(s)
- E Zhang
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- *Correspondence: Xia Li,
| |
Collapse
|
10
|
Rastogi M, Singh SK. Japanese Encephalitis Virus exploits microRNA-155 to suppress the non-canonical NF-κB pathway in human microglial cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194639. [PMID: 32987149 DOI: 10.1016/j.bbagrm.2020.194639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Japanese Encephalitis Virus (JEV) is a single positive strand RNA virus, belongs to the Flaviviridae family. JEV is neurotropic in nature which accounts for 30-50% neurological, psychiatric sequelae and movement disorder, with 20-30% case fatality rate among children or elder population. JEV causes neuronal loss and microglial activation which leads to neuroinflammation. The microRNAs are the molecular switches, which regulate the gene expression post-transcriptionally. The microRNA-155 has been reported to be associated with CNS-related pathologies like, experimental autoimmune encephalitis, multiple sclerosis and amyotrophic lateral sclerosis. In the present study, we infected microglial cells with JEV, which resulted in the up-regulation of microRNA-155; quantified by real-time polymerase chain reaction. The gene target prediction databases revealed pellino 1 as a putative gene target for microRNA-155. The over-expression based studies of microRNA-155 mimics, scrambles, inhibitors, and cy3 negative control demonstrated the role of PELI1 in the regulation of the non-canonical NF-κB pathway via TRAF3. The luciferase assay showed the regulation of NF-κB promoter via microRNA-155 in JEV infected microglial cells. The suppression of NF-κB in JEV infected microglial cells led to the reduced expression of IL-6 and TNF-α. JEV exploits cellular microRNA-155 to suppress the expression of PELI1 in human microglial cells as a part of their immune evasion strategy.
Collapse
Affiliation(s)
- Meghana Rastogi
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India
| | - Sunit Kumar Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India.
| |
Collapse
|
11
|
A girl with a neurodevelopmental syndrome, adducted thumbs and frequent infections caused by novel homozygous variant in DEAF1. Clin Dysmorphol 2020; 29:107-110. [PMID: 31929336 DOI: 10.1097/mcd.0000000000000314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Shah S, Sinharay S, Matsuda K, Schreiber-Stainthorp W, Muthusamy S, Lee D, Wakim P, Hirsch V, Nath A, Di Mascio M, Hammoud DA. Potential Mechanism for HIV-Associated Depression: Upregulation of Serotonin Transporters in SIV-Infected Macaques Detected by 11C-DASB PET. Front Psychiatry 2019; 10:362. [PMID: 31178771 PMCID: PMC6543249 DOI: 10.3389/fpsyt.2019.00362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose: Increased incidence of depression in HIV+ patients is associated with lower adherence to treatment and increased morbidity/mortality. One possible underlying pathophysiology is serotonergic dysfunction. In this study, we used an animal model of HIV, the SIV-infected macaque, to longitudinally image serotonin transporter (SERT) expression before and after inoculation, using 11C-DASB (SERT ligand) PET imaging. Methods: We infected seven rhesus macaques with a neurovirulent SIV strain and imaged them at baseline and multiple time points after inoculation (group A). Pyrosequencing methylation analysis of the SERT promoter region was performed. We also measured SERT mRNA/protein in brain single-cell suspensions from another group (group B) of SIV-infected animals (n = 13). Results: Despite some animals showing early fluctuations, 86% of our group A animals eventually showed a net increase in midbrain/thalamus binding potential (BPND) over the course of their disease (mean increased binding between last time point and baseline = 30.2% and 32.2%, respectively). Repeated-measures mixed-model analysis showed infection duration to be predictive of midbrain BPND (p = 0.039). Thalamic BPND was statistically significantly associated with multiple CSF cytokines (P < 0.05). There was higher SERT protein levels in the second group (group B) of SIV-infected animals with SIV encephalitis (SIVE) compared to those without SIVE (p = 0.014). There were no longitudinal changes in SERT gene promoter region percentage methylation between baselines and last time points in group A animals. Conclusion: Upregulated SERT leading to lower synaptic levels of serotonin is a possible mechanism of depression in HIV+ patients, and extrapolating our conclusions from SIV to HIV should be sought using translational human studies.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences,Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences,Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kenta Matsuda
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - William Schreiber-Stainthorp
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences,Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Siva Muthusamy
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences,Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dianne Lee
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences,Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, Clinical Center, NIH, Bethesda, MD, United States
| | - Vanessa Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Avindra Nath
- National Institute of Neurological Disorder and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Michele Di Mascio
- AIDS Imaging Research Section, Division of Clinical Research, NIAID, NIH, Rockville, MD, United States
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences,Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
13
|
Luo H, Winkelmann ER, Zhu S, Ru W, Mays E, Silvas JA, Vollmer LL, Gao J, Peng BH, Bopp NE, Cromer C, Shan C, Xie G, Li G, Tesh R, Popov VL, Shi PY, Sun SC, Wu P, Klein RS, Tang SJ, Zhang W, Aguilar PV, Wang T. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest 2018; 128:4980-4991. [PMID: 30247157 PMCID: PMC6205407 DOI: 10.1172/jci99902] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
The E3 ubiquitin ligase Pellino 1 (Peli1) is a microglia-specific mediator of autoimmune encephalomyelitis. Its role in neurotropic flavivirus infection is largely unknown. Here, we report that mice deficient in Peli1 (Peli1-/-) were more resistant to lethal West Nile virus (WNV) infection and exhibited reduced viral loads in tissues and attenuated brain inflammation. Peli1 mediates chemokine and proinflammatory cytokine production in microglia and promotes T cell and macrophage infiltration into the CNS. Unexpectedly, Peli1 was required for WNV entry and replication in mouse macrophages and mouse and human neurons and microglia. It was also highly expressed on WNV-infected neurons and adjacent inflammatory cells from postmortem patients who died of acute WNV encephalitis. WNV passaged in Peli1-/- macrophages or neurons induced a lower viral load and impaired activation in WT microglia and thereby reduced lethality in mice. Smaducin-6, which blocks interactions between Peli1 and IRAK1, RIP1, and IKKε, did not inhibit WNV-triggered microglia activation. Collectively, our findings suggest a nonimmune regulatory role for Peli1 in promoting microglia activation during WNV infection and identify a potentially novel host factor for flavivirus cell entry and replication.
Collapse
Affiliation(s)
- Huanle Luo
- Department of Microbiology and Immunology
| | | | - Shuang Zhu
- Department of Ophthalmology and Visual Sciences
| | - Wenjuan Ru
- Department of Neuroscience, Cell Biology and Anatomy, and
| | | | - Jesus A. Silvas
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Lauren L. Vollmer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, and
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology and Anatomy, and
| | - Nathen E. Bopp
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Courtney Cromer
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, and
| | - Guorui Xie
- Department of Microbiology and Immunology
| | - Guangyu Li
- Department of Microbiology and Immunology
| | - Robert Tesh
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Robyn S. Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shao-Jun Tang
- Department of Neuroscience, Cell Biology and Anatomy, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences,,Department of Neuroscience, Cell Biology and Anatomy, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Tian Wang
- Department of Microbiology and Immunology,,Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| |
Collapse
|
14
|
Thomas Y, Scott DC, Kristariyanto YA, Rinehart J, Clark K, Cohen P, Kurz T. The NEDD8 E3 ligase DCNL5 is phosphorylated by IKK alpha during Toll-like receptor activation. PLoS One 2018; 13:e0199197. [PMID: 29958295 PMCID: PMC6025869 DOI: 10.1371/journal.pone.0199197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/01/2018] [Indexed: 11/19/2022] Open
Abstract
The activity of Cullin-RING ubiquitin E3 ligases (CRL) is regulated by NEDD8 modification. DCN-like proteins promote Cullin neddylation as scaffold-like E3s. One DCNL, DCNL5, is highly expressed in immune tissue. Here, we provide evidence that DCNL5 may be involved in innate immunity, as it is a direct substrate of the kinase IKKα during immune signalling. We find that upon activation of Toll-like receptors, DCNL5 gets rapidly and transiently phosphorylated on a specific N-terminal serine residue (S41). This phosphorylation event is specifically mediated by IKKα and not IKKβ. Our data for the first time provides evidence that DCNL proteins are post-translationally modified in an inducible manner. Our findings also provide the first example of a DCNL member as a kinase substrate in a signalling pathway, indicating that the activity of at least some DCNLs may be regulated.
Collapse
Affiliation(s)
- Yann Thomas
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daniel C. Scott
- Department of Structural Biology, Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yosua Adi Kristariyanto
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Kristopher Clark
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Philip Cohen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Thimo Kurz
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
15
|
Liu J, Huang X, Hao S, Wang Y, Liu M, Xu J, Zhang X, Yu T, Gan S, Dai D, Luo X, Lu Q, Mao C, Zhang Y, Shen N, Li B, Huang M, Zhu X, Jin J, Cheng X, Sun SC, Xiao Y. Peli1 negatively regulates noncanonical NF-κB signaling to restrain systemic lupus erythematosus. Nat Commun 2018; 9:1136. [PMID: 29555915 PMCID: PMC5859150 DOI: 10.1038/s41467-018-03530-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/18/2018] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by uncontrolled secretion of autoantibodies by plasma cells. Although the functional importance of plasma cells and autoantibodies in SLE has been well established, the underlying molecular mechanisms of controlling autoantibody production remain poorly understood. Here we show that Peli1 has a B cell-intrinsic function to protect against lupus-like autoimmunity in mice. Peli1 deficiency in B cells induces autoantibody production via noncanonical NF-κB signaling. Mechanically, Peli1 functions as an E3 ligase to associate with NF-κB inducing kinase (NIK) and mediates NIK Lys48 ubiquitination and degradation. Overexpression of Peli1 inhibits noncanonical NF-κB activation and alleviates lupus-like disease. In humans, PELI1 levels negatively correlate with disease severity in SLE patients. Our findings establish Peli1 as a negative regulator of the noncanonical NF-κB pathway in the context of restraining the pathogenesis of lupus-like disease.
Collapse
Affiliation(s)
- Junli Liu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xinfang Huang
- Department of Nephrology and Rheumatology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Shumeng Hao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yan Wang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Manman Liu
- Department of Nephrology and Rheumatology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Jing Xu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xingli Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Tao Yu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shucheng Gan
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Dongfang Dai
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, 212001, Zhenjiang, China
| | - Xuan Luo
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, 212001, Zhenjiang, China
| | - Qingyan Lu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, 212001, Zhenjiang, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, 212001, Zhenjiang, China
| | - Yanyun Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Nan Shen
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200001, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jin Jin
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Xuhong Cheng
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Yichuan Xiao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
16
|
Hähnlein JS, Ramwadhdoebe TH, Semmelink JF, Choi IY, Berger FH, Maas M, Gerlag DM, Tak PP, Geijtenbeek TBH, van Baarsen LGM. Distinctive expression of T cell guiding molecules in human autoimmune lymph node stromal cells upon TLR3 triggering. Sci Rep 2018; 8:1736. [PMID: 29379035 PMCID: PMC5789053 DOI: 10.1038/s41598-018-19951-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Infections are implicated in autoimmunity. Autoantibodies are produced in lymphoid tissue where lymph node stromal cells (LNSCs) regulate lymphocyte function. Infections can alter the interaction between LNSCs and lymphocytes resulting in defective immune responses. In rheumatoid arthritis (RA) autoantibody production precedes clinical disease allowing identification of at risk individuals. We investigated the ability of human LNSCs derived from RA, RA-risk and healthy individuals to sense and respond to pathogens. Human LNSCs cultured directly from freshly collected lymph node biopsies expressed TLR1-9 with exception of TLR7. In all donors TLR3 triggering induced expression of ISGs, IL-6 and adhesion molecules like VCAM-1 and ICAM-1. Strikingly, T cell guiding chemokines CCL19 and IL-8 as well as the antiviral gene MxA were less induced upon TLR3 triggering in autoimmune LNSCs. This observed decrease, found already in LNSCs of RA-risk individuals, may lead to incorrect positioning of lymphocytes and aberrant immune responses during viral infections.
Collapse
Affiliation(s)
- Janine S Hähnlein
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamara H Ramwadhdoebe
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna F Semmelink
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ivy Y Choi
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ferco H Berger
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Danielle M Gerlag
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Clinical Unit Cambridge, GlaxoSmithKline, Cambridge, UK
| | - Paul P Tak
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Ghent University, Ghent, Belgium
- University of Cambridge, Cambridge, UK
- GlaxoSmithKline, Stevenage, UK
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa G M van Baarsen
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon β. Biochem J 2017; 474:1163-1174. [PMID: 28159912 PMCID: PMC5350611 DOI: 10.1042/bcj20160992] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/23/2017] [Accepted: 02/03/2017] [Indexed: 01/01/2023]
Abstract
The double-stranded RNA mimetic poly(I:C) and lipopolysaccharide (LPS) activate Toll-like receptors 3 (TLR3) and TLR4, respectively, triggering the activation of TANK (TRAF family member-associated NF-κB activator)-binding kinase 1 (TBK1) complexes, the phosphorylation of interferon regulatory factor 3 (IRF3) and transcription of the interferon β (IFNβ) gene. Here, we demonstrate that the TANK–TBK1 and optineurin (OPTN)–TBK1 complexes control this pathway. The poly(I:C)- or LPS-stimulated phosphorylation of IRF3 at Ser396 and production of IFNβ were greatly reduced in bone marrow-derived macrophages (BMDMs) from TANK knockout (KO) mice crossed to knockin mice expressing the ubiquitin-binding-defective OPTN[D477N] mutant. In contrast, IRF3 phosphorylation and IFNβ production were not reduced significantly in BMDM from OPTN[D477N] knockin mice and only reduced partially in TANK KO BMDM. The TLR3/TLR4-dependent phosphorylation of IRF3 and IFNβ gene transcription were not decreased in macrophages from OPTN[D477N] crossed to mice deficient in IκB kinase ε, a TANK-binding kinase related to TBK1. In contrast with the OPTN–TBK1 complex, TBK1 associated with OPTN[D477N] did not undergo phosphorylation at Ser172 in response to poly(I:C) or LPS, indicating that the interaction of ubiquitin chains with OPTN is required to activate OPTN–TBK1 in BMDM. The phosphorylation of IRF3 and IFNβ production induced by Sendai virus infection were unimpaired in BMDM from TANK KO × OPTN[D477N] mice, suggesting that other/additional TBK1 complexes control the RIG-I-like receptor-dependent production of IFNβ. Finally, we present evidence that, in human HACAT cells, the poly(I:C)-dependent phosphorylation of TBK1 at Ser172 involves a novel TBK1-activating kinase(s).
Collapse
|
18
|
Ganapathiraju MK, Karunakaran KB, Correa-Menéndez J. Predicted protein interactions of IFITMs may shed light on mechanisms of Zika virus-induced microcephaly and host invasion. F1000Res 2016; 5:1919. [PMID: 29333229 PMCID: PMC5747333 DOI: 10.12688/f1000research.9364.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 06/16/2024] Open
Abstract
After the first reported case of Zika virus (ZIKV) in Brazil, in 2015, a significant increase in the reported cases of microcephaly was observed. Microcephaly is a neurological condition in which the infant's head is significantly smaller with complications in brain development. Recently, two small membrane-associated interferon-inducible transmembrane proteins (IFITM1 and IFITM3) have been shown to repress members of the flaviviridae family which includes ZIKV. However, the exact mechanisms leading to the inhibition of the virus are yet unknown. Here, we assembled an interactome of IFITM1 and IFITM3 with known protein-protein interactions (PPIs) collected from publicly available databases and novel PPIs predicted using the High-confidence Protein-Protein Interaction Prediction (HiPPIP) model. We analyzed the functional and pathway associations of the interacting proteins, and found that there are several immunity pathways (toll-like receptor signaling, cd28 signaling in T-helper cells, crosstalk between dendritic cells and natural killer cells), neuronal pathways (axonal guidance signaling, neural tube closure and actin cytoskeleton signaling) and developmental pathways (neural tube closure, embryonic skeletal system development) that are associated with these interactors. Our novel PPIs associate cilia dysfunction in ependymal cells to microcephaly, and may also shed light on potential targets of ZIKV for host invasion by immunosuppression and cytoskeletal rearrangements. These results could help direct future research in elucidating the mechanisms underlying host defense to ZIKV and other flaviviruses.
Collapse
Affiliation(s)
- Madhavi K. Ganapathiraju
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kalyani B. Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
19
|
Ganapathiraju MK, Karunakaran KB, Correa-Menéndez J. Predicted protein interactions of IFITMs may shed light on mechanisms of Zika virus-induced microcephaly and host invasion. F1000Res 2016; 5:1919. [PMID: 29333229 PMCID: PMC5747333 DOI: 10.12688/f1000research.9364.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/22/2022] Open
Abstract
After the first reported case of Zika virus (ZIKV) in Brazil, in 2015, a significant increase in the reported cases of microcephaly was observed. Microcephaly is a neurological condition in which the infant’s head is significantly smaller with complications in brain development. Recently, two small membrane-associated interferon-inducible transmembrane proteins (IFITM1 and IFITM3) have been shown to repress members of the flaviviridae family which includes ZIKV. However, the exact mechanisms leading to the inhibition of the virus are yet unknown. Here, we assembled an interactome of IFITM1 and IFITM3 with known protein-protein interactions (PPIs) collected from publicly available databases and novel PPIs predicted using the High-confidence Protein-Protein Interaction Prediction (HiPPIP) model. We analyzed the functional and pathway associations of the interacting proteins, and found that there are several immunity pathways (toll-like receptor signaling, cd28 signaling in T-helper cells, crosstalk between dendritic cells and natural killer cells), neuronal pathways (axonal guidance signaling, neural tube closure and actin cytoskeleton signaling) and developmental pathways (neural tube closure, embryonic skeletal system development) that are associated with these interactors. Our novel PPIs associate cilia dysfunction in ependymal cells to microcephaly, and may also shed light on potential targets of ZIKV for host invasion by immunosuppression and cytoskeletal rearrangements. These results could help direct future research in elucidating the mechanisms underlying host defense to ZIKV and other flaviviruses.
Collapse
Affiliation(s)
- Madhavi K Ganapathiraju
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
20
|
Medvedev AE, Murphy M, Zhou H, Li X. E3 ubiquitin ligases Pellinos as regulators of pattern recognition receptor signaling and immune responses. Immunol Rev 2016; 266:109-22. [PMID: 26085210 DOI: 10.1111/imr.12298] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pellinos are a family of E3 ubiquitin ligases discovered for their role in catalyzing K63-linked polyubiquitination of Pelle, an interleukin-1 (IL-1) receptor-associated kinase homolog in the Drosophila Toll pathway. Subsequent studies have revealed the central and non-redundant roles of mammalian Pellino-1, Pellino-2, and Pelino-3 in signaling pathways emanating from IL-1 receptors, Toll-like receptors, NOD-like receptors, T- and B-cell receptors. While Pellinos ability to interact with many signaling intermediates suggested their scaffolding roles, recent findings in mice expressing ligase-inactive Pellinos demonstrated the importance of Pellino ubiquitin ligase activity. Cell-specific functions of Pellinos have emerged, e.g. Pellino-1 being a negative regulator in T lymphocytes and a positive regulator in myeloid cells, and details of molecular regulation of receptor signaling by various members of the Pellino family have been revealed. In this review, we summarize current information about Pellino-mediated regulation of signaling by pattern recognition receptors, T-cell and B-cell receptors and tumor necrosis factor receptors, and discuss Pellinos roles in sepsis and infectious diseases, as well as in autoimmune, inflammatory, and allergic disorders. We also provide our perspective on the potential of targeting Pellinos with peptide- or small molecule-based drug compounds as a new therapeutic approach for septic shock and autoimmune pathologies.
Collapse
Affiliation(s)
- Andrei E Medvedev
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Michael Murphy
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Hao Zhou
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
21
|
Luff SA, Papoutsakis ET. Megakaryocytic Maturation in Response to Shear Flow Is Mediated by the Activator Protein 1 (AP-1) Transcription Factor via Mitogen-activated Protein Kinase (MAPK) Mechanotransduction. J Biol Chem 2016; 291:7831-43. [PMID: 26814129 DOI: 10.1074/jbc.m115.707174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Indexed: 12/26/2022] Open
Abstract
Megakaryocytes (MKs) are exposed to shear flow as they migrate from the bone marrow hematopoietic compartment into circulation to release pro/preplatelets into circulating blood. Shear forces promote DNA synthesis, polyploidization, and maturation in MKs, and platelet biogenesis. To investigate mechanisms underlying these MK responses to shear, we carried out transcriptional analysis on immature and mature stem cell-derived MKs exposed to physiological shear. In immature (day (d)9) MKs, shear exposure up-regulated genes related to growth and MK maturation, whereas in mature (d12) MKs, it up-regulated genes involved in apoptosis and intracellular transport. Following shear-flow exposure, six activator protein 1 (AP-1) transcripts (ATF4,JUNB,JUN,FOSB,FOS, andJUND) were up-regulated at d9 and two AP-1 proteins (JunD and c-Fos) were up-regulated both at d9 and d12. We show that mitogen-activated protein kinase (MAPK) signaling is linked to both the shear stress response and AP-1 up-regulation. c-Jun N-terminal kinase (JNK) phosphorylation increased significantly following shear stimulation, whereas JNK inhibition reduced shear-induced JunD expression. Although p38 phosphorylation did not increase following shear flow, its inhibition reduced shear-induced JunD and c-Fos expression. JNK inhibition reduced fibrinogen binding and P-selectin expression of d12 platelet-like particles (PLPs), whereas p38 inhibition reduced fibrinogen binding of d12 PLPs. AP-1 expression correlated with increased MK DNA synthesis and polyploidization, which might explain the observed impact of shear on MKs. To summarize, we show that MK exposure to shear forces results in JNK activation, AP-1 up-regulation, and downstream transcriptional changes that promote maturation of immature MKs and platelet biogenesis in mature MKs.
Collapse
Affiliation(s)
- Stephanie A Luff
- From the Department of Biological Sciences, Delaware Biotechnology Institute, and
| | - Eleftherios T Papoutsakis
- From the Department of Biological Sciences, Delaware Biotechnology Institute, and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19711
| |
Collapse
|
22
|
Humphries F, Moynagh PN. Molecular and physiological roles of Pellino E3 ubiquitin ligases in immunity. Immunol Rev 2015; 266:93-108. [DOI: 10.1111/imr.12306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Fiachra Humphries
- Institute of Immunology; Department of Biology; National University of Ireland Maynooth; Maynooth Ireland
| | - Paul N. Moynagh
- Institute of Immunology; Department of Biology; National University of Ireland Maynooth; Maynooth Ireland
- Centre for Infection and Immunity; School of Medicine, Dentistry and Biomedical Sciences; Queen's University Belfast; Northern Ireland UK
| |
Collapse
|
23
|
Suppression of interferon β gene transcription by inhibitors of bromodomain and extra-terminal (BET) family members. Biochem J 2015; 468:363-72. [PMID: 25891802 PMCID: PMC4613535 DOI: 10.1042/bj20141523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/20/2015] [Indexed: 12/27/2022]
Abstract
We have found that interferon production is suppressed by compounds that prevent bromodomains from interacting with acetylated histones at the interferon gene promoter. This is a new way in which interferon production is regulated to combat bacterial or viral infection. PLK (Polo-like kinase) inhibitors, such as BI-2536, have been reported to suppress IFNB (encoding IFNβ, interferon β) gene transcription induced by ligands that activate TLR3 (Toll-like receptor 3) and TLR4. In the present study, we found that BI-2536 is likely to exert this effect by preventing the interaction of the transcription factors IRF3 (interferon-regulatory factor 3) and c-Jun with the IFNB promoter, but without affecting the TBK1 {TANK [TRAF (tumour-necrosis-factor-receptor-associated factor)-associated nuclear factor κB activator]-binding kinase 1}-catalysed phosphorylation of IRF3 at Ser396, the dimerization and nuclear translocation of IRF3 or the phosphorylation of c-Jun and ATF2 (activating transcription factor 2). Although BI-2536 inhibits few other kinases tested, it interacts with BET (bromodomain and extra-terminal) family members and displaces them from acetylated lysine residues on histones. We found that BET inhibitors that do not inhibit PLKs phenocopied the effect of BI-2536 on IFNB gene transcription. Similarly, BET inhibitors blocked the interaction of IRF5 with the IFNB promoter and the secretion of IFNβ induced by TLR7 or TLR9 ligands in the human plasmacytoid dendritic cell line GEN2.2, but without affecting the nuclear translocation of IRF5. We found that the BET family member BRD4 (bromodomain-containing protein 4) was associated with the IFNB promoter and that this interaction was enhanced by TLR3- or TLR4-ligation and prevented by BI-2536 and other BET inhibitors. Our results establish that BET family members are essential for TLR-stimulated IFNB gene transcription by permitting transcription factors to interact with the IFNB promoter. They also show that the interaction of the IFNB promoter with BRD4 is regulated by TLR ligation and that BI-2536 is likely to suppress IFNB gene transcription by targeting BET family members.
Collapse
|
24
|
Jensik PJ, Vargas JD, Reardon SN, Rajamanickam S, Huggenvik JI, Collard MW. DEAF1 binds unmethylated and variably spaced CpG dinucleotide motifs. PLoS One 2014; 9:e115908. [PMID: 25531106 PMCID: PMC4274154 DOI: 10.1371/journal.pone.0115908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
DEAF1 is a transcriptional regulator associated with autoimmune and neurological disorders and is known to bind TTCG motifs. To further ascertain preferred DEAF1 DNA ligands, we screened a random oligonucleotide library containing an "anchored" CpG motif. We identified a binding consensus that generally conformed to a repeated TTCGGG motif, with the two invariant CpG dinucleotides separated by 6-11 nucleotides. Alteration of the consensus surrounding the dual CpG dinucleotides, or cytosine methylation of a single CpG half-site, eliminated DEAF1 binding. A sequence within the Htr1a promoter that resembles the binding consensus but contains a single CpG motif was confirmed to have low affinity binding with DEAF1. A DEAF1 binding consensus was identified in the EIF4G3 promoter and ChIP assay showed endogenous DEAF1 was bound to the region. We conclude that DEAF1 preferentially binds variably spaced and unmethylated CpG-containing half-sites when they occur within an appropriate consensus.
Collapse
Affiliation(s)
- Philip J. Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
- * E-mail:
| | - Jesse D. Vargas
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Sara N. Reardon
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Shivakumar Rajamanickam
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Jodi I. Huggenvik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Michael W. Collard
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| |
Collapse
|
25
|
Albert PR, Vahid-Ansari F, Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front Behav Neurosci 2014; 8:199. [PMID: 24936175 PMCID: PMC4047678 DOI: 10.3389/fnbeh.2014.00199] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/16/2014] [Indexed: 01/03/2023] Open
Abstract
Decreased serotonergic activity has been implicated in anxiety and major depression, and antidepressants directly or indirectly increase the long-term activity of the serotonin system. A key component of serotonin circuitry is the 5-HT1A autoreceptor, which functions as the major somatodendritic autoreceptor to negatively regulate the "gain" of the serotonin system. In addition, 5-HT1A heteroreceptors are abundantly expressed post-synaptically in the prefrontal cortex (PFC), amygdala, and hippocampus to mediate serotonin actions on fear, anxiety, stress, and cognition. Importantly, in the PFC 5-HT1A heteroreceptors are expressed on at least two antagonist neuronal populations: excitatory pyramidal neurons and inhibitory interneurons. Rodent models implicate the 5-HT1A receptor in anxiety- and depression-like phenotypes with distinct roles for pre- and post-synaptic 5-HT1A receptors. In this review, we present a model of serotonin-PFC circuitry that integrates evidence from mouse genetic models of anxiety and depression involving knockout, suppression, over-expression, or mutation of genes of the serotonin system including 5-HT1A receptors. The model postulates that behavioral phenotype shifts as serotonin activity increases from none (depressed/aggressive not anxious) to low (anxious/depressed) to high (anxious, not depressed). We identify a set of conserved transcription factors including Deaf1, Freud-1/CC2D1A, Freud-2/CC2D1B and glucocorticoid receptors that may confer deleterious regional changes in 5-HT1A receptors in depression, and how future treatments could target these mechanisms. Further studies to specifically test the roles and regulation of pyramidal vs. interneuronal populations of 5-HT receptors are needed better understand the role of serotonin in anxiety and depression and to devise more effective targeted therapeutic approaches.
Collapse
Affiliation(s)
- Paul R Albert
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Faranak Vahid-Ansari
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa ON, Canada
| | - Christine Luckhart
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa ON, Canada
| |
Collapse
|
26
|
Li C, Chai J, Li H, Zuo H, Wang S, Qiu W, Weng S, He J, Xu X. Pellino protein from pacific white shrimp Litopenaeus vannamei positively regulates NF-κB activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:341-350. [PMID: 24463313 DOI: 10.1016/j.dci.2014.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 06/03/2023]
Abstract
Pellino, named after its property that binds Pelle (the Drosophila melanogaster homolog of IRAK1), is a highly conserved E3 class ubiquitin ligase in both vertebrates and invertebrates. Pellino interacts with phosphorylated IRAK1, causing polyubiquitination of IRAK1, and plays a critical upstream role in the toll-like receptor (TLR) pathway. In this study, we firstly cloned and identified a crustacean Pellino from pacific white shrimp Litopenaeus vannamei (LvPellino). LvPellino contains a putative N-terminal forkhead-associated (FHA) domain and a C-terminal ring finger (RING) domain with a potential E3 ubiquitin-protein ligase activity, and shows a high similarity with D. melanogaster Pellino. LvPellino could interact with L. vannamei Pelle (LvPelle) and over-expression of LvPellino could increase the activity of LvDorsal (a L. vannamei homolog of NF-κB) on promoters containing NF-κB binding motifs and enhance the expression of arthropod antimicrobial peptides (AMPs). The LvPellino protein was located in the cytoplasm and nucleus and LvPellino mRNA was detected in all the tissues examined and could be up-regulated after lipopolysaccharides, white spot syndrome virus (WSSV), Vibrio parahaemolyticus, and Staphylococcus aureus challenges, suggesting a stimulation response of LvPellino to bacterial and immune stimulant challenges. Knockdown of LvPellino in vivo could significantly decrease the expression of AMPs and increase the mortality of shrimps caused by V. parahaemolyticus challenge. However, suppression of the LvPellino expression could not change the mortality caused by WSSV infection, and dual-luciferase reporter assays demonstrated that over-expression of LvPellino could enhance the promoters of WSSV genes wsv069 (ie1), wsv303, and wsv371, indicating a complex role of LvPellino in WSSV pathogenesis and shrimp antiviral mechanisms.
Collapse
Affiliation(s)
- Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jiaoting Chai
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wei Qiu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
27
|
Vulto-van Silfhout AT, Rajamanickam S, Jensik PJ, Vergult S, de Rocker N, Newhall KJ, Raghavan R, Reardon SN, Jarrett K, McIntyre T, Bulinski J, Ownby SL, Huggenvik JI, McKnight GS, Rose GM, Cai X, Willaert A, Zweier C, Endele S, de Ligt J, van Bon BWM, Lugtenberg D, de Vries PF, Veltman JA, van Bokhoven H, Brunner HG, Rauch A, de Brouwer APM, Carvill GL, Hoischen A, Mefford HC, Eichler EE, Vissers LELM, Menten B, Collard MW, de Vries BBA. Mutations affecting the SAND domain of DEAF1 cause intellectual disability with severe speech impairment and behavioral problems. Am J Hum Genet 2014; 94:649-61. [PMID: 24726472 DOI: 10.1016/j.ajhg.2014.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/18/2014] [Indexed: 11/29/2022] Open
Abstract
Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1.
Collapse
Affiliation(s)
| | - Shivakumar Rajamanickam
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Philip J Jensik
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Nina de Rocker
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Kathryn J Newhall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Ramya Raghavan
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sara N Reardon
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Kelsey Jarrett
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Tara McIntyre
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Joseph Bulinski
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Stacy L Ownby
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Jodi I Huggenvik
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - G Stanley McKnight
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Gregory M Rose
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Xiang Cai
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Andy Willaert
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabine Endele
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Joep de Ligt
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Bregje W M van Bon
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Dorien Lugtenberg
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Petra F de Vries
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8603 Schwerzenbach-Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, 8603 Schwerzenbach-Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| | - Arjan P M de Brouwer
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Gemma L Carvill
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Björn Menten
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Michael W Collard
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
28
|
Abstract
Pellino proteins were initially characterized as a family of E3 ubiquitin ligases that can catalyse the ubiquitylation of interleukin-1 receptor-associated kinase 1 (IRAK1) and regulate innate immune signalling pathways. More recently, physiological and molecular roles for members of the Pellino family have been described in the regulation of innate and adaptive immune responses by ubiquitylation. This Review describes the emerging roles of Pellino proteins in innate and adaptive immunity and discusses the mechanistic basis of these functions.
Collapse
Affiliation(s)
- Paul N Moynagh
- 1] Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland. [2] Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast BT9 7AE, Northern Ireland, United Kingdom
| |
Collapse
|