1
|
Lu Z, Dong H, Tu Z, Liu H. Expression, molecular mechanisms and therapeutic potentials of ATF1 in cancers. Life Sci 2025; 360:123256. [PMID: 39580140 DOI: 10.1016/j.lfs.2024.123256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Activating transcription factor 1 (ATF1) is a crucial cellular regulator, with its misregulation implicated in numerous cancers. As a key player in the ATF/CREB family, ATF1 modulates gene expression in response to extracellular signals, significantly impacting cancer progression. This review examines ATF1's structural features, its role in tumorigenesis, and its potential therapeutic applications. Data from various databases consistently show ATF1 overexpression in diverse cancers, associated with poor prognosis and aggressive phenotypes. The review explores ATF1's complex regulatory mechanisms, influencing cell proliferation, apoptosis, migration, invasion, and therapeutic resistance, and its interactions with regulatory networks. Emerging strategies targeting ATF1, such as engineered antibodies, natural compounds, and small molecule inhibitors, show efficacy in preclinical models. ATF1 may also act as a biomarker for personalized therapeutic response and resistance. Future research should focus on ATF1's role in the tumor microenvironment and its interaction with the immune system, potentially leading to new immunotherapeutic strategies. A deeper understanding of ATF1 could enhance cancer treatment and patient outcomes.
Collapse
Affiliation(s)
- Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hangyu Dong
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Hua Y, Yang S, Zhang Y, Li J, Wang M, Yeerkenbieke P, Liao Q, Liu Q. Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:19. [PMID: 38217037 PMCID: PMC10787430 DOI: 10.1186/s13046-023-02925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024] Open
Abstract
Ferroptosis, a novel form of cell death triggered by iron-dependent phospholipid peroxidation, presents significant therapeutic potential across diverse cancer types. Central to cellular metabolism, the metabolic pathways associated with ferroptosis are discernible in both cancerous and immune cells. This review begins by delving into the intricate reciprocal regulation of ferroptosis between cancer and immune cells. It subsequently details how factors within the tumor microenvironment (TME) such as nutrient scarcity, hypoxia, and cellular density modulate ferroptosis sensitivity. We conclude by offering a comprehensive examination of distinct immunophenotypes and environmental and metabolic targets geared towards enhancing ferroptosis responsiveness within the TME. In sum, tailoring precise ferroptosis interventions and combination strategies to suit the unique TME of specific cancers may herald improved patient outcomes.
Collapse
Affiliation(s)
- Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Anhui Provincial Hospital, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Palashate Yeerkenbieke
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Xinjiang Yili Kazak Autonomous Prefecture Friendship Hospital, Xinjiang, 835099, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
4
|
Conarroe CA, Bullock TNJ. Ready for Prime Time? Dendritic Cells in High-Grade Gliomas. Cancers (Basel) 2023; 15:2902. [PMID: 37296865 PMCID: PMC10251930 DOI: 10.3390/cancers15112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
High-grade gliomas are malignant brain tumors, and patient outcomes remain dismal despite the emergence of immunotherapies aimed at promoting tumor elimination by the immune system. A robust antitumor immune response requires the presentation of tumor antigens by dendritic cells (DC) to prime cytolytic T cells. However, there is a paucity of research on dendritic cell activity in the context of high-grade gliomas. As such, this review covers what is known about the role of DC in the CNS, DC infiltration of high-grade gliomas, tumor antigen drainage, the immunogenicity of DC activity, and DC subsets involved in the antitumor immune response. Finally, we consider the implications of suboptimal DC function in the context of immunotherapies and identify opportunities to optimize immunotherapies to treat high-grade gliomas.
Collapse
Affiliation(s)
- Claire A. Conarroe
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | | |
Collapse
|
5
|
Pant A, Dasgupta D, Tripathi A, Pyaram K. Beyond Antioxidation: Keap1-Nrf2 in the Development and Effector Functions of Adaptive Immune Cells. Immunohorizons 2023; 7:288-298. [PMID: 37099275 PMCID: PMC10579846 DOI: 10.4049/immunohorizons.2200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023] Open
Abstract
Ubiquitously expressed in mammalian cells, the Kelch-like ECH-associated protein 1 (Keap1)-NF erythroid 2-related factor 2 (Nrf2) complex forms the evolutionarily conserved antioxidation system to tackle oxidative stress caused by reactive oxygen species. Reactive oxygen species, generated as byproducts of cellular metabolism, were identified as essential second messengers for T cell signaling, activation, and effector responses. Apart from its traditional role as an antioxidant, a growing body of evidence indicates that Nrf2, tightly regulated by Keap1, modulates immune responses and regulates cellular metabolism. Newer functions of Keap1 and Nrf2 in immune cell activation and function, as well as their role in inflammatory diseases such as sepsis, inflammatory bowel disease, and multiple sclerosis, are emerging. In this review, we highlight recent findings about the influence of Keap1 and Nrf2 in the development and effector functions of adaptive immune cells, that is, T cells and B cells, and discuss the knowledge gaps in our understanding. We also summarize the research potential and targetability of Nrf2 for treating immune pathologies.
Collapse
Affiliation(s)
- Anil Pant
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - Debolina Dasgupta
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Aprajita Tripathi
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Kalyani Pyaram
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
6
|
Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X, Zhang W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis 2022; 9:981-999. [PMID: 35685455 PMCID: PMC9170601 DOI: 10.1016/j.gendis.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Activating transcription factors, ATFs, are a group of bZIP transcription factors that act as homodimers or heterodimers with a range of other bZIP factors. In general, ATFs respond to extracellular signals, indicating their important roles in maintaining homeostasis. The ATF family includes ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7. Consistent with the diversity of cellular processes reported to be regulated by ATFs, the functions of ATFs are also diverse. ATFs play an important role in cell proliferation, apoptosis, differentiation and inflammation-related pathological processes. The expression and phosphorylation status of ATFs are also related to neurodegenerative diseases and polycystic kidney disease. Various miRNAs target ATFs to regulate cancer proliferation, apoptosis, autophagy, sensitivity and resistance to radiotherapy and chemotherapy. Moreover, ATFs are necessary to maintain cell redox homeostasis. Therefore, deepening our understanding of the regulation and function of ATFs will provide insights into the basic regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into genomic responses through transcription factors. Under pathological conditions, especially in cancer biology and response to treatment, the characterization of ATF dysfunction is important for understanding how to therapeutically utilize ATF2 or other pathways controlled by transcription factors. In this review, we will demonstrate how ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7 function in promoting or suppressing cancer development and identify their roles in tumour immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenling Zhang
- Corresponding author. Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, Hunan 410013, PR China.
| |
Collapse
|
7
|
Zhang Y, Zhou YJ, Tang JS, Lan JQ, Kang YY, Wu L, Peng Y. A comparison study between dimethyl itaconate and dimethyl fumarate in electrophilicity, Nrf2 activation, and anti-inflammation in vitro. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:577-588. [PMID: 34292106 DOI: 10.1080/10286020.2021.1949303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Dimethyl itaconate (DMI) is an analog of dimethyl fumarate (DMF), an approved NF-E2-related Factor 2 (Nrf2) activator for multiple sclerosis. This study evaluated the potential of DMI as an anti-inflammatory agent by comparing DMI with DMF in electrophilicity, Nrf2 activation, and anti-inflammation in vitro. The results showed that DMI was less electrophilic but better at inducing a durable activation of Nrf2 when compared with DMF. However, DMI demonstrated poor anti-inflammatory effects in Jurkat cells, bone marrow-derived dendritic cells, and RAW264.7 cells. Our study suggested that DMI was a potent electrophilic Nrf2 activator but was probably not a promising anti-inflammatory agent.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu-Jun Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing-Shu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jia-Qi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu-Ying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Martínez Leo EE, Peñafiel AM, Hernández Escalante VM, Cabrera Araujo ZM. Ultra-processed diet, systemic oxidative stress, and breach of immunologic tolerance. Nutrition 2021; 91-92:111419. [PMID: 34399404 DOI: 10.1016/j.nut.2021.111419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022]
Abstract
In recent years, consumption of ultra-processed food around the world has been increasing. The nutritional profile of an ultra-processed diet is associated with the development of cellular alterations that lead to oxidative stress. The chronic prooxidative state leads to an environment that influences the proliferation, apoptosis, and signaling pathways of immune cells. Likewise, the decrease in the transcription factor NRF2, owing to exacerbated production of reactive oxygen species, leads to changes in immune function and response to infections. This review aims to analyze the connection between an ultra-processed diet, systemic oxidative stress, and immune tolerance, as a contribution to the scientific evidence on the impact of oxidative stress on health and the possible risk of infections-an important consideration in the association of eating pattern and the immune response.
Collapse
Affiliation(s)
- Edwin E Martínez Leo
- Research Department, University Latino, Merida, Mexico; School of Medicine, Autonomous University of Yucatan, Merida, Mexico.
| | | | | | | |
Collapse
|
9
|
Examination of Novel Immunomodulatory Effects of L-Sulforaphane. Nutrients 2021; 13:nu13020602. [PMID: 33673203 PMCID: PMC7917832 DOI: 10.3390/nu13020602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 01/08/2023] Open
Abstract
The dietary isothiocyanate L-sulforaphane (LSF), derived from cruciferous vegetables, is reported to have several beneficial biological properties, including anti-inflammatory and immunomodulatory effects. However, there is limited data on how LSF modulates these effects in human immune cells. The present study was designed to investigate the immunomodulatory effects of LSF (10 µM and 50 µM) on peripheral blood mononuclear cell (PBMC) populations and cytokine secretion in healthy adult volunteers (n = 14), in the presence or absence of bacterial (lipopolysaccharide) and viral (imiquimod) toll-like receptor (TLRs) stimulations. Here, we found that LSF reduced pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and chemokines monocyte chemoattractant protein (MCP)-1 irrespective of TLR stimulations. This result was associated with LSF significantly reducing the proportion of natural killer (NK) cells and monocytes while increasing the proportions of dendritic cells (DCs), T cells and B cells. We found a novel effect of LSF in relation to reducing cluster of differentiation (CD) 14+ monocytes while simultaneously increasing monocyte-derived DCs (moDCs: lineage-Human Leukocyte Antigen-DR isotype (HLA-DR)+CD11blow-high CD11chigh). LSF was also shown to induce a 3.9-fold increase in the antioxidant response element (ARE) activity in a human monocyte cell line (THP-1). Our results provide important insights into the immunomodulatory effects of LSF, showing in human PBMCs an ability to drive differentiation of monocytes towards an immature monocyte-derived dendritic cell phenotype with potentially important biological functions. These findings provide insights into the potential role of LSF as a novel immunomodulatory drug candidate and supports the need for further preclinical and phase I clinical studies.
Collapse
|
10
|
Li J, Guo Y, Duan X, Li B. Heme oxygenase-1 (HO-1) assists inorganic arsenic-induced immune tolerance in murine dendritic cells. CHEMOSPHERE 2021; 264:128452. [PMID: 33049506 DOI: 10.1016/j.chemosphere.2020.128452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Inorganic arsenic, a well-known human carcinogen, poses a major threat to global health. Given the immunosuppressive potentials of inorganic arsenic as well as limited understanding of this metalloid on antigen-presenting dendritic cells (DCs), we systematically screened the immune targets in response to arsenic treatment, as well as its possible molecular mechanism in cultured murine DCs. Our results denoted that arsenite (As) significantly induced immune tolerance by down-regulating the expression of phenotypic molecules, pro-inflammatory factors and T-lymphocyte helper (Th)1/Th17-inducible cytokines in lipopolysaccharides (LPS)-stimulated myeloid-derived dendritic cells (BMDCs). Inconsistent with dampened phosphorylation of immune-related proteins (nuclear factor kappa-B) NF-κB, p38 and JNK, the metalloid drastically induced the expression of Heme oxygenase-1 (HO-1) protein, which enlightened us to continuously explore the possible roles of HO-1 pathway in As-induced immune tolerance in BMDCs. In this respect, immunosuppressive properties of HO-1 pathway in BMDCs were firstly confirmed through pharmacological overexpression of HO-1 by both CoPP and CORM-2. By contrast, limited HO-1 expression by HO-1 inhibitor ZnPP specifically alleviated As-mediated down-regulation of CD80, chemokine factor C-C chemokine receptor 7 (CCR7), tumor necrosis factor (TNF) -α, Interleukin (IL)-23 and IL-6, which reminds us the peculiarity of HO-1 in As-induced immune tolerance in murine DCs. Based on these experimental findings, we postulated the immunosuppressive property of inorganic arsenic might be mediated partially by HO-1 in DCs, thus contributing to the interactions of DCs-polarized differentiation of T-lymphocyte subtype as well as the development of infections and malignant diseases.
Collapse
Affiliation(s)
- Jinlong Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China; Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuanyuan Guo
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning, China
| | - Bing Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
11
|
Gunne S, Heinicke U, Parnham MJ, Laux V, Zacharowski K, von Knethen A. Nrf2-A Molecular Target for Sepsis Patients in Critical Care. Biomolecules 2020; 10:biom10121688. [PMID: 33348637 PMCID: PMC7766194 DOI: 10.3390/biom10121688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
The transcription factor NF-E2 p45-related factor 2 (Nrf2) is an established master regulator of the anti-oxidative and detoxifying cellular response. Thus, a role in inflammatory diseases associated with the generation of large amounts of reactive oxygen species (ROS) seems obvious. In line with this, data obtained in cell culture experiments and preclinical settings have shown that Nrf2 is important in regulating target genes that are necessary to ensure cellular redox balance. Additionally, Nrf2 is involved in the induction of phase II drug metabolizing enzymes, which are important both in degrading and converting drugs into active forms, and into putative carcinogens. Therefore, Nrf2 has also been implicated in tumorigenesis. This must be kept in mind when new therapy approaches are planned for the treatment of sepsis. Therefore, this review highlights the function of Nrf2 in sepsis with a special focus on the translation of rodent-based results into sepsis patients in the intensive care unit (ICU).
Collapse
Affiliation(s)
- Sandra Gunne
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.H.); (K.Z.)
| | - Michael J. Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.H.); (K.Z.)
| | - Andreas von Knethen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.H.); (K.Z.)
- Correspondence: ; Tel.: +49-69-6301-87824
| |
Collapse
|
12
|
Mo C, Xie S, Zhong W, Zeng T, Huang S, Lai Y, Deng G, Zhou C, Yan W, Chen Y, Huang S, Gao L, Lv Z. Mutual antagonism between indoleamine 2,3-dioxygenase 1 and nuclear factor E2-related factor 2 regulates the maturation status of DCs in liver fibrosis. Free Radic Biol Med 2020; 160:178-190. [PMID: 32771520 DOI: 10.1016/j.freeradbiomed.2020.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrosis can develop into liver cirrhosis and hepatocellular carcinoma substantially without effective available treatment currently due to rarely characterized molecular pathogenesis. Indoleamine 2,3-dioxygenase 1(IDO1) can be detected on antigen-presenting cells (APCs) and modulates various immune responses. However, the role of IDO1 in the regulation of dendritic cells (DCs) during liver fibrosis is rarely reported. Here, we found that hepatic IDO1 was up-regulated during CCL4-induced liver fibrosis, which accompanied by a significant decrease in the frequencies of CD11c+CD80+, CD11c+CD86+, CD11c+CD40+ and CD11c+MHCII+ cells and a reduction in the subsequent T cell proliferation rate, whereas these changes were reversed significantly in IDO1-/- mice. Overexpressing IDO1 by adeno-associated viral vector serotype 9 (AAV9) significantly inhibited the maturation status of DCs, worsened fibrosis. In vitro studies showed that significantly elevated CD80, CD86, CD40 and MHCII expression were observed in BMDCs derived from IDO1-/- mice. Moreover, the maturation of BMDCs derived from WT mice were significantly increased after stimulated with IDO1 inhibitor (1-methyl- D -tryptophan). Nuclear factor E2-related factor 2 (Nrf2), a key regulator of the cellular adaptive response to oxidative insults and inflammation, exhibited a markedly decrease in the liver of WT fibrotic mice, nevertheless, knockout of IDO1 enhanced the protein level of Nrf2. Moreover, the expression of IDO1 and Nrf2 exhibited inverse colocalization pattern suggesting that ectopically expressed IDO1 down-regulated Nrf2. Additionally, up-regulation of IDO1 was also observed in the livers of Nrf2-/- fibrotic mice. Taken together, these data uncovered mutual antagonism between IDO1 and Nrf2 on the maturation status of DCs during hepatic fibrosis.
Collapse
Affiliation(s)
- Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Weichao Zhong
- Shenzhen Traditional Chinese Medicine Hospital, No.1, Fuhua Road, Futian District, Shenzhen, Guangdong, 518033, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, PR China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
13
|
Chadha S, Behl T, Kumar A, Khullar G, Arora S. Role of Nrf2 in rheumatoid arthritis. Curr Res Transl Med 2020; 68:171-181. [DOI: 10.1016/j.retram.2020.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022]
|
14
|
Abstract
The terminal differentiation of the epidermis is a complex physiological process. During the past few decades, medical genetics has shown that defects in the stratum corneum (SC) permeability barrier cause a myriad of pathological conditions, ranging from common dry skin to lethal ichthyoses. Contrarily, molecular phylogenetics has revealed that amniotes have acquired a specialized form of cytoprotection cornification that provides mechanical resilience to the SC. This superior biochemical property, along with desiccation tolerance, is attributable to the proper formation of the macromolecular protein-lipid complex termed cornified cell envelopes (CE). Cornification largely depends on the peculiar biochemical and biophysical properties of loricrin, which is a major CE component. Despite its quantitative significance, loricrin knockout (LKO) mice have revealed it to be dispensable for the SC permeability barrier. Nevertheless, LKO mice have brought us valuable lessons. It is also becoming evident that absent loricrin affects skin homeostasis more profoundly in many more aspects than previously expected. Through an extensive review of aggregate evidence, we discuss herein the functional significance of the thiol-rich protein loricrin from a biochemical, genetic, pathological, metabolic, or immunological aspect with some theoretical and speculative perspectives.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Dennis R. Roop
- Department of Dermatology and Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
15
|
Potential Protective and Therapeutic Roles of the Nrf2 Pathway in Ocular Diseases: An Update. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9410952. [PMID: 32273949 PMCID: PMC7125500 DOI: 10.1155/2020/9410952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
Abstract
Nuclear factor- (erythroid-derived 2-) like 2 (Nrf2) is a regulator of many processes of life, and it plays an important role in antioxidant, anti-inflammatory, and antifibrotic responses and in cancer. This review is focused on the potential mechanism of Nrf2 in the occurrence and development of ocular diseases. Also, several Nrf2 inducers, including noncoding RNAs and exogenous compounds, which control the expression of Nrf2 through different pathways, are discussed in ocular disease models and ocular cells, protecting them from dysfunctional changes. Therefore, Nrf2 might be a potential target of protecting ocular cells from various stresses and preventing ocular diseases.
Collapse
|
16
|
Helou DG, Braham S, De Chaisemartin L, Granger V, Damien MH, Pallardy M, Kerdine-Römer S, Chollet-Martin S. Nrf2 downregulates zymosan-induced neutrophil activation and modulates migration. PLoS One 2019; 14:e0216465. [PMID: 31419224 PMCID: PMC6697320 DOI: 10.1371/journal.pone.0216465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are the first line of defense against pathogens and their activation needs to be tightly regulated in order to limit deleterious effects. Nrf2 (Nuclear factor (erythroïd-derived 2)-like 2) transcription factor regulates oxidative stress and/or represses inflammation in various cells such as dendritic cells or macrophages. However, its involvement in PMN biology is still unclear. Using Nrf2 KO mice, we thus aimed to investigate the protective role of Nrf2 in various PMN functions such as oxidative burst, netosis, migration, cytokine production and phagocytosis, mainly in response to zymosan. We found that zymosan induced Nrf2 accumulation in PMNs leading to the upregulation of some target genes including Hmox-1, Nqo1 and Cat. Nrf2 was able to decrease zymosan-induced PMN oxidative burst; sulforaphane-induced Nrf2 hyperexpression confirmed its implication. Tnfα, Ccl3 and Cxcl2 gene transcription was decreased in zymosan-stimulated Nrf2 KO PMNs, suggesting a role for Nrf2 in the regulation of proinflammatory cytokine production. However, Nrf2 was not involved in phagocytosis. Finally, spontaneous migration of Nrf2 KO PMNs was lower than that of WT PMNs. Moreover, in response to low concentrations of CXCL2 or CXCL12, Nrf2 KO PMN migration was decreased despite similar CXCR2 and CXCR4 expression and ATP levels in PMNs from both genotypes. Nrf2 thus seems to be required for an optimal migration. Altogether these results suggest that Nrf2 has a protective role in several PMN functions. In particular, it downregulates their activation in response to zymosan and is required for an adequate migration.
Collapse
Affiliation(s)
- Doumet Georges Helou
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Sarah Braham
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Luc De Chaisemartin
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
- Laboratoire d'immunologie, « Autoimmunité et Hypersensibilités », Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Vanessa Granger
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
- Laboratoire d'immunologie, « Autoimmunité et Hypersensibilités », Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Marie-Hélène Damien
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Marc Pallardy
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Saadia Kerdine-Römer
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
- Laboratoire d'immunologie, « Autoimmunité et Hypersensibilités », Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Helou DG, Martin SF, Pallardy M, Chollet-Martin S, Kerdine-Römer S. Nrf2 Involvement in Chemical-Induced Skin Innate Immunity. Front Immunol 2019; 10:1004. [PMID: 31134077 PMCID: PMC6514534 DOI: 10.3389/fimmu.2019.01004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Exposure to certain chemicals disturbs skin homeostasis. In particular, protein-reactive chemical contact sensitizers trigger an inflammatory immune response resulting in eczema and allergic contact dermatitis. Chemical sensitizers activate innate immune cells which orchestrate the skin immune response. This involves oxidative and inflammatory pathways. In parallel, the Nrf2/Keap1 pathway, a major ubiquitous regulator of cellular oxidative and electrophilic stress is activated in the different skin innate immune cells including epidermal Langerhans cells and dermal dendritic cells, but also in keratinocytes. In this context, Nrf2 shows a strong protective capacity through the downregulation of both the oxidative stress and inflammatory pathways. In this review we highlight the important role of Nrf2 in the control of the innate immune response of the skin to chemical sensitizers.
Collapse
Affiliation(s)
- Doumet Georges Helou
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Pallardy
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,UF Auto-immunité et Hypersensibilités, Hôpital Bichat, APHP, Paris, France
| | - Saadia Kerdine-Römer
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
18
|
Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 2019; 18:295-317. [PMID: 30610225 DOI: 10.1038/s41573-018-0008-x] [Citation(s) in RCA: 881] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (KEAP1), are critical in the maintenance of redox, metabolic and protein homeostasis, as well as the regulation of inflammation. Thus, NRF2 activation provides cytoprotection against numerous pathologies including chronic diseases of the lung and liver; autoimmune, neurodegenerative and metabolic disorders; and cancer initiation. One NRF2 activator has received clinical approval and several electrophilic modifiers of the cysteine-based sensor KEAP1 and inhibitors of its interaction with NRF2 are now in clinical development. However, challenges regarding target specificity, pharmacodynamic properties, efficacy and safety remain.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | - Anna-Liisa Levonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
Vasconcelos AR, Dos Santos NB, Scavone C, Munhoz CD. Nrf2/ARE Pathway Modulation by Dietary Energy Regulation in Neurological Disorders. Front Pharmacol 2019; 10:33. [PMID: 30778297 PMCID: PMC6369171 DOI: 10.3389/fphar.2019.00033] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of an array of enzymes with important detoxifying and antioxidant functions. Current findings support the role of high levels of oxidative stress in the pathogenesis of neurological disorders. Given the central role played by Nrf2 in counteracting oxidative damage, a number of studies have targeted the modulation of this transcription factor in order to confer neuroprotection. Nrf2 activity is tightly regulated by oxidative stress and energy-based stimuli. Thus, many dietary interventions based on energy intake regulation, such as dietary energy restriction (DER) or high-fat diet (HFD), modulate Nrf2 with consequences for a variety of cellular processes that affect brain health. DER, by either restricting calorie intake or meal frequency, activates Nrf2 thereby triggering its protective effects, whilst HFD inhibit this pathway, thereby exacerbating oxidative stress. Consequently, DER protocols can be valuable strategies in the management of central nervous system (CNS) disorders. Herein, we review current knowledge of the role of Nrf2 signaling in neurological diseases, namely Alzheimer’s disease, Parkinson’s disease, multiple sclerosis and cerebral ischemia, as well as the potential of energy intake regulation in the management of Nrf2 signaling.
Collapse
Affiliation(s)
- Andrea Rodrigues Vasconcelos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Barreto Dos Santos
- Laboratory of Neuroendocrinopharmacology and Immunomodulation, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Carolina Demarchi Munhoz
- Laboratory of Neuroendocrinopharmacology and Immunomodulation, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73:28-45. [PMID: 30472260 PMCID: PMC6338518 DOI: 10.1016/j.plipres.2018.11.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
21
|
Garcinia xanthochymus extract protects PC12 cells from H 2O 2-induced apoptosis through modulation of PI3K/AKT and NRF2/HO-1 pathways. Chin J Nat Med 2018; 15:825-833. [PMID: 29329609 DOI: 10.1016/s1875-5364(18)30016-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Indexed: 02/02/2023]
Abstract
The aim of the present study was to investigate the protective effects and underlying mechanisms of Garcinia xanthochymus, a perennial medicinal plant native to Yunnan, China, against H2O2-induced oxidative damage in rat pheochromacytoma PC12 cells. Preincubation of PC12 cells with fruit EtOAc fraction (fruit-EFr., 12.5-50 µmol·L-1) of G. xanthochymus for 24 h prior to H2O2 exposure markedly improved cell viability and increased the activities of antioxidant enzymes (superoxide dismutase, catalase, and heme oxygenase-1 [HO-1]), prevented lactate dehydrogenase release and lipid peroxidation malondialdehyde production, attenuated the decrease of matrix metalloproteinases (MMP), and scavenged reactive oxygen species (ROS). Fruit-EFr. also reduced BAX and cytochrome C expression and improved BCL-2 expression, thereby decreasing the ratio of BAX to BCL-2. Fruit-EFr. activated the nuclear translocation of NRF2 to increase HO-1 and induced the phosphorylation of AKT. Its cytoprotective effect was abolished by LY294002, a specific inhibitor of PI3K. Taken together, the above findings suggested that fruit-EFr.of G. xanthochymus could enhance cellular antioxidant defense capacity, at least in part, through upregulating HO-1 expression and activating the PI3K/AKT pathway and that it could suppress H2O2-induced oxidative damage via PI3K/AKT and NRF2/HO-1 signaling pathways.
Collapse
|
22
|
CD11c-Specific Deletion Reveals CREB as a Critical Regulator of DC Function during the Germinal Center Response. J Immunol Res 2018; 2018:8947230. [PMID: 29854847 PMCID: PMC5964551 DOI: 10.1155/2018/8947230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/24/2018] [Accepted: 03/11/2018] [Indexed: 01/08/2023] Open
Abstract
Dendritic cells (DCs) are crucial for the balance between immune response and tolerance, but the molecular mechanism regulating development, differentiation, and homeostasis are poorly understood. The transcriptional activator CREB is involved in regulating different cells of the innate and adaptive immune system and is a transcriptional regulator of development, survival, activation, or proliferation in macrophages, dendritic cells, B cells, and T cells. To directly examine the role of CREB in the regulation of DCs, the CREB gene was targeted for deletion with a CD11c-cre transgene. The deletion of CREB in CD11c+ cells did not involve any developmental or systemic defects within DC populations. However, CREB deficiency in CD11c+ cells reduced germinal center (GC) B cells in steady state, and immunization with NP-CGG resulted in a reduced formation of GCs, paralleled by the reduced production of IgGs in sera of immunized mice. In conclusion, we demonstrate that CREB expression in CD11c+ cells enhances germinal center responses, most likely by altering DC function, which might have implications for autoimmune diseases that are associated with dysregulated GC responses.
Collapse
|
23
|
Ferrándiz ML, Nacher-Juan J, Alcaraz MJ. Nrf2 as a therapeutic target for rheumatic diseases. Biochem Pharmacol 2018; 152:338-346. [PMID: 29660314 DOI: 10.1016/j.bcp.2018.04.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master regulator of cellular protective processes. Rheumatic diseases are chronic conditions characterized by inflammation, pain, tissue damage and limitations in function. Main examples are rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis and osteoporosis. Their high prevalence constitutes a major health problem with an important social and economic impact. A wide range of evidence indicates that Nrf2 may control different mechanisms involved in the physiopathology of rheumatic conditions. Therefore, the appropriate expression and balance of Nrf2 is necessary for regulation of oxidative stress, inflammation, immune responses, and cartilage and bone metabolism. Numerous studies have demonstrated that Nrf2 deficiency aggravates the disease in experimental models while Nrf2 activation results in immunoregulatory and anti-inflammatory effects. These reports reinforce the increasing interest in the pharmacologic regulation of Nrf2 and its potential applications. Nevertheless, a majority of Nrf2 inducers are electrophilic molecules which may present off-target effects. In recent years, novel strategies have been sought to modulate the Nrf2 pathway which has emerged as a therapeutic target in rheumatic conditions.
Collapse
Affiliation(s)
- María Luisa Ferrándiz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| | - Josep Nacher-Juan
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| | - Maria José Alcaraz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
24
|
Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R, López MG, Oliva B, Pajares M, Rojo AI, Robledinos-Antón N, Valverde AM, Guney E, Schmidt HHHW. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol Rev 2018; 70:348-383. [DOI: 10.1124/pr.117.014753] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
25
|
Hammer A, Waschbisch A, Knippertz I, Zinser E, Berg J, Jörg S, Kuhbandner K, David C, Pi J, Bayas A, Lee DH, Haghikia A, Gold R, Steinkasserer A, Linker RA. Role of Nuclear Factor (Erythroid-Derived 2)-Like 2 Signaling for Effects of Fumaric Acid Esters on Dendritic Cells. Front Immunol 2017; 8:1922. [PMID: 29312359 PMCID: PMC5744071 DOI: 10.3389/fimmu.2017.01922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/15/2017] [Indexed: 12/30/2022] Open
Abstract
To date, the intracellular signaling pathways involved in dendritic cell (DC) function are poorly understood. The antioxidative transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has been shown to affect maturation, function, and subsequent DC-mediated T cell responses of murine and human DCs. In experimental autoimmune encephalomyelitis (EAE), as prototype animal model for a T helper cell-mediated autoimmune disease, antigen presentation, cytokine production, and costimulation by DCs play a major role. We explore the role of Nrf2 in DC function, and DC-mediated T cell responses during T cell-mediated autoimmunity of the central nervous system using genetic ablation and pharmacological activation in mice and men to corroborate our data in a translational setting. In murine and human DCs, monomethyl fumarate induced Nrf2 signaling inhibits DC maturation and DC-mediated T cell proliferation by reducing inflammatory cytokine production and expression of costimulatory molecules. In contrast, Nrf2-deficient DCs generate more activated T helper cells (Th1/Th17) but fewer regulatory T cells and foster T cell proliferation. Transfer of DCs with Nrf2 activation during active EAE reduces disease severity and T cell infiltration. Our data demonstrate that Nrf2 signaling modulates autoimmunity in murine and human systems via inhibiting DC maturation and function thus shedding further light on the mechanism of action of antioxidative stress pathways in antigen-presenting cells.
Collapse
Affiliation(s)
- Anna Hammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anne Waschbisch
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Berg
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Stefanie Jörg
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kristina Kuhbandner
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christina David
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Antonios Bayas
- Department of Neurology, Hospital Augsburg, Augsburg, Germany
| | - De-Hyung Lee
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Aiden Haghikia
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
26
|
Wang J, Liu P, Xin S, Wang Z, Li J. Nrf2 suppresses the function of dendritic cells to facilitate the immune escape of glioma cells. Exp Cell Res 2017; 360:66-73. [DOI: 10.1016/j.yexcr.2017.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/29/2017] [Accepted: 07/25/2017] [Indexed: 01/16/2023]
|
27
|
van Rijt LS, Utsch L, Lutter R, van Ree R. Oxidative Stress: Promoter of Allergic Sensitization to Protease Allergens? Int J Mol Sci 2017; 18:ijms18061112. [PMID: 28545251 PMCID: PMC5485936 DOI: 10.3390/ijms18061112] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/18/2023] Open
Abstract
Allergies arise from aberrant T helper type 2 responses to allergens. Several respiratory allergens possess proteolytic activity, which has been recognized to act as an adjuvant for the development of a Th2 response. Allergen source-derived proteases can activate the protease-activated receptor-2, have specific effects on immune cells by cleaving cell membrane-bound regulatory molecules, and can disrupt tight junctions. The protease activity can induce a non-allergen-specific inflammatory response in the airways, which will set the stage for an allergen-specific Th2 response. In this review, we will discuss the evidence for the induction of oxidative stress as an underlying mechanism in Th2 sensitization to proteolytic allergens. We will discuss recent data linking the proteolytic activity of an allergen to its potential to induce oxidative stress and how this can facilitate allergic sensitization. Based on experimental data, we propose that a less proficient anti-oxidant response to allergen-induced oxidative stress contributes to the susceptibility to allergic sensitization. Besides the effect of oxidative stress on the immune response, we will also discuss how oxidative stress can increase the immunogenicity of an allergen by chemical modification.
Collapse
Affiliation(s)
- Leonie S van Rijt
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Lara Utsch
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - René Lutter
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald van Ree
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Riquelme SA, Carreño LJ, Espinoza JA, Mackern-Oberti JP, Alvarez-Lobos MM, Riedel CA, Bueno SM, Kalergis AM. Modulation of antigen processing by haem-oxygenase 1. Implications on inflammation and tolerance. Immunology 2016; 149:1-12. [PMID: 26938875 PMCID: PMC4981612 DOI: 10.1111/imm.12605] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/23/2022] Open
Abstract
Haem-oxygenase-1 (HO-1) is an enzyme responsible for the degradation of haem that can suppress inflammation, through the production of carbon monoxide (CO). It has been shown in several experimental models that genetic and pharmacological induction of HO-1, as well as non-toxic administration of CO, can reduce inflammatory diseases, such as endotoxic shock, type 1 diabetes and graft rejection. Recently, it was shown that the HO-1/CO system can alter the function of antigen-presenting cells (APCs) and reduce T-cell priming, which can be beneficial during immune-driven inflammatory diseases. The molecular mechanisms by which the HO-1 and CO reduce both APC- and T-cell-driven immunity are just beginning to be elucidated. In this article we discuss recent findings related to the immune regulatory capacity of HO-1 and CO at the level of recognition of pathogen-associated molecular patterns and T-cell priming by APCs. Finally, we propose a possible regulatory role for HO-1 and CO over the recently described mitochondria-dependent immunity. These concepts could contribute to the design of new therapeutic tools for inflammation-based diseases.
Collapse
Affiliation(s)
- Sebastián A Riquelme
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM, UMR 1064, CHU Nantes, ITUN, Nantes, France
| | - Leandro J Carreño
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Janyra A Espinoza
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Mackern-Oberti
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), Science and Technology Center (CCT) of Mendoza, National Council of Scientific and Technical Research (CONICET), Mendoza, Argentina
- Institute of Physiology, School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Manuel M Alvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM, UMR 1064, CHU Nantes, ITUN, Nantes, France
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM, UMR 1064, CHU Nantes, ITUN, Nantes, France
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
29
|
Song Y, Salbu B, Teien HC, Evensen Ø, Lind OC, Rosseland BO, Tollefsen KE. Hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to gamma radiation and depleted uranium singly and in combination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:270-279. [PMID: 27100007 DOI: 10.1016/j.scitotenv.2016.03.222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Radionuclides are a special group of substances posing both radiological and chemical hazards to organisms. As a preliminary approach to understand the combined effects of radionuclides, exposure studies were designed using gamma radiation (Gamma) and depleted uranium (DU) as stressors, representing a combination of radiological (radiation) and chemical (metal) exposure. Juvenile Atlantic salmon (Salmo salar) were exposed to 70mGy external Gamma dose delivered over the first 5h of a 48h period (14mGy/h), 0.25mg/L DU were exposed continuously for 48h and the combination of the two stressors (Combi). Water and tissue concentrations of U were determined to assess the exposure quality and DU bioaccumulation. Hepatic gene expression changes were determined using microarrays in combination with quantitative real-time reverse transcription polymerase chain reaction (qPCR). Effects at the higher physiological levels were determined as plasma glucose (general stress) and hepatic histological changes. The results show that bioaccumulation of DU was observed after both single DU and the combined exposure. Global transcriptional analysis showed that 3122, 2303 and 3460 differentially expressed genes (DEGs) were significantly regulated by exposure to gamma, DU and Combi, respectively. Among these, 349 genes were commonly regulated by all treatments, while the majority was found to be treatment-specific. Functional analysis of DEGs revealed that the stressors displayed similar mode of action (MoA) across treatments such as induction of oxidative stress, DNA damage and disturbance of oxidative phosphorylation, but also stressor-specific mechanisms such as cellular stress and injury, metabolic disorder, programmed cell death, immune response. No changes in plasma glucose level as an indicator of general stress and hepatic histological changes were observed. Although no direct linkage was successfully established between molecular responses and adverse effects at the organism level, the study has enhanced the understanding of the MoA of single radionuclides and mixtures of these.
Collapse
Affiliation(s)
- You Song
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway.
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Hans-Christian Teien
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Øystein Evensen
- Norwegian University of Life Sciences (NMBU), Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., N-0033 Oslo, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Bjørn Olav Rosseland
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management (INA), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| |
Collapse
|
30
|
McGuire VA, Ruiz-Zorrilla Diez T, Emmerich CH, Strickson S, Ritorto MS, Sutavani RV, Weiβ A, Houslay KF, Knebel A, Meakin PJ, Phair IR, Ashford MLJ, Trost M, Arthur JSC. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation. Sci Rep 2016; 6:31159. [PMID: 27498693 PMCID: PMC4976367 DOI: 10.1038/srep31159] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/15/2016] [Indexed: 12/24/2022] Open
Abstract
Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity.
Collapse
Affiliation(s)
- Victoria A McGuire
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Tamara Ruiz-Zorrilla Diez
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, CEU San Pablo University, Urbanización Montepríncipe, 28668 Madrid, Spain
| | - Christoph H Emmerich
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Sam Strickson
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Maria Stella Ritorto
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Ruhcha V Sutavani
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Anne Weiβ
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Kirsty F Houslay
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Paul J Meakin
- Cardiovascular and Diabetes Medicine, Medical Research Institute, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Iain R Phair
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Michael L J Ashford
- Cardiovascular and Diabetes Medicine, Medical Research Institute, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - J Simon C Arthur
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| |
Collapse
|
31
|
Ackermann JA, Hofheinz K, Zaiss MM, Krönke G. The double-edged role of 12/15-lipoxygenase during inflammation and immunity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:371-381. [PMID: 27480217 DOI: 10.1016/j.bbalip.2016.07.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/01/2016] [Accepted: 07/28/2016] [Indexed: 01/18/2023]
Abstract
12/15-Lipoxygenase (12/15-LOX) mediates the enzymatic oxidation of polyunsaturated fatty acids, thereby contributing to the generation of various bioactive lipid mediators. Although 12/15-LOX has been implicated in the pathogenesis of multiple chronic inflammatory diseases, its physiologic functions seem to include potent immune modulatory properties that physiologically contribute to the resolution of inflammation and the clearance of inflammation-associated tissue damage. This review aims to give a comprehensive overview about our current knowledge on the role of this enzyme during the regulation of inflammation and immunity. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- Jochen A Ackermann
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Hofheinz
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
32
|
Corynoline Isolated from Corydalis bungeana Turcz. Exhibits Anti-Inflammatory Effects via Modulation of Nfr2 and MAPKs. Molecules 2016; 21:molecules21080975. [PMID: 27472313 PMCID: PMC6273489 DOI: 10.3390/molecules21080975] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/12/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
Corydalis bungeana Turcz. is an anti-inflammatory medicinal herb used widely in traditional Chinese medicine for upper respiratory tract infections. It is demonstrated that corynoline is its active anti-inflammatory component. The nuclear factor-erythroid-2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and the mitogen-activated protein kinase (MAPK) pathway play important roles in the regulation of inflammation. In this study, we investigated the potential anti-inflammatory mechanism of corynoline through modulation of Nfr2 and MAPKs. Lipopolysaccharide (LPS)-activated RAW264.7 cells were used to explore modulatory role of NO production and the activation of signaling proteins and transcription factors using nitrite assay, Western bloting and qPCR. Treatment with corynoline reduced production of nitric oxide (NO) and the protein and mRNA levels of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX-2) Treatment also significantly increased the expression of Nrf2, quinone oxidoreductase 1 (NQO1) and hemeoxygenase-1 (HO-1) at the mRNA and protein levels, which demonstrated that corynoline may protect cells from inflammation through the Nrf2/ARE pathway In addition, corynoline suppressed the expression of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), at the mRNA and protein levels. Furthermore, molecular data revealed that corynoline inhibited lipopolysaccharide-stimulated phosphorylation of c-jun NH2-terminal kinase (JNK) and p38. Taken together, these results suggest that corynoline reduces the levels of pro-inflammatory mediators, such as iNOS, COX-2, TNF-α and IL-1β, by suppressing extracellular signal-regulated kinase 1/2 (ERK) and p38 phosphorylation in RAW264.7 cells, which is regulated by the Nrf2/ARE pathway. These findings reveal part of the molecular basis for the anti-inflammatory properties of corynoline.
Collapse
|
33
|
Crude Preparations of Helicobacter pylori Outer Membrane Vesicles Induce Upregulation of Heme Oxygenase-1 via Activating Akt-Nrf2 and mTOR-IκB Kinase-NF-κB Pathways in Dendritic Cells. Infect Immun 2016; 84:2162-2174. [PMID: 27185786 PMCID: PMC4962631 DOI: 10.1128/iai.00190-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori sheds outer membrane vesicles (OMVs) that contain many surface elements of bacteria. Dendritic cells (DCs) play a major role in directing the nature of adaptive immune responses against H. pylori, and heme oxygenase-1 (HO-1) has been implicated in regulating function of DCs. In addition, HO-1 is important for adaptive immunity and the stress response. Although H. pylori-derived OMVs may contribute to the pathogenesis of H. pylori infection, responses of DCs to OMVs have not been elucidated. In the present study, we investigated the role of H. pylori-derived crude OMVs in modulating the expression of HO-1 in DCs. Exposure of DCs to crude H. pylori OMVs upregulated HO-1 expression. Crude OMVs obtained from a cagA-negative isogenic mutant strain induced less HO-1 expression than OMVs obtained from a wild-type strain. Crude H. pylori OMVs activated signals of transcription factors such as NF-κB, AP-1, and Nrf2. Suppression of NF-κB or Nrf2 resulted in significant attenuation of crude OMV-induced HO-1 expression. Crude OMVs increased the phosphorylation of Akt and downstream target molecules of mammalian target of rapamycin (mTOR), such as S6 kinase 1 (S6K1). Suppression of Akt resulted in inhibition of crude OMV-induced Nrf2-dependent HO-1 expression. Furthermore, suppression of mTOR was associated with inhibition of IκB kinase (IKK), NF-κB, and HO-1 expression in crude OMV-exposed DCs. These results suggest that H. pylori-derived OMVs regulate HO-1 expression through two different pathways in DCs, Akt-Nrf2 and mTOR–IKK–NF-κB signaling. Following this induction, increased HO-1 expression in DCs may modulate inflammatory responses in H. pylori infection.
Collapse
|
34
|
Xiao Y, Shi M, Qiu Q, Huang M, Zeng S, Zou Y, Zhan Z, Liang L, Yang X, Xu H. Piperlongumine Suppresses Dendritic Cell Maturation by Reducing Production of Reactive Oxygen Species and Has Therapeutic Potential for Rheumatoid Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4925-34. [PMID: 27183580 DOI: 10.4049/jimmunol.1501281] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 04/08/2016] [Indexed: 12/16/2023]
Abstract
Piperlongumine (PLM) is a natural product from the plant Piper longum that inhibits platelet aggregation, atherosclerosis plaque formation, and tumor cell growth. It has potential value in immunomodulation and the management of autoimmune diseases. In this study, we investigated the role of PLM in regulating the differentiation and maturation of dendritic cells (DCs), a critical regulator of immune tolerance, and evaluated its clinical effects in a rheumatoid arthritis mouse model. We found that PLM treatment reduced LPS-induced murine bone marrow-derived DC maturation, characterized by reduced expression of CD80/86, secretion of MCP-1, IL-12p70, IL-6, TNFα, IFN-γ, and IL-23, and reduced alloproliferation of T cells; however, PLM does not affect cell differentiation. Furthermore, PLM reduced intracellular reactive oxygen species (ROS) production by DCs and inhibited the activation of p38, JNK, NF-κB, and PI3K/Akt signaling pathways. Conversely, PLM increased the expression of GSTP1 and carbonyl reductase 1, two enzymes that counteract ROS effects. ROS inhibition by exogenous N-acetyl-l-cysteine suppressed DC maturation. PLM treatment improved the severity of arthritis and reduced in vivo splenic DC maturation, collagen-specific CD4(+) T cell responses, and ROS production in mice with collagen-induced arthritis. Taken together, these results suggest that PLM inhibits DC maturation by reducing intracellular ROS production and has potential as a therapeutic agent for rheumatoid arthritis.
Collapse
Affiliation(s)
- Youjun Xiao
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Maohua Shi
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qian Qiu
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Mingcheng Huang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shan Zeng
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yaoyao Zou
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhongping Zhan
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Liuqin Liang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiuyan Yang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hanshi Xu
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
35
|
The angiogenic related functions of bone marrow mesenchymal stem cells are promoted by CBDL rat serum via the Akt/Nrf2 pathway. Exp Cell Res 2016; 344:86-94. [PMID: 27105936 DOI: 10.1016/j.yexcr.2016.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/01/2016] [Accepted: 04/17/2016] [Indexed: 12/22/2022]
Abstract
Hepatopulmonary syndrome (HPS) is a complication of severe liver disease. It is characterized by an arterial oxygenation defect. Recent studies have demonstrated that pulmonary angiogenesis contributes to the abnormal gas exchange found in HPS. Additionally, mesenchymal stem cells (MSCs) are considered the stable source of VEGF-producing cells and have the potential to differentiate into multiple cell types. However, it has not been determined whether bone marrow mesenchymal stem cells (BM-MSCs) are mobilized and involved in the pulmonary angiogenesis in HPS. In this study, a CFU-F assay showed that the number of peripheral blood MSCs was increased in common bile duct ligation (CBDL) rats; however, there was no significant difference found in the number of BM-MSCs. In vitro, CBDL rat serum induced the overexpression of CXCR4 and PCNA in BM-MSCs. Consistently, the directional migration as well as the proliferation ability of BM-MSCs were enhanced by CBDL rat serum, as determined by a transwell migration and MTT assays. Moreover, the secretion of VEGF by BM-MSCs increased after treatment with CBDL rat serum. We also found that the expression of phospho-Akt, phospho-ERK, and Nrf2 in BM-MSCs was significantly up-regulated by CBDL rat serum in a time dependent manner, and the blockage of the Akt/Nrf2 signalling pathway with an Akt Inhibitor or Nrf2 siRNA, instead of an ERK inhibitor, attenuated the migration, proliferation and paracrine capacity of BM-MSCs. In conclusion, these findings indicated that the number of MSCs increased in the peripheral blood of CBDL rats, and the Akt/Nrf2 pathway plays a vital role in promoting the angiogenic related functions of BM-MSCs, which could be a potent contributor to pulmonary angiogenesis in HPS.
Collapse
|
36
|
Beury DW, Carter KA, Nelson C, Sinha P, Hanson E, Nyandjo M, Fitzgerald PJ, Majeed A, Wali N, Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cell Survival and Function Are Regulated by the Transcription Factor Nrf2. THE JOURNAL OF IMMUNOLOGY 2016; 196:3470-8. [PMID: 26936880 DOI: 10.4049/jimmunol.1501785] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/06/2016] [Indexed: 12/30/2022]
Abstract
Tumor-induced myeloid-derived suppressor cells (MDSC) contribute to immune suppression in tumor-bearing individuals and are a major obstacle to effective immunotherapy. Reactive oxygen species (ROS) are one of the mechanisms used by MDSC to suppress T cell activation. Although ROS are toxic to most cells, MDSC survive despite their elevated content and release of ROS. NF erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates a battery of genes that attenuate oxidative stress. Therefore, we hypothesized that MDSC resistance to ROS may be regulated by Nrf2. To test this hypothesis, we used Nrf2(+/+)and Nrf2(-/-)BALB/c and C57BL/6 mice bearing 4T1 mammary carcinoma and MC38 colon carcinoma, respectively. Nrf2 enhanced MDSC suppressive activity by increasing MDSC production of H2O2, and it increased the quantity of tumor-infiltrating MDSC by reducing their oxidative stress and rate of apoptosis. Nrf2 did not affect circulating levels of MDSC in tumor-bearing mice because the decreased apoptotic rate of tumor-infiltrating MDSC was balanced by a decreased rate of differentiation from bone marrow progenitor cells. These results demonstrate that Nrf2 regulates the generation, survival, and suppressive potency of MDSC, and that a feedback homeostatic mechanism maintains a steady-state level of circulating MDSC in tumor-bearing individuals.
Collapse
Affiliation(s)
- Daniel W Beury
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Kayla A Carter
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Cassandra Nelson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Pratima Sinha
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Erica Hanson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Maeva Nyandjo
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Phillip J Fitzgerald
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Amry Majeed
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Neha Wali
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | | |
Collapse
|
37
|
5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction. Int Immunopharmacol 2015; 37:71-78. [PMID: 26643355 DOI: 10.1016/j.intimp.2015.11.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022]
Abstract
5-Aminolevulinic acid (5-ALA) is a naturally occurring amino acid and precursor of heme and protoporphyrin IX (PpIX). Exogenously administrated 5-ALA increases the accumulation of PpIX in tumor cells specifically due to the compromised metabolism of 5-ALA to heme in mitochondria. PpIX emits red fluorescence by the irradiation of blue light and the formation of reactive oxygen species and singlet oxygen. Thus, performing a photodynamic diagnosis (PDD) and photodynamic therapy (PDT) using 5-ALA have given rise to a new strategy for tumor diagnosis and therapy. In addition to the field of tumor therapy, 5-ALA has been implicated in the treatment of inflammatory disease, autoimmune disease and transplantation due to the anti-inflammation and immunoregulation properties that are elicited with the expression of heme oxygenase (HO)-1, an inducible enzyme that catalyzes the rate-limiting step in the oxidative degradation of heme to free iron, biliverdin and carbon monoxide (CO), in combination with sodium ferrous citrate (SFC), because an inhibitor of HO-1 abolishes the effects of 5-ALA. Furthermore, NF-E2-related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), and heme are involved in the HO-1 expression. Biliverdin and CO are also known to have anti-apoptotic, anti-inflammatory and immunoregulatory functions. We herein review the current use of 5-ALA in inflammatory diseases, transplantation medicine, and tumor therapy.
Collapse
|
38
|
Utsch L, Folisi C, Akkerdaas JH, Logiantara A, van de Pol MA, van der Zee JS, Krop EJM, Lutter R, van Ree R, van Rijt LS. Allergic sensitization is associated with inadequate antioxidant responses in mice and men. Allergy 2015; 70:1246-58. [PMID: 26081441 DOI: 10.1111/all.12674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Allergies arise from aberrant Th2 responses to allergens. The processes involved in the genesis of allergic sensitization remain elusive. Some allergens such as derived from house dust mites have proteolytic activity which can induce oxidative stress in vivo. A reduced capacity of the host to control oxidative stress might prime for allergic sensitization. METHODS Two different strains of mice were compared for their antioxidant and immune response to HDM. Protease activity of the HDM extract was reduced to investigate its role in oxidative stress induction in the airways and whether this induction could determine allergic sensitization and inflammation. The role of oxidative stress in allergic sensitization was also investigated in humans. An occupational cohort of animal workers was followed for the development of sensitization to rodent urinary proteins. Levels of oxidative stress in serum and antioxidant responses by PBMCs were determined. RESULTS Susceptibility to allergic sensitization to mite allergens in mice was highly dependent on host genetic background and was associated with oxidative stress in the lungs before allergen exposure and poor antioxidant response after allergen exposure. Reduction in mite protease activity limited its capacity to induce oxidative stress and allergic inflammation in mice. We showed that also in human subjects, oxidative stress before allergen exposure and poor antioxidant responses were associated with predisposition to occupational allergy. CONCLUSION Our study indicates that oxidative stress condition before allergen exposure due to an inadequate antioxidant response may prime for allergic Th2 responses.
Collapse
Affiliation(s)
- L. Utsch
- Department of Experimental Immunology; Academic Medical Center/University of Amsterdam; Amsterdam the Netherlands
| | - C. Folisi
- Department of Experimental Immunology; Academic Medical Center/University of Amsterdam; Amsterdam the Netherlands
- Department of Respiratory Medicine; Academic Medical Center/University of Amsterdam; Amsterdam the Netherlands
| | - J. H. Akkerdaas
- Department of Experimental Immunology; Academic Medical Center/University of Amsterdam; Amsterdam the Netherlands
| | - A. Logiantara
- Department of Experimental Immunology; Academic Medical Center/University of Amsterdam; Amsterdam the Netherlands
| | - M. A. van de Pol
- Department of Experimental Immunology; Academic Medical Center/University of Amsterdam; Amsterdam the Netherlands
- Department of Respiratory Medicine; Academic Medical Center/University of Amsterdam; Amsterdam the Netherlands
| | | | - E. J. M. Krop
- Institute for Risk Assessment Sciences; Utrecht University; Utrecht the Netherlands
| | - R. Lutter
- Department of Experimental Immunology; Academic Medical Center/University of Amsterdam; Amsterdam the Netherlands
- Department of Respiratory Medicine; Academic Medical Center/University of Amsterdam; Amsterdam the Netherlands
| | - R. van Ree
- Department of Experimental Immunology; Academic Medical Center/University of Amsterdam; Amsterdam the Netherlands
- Department of Otorhinolaryngology; Academic Medical Center/University of Amsterdam; Amsterdam the Netherlands
| | - L. S. van Rijt
- Department of Experimental Immunology; Academic Medical Center/University of Amsterdam; Amsterdam the Netherlands
| |
Collapse
|
39
|
Wagner AE, Sturm C, Piegholdt S, Wolf IM, Esatbeyoglu T, De Nicola GR, Iori R, Rimbach G. Myrosinase-treated glucoerucin is a potent inducer of the Nrf2 target gene heme oxygenase 1 — studies in cultured HT-29 cells and mice. J Nutr Biochem 2015; 26:661-6. [DOI: 10.1016/j.jnutbio.2015.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/21/2014] [Accepted: 01/09/2015] [Indexed: 12/30/2022]
|
40
|
Zhu H, Yang F, Tang B, Li XM, Chu YN, Liu YL, Wang SG, Wu DC, Zhang Y. Mesenchymal stem cells attenuated PLGA-induced inflammatory responses by inhibiting host DC maturation and function. Biomaterials 2015; 53:688-98. [DOI: 10.1016/j.biomaterials.2015.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/29/2022]
|
41
|
Rothe T, Gruber F, Uderhardt S, Ipseiz N, Rössner S, Oskolkova O, Blüml S, Leitinger N, Bicker W, Bochkov VN, Yamamoto M, Steinkasserer A, Schett G, Zinser E, Krönke G. 12/15-Lipoxygenase-mediated enzymatic lipid oxidation regulates DC maturation and function. J Clin Invest 2015; 125:1944-54. [PMID: 25844901 DOI: 10.1172/jci78490] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/27/2015] [Indexed: 11/17/2022] Open
Abstract
DCs are able to undergo rapid maturation, which subsequently allows them to initiate and orchestrate T cell-driven immune responses. DC maturation must be tightly controlled in order to avoid random T cell activation and development of autoimmunity. Here, we determined that 12/15-lipoxygenase-meditated (12/15-LO-mediated) enzymatic lipid oxidation regulates DC activation and fine-tunes consecutive T cell responses. Specifically, 12/15-LO activity determined the DC activation threshold via generation of phospholipid oxidation products that induced an antioxidative response dependent on the transcription factor NRF2. Deletion of the 12/15-LO-encoding gene or pharmacologic inhibition of 12/15-LO in murine or human DCs accelerated maturation and shifted the cytokine profile, thereby favoring the differentiation of Th17 cells. Exposure of 12/15-LO-deficient DCs to 12/15-LO-derived oxidized phospholipids attenuated both DC activation and the development of Th17 cells. Analysis of lymphatic tissues from 12/15-LO-deficient mice confirmed enhanced maturation of DCs as well as an increased differentiation of Th17 cells. Moreover, experimental autoimmune encephalomyelitis in mice lacking 12/15-LO resulted in an exacerbated Th17-driven autoimmune disease. Together, our data reveal that 12/15-LO controls maturation of DCs and implicate enzymatic lipid oxidation in shaping the adaptive immune response.
Collapse
|
42
|
Zhang Y, Chen HX, Zhou SY, Wang SX, Zheng K, Xu DD, Liu YT, Wang XY, Wang X, Yan HZ, Zhang L, Liu QY, Chen WQ, Wang YF. Sp1 and c-Myc modulate drug resistance of leukemia stem cells by regulating survivin expression through the ERK-MSK MAPK signaling pathway. Mol Cancer 2015; 14:56. [PMID: 25890196 PMCID: PMC4357193 DOI: 10.1186/s12943-015-0326-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/23/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is initiated and maintained by a subset of self-renewing leukemia stem cells (LSCs), which contribute to the progression, recurrence and therapeutic resistance of leukemia. However, the mechanisms underlying the maintenance of LSCs drug resistance have not been fully defined. In this study, we attempted to elucidate the mechanisms of LSCs drug resistance. METHODS We performed reverse phase protein arrays to analyze the expression of anti-apoptotic proteins in the LSC-enriched leukemia cell line KG-1a. Immuno-blotting, cell viability and clinical AML samples were evaluated to verify the micro-assay results. The characteristics and transcriptional regulation of survivin were analyzed with the relative luciferase reporter assay, mutant constructs, chromatin immuno-precipitation (ChIP), quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR), and western blotting. The levels of Sp1, c-Myc, phospho-extracellular signal-regulated kinase (p-ERK), phospho-mitogen and stress-activated protein kinase (p-MSK) were investigated in paired CD34+ and CD34- AML patient samples. RESULTS Survivin was highly over-expressed in CD34 + CD38- KG-1a cells and paired CD34+ AML patients compared with their differentiated counterparts. Functionally, survivin contributes to the drug resistance of LSCs, and Sp1 and c-Myc concurrently regulate levels of survivin transcription. Clinically, Sp1 and c-Myc were significantly up-regulated and positively correlated with survivin in CD34+ AML patients. Moreover, Sp1 and c-Myc were further activated by the ERK/MSK mitogen-activated protein kinase (MAPK) signaling pathway, modulating survivin levels. CONCLUSION Our findings demonstrated that ERK/MSK/Sp1/c-Myc axis functioned as a critical regulator of survivin expression in LSCs, offering a potential new therapeutic strategy for LSCs therapy.
Collapse
Affiliation(s)
- Yi Zhang
- College of Life Science and Technology, Jinan University, 510632, Guangzhou, P.R, China.
- Institute of Biomedicine, Jinan University, 510632, Guangzhou, P.R China.
| | - Hai-xuan Chen
- College of Medicine, Jinan University, 510632, Guangzhou, P.R China.
| | - Shu-yan Zhou
- Department of Pathological Physiology, Wan-nan Medical College, 241000, Wuhu, P.R China.
| | - Shao-xiang Wang
- College of Medicine, Shenzhen University, 518020, Shenzhen, P.R China.
| | - Kai Zheng
- College of Medicine, Shenzhen University, 518020, Shenzhen, P.R China.
| | - Dan-dan Xu
- College of Life Science and Technology, Jinan University, 510632, Guangzhou, P.R, China.
| | - Yu-ting Liu
- College of Life Science and Technology, Jinan University, 510632, Guangzhou, P.R, China.
| | - Xiao-yan Wang
- Institute of Biomedicine, Jinan University, 510632, Guangzhou, P.R China.
| | - Xiao Wang
- Institute of Biomedicine, Jinan University, 510632, Guangzhou, P.R China.
| | - Hai-Zhao Yan
- College of Life Science and Technology, Jinan University, 510632, Guangzhou, P.R, China.
| | - Li Zhang
- College of Life Science and Technology, Jinan University, 510632, Guangzhou, P.R, China.
| | - Qiu-ying Liu
- Institute of Biomedicine, Jinan University, 510632, Guangzhou, P.R China.
| | - Wan-qun Chen
- College of Medicine, Jinan University, 510632, Guangzhou, P.R China.
| | - Yi-fei Wang
- College of Life Science and Technology, Jinan University, 510632, Guangzhou, P.R, China.
- Institute of Biomedicine, Jinan University, 510632, Guangzhou, P.R China.
| |
Collapse
|
43
|
Shikonin inhibits oxidized LDL-induced monocyte adhesion by suppressing NFκB activation via up-regulation of PI3K/Akt/Nrf2-dependent antioxidation in EA.hy926 endothelial cells. Biochem Pharmacol 2015; 93:352-61. [DOI: 10.1016/j.bcp.2014.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022]
|
44
|
He JL, Zhou ZW, Yin JJ, He CQ, Zhou SF, Yu Y. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 9:127-46. [PMID: 25552902 PMCID: PMC4277124 DOI: 10.2147/dddt.s68501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug metabolizing enzymes (DMEs) and drug transporters are regulated via epigenetic, transcriptional, posttranscriptional, and translational and posttranslational modifications. Phase I and II DMEs and drug transporters play an important role in the disposition and detoxification of a large number of endogenous and exogenous compounds. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a critical regulator of a variety of important cytoprotective genes that are involved in disposition and detoxification of xenobiotics. Schisandra chinensis (SC) is a commonly used traditional Chinese herbal medicine that has been primarily used to protect the liver because of its potent antioxidative and anti-inflammatory activities. SC can modulate some DMEs and drug transporters, but the underlying mechanisms are unclear. In this study, we aimed to explore the role of Nrf2 in the regulatory effect of SC extract (SCE) on selected DMEs and drug transporters in human hepatocellular liver carcinoma cell line (HepG2) cells. The results showed that SCE, schisandrin A, and schisandrin B significantly increased the expression of NAD(P)H: Nicotinamide Adenine Dinucleotide Phosphate-oxidase or:quinone oxidoreductase 1, heme oxygenase-1, glutamate–cysteine ligase, and glutathione S-transferase A4 at both transcriptional and posttranscriptional levels. Incubation of HepG2 cells with SCE resulted in a significant increase in the intracellular level of glutathione and total glutathione S-transferase content. SCE significantly elevated the messenger ribonucleic acid and protein levels of P-glycoprotein and multidrug resistance-associated protein 2 and 4, whereas the expression of organic anion transporting peptide 1A2 and 1B1 was significantly downregulated by SCE. Knockdown of Nrf2 by small interfering ribonucleic acid attenuated the regulatory effect of SCE on these DMEs and drug transporters. SCE significantly upregulated Nrf2 and promoted the translocation of Nrf2 from cytoplasm to the nuclei. Additionally, SCE significantly suppressed the expression of cytosolic Kelch-like ECH-associated protein 1 (the repressor of Nrf2) and remarkably increased Nrf2 stability in HepG2 cells. Taken together, our findings suggest that the hepatoprotective effects of SCE may be partially ascribed to the modulation of DMEs and drug transporters via Nrf2-mediated signaling pathway. SCE may alter the pharmacokinetics of other coadministered drugs that are substrates of these DMEs and transporters and thus cause unfavorable herb–drug interactions.
Collapse
Affiliation(s)
- Jin-Lian He
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Juan-Juan Yin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Chang-Qiang He
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yang Yu
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
45
|
Song Y, Salbu B, Teien HC, Heier LS, Rosseland BO, Tollefsen KE. Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:52-64. [PMID: 25146236 DOI: 10.1016/j.aquatox.2014.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/17/2014] [Accepted: 07/26/2014] [Indexed: 06/03/2023]
Abstract
Due to the production of free radicals, gamma radiation may pose a hazard to living organisms. The high-dose radiation effects have been extensively studied, whereas the ecotoxicity data on low-dose gamma radiation is still limited. The present study was therefore performed using Atlantic salmon (Salmo salar) to characterize effects of low-dose (15, 70 and 280 mGy) gamma radiation after short-term (48h) exposure. Global transcriptional changes were studied using a combination of high-density oligonucleotide microarrays and quantitative real-time reverse transcription polymerase chain reaction (qPCR). Differentially expressed genes (DEGs; in this article the phrase gene expression is taken as a synonym of gene transcription, although it is acknowledged that gene expression can also be regulated, e.g., at protein stability and translational level) were determined and linked to their biological meanings predicted using both Gene Ontology (GO) and mammalian ortholog-based functional analyses. The plasma glucose level was also measured as a general stress biomarker at the organism level. Results from the microarray analysis revealed a dose-dependent pattern of global transcriptional responses, with 222, 495 and 909 DEGs regulated by 15, 70 and 280 mGy gamma radiation, respectively. Among these DEGs, only 34 were commonly regulated by all radiation doses, whereas the majority of differences were dose-specific. No GO functions were identified at low or medium doses, but repression of DEGs associated with GO functions such as DNA replication, cell cycle regulation and response to reactive oxygen species (ROS) were observed after 280mGy gamma exposure. Ortholog-based toxicity pathway analysis further showed that 15mGy radiation affected DEGs associated with cellular signaling and immune response; 70mGy radiation affected cell cycle regulation and DNA damage repair, cellular energy production; and 280mGy radiation affected pathways related to cell cycle regulation and DNA repair, mitochondrial dysfunction and immune functions. Twelve genes representative of key pathways found in this study were verified by qPCR. Potential common MoAs of low-dose gamma radiation may include induction of oxidative stress, DNA damage and disturbance of oxidative phosphorylation (OXPHOS). Although common MoAs were proposed, a number of DEGs and pathways were still found to be dose-specific, potentially indicating multiple mechanisms of action (MOAs) of low-dose gamma radiation in fish. In addition, plasma glucose displayed an apparent increase with increasing radiation doses, although the results were not significantly different from the control. These findings suggested that sublethal doses of gamma radiation may cause dose-dependent transcriptional changes in the liver of Atlantic salmon after short-term exposure. The current study predicted multiple MoA for gamma radiation and may aid future impact assessment of environmental radioactivity in fish.
Collapse
Affiliation(s)
- You Song
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway.
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Hans-Christian Teien
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Lene Sørlie Heier
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Bjørn Olav Rosseland
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| |
Collapse
|
46
|
Zhu J, Wang H, Fan Y, Lin Y, Zhang L, Ji X, Zhou M. Targeting the NF-E2-related factor 2 pathway: a novel strategy for glioblastoma (review). Oncol Rep 2014; 32:443-50. [PMID: 24926991 DOI: 10.3892/or.2014.3259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/26/2014] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most common and malignant subtype among all brain tumors. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component of cellular defense against a variety of endogenous and exogenous stresses. A marked increase in research over the past few decades focusing on Nrf2 and its role in regulating glioblastoma has revealed the potential value of Nrf2 in the treatment of glioblastoma. In the present review, we discuss a novel framework of Nrf2 in the regulation of glioblastoma and the mechanisms regarding the downregulation of Nrf2 in treating glioblastoma. The candidate mechanisms include direct and indirect means. Direct mechanisms target tumor molecular pathways in order to overcome resistance to chemotherapy and radiotherapy, to inhibit proliferation, to block invasion and migration, to induce apoptosis, to promote differentiation, to enhance autophagy and to target glioblastoma stem cells. Indirect mechanisms target the reaction between glioblastoma cells and the surrounding microenvironment. Overall, the value of the Nrf2 pathway in glioblastoma provides a promising opportunity for new approaches by which to treat glioblastoma.
Collapse
Affiliation(s)
- Jianhong Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Youwu Fan
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiangjun Ji
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
47
|
Jiang Q, Li F, Shi K, Wu P, An J, Yang Y, Xu C. Involvement of p38 in signal switching from autophagy to apoptosis via the PERK/eIF2α/ATF4 axis in selenite-treated NB4 cells. Cell Death Dis 2014; 5:e1270. [PMID: 24874742 PMCID: PMC4047911 DOI: 10.1038/cddis.2014.200] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 02/07/2023]
Abstract
Selenite has emerged as an optional chemotherapeutic agent for hematological malignancies. Autophagy and apoptosis are both engaged in selenite-induced cell death. In a previous report, we have identified heat shock protein 90 (Hsp90) as a critical modulator of the balance between autophagy and apoptosis in selenite-treated leukemia cells. However, the mechanisms by which selenite mediates the crosstalk between autophagy and apoptosis remain largely unknown. Herein, we demonstrate that the endoplasmic reticulum (ER) stress-related PERK/eIF2α/ATF4 pathway and p38 are core modules for the selenite-induced switch to apoptosis from autophagy. We found that selenite activated PERK and eIF2α/ATF4 downstream to promote apoptosis. During this progression, p38 was dissociated from PERK-inhibiting Hsp90 and became autophosphorylated. Then, activated p38 further enhanced the docking of activating transcription factor 4 (ATF4) onto the CHOP (CCAAT/enhancer-binding protein homologous protein) promoter via eIF2α to enhance apoptosis. We also found that activated p38 suppressed the phosphorylation of eIF4E that directed ATF4 to bind to the MAP1LC3B (microtubule-associated protein 1 light chain 3B) promoter. Because of the deactivation of eIF4E, the association of ATF4 with the MAP1LC3B promoter was inhibited, and autophagy was compromised. Intriguingly, p53 played important roles in mediating the p38-mediated regulation of eIF2α and eIF4E. When activated by p38, p53 induced the phosphorylation of eIF2α and the dephosphorylation of eIF4E, particularly in the nucleus where the ATF4 transcription factor was modulated, ultimately resulting in differential expression of CHOP and LC3. Moreover, selenite exhibited potent antitumor effects in vivo. In an NB4 cell xenograft model, selenite induced apoptosis and hampered autophagy. In addition, related signaling proteins demonstrated similar changes to those observed in vitro. These data suggest that selenite may be a candidate drug for leukemia therapy.
Collapse
Affiliation(s)
- Q Jiang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - F Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - K Shi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - P Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - J An
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Y Yang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - C Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
48
|
Al-Huseini LMA, Aw Yeang HX, Hamdam JM, Sethu S, Alhumeed N, Wong W, Sathish JG. Heme oxygenase-1 regulates dendritic cell function through modulation of p38 MAPK-CREB/ATF1 signaling. J Biol Chem 2014; 289:16442-51. [PMID: 24719331 PMCID: PMC4047411 DOI: 10.1074/jbc.m113.532069] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are critical for the initiation of immune responses including activation of CD8 T cells. Intracellular reactive oxygen species (ROS) levels influence DC maturation and function. Intracellular heme, a product of catabolism of heme-containing metalloproteins, is a key inducer of ROS. Intracellular heme levels are regulated by heme oxygenase-1 (HO-1), which catalyzes the degradation of heme. Heme oxygenase-1 has been implicated in regulating DC maturation; however, its role in other DC functions is unclear. Furthermore, the signaling pathways modulated by HO-1 in DCs are unknown. In this study, we demonstrate that inhibition of HO-1 activity in murine bone marrow-derived immature DCs (iDCs) resulted in DCs with raised intracellular ROS levels, a mature phenotype, impaired phagocytic and endocytic function, and increased capacity to stimulate antigen-specific CD8 T cells. Interestingly, our results reveal that the increased ROS levels following HO-1 inhibition did not underlie the changes in phenotype and functions observed in these iDCs. Importantly, we show that the p38 mitogen-activated protein kinase (p38 MAPK), cAMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1) pathway is involved in the mediation of the phenotypic and functional changes arising from HO-1 inhibition. Furthermore, up-regulation of HO-1 activity rendered iDCs refractory to lipopolysaccharide-induced activation of p38 MAPK-CREB/ATF1 pathway and DC maturation. Finally, we demonstrate that treatment of iDC with the HO-1 substrate, heme, recapitulates the effects that result from HO-1 inhibition. Based on these results, we conclude that HO-1 regulates DC maturation and function by modulating the p38 MAPK-CREB/ATF1 signaling axis.
Collapse
Affiliation(s)
- Laith M A Al-Huseini
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and the Department of Pharmacology and Therapeutics, College of Medicine, Al-Qadisiyah University, P. O. Box 80, Diwaniyah 58001, Iraq
| | - Han Xian Aw Yeang
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and
| | - Junnat M Hamdam
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and
| | - Swaminathan Sethu
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and
| | - Naif Alhumeed
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and
| | - Wai Wong
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and
| | - Jean G Sathish
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and
| |
Collapse
|
49
|
Lee JH, Lee KR, Su ZY, Boyanapalli SSS, Barman DN, Huang MT, Chen L, Magesh S, Hu L, Kong ANT. In vitro and in vivo anti-inflammatory effects of a novel 4,6-bis ((E)-4-hydroxy-3-methoxystyryl)-1-phenethylpyrimidine-2(1H)-thione. Chem Res Toxicol 2013; 27:34-41. [PMID: 24304388 DOI: 10.1021/tx400315u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inflammation plays a critical defensive role in the human body. However, uncontrolled or aberrant inflammatory responses contribute to various acute and chronic diseases. The Nrf2-ARE pathway plays a pivotal role in the regulation of inflammatory markers, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). On the basis of this concept, we synthesized a novel anti-inflammatory 4,6-bis ((E)-4-hydroxy-3-methoxystyryl)-1-phenethylpyrimidine-2(1H)-thione (HPT), and in vitro experiments using HepG2-C8 ARE-luciferase-transfected cells demonstrated the induction of Nrf2-ARE activity. In lipopolysaccharide (LPS)-induced RAW 264.7 cells, HPT treatment reduced the production of nitric oxide (NO) as well as the protein and mRNA expression levels of COX-2 and iNOS, in a dose-dependent manner. In addition, HPT suppressed the mRNA expression of inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. In LPS-induced macrophages, HPT inhibited COX-2 and iNOS by blocking the activation of p38 and c-Jun NH2-terminal kinase (JNK) but not extracellular signal-regulated kinase (ERK1/2). Furthermore, an in vivo anti-inflammatory study was performed using a TPA-induced skin inflammation mouse model, and the results showed that HPT reduced TPA-induced inflammation and attenuated the expression of COX-2 and iNOS in TPA-induced mouse skin tissue. Thus, HPT demonstrated anti-inflammatory activity both in LPS-induced RAW 264.7 cells and TPA-stimulated mouse skin and may therefore serve as a potential anti-inflammatory agent.
Collapse
Affiliation(s)
- Jong Hun Lee
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey , 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|