1
|
Chauhan W, Sudharshan SJ, Kafle S, Zennadi R. SnoRNAs: Exploring Their Implication in Human Diseases. Int J Mol Sci 2024; 25:7202. [PMID: 39000310 PMCID: PMC11240930 DOI: 10.3390/ijms25137202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) are earning increasing attention from research communities due to their critical role in the post-transcriptional modification of various RNAs. These snoRNAs, along with their associated proteins, are crucial in regulating the expression of a vast array of genes in different human diseases. Primarily, snoRNAs facilitate modifications such as 2'-O-methylation, N-4-acetylation, and pseudouridylation, which impact not only ribosomal RNA (rRNA) and their synthesis but also different RNAs. Functionally, snoRNAs bind with core proteins to form small nucleolar ribonucleoproteins (snoRNPs). These snoRNAs then direct the protein complex to specific sites on target RNA molecules where modifications are necessary for either standard cellular operations or the regulation of pathological mechanisms. At these targeted sites, the proteins coupled with snoRNPs perform the modification processes that are vital for controlling cellular functions. The unique characteristics of snoRNAs and their involvement in various non-metabolic and metabolic diseases highlight their potential as therapeutic targets. Moreover, the precise targeting capability of snoRNAs might be harnessed as a molecular tool to therapeutically address various disease conditions. This review delves into the role of snoRNAs in health and disease and explores the broad potential of these snoRNAs as therapeutic agents in human pathologies.
Collapse
Affiliation(s)
| | | | | | - Rahima Zennadi
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas St., Memphis, TN 38103, USA; (W.C.); (S.S.); (S.K.)
| |
Collapse
|
2
|
Chabronova A, Holmes TL, Hoang DM, Denning C, James V, Smith JGW, Peffers MJ. SnoRNAs in cardiovascular development, function, and disease. Trends Mol Med 2024; 30:562-578. [PMID: 38523014 DOI: 10.1016/j.molmed.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Small nucleolar RNAs (snoRNAs) are emerging as important regulators of cardiovascular (patho)biology. Several roles of snoRNAs have recently been identified in heart development and congenital heart diseases, as well as their dynamic regulation in hypertrophic and dilated cardiomyopathies, coronary heart disease (CHD), myocardial infarction (MI), cardiac fibrosis, and heart failure. Furthermore, reports of changes in vesicular snoRNA expression and altered levels of circulating snoRNAs in response to cardiac stress suggest that snoRNAs also function in cardiac signaling and intercellular communication. In this review, we summarize and discuss key findings and outline the clinical potential of snoRNAs considering current challenges and gaps in the field of cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Alzbeta Chabronova
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| | - Terri L Holmes
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Duc M Hoang
- Department of Stem Cell Biology, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Chris Denning
- Department of Stem Cell Biology, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Victoria James
- School of Veterinary Medicine and Science, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James G W Smith
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Mandy J Peffers
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| |
Collapse
|
3
|
Dubey G, Singh M, Singh H, Agarwal M, Chandel SS, Mishra A, Singh RP, Kukreti N. Emerging roles of SnoRNAs in the pathogenesis and treatment of autoimmune disorders. Pathol Res Pract 2024; 253:154952. [PMID: 38000202 DOI: 10.1016/j.prp.2023.154952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
SnoRNAs (small non-coding RNAs) have recently gained prominence in autoimmune diseases, revealing their crucial role in modulating the immune response and contributing to disease pathogenesis. Initially known for their involvement in ribosomal RNA processing and modification, molecular biology and genomics advancements have uncovered their broader impact on cellular function, especially in autoimmune disorders. Autoimmune diseases represent conditions characterized by the immune system's erroneous attacks on self-tissues, encompassing disorders like systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. The complex etiology of these conditions involves a delicate interplay of genetic and environmental factors. Emerging evidence suggests that snoRNAs initially recognized for their housekeeping roles, extend their influence on immune regulation through diverse mechanisms. SnoRNAs have been implicated in epigenetic modification, directly affecting the gene expression profiles of immune cells. Their ability to guide site-specific changes on ribosomal RNAs and other non-coding RNAs can significantly influence the translation of proteins involved in immune response pathways. Moreover, snoRNAs interact with key immune-related proteins, modulating their functions and subsequently impacting immune cell development, activation, and tolerance. Dysregulation of snoRNA expression has been observed in various autoimmune diseases, underscoring their potential as biomarkers for disease diagnosis, prognosis, and therapeutic targets. Manipulating snoRNA expression or activity is a promising therapeutic intervention avenue, offering the potential for personalized treatment strategies in autoimmune diseases. However, there remains a need for comprehensive research efforts to elucidate the precise molecular mechanisms underlying snoRNA-mediated immune modulation. Further investigations in this domain are essential to unravel the potential of snoRNAs in autoimmune disorders.
Collapse
Affiliation(s)
- Gaurav Dubey
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India.
| | - Himmat Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | | | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| |
Collapse
|
4
|
Matveeva A, Vinogradov D, Zhuravlev E, Semenov D, Vlassov V, Stepanov G. Intron Editing Reveals SNORD-Dependent Maturation of the Small Nucleolar RNA Host Gene GAS5 in Human Cells. Int J Mol Sci 2023; 24:17621. [PMID: 38139448 PMCID: PMC10743478 DOI: 10.3390/ijms242417621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The GAS5 gene encodes a long non-coding RNA (lncRNA) and intron-located small nucleolar RNAs (snoRNAs). Its structure, splice variants, and diverse functions in mammalian cells have been thoroughly investigated. However, there are still no data on a successful knockout of GAS5 in human cells, with most of the loss-of-function experiments utilizing standard techniques to produce knockdowns. By using CRISPR/Cas9 to introduce double-strand breaks in the terminal intronic box C/D snoRNA genes (SNORDs), we created monoclonal cell lines carrying continuous deletions in one of the GAS5 alleles. The levels of GAS5-encoded box C/D snoRNAs and lncRNA GAS5 were assessed, and the formation of the novel splice variants was analyzed. To comprehensively evaluate the influence of specific SNORD mutations, human cell lines with individual mutations in SNORD74 and SNORD81 were obtained. Specific mutations in SNORD74 led to the downregulation of all GAS5-encoded SNORDs and GAS5 lncRNA. Further analysis revealed that SNORD74 contains a specific regulatory element modulating the maturation of the GAS5 precursor transcript. The results demonstrate that the maturation of GAS5 occurs through the m6A-associated pathway in a SNORD-dependent manner, which is a quite intriguing epitranscriptomic mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Grigory Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.M.); (D.V.); (E.Z.); (D.S.)
| |
Collapse
|
5
|
Sun X, Wang G, Luo W, Gu H, Ma W, Wei X, Liu D, Jia S, Cao S, Wang Y, Yuan Z. Small but strong: the emerging role of small nucleolar RNA in cardiovascular diseases. Front Cell Dev Biol 2023; 11:1292925. [PMID: 38033868 PMCID: PMC10682241 DOI: 10.3389/fcell.2023.1292925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and disability worldwide. Numerous studies have demonstrated that non-coding RNAs (ncRNAs) play a primary role in CVD development. Therefore, studies on the mechanisms of ncRNAs are essential for further efforts to prevent and treat CVDs. Small nucleolar RNAs (snoRNAs) are a novel species of non-conventional ncRNAs that guide post-transcriptional modifications and the subsequent maturation of small nuclear RNA and ribosomal RNA. Evidently, snoRNAs are extensively expressed in human tissues and may regulate different illnesses. Particularly, as the next-generation sequencing techniques have progressed, snoRNAs have been shown to be differentially expressed in CVDs, suggesting that they may play a role in the occurrence and progression of cardiac illnesses. However, the molecular processes and signaling pathways underlying the function of snoRNAs remain unidentified. Therefore, it is of great value to comprehensively investigate the association between snoRNAs and CVDs. The aim of this review was to collate existing literature on the biogenesis, characteristics, and potential regulatory mechanisms of snoRNAs. In particular, we present a scientific update on these snoRNAs and their relevance to CVDs in an effort to cast new light on the functions of snoRNAs in the clinical diagnosis of CVDs.
Collapse
Affiliation(s)
- Xue Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gebang Wang
- Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Songying Cao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Abstract
Heat shock protein 90 (HSP90) family is a class of proteins known as molecular chaperones that promote client protein folding and translocation in unstressed cells and regulate cellular homeostasis in the stress response. Noncoding RNAs (ncRNAs) are defined as RNAs that do not encode proteins. Previous studies have shown that ncRNAs are key regulators of multiple fundamental cellular processes, such as development, differentiation, proliferation, transcription, post-transcriptional modifications, apoptosis, and cell metabolism. It is known that ncRNAs do not act alone but function via the interactions with other molecules, including co-chaperones, RNAs, DNAs, and so on. As a kind of molecular chaperone, HSP90 is also involved in many biological procedures of ncRNAs. In this review, we systematically analyze the impact of HSP90 on various kinds of ncRNAs, including their synthesis and function, and how ncRNAs influence HSP90 directly and indirectly.
Collapse
Affiliation(s)
- Qing Xu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Haoduo Qiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Yunfei Xu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Yao Zhao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Nina He
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Jie Zhao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Ying Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| |
Collapse
|
7
|
Asano-Inami E, Yokoi A, Sugiyama M, Hyodo T, Hamaguchi T, Kajiyama H. The association of UBAP2L and G3BP1 mediated by small nucleolar RNA is essential for stress granule formation. Commun Biol 2023; 6:415. [PMID: 37059803 PMCID: PMC10104854 DOI: 10.1038/s42003-023-04754-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/24/2023] [Indexed: 04/16/2023] Open
Abstract
Stress granules (SGs) are dynamic, non-membranous structures composed of non-translating mRNAs and various proteins and play critical roles in cell survival under stressed conditions. Extensive proteomics analyses have been performed to identify proteins in SGs; however, the molecular functions of these components in SG formation remain unclear. In this report, we show that ubiquitin-associated protein 2-like (UBAP2L) is a crucial component of SGs. UBAP2L localized to SGs in response to various stresses, and its depletion significantly suppressed SG organization. Proteomics and RNA sequencing analyses found that UBAP2L formed a protein-RNA complex with Ras-GTP-activating protein SH3 domain binding protein 1 (G3BP1) and small nucleolar RNAs (snoRNAs). In vitro binding analysis demonstrated that snoRNAs were required for UBAP2L association with G3BP1. In addition, decreased expression of snoRNAs reduced the interaction between UBAP2L and G3BP1 and suppressed SG formation. Our results reveal a critical role of SG component, the UBAP2L/snoRNA/G3BP1 protein-RNA complex, and provide new insights into the regulation of SG assembly.
Collapse
Affiliation(s)
- Eri Asano-Inami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan.
- Bell Research Center for Reproductive Health and Cancer, Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan.
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan.
- Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Mai Sugiyama
- Bell Research Center for Reproductive Health and Cancer, Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan
| |
Collapse
|
8
|
Behnia M, Bradfute SB. The Host Non-Coding RNA Response to Alphavirus Infection. Viruses 2023; 15:v15020562. [PMID: 36851776 PMCID: PMC9967650 DOI: 10.3390/v15020562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Alphaviruses are important human and animal pathogens that can cause a range of debilitating symptoms and are found worldwide. These include arthralgic diseases caused by Old-World viruses and encephalitis induced by infection with New-World alphaviruses. Non-coding RNAs do not encode for proteins, but can modulate cellular response pathways in a myriad of ways. There are several classes of non-coding RNAs, some more well-studied than others. Much research has focused on the mRNA response to infection against alphaviruses, but analysis of non-coding RNA responses has been more limited until recently. This review covers what is known regarding host cell non-coding RNA responses in alphavirus infections and highlights gaps in the knowledge that future research should address.
Collapse
|
9
|
Zhu J, Mao S, Zhen N, Zhu G, Bian Z, Xie Y, Tang X, Ding M, Wu H, Ma J, Zhu Y, Sun F, Pan Q. SNORA14A inhibits hepatoblastoma cell proliferation by regulating SDHB-mediated succinate metabolism. Cell Death Dis 2023; 9:36. [PMID: 36717552 PMCID: PMC9886955 DOI: 10.1038/s41420-023-01325-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/31/2023]
Abstract
Hepatoblastoma (HB) is the most common paediatric liver malignancy. Dysregulation of small nucleolar RNAs (snoRNAs) is a critical inducer of tumour initiation and progression. However, the association between snoRNAs and HB remains unknown. Here, we conducted snoRNA expression profiling in HB by snoRNA sequencing and identified a decreased level of SNORA14A, a box H/ACA snoRNA, in HB tissues. Low expression of SNORA14A was correlated with PRETEXT stage and metastasis in patients. Functionally, overexpression of SNORA14A suppressed HB cell proliferation and triggered cell apoptosis and G2/M phase arrest. Mechanistically, SNORA14A overexpression promoted the processing and maturation of the 18 S ribosomal RNA (rRNA) precursor to increase succinate dehydrogenase subunit B (SDHB) protein levels. In accordance with SNORA14A downregulation, SDHB protein expression was significantly reduced in HB tissues and cells, accompanied by abnormal accumulation of succinate. Overexpression of SDHB showed antiproliferative and proapoptotic effects and the capacity to induce G2/M phase arrest, while succinate dose-dependently stimulated HB cell growth. Furthermore, the inhibition of SNORA14A in HB malignant phenotypes was mediated by SDHB upregulation-induced reduction of cellular succinate levels. Therefore, the SNORA14A/18 S rRNA/SDHB axis suppresses HB progression by preventing cellular accumulation of the oncometabolite succinate and provides promising prognostic biomarkers and novel therapeutic targets for HB.
Collapse
Affiliation(s)
- Jiabei Zhu
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China ,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127 China
| | - Siwei Mao
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China ,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127 China
| | - Ni Zhen
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Guoqing Zhu
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhixuan Bian
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Yi Xie
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Xiaochen Tang
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Miao Ding
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Han Wu
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Ji Ma
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Yizhun Zhu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, 999078 China
| | - Fenyong Sun
- grid.412538.90000 0004 0527 0050Department of Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, 200072 China
| | - Qiuhui Pan
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China ,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127 China ,grid.415626.20000 0004 4903 1529Sanya Women and Children’s Hospital Managed by Shanghai Children’s Medical Center, Sanya, 572000 China
| |
Collapse
|
10
|
Yang T, Shen J. Small nucleolar RNAs and SNHGs in the intestinal mucosal barrier: Emerging insights and current roles. J Adv Res 2022; 46:75-85. [PMID: 35700920 PMCID: PMC10105082 DOI: 10.1016/j.jare.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Previous studies have focused on the involvement of small nucleolar RNAs (snoRNAs) and SNHGs in tumor cell proliferation, apoptosis, invasion, and metastasis via multiple pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), Wnt/β catenin, and mitogen-activated protein kinase (MAPK). These molecular mechanisms affect the integrity of the intestinal mucosal barrier. AIM OF REVIEW Current evidence regarding snoRNAs and SNHGs in the context of the mucosal barrier and modulation of homeostasis is fragmented. In this review, we collate the established information on snoRNAs and SNHGs as well as discuss the major pathways affecting the mucosal barrier. KEY SCIENTIFIC CONCEPTS OF REVIEW Intestinal mucosal immunity, microflora, and the physical barrier are altered in non-neoplastic diseases such as inflammatory bowel diseases. Dysregulated snoRNAs and SNHGs may impact the intestinal mucosal barrier to promote the pathogenesis and progression of multiple diseases. SnoRNAs or SNHGs has been shown to be associated with poor disease behaviors, indicating that they may be exploited as prognostic biomarkers. Additionally, clarifying the complicated interactions between snoRNAs or SNHGs and the mucosal barrier may provide novel insights for the therapeutic treatment targeting strengthen the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Tian Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center. Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai 200127, China; Shanghai Institute of Digestive Disease, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center. Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai 200127, China; Shanghai Institute of Digestive Disease, China.
| |
Collapse
|
11
|
Talross GJS, Deryusheva S, Gall JG. Stable lariats bearing a snoRNA (slb-snoRNA) in eukaryotic cells: A level of regulation for guide RNAs. Proc Natl Acad Sci U S A 2021; 118:e2114156118. [PMID: 34725166 PMCID: PMC8609340 DOI: 10.1073/pnas.2114156118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 12/31/2022] Open
Abstract
Small nucleolar (sno)RNAs guide posttranscriptional modifications essential for the biogenesis and function of their target. The majority of snoRNAs in higher eukaryotes are encoded within introns. They are first released from nascent transcripts in the form of a lariat and rapidly targeted by the debranching enzyme and nuclear exonucleases for linearization and further trimming. In this study, we report that some snoRNAs are encoded within unusually stable intronic RNAs. These intronic sequences can escape the debranching enzyme and accumulate as lariats. Stable lariats bearing a snoRNA, or slb-snoRNA, are associated with snoRNA binding proteins but do not guide posttranscriptional modification. While most slb-snoRNAs accumulate in the nucleus, some can be exported to the cytoplasm. We find that this export competes with snoRNA maturation. Slb-snoRNAs provide a previously unknown layer of regulation to snoRNA and snoRNA binding proteins.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
12
|
Baldini L, Charpentier B, Labialle S. Emerging Data on the Diversity of Molecular Mechanisms Involving C/D snoRNAs. Noncoding RNA 2021; 7:ncrna7020030. [PMID: 34066559 PMCID: PMC8162545 DOI: 10.3390/ncrna7020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that they are involved in mechanisms that go well beyond this function. Here, we present these pieces of evidence in light of the current comprehension of the molecular mechanisms that control C/D snoRNA expression and function. From this inventory emerges that an accurate description of these activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.
Collapse
Affiliation(s)
| | - Bruno Charpentier
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| | - Stéphane Labialle
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| |
Collapse
|
13
|
Breast Cancer and the Other Non-Coding RNAs. Int J Mol Sci 2021; 22:ijms22063280. [PMID: 33807045 PMCID: PMC8005115 DOI: 10.3390/ijms22063280] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is very heterogenous and the most common gynaecological cancer, with various factors affecting its development. While its impact on human lives and national health budgets is still rising in almost all global areas, many molecular mechanisms affecting its onset and development remain unclear. Conventional treatments still prove inadequate in some aspects, and appropriate molecular therapeutic targets are required for improved outcomes. Recent scientific interest has therefore focused on the non-coding RNAs roles in tumour development and their potential as therapeutic targets. These RNAs comprise the majority of the human transcript and their broad action mechanisms range from gene silencing to chromatin remodelling. Many non-coding RNAs also have altered expression in breast cancer cell lines and tissues, and this is often connected with increased proliferation, a degraded extracellular environment, and higher endothelial to mesenchymal transition. Herein, we summarise the known abnormalities in the function and expression of long non-coding RNAs, Piwi interacting RNAs, small nucleolar RNAs and small nuclear RNAs in breast cancer, and how these abnormalities affect the development of this deadly disease. Finally, the use of RNA interference to suppress breast cancer growth is summarised.
Collapse
|
14
|
Breuer R, Gomes-Filho JV, Randau L. Conservation of Archaeal C/D Box sRNA-Guided RNA Modifications. Front Microbiol 2021; 12:654029. [PMID: 33776983 PMCID: PMC7994747 DOI: 10.3389/fmicb.2021.654029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional modifications fulfill many important roles during ribosomal RNA maturation in all three domains of life. Ribose 2'-O-methylations constitute the most abundant chemical rRNA modification and are, for example, involved in RNA folding and stabilization. In archaea, these modification sites are determined by variable sets of C/D box sRNAs that guide the activity of the rRNA 2'-O-methyltransferase fibrillarin. Each C/D box sRNA contains two guide sequences that can act in coordination to bridge rRNA sequences. Here, we will review the landscape of archaeal C/D box sRNA genes and their target sites. One focus is placed on the apparent accelerated evolution of guide sequences and the varied pairing of the two individual guides, which results in different rRNA modification patterns and RNA chaperone activities.
Collapse
Affiliation(s)
| | | | - Lennart Randau
- Prokaryotic RNA Biology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
15
|
El-Khoury F, Bignon J, Martin JR. jouvence, a new human snoRNA involved in the control of cell proliferation. BMC Genomics 2020; 21:817. [PMID: 33225905 PMCID: PMC7682050 DOI: 10.1186/s12864-020-07197-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background Small nucleolar RNAs (snoRNAs) are non-coding RNAs that are conserved from archaebacteria to mammals. They are associated in the nucleolus, with proteins to form small nucleolar ribonucleoprotein (snoRNPs). They modify ribosomal RNAs, for example, the H/ACA box that converts uridine to pseudouridine. In humans, various pathologies have been associated with snoRNAs, and several snoRNAs have been reported to participate in many cancer processes. Recently, a new H/ACA box snoRNA named jouvence has been identified in Drosophila and has been shown to be involved in lifespan determination in relation to gut homeostasis. Because snoRNAs are conserved through evolution, both structurally and functionally, a jouvence orthologue has been identified in humans. RT-PCR has revealed that jouvence is expressed, suggesting that it might be functional. These results suggest the hypothesis that jouvence may display similar functions, including increasing the healthy lifespan in humans. Results Here, we report the characterization of the human snoRNA jouvence, which has not yet been annotated in the genome. We show that its overexpression significantly stimulates cell proliferation, both in various stable cancerous cell lines as well as in primary cells. By contrast, its knockdown by siRNA leads to the opposite phenotype, a rapid decrease in cell proliferation. Transcriptomic analysis (RNA-Seq) revealed that the overexpression of jouvence leads to a dedifferentiation signature of the cells. Conversely, the knockdown of jouvence led to a striking decrease in the expression levels of genes involved in ribosome biogenesis and the spliceosome. Conclusion The overexpression of a single and short non-coding RNA of 159 nucleotides, the snoRNA-jouvence, seems to be sufficient to reorient cells toward stemness, while its depletion blocks cell proliferation. In this context, we speculate that the overexpression of jouvence, which appears to be a non-canonical H/ACA snoRNA, could represent a new tool to fight against the deleterious effects of aging, while inversely, its knockdown by siRNA could represent a new approach in cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07197-3.
Collapse
Affiliation(s)
- Flaria El-Khoury
- Equipe: Imagerie Cérébrale Fonctionnelle et Comportements (ICFC), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR-9197, CNRS/Université Paris-Saclay, 1 Avenue de la Terrasse (Bat. 32/33), 91198, Gif-sur-Yvette, France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-René Martin
- Equipe: Imagerie Cérébrale Fonctionnelle et Comportements (ICFC), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR-9197, CNRS/Université Paris-Saclay, 1 Avenue de la Terrasse (Bat. 32/33), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
16
|
Das S, Shah R, Dimmeler S, Freedman JE, Holley C, Lee JM, Moore K, Musunuru K, Wang DZ, Xiao J, Yin KJ. Noncoding RNAs in Cardiovascular Disease: Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2020; 13:e000062. [PMID: 32812806 DOI: 10.1161/hcg.0000000000000062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The discovery that much of the non-protein-coding genome is transcribed and plays a diverse functional role in fundamental cellular processes has led to an explosion in the development of tools and technologies to investigate the role of these noncoding RNAs in cardiovascular health. Furthermore, identifying noncoding RNAs for targeted therapeutics to treat cardiovascular disease is an emerging area of research. The purpose of this statement is to review existing literature, offer guidance on tools and technologies currently available to study noncoding RNAs, and identify areas of unmet need. METHODS The writing group used systematic literature reviews (including MEDLINE, Web of Science through 2018), expert opinion/statements, analyses of databases and computational tools/algorithms, and review of current clinical trials to provide a broad consensus on the current state of the art in noncoding RNA in cardiovascular disease. RESULTS Significant progress has been made since the initial studies focusing on the role of miRNAs (microRNAs) in cardiovascular development and disease. Notably, recent progress on understanding the role of novel types of noncoding small RNAs such as snoRNAs (small nucleolar RNAs), tRNA (transfer RNA) fragments, and Y-RNAs in cellular processes has revealed a noncanonical function for many of these molecules. Similarly, the identification of long noncoding RNAs that appear to play an important role in cardiovascular disease processes, coupled with the development of tools to characterize their interacting partners, has led to significant mechanistic insight. Finally, recent work has characterized the unique role of extracellular RNAs in mediating intercellular communication and their potential role as biomarkers. CONCLUSIONS The rapid expansion of tools and pipelines for isolating, measuring, and annotating these entities suggests that caution in interpreting results is warranted until these methodologies are rigorously validated. Most investigators have focused on investigating the functional role of single RNA entities, but studies suggest complex interaction between different RNA molecules. The use of network approaches and advanced computational tools to understand the interaction of different noncoding RNA species to mediate a particular phenotype may be required to fully comprehend the function of noncoding RNAs in mediating disease phenotypes.
Collapse
MESH Headings
- American Heart Association
- Biomarkers/metabolism
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/pathology
- Humans
- MicroRNAs/chemistry
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/chemistry
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- United States
Collapse
|
17
|
Håkansson KEJ, Goossens EAC, Trompet S, van Ingen E, de Vries MR, van der Kwast RVCT, Ripa RS, Kastrup J, Hohensinner PJ, Kaun C, Wojta J, Böhringer S, Le Cessie S, Jukema JW, Quax PHA, Nossent AY. Genetic associations and regulation of expression indicate an independent role for 14q32 snoRNAs in human cardiovascular disease. Cardiovasc Res 2020; 115:1519-1532. [PMID: 30544252 DOI: 10.1093/cvr/cvy309] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/30/2018] [Accepted: 12/11/2018] [Indexed: 01/12/2023] Open
Abstract
AIMS We have shown that 14q32 microRNAs are highly involved in vascular remodelling and cardiovascular disease. However, the 14q32 locus also encodes 41 'orphan' small nucleolar RNAs (snoRNAs). We aimed to gather evidence for an independent role for 14q32 snoRNAs in human cardiovascular disease. METHODS AND RESULTS We performed a lookup of the 14q32 region within the dataset of a genome wide association scan in 5244 participants of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). Single nucleotide polymorphisms (SNPs) in the snoRNA-cluster were significantly associated with heart failure. These snoRNA-cluster SNPs were not linked to SNPs in the microRNA-cluster or in MEG3, indicating that snoRNAs modify the risk of cardiovascular disease independently. We looked at expression of 14q32 snoRNAs throughout the human cardio-vasculature. Expression profiles of the 14q32 snoRNAs appeared highly vessel specific. When we compared expression levels of 14q32 snoRNAs in human vena saphena magna (VSM) with those in failed VSM-coronary bypasses, we found that 14q32 snoRNAs were up-regulated. SNORD113.2, which showed a 17-fold up-regulation in failed bypasses, was also up-regulated two-fold in plasma samples drawn from patients with ST-elevation myocardial infarction directly after hospitalization compared with 30 days after start of treatment. However, fitting with the genomic associations, 14q32 snoRNA expression was highest in failing human hearts. In vitro studies show that the 14q32 snoRNAs bind predominantly to methyl-transferase Fibrillarin, indicating that they act through canonical mechanisms, but on non-canonical RNA targets. The canonical C/D-box snoRNA seed sequences were highly conserved between humans and mice. CONCLUSION 14q32 snoRNAs appear to play an independent role in cardiovascular pathology. 14q32 snoRNAs are specifically regulated throughout the human vasculature and their expression is up-regulated during cardiovascular disease. Our data demonstrate that snoRNAs merit increased effort and attention in future basic and clinical cardiovascular research.
Collapse
Affiliation(s)
- Kjell E J Håkansson
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Eveline A C Goossens
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Eva van Ingen
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Margreet R de Vries
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Reginald V C T van der Kwast
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Rasmus S Ripa
- Department of Cardiology, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | | | - Christoph Kaun
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Stefan Böhringer
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Saskia Le Cessie
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul H A Quax
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A Yaël Nossent
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
18
|
Zappaterra M, Gioiosa S, Chillemi G, Zambonelli P, Davoli R. Muscle transcriptome analysis identifies genes involved in ciliogenesis and the molecular cascade associated with intramuscular fat content in Large White heavy pigs. PLoS One 2020; 15:e0233372. [PMID: 32428048 PMCID: PMC7237010 DOI: 10.1371/journal.pone.0233372] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Intramuscular fat content (IMF) is a complex trait influencing the technological and sensorial features of meat products and determining pork quality. Thus, we aimed at analyzing through RNA-sequencing the Semimembranosus muscle transcriptome of Italian Large White pigs to study the gene networks associated with IMF deposition. Two groups of samples were used; each one was composed of six unrelated pigs with extreme and divergent IMF content (0.67 ± 0.09% in low IMF vs. 6.81 ± 1.17% in high IMF groups) that were chosen from 950 purebred individuals. Paired-end RNA sequences were aligned to Sus scrofa genome assembly 11.1 and gene counts were analyzed using WGCNA and DeSeq2 packages in R environment. Interestingly, among the 58 differentially expressed genes (DEGs), several were related to primary cilia organelles (such as Lebercilin 5 gene), in addition to the genes involved in the regulation of cell differentiation, in the control of RNA-processing, and G-protein and ERK signaling pathways. Together with cilia-related genes, we also found in high IMF pigs an over-expression of the Fibroblast Growth Factor 2 (FGF2) gene, which in other animal species was found to be a regulator of ciliogenesis. Four WGCNA gene modules resulted significantly associated with IMF deposition: grey60 (P = 0.003), darkturquoise (P = 0.022), skyblue1 (P = 0.022), and lavenderblush3 (P = 0.030). The genes in the significant modules confirmed the results obtained for the DEGs, and the analysis with “cytoHubba” indicated genes controlling RNA splicing and cell differentiation as hub genes. Among the complex molecular processes affecting muscle fat depots, genes involved in primary cilia may have an important role, and the transcriptional reprogramming observed in high IMF pigs may be related to an FGF-related molecular cascade and to ciliogenesis, which in the literature have been associated with fibro-adipogenic precursor differentiation.
Collapse
Affiliation(s)
- Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Science, University of Bologna, Bologna, Italy
| | - Silvia Gioiosa
- Super Computing Applications and Innovation Department (SCAI), CINECA, Rome, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, Bari, Italy
| | - Paolo Zambonelli
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Science, University of Bologna, Bologna, Italy
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Science, University of Bologna, Bologna, Italy
- Interdepartmental Centre of Agri-food Industrial Research (CIRI-AGRO), University of Bologna, Cesena, Italy
- * E-mail:
| |
Collapse
|
19
|
Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res 2020; 48:1627-1651. [PMID: 31828325 PMCID: PMC7038934 DOI: 10.1093/nar/gkz1140] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/17/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are short non-protein-coding RNAs with a long-recognized role in tuning ribosomal and spliceosomal function by guiding ribose methylation and pseudouridylation at targeted nucleotide residues of ribosomal and small nuclear RNAs, respectively. SnoRNAs are increasingly being implicated in regulation of new types of post-transcriptional processes, for example rRNA acetylation, modulation of splicing patterns, control of mRNA abundance and translational efficiency, or they themselves are processed to shorter stable RNA species that seem to be the principal or alternative bioactive isoform. Intriguingly, some display unusual cellular localization under exogenous stimuli, or tissue-specific distribution. Here, we discuss the new and unforeseen roles attributed to snoRNAs, focusing on the presumed mechanisms of action. Furthermore, we review the experimental approaches to study snoRNA function, including high resolution RNA:protein and RNA:RNA interaction mapping, techniques for analyzing modifications on targeted RNAs, and cellular and animal models used in snoRNA biology research.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia
| | - Janja Božič
- Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia
| | - Boris Rogelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia.,Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia.,University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Filippova JA, Matveeva AM, Zhuravlev ES, Balakhonova EA, Prokhorova DV, Malanin SJ, Shah Mahmud R, Grigoryeva TV, Anufrieva KS, Semenov DV, Vlassov VV, Stepanov GA. Are Small Nucleolar RNAs "CRISPRable"? A Report on Box C/D Small Nucleolar RNA Editing in Human Cells. Front Pharmacol 2019; 10:1246. [PMID: 31780925 PMCID: PMC6856654 DOI: 10.3389/fphar.2019.01246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/27/2019] [Indexed: 01/20/2023] Open
Abstract
CRISPR technologies are nowadays widely used for targeted knockout of numerous protein-coding genes and for the study of various processes and metabolic pathways in human cells. Most attention in the genome editing field is now focused on the cleavage of protein-coding genes or genes encoding long non-coding RNAs (lncRNAs), while the studies on targeted knockout of intron-encoded regulatory RNAs are sparse. Small nucleolar RNAs (snoRNAs) present a class of non-coding RNAs encoded within the introns of various host genes and involved in post-transcriptional maturation of ribosomal RNAs (rRNAs) in eukaryotic cells. Box C/D snoRNAs direct 2'-O-methylation of rRNA nucleotides. These short RNAs have specific elements in their structure, namely, boxes C and D, and a target-recognizing region. Here, we present the study devoted to CRISPR/Cas9-mediated editing of box C/D snoRNA genes in Gas5. We obtained monoclonal cell lines carrying mutations in snoRNA genes and analyzed the levels of the mutant box C/D snoRNA as well as the 2'-O-methylation status of the target rRNA nucleotide in the obtained cells. Mutations in SNORD75 in the obtained monoclonal cell line were shown to result in aberrant splicing of Gas5 with exclusion of exons 3 to 5, which was confirmed by RT-PCR and RNA-Seq. The obtained results suggest that SNORD75 contains an element for binding of some factors regulating maturation of Gas5 pre-lncRNA. We suggest that METTL3/METTL14 is among such factors, and m6A-methylation pathways are involved in regulation of Gas5 splicing. Our results shell light on the role of SNORDs in regulating splicing of the host gene.
Collapse
Affiliation(s)
- Julia A Filippova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasiya M Matveeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Evgenii S Zhuravlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia A Balakhonova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Daria V Prokhorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Sergey J Malanin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Raihan Shah Mahmud
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Tatiana V Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ksenia S Anufrieva
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Moscow, Russia.,Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Dmitry V Semenov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Grigory A Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
21
|
Salem ESB, Vonberg AD, Borra VJ, Gill RK, Nakamura T. RNAs and RNA-Binding Proteins in Immuno-Metabolic Homeostasis and Diseases. Front Cardiovasc Med 2019; 6:106. [PMID: 31482095 PMCID: PMC6710452 DOI: 10.3389/fcvm.2019.00106] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing prevalence of worldwide obesity has emerged as a major risk factor for type 2 diabetes (T2D), hepatosteatosis, and cardiovascular disease. Accumulating evidence indicates that obesity has strong inflammatory underpinnings tightly linked to the development of metabolic diseases. However, the molecular mechanisms by which obesity induces aberrant inflammation associated with metabolic diseases are not yet clearly defined. Recently, RNAs have emerged as important regulators of stress responses and metabolism. RNAs are subject to changes in modification status, higher-order structure, and cellular localization; all of which could affect the affinity for RNA-binding proteins (RBPs) and thereby modify the RNA-RBP networks. Proper regulation and management of RNA characteristics are fundamental to cellular and organismal homeostasis, as well as paramount to health. Identification of multiple single nucleotide polymorphisms (SNPs) within loci of fat mass- and obesity-associated protein (FTO) gene, an RNA demethylase, through genome-wide association studies (GWAS) of T2D, and functional assessments of FTO in mice, support the concept that disruption in RNA modifications leads to the development of human diseases including obesity and metabolic disorder. In obesity, dynamic alterations in modification and localization of RNAs appear to modulate the RNA-RBP networks and activate proinflammatory RBPs, such as double-stranded RNA (dsRNA)-dependent protein kinase (PKR), Toll-like receptor (TLR) 3 and TLR7, and RNA silencing machinery. These changes induce aberrant inflammation and the development of metabolic diseases. This review will describe the current understanding of the underlying causes of these common and altered characteristics of RNA-RBP networks which will pave the way for developing novel approaches to tackle the pandemic issue of obesity.
Collapse
Affiliation(s)
- Esam S B Salem
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew D Vonberg
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Vishnupriya J Borra
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rupinder K Gill
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Elliott BA, Ho HT, Ranganathan SV, Vangaveti S, Ilkayeva O, Abou Assi H, Choi AK, Agris PF, Holley CL. Modification of messenger RNA by 2'-O-methylation regulates gene expression in vivo. Nat Commun 2019; 10:3401. [PMID: 31363086 PMCID: PMC6667457 DOI: 10.1038/s41467-019-11375-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/11/2019] [Indexed: 12/21/2022] Open
Abstract
Epitranscriptomic modifications of mRNA are important regulators of gene expression. While internal 2'-O-methylation (Nm) has been discovered on mRNA, questions remain about its origin and function in cells and organisms. Here, we show that internal Nm modification can be guided by small nucleolar RNAs (snoRNAs), and that these Nm sites can regulate mRNA and protein expression. Specifically, two box C/D snoRNAs (SNORDs) and the 2'-O-methyltransferase fibrillarin lead to Nm modification in the protein-coding region of peroxidasin (Pxdn). The presence of Nm modification increases Pxdn mRNA expression but inhibits its translation, regulating PXDN protein expression and enzyme activity both in vitro and in vivo. Our findings support a model in which snoRNA-guided Nm modifications of mRNA can regulate physiologic gene expression by altering mRNA levels and tuning protein translation.
Collapse
Affiliation(s)
- Brittany A Elliott
- Department of Medicine, Duke University Medical Center, Durham, NC, 27705, USA
| | - Hsiang-Ting Ho
- Department of Medicine, Duke University Medical Center, Durham, NC, 27705, USA
| | | | - Sweta Vangaveti
- The RNA Institute, State University of New York, Albany, NY, 12222, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Hala Abou Assi
- Department of Medicine, Duke University Medical Center, Durham, NC, 27705, USA
| | - Alex K Choi
- Department of Medicine, Duke University Medical Center, Durham, NC, 27705, USA
| | - Paul F Agris
- Department of Medicine, Duke University Medical Center, Durham, NC, 27705, USA
| | | |
Collapse
|
23
|
Liang J, Wen J, Huang Z, Chen XP, Zhang BX, Chu L. Small Nucleolar RNAs: Insight Into Their Function in Cancer. Front Oncol 2019; 9:587. [PMID: 31338327 PMCID: PMC6629867 DOI: 10.3389/fonc.2019.00587] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/17/2019] [Indexed: 02/04/2023] Open
Abstract
Small nucleolar RNAs (SnoRNAs) are a class of non-coding RNAs divided into two classes: C/D box snoRNAs and H/ACA box snoRNAs. The canonical function of C/D box and H/ACA box snoRNAs are 2'-O-ribose methylation and pseudouridylation of ribosomal RNAs (rRNAs), respectively. Emerging evidence has demonstrated that snoRNAs are involved in various physiological and pathological cellular processes. Mutations and aberrant expression of snoRNAs have been reported in cell transformation, tumorigenesis, and metastasis, indicating that snoRNAs may serve as biomarkers and/or therapeutic targets of cancer. Hence, further study of the functions and underlying mechanism of snoRNAs is valuable. In this review, we summarize the biogenesis and functions of snoRNAs, as well as the association of snoRNAs in different types of cancers and their potential roles in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Stamm S, Lodmell JS. C/D box snoRNAs in viral infections: RNA viruses use old dogs for new tricks. Noncoding RNA Res 2019; 4:46-53. [PMID: 31193534 PMCID: PMC6533054 DOI: 10.1016/j.ncrna.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/27/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022] Open
Abstract
C/D box snoRNAs (SNORDs) are a highly expressed class of non-coding RNAs. Besides their well-established role in rRNA modification, C/D box snoRNAs form protein complexes devoid of fibrillarin and regulate pre-mRNA splicing and polyadenylation of numerous genes. There is an emerging body of evidence for functional interactions between RNA viruses and C/D box snoRNAs. The infectivity of some RNA viruses depends on enzymatically active fibrillarin, and many RNA viral proteins associate with nucleolin or nucleophosmin, suggesting that viruses benefit from their cytosolic accumulation. These interactions are likely reflected by morphological changes in the nucleolus, often leading to relocalization of nucleolar proteins and ncRNAs to the cytosol that are a characteristic feature of viral infections. Knock-down studies have also shown that RNA viruses need specific C/D box snoRNAs for optimal replication, suggesting that RNA viruses benefit from gene expression programs regulated by SNORDs, or that viruses have evolved “new” uses for these humble ncRNAs to advance their prospects during infection.
Collapse
Affiliation(s)
- Stefan Stamm
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40536, USA
| | - J Stephen Lodmell
- Division of Biological Sciences and Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, MT, USA
| |
Collapse
|
25
|
An integrative piRNA analysis of mouse gametes and zygotes reveals new potential origins and gene regulatory roles. Sci Rep 2018; 8:12832. [PMID: 30150632 PMCID: PMC6110870 DOI: 10.1038/s41598-018-31032-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a subclass of the small non-coding RNAs (sncRNAs). Their main reported function was to exert control over transposable elements (TEs) in mammalian germline. In this study undertaking a deeper bioinformatics analysis of piRNAs present in mouse oocytes, sperm cells and zygotes, we first elaborated a new piRNA database based on sequences identified as piRNAs by immunoprecipitation with PIWI proteins. Our bioinformatics analysis revealed that, at least in gametes and zygotes, piRNAs could encompass multifunctional cell-dependent regulatory molecules. Indeed, genome analysis of the piRNA mapping density (reads/kb) evidenced in all samples an enrichment of intron-derived piRNAs. Further, piRNA population was classified into sequences not associated to TEs or repeats (NRapiRNAs) and associated to repetitive genome elements (RapiRNAs). In oocytes most of the NRapiRNAs mapped to the 5′UTRs of coding mRNAs, while higher proportion of NRapiRNAs was detected in sperm cells associated to the 3′UTRs of mRNAs. This piRNA complementarity to mRNA UTRs suggests key post-transcriptional regulatory roles over mRNAs such as those encoding MHC genes. In addition, a striking association of RapiRNA with long non-coding RNAs (lncRNAs) was identified. piRNAs associated with relevant lncRNAs such as: Rab26os and GAS5 and key mRNAs, were particularly assessed.
Collapse
|
26
|
Rimer JM, Lee J, Holley CL, Crowder RJ, Chen DL, Hanson PI, Ory DS, Schaffer JE. Long-range function of secreted small nucleolar RNAs that direct 2'- O-methylation. J Biol Chem 2018; 293:13284-13296. [PMID: 29980600 DOI: 10.1074/jbc.ra118.003410] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/18/2018] [Indexed: 02/02/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) are noncoding RNAs that guide chemical modifications of structural RNAs. Whereas snoRNAs primarily localize in the nucleolus, where their canonical function is to target nascent ribosomal RNAs for 2'-O-methylation, recent studies provide evidence that snoRNAs traffic out of the nucleus. Furthermore, RNA-Seq data indicate that extracellular vesicles released from cells contain snoRNAs. However, it is not known whether snoRNA secretion is regulated or whether secreted snoRNAs are functional. Here, we show that inflammation stimulates secretion of Rpl13a snoRNAs U32a (SNORD32a), U33 (SNORD33), U34 (SNORD34), and U35a (SNORD35a) from cultured macrophages, in mice, and in human subjects. Secreted snoRNAs co-fractionate with extracellular vesicles and are taken up by recipient cells. In a murine parabiosis model, we demonstrate that snoRNAs travel through the circulation to function in distant tissues. These findings support a previously unappreciated link between inflammation and snoRNA secretion in mice and humans and uncover a potential role for secreted snoRNAs in cell-cell communication.
Collapse
Affiliation(s)
| | | | | | | | - Delphine L Chen
- From the Department of Medicine.,Mallinckrodt Institute of Radiology, and
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
27
|
Abstract
Non-coding RNAs (ncRNAs) are an abundant class of RNAs that include small ncRNAs, long non-coding RNAs (lncRNA) and pseudogenes. The human ncRNA atlas includes thousands of these specialised RNA molecules that are further subcategorised based on their size or function. Two of the more well-known and widely studied ncRNA species are microRNAs (miRNAs) and lncRNAs. These are regulatory RNAs and their altered expression has been implicated in the pathogenesis of a variety of human diseases. Failure to express a functional cystic fibrosis (CF) transmembrane receptor (CFTR) chloride ion channel in epithelial cells underpins CF. Secondary to the CFTR defect, it is known that other pathways can be altered and these may contribute to the pathophysiology of CF lung disease in particular. For example, quantitative alterations in expression of some ncRNAs are associated with CF. In recent years, there has been a series of published studies exploring ncRNA expression and function in CF. The majority have focussed principally on miRNAs, with just a handful of reports to date on lncRNAs. The present study reviews what is currently known about ncRNA expression and function in CF, and discusses the possibility of applying this knowledge to the clinical management of CF in the near future.
Collapse
Affiliation(s)
- Arlene M.A. Glasgow
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Chiara De Santi
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Catherine M. Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
28
|
Bratkovič T, Modic M, Camargo Ortega G, Drukker M, Rogelj B. Neuronal differentiation induces SNORD115 expression and is accompanied by post-transcriptional changes of serotonin receptor 2c mRNA. Sci Rep 2018; 8:5101. [PMID: 29572515 PMCID: PMC5865145 DOI: 10.1038/s41598-018-23293-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
The serotonin neurotransmitter system is widespread in the brain and implicated in modulation of neuronal responses to other neurotransmitters. Among 14 serotonin receptor subtypes, 5-HT2cR plays a pivotal role in controlling neuronal network excitability. Serotonergic activity conveyed through receptor 5-HT2cR is regulated post-transcriptionally via two mechanisms, alternative splicing and A-to-I RNA editing. Brain-specific small nucleolar RNA SNORD115 harbours a phylogenetically conserved 18-nucleotide antisense element with perfect complementarity to the region of 5ht2c primary transcript that undergoes post-transcriptional changes. Previous 5ht2c minigene studies have implicated SNORD115 in fine-tuning of both post-transcriptional events. We monitored post-transcriptional changes of endogenous 5ht2c transcripts during neuronal differentiation. Both SNORD115 and 5ht2c were upregulated upon neuronal commitment. We detected increased 5ht2c alternative exon Vb inclusion already at the stage of neuronal progenitors, and more extensive A-to-I editing of non-targeted sites A and B compared to adjacent adenosines at sites E, C and D throughout differentiation. As the extent of editing is known to positively correlate with exon Vb usage while it reduces receptor functionality, our data support the model where SNORD115 directly promotes alternative exon inclusion without the requirement for conversion of key adenosines to inosines, thereby favouring production of full-length receptor isoforms with higher potency.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Biology, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Miha Modic
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Germán Camargo Ortega
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, 85764, Neuherberg, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, Jamova 39, 1000, Ljubljana, Slovenia. .,Biomedical Research Institute BRIS, Puhova 10, 1000, Ljubljana, Slovenia. .,University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
29
|
Editorial commentary: Let it snow-Emerging roles for snoRNAs in cardiovascular disease. Trends Cardiovasc Med 2017; 28:91-93. [PMID: 28882366 DOI: 10.1016/j.tcm.2017.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 08/19/2017] [Indexed: 11/20/2022]
|
30
|
Nogueira Jorge NA, Wajnberg G, Ferreira CG, de Sa Carvalho B, Passetti F. snoRNA and piRNA expression levels modified by tobacco use in women with lung adenocarcinoma. PLoS One 2017; 12:e0183410. [PMID: 28817650 PMCID: PMC5560661 DOI: 10.1371/journal.pone.0183410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is one of the most frequent types of cancer worldwide. Most patients are diagnosed at advanced stage and thus have poor prognosis. Smoking is a risk factor for lung cancer, however most smokers do not develop lung cancer while 20% of women with lung adenocarcinoma are non-smokers. Therefore, it is possible that these two groups present differences besides the smoking status, including differences in their gene expression signature. The altered expression patterns of non-coding RNAs in complex diseases make them potential biomarkers for diagnosis and treatment. We analyzed data from differentially and constitutively expressed PIWI-interacting RNAs and small nucleolar RNAs from publicly available small RNA high-throughput sequencing data in search of an expression pattern of non-coding RNA that could differentiate these two groups. Here, we report two sets of differentially expressed small non-coding RNAs identified in normal and tumoral tissues of women with lung adenocarcinoma, that discriminate between smokers and non-smokers. Our findings may offer new insights on metabolic alterations caused by tobacco and may be used for early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Natasha Andressa Nogueira Jorge
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Gabriel Wajnberg
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | - Fabio Passetti
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
31
|
Falaleeva M, Welden JR, Duncan MJ, Stamm S. C/D-box snoRNAs form methylating and non-methylating ribonucleoprotein complexes: Old dogs show new tricks. Bioessays 2017; 39:10.1002/bies.201600264. [PMID: 28505386 PMCID: PMC5586538 DOI: 10.1002/bies.201600264] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
C/D box snoRNAs (SNORDs) are an abundantly expressed class of short, non-coding RNAs that have been long known to perform 2'-O-methylation of rRNAs. However, approximately half of human SNORDs have no predictable rRNA targets, and numerous SNORDs have been associated with diseases that show no defects in rRNAs, among them Prader-Willi syndrome, Duplication 15q syndrome and cancer. This apparent discrepancy has been addressed by recent studies showing that SNORDs can act to regulate pre-mRNA alternative splicing, mRNA abundance, activate enzymes, and be processed into shorter ncRNAs resembling miRNAs and piRNAs. Furthermore, recent biochemical studies have shown that a given SNORD can form both methylating and non-methylating ribonucleoprotein complexes, providing an indication of the likely physical basis for such diverse new functions. Thus, SNORDs are more structurally and functionally diverse than previously thought, and their role in gene expression is under-appreciated. The action of SNORDs in non-methylating complexes can be substituted with oligonucleotides, allowing devising therapies for diseases like Prader-Willi syndrome.
Collapse
Affiliation(s)
- Marina Falaleeva
- University Kentucky, Institute for Biochemistry, Lexington, KY, USA
| | - Justin R. Welden
- University Kentucky, Institute for Biochemistry, Lexington, KY, USA
| | | | - Stefan Stamm
- University Kentucky, Institute for Biochemistry, Lexington, KY, USA
| |
Collapse
|
32
|
Cavaillé J. Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28296064 DOI: 10.1002/wrna.1417] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
The nucleolus of mammalian cells contains hundreds of box C/D small nucleolar RNAs (SNORDs). Through their ability to base pair with ribosomal RNA precursors, most play important roles in the synthesis and/or activity of ribosomes, either by guiding sequence-specific 2'-O-methylations or by facilitating RNA folding and cleavages. A growing number of SNORD genes with elusive functions have been discovered recently. Intriguingly, the vast majority of them are located in two large, imprinted gene clusters at human chromosome region 15q11q13 (the SNURF-SNRPN domain) and at 14q32 (the DLK1-DIO3 domain) where they are expressed, respectively, only from the paternally and maternally inherited alleles. These placental mammal-specific SNORD genes have many features of the canonical SNORDs that guide 2'-O-methylations, yet they lack obvious complementarity with ribosomal RNAs and, surprisingly, they are processed from large, tandemly repeated genes expressed preferentially in the brain. This review summarizes our understanding of the biology of these peculiar SNORD genes, focusing particularly on SNORD115 and SNORD116 in the SNURF-SNRPN domain. It examines the growing evidence that altered levels of these SNORDs and/or their host-gene transcripts may be a primary cause of Prader-Willi syndrome (PWS; a rare disorder characterized by overeating and obesity) as well as abnormalities in signaling through the 5-HT2C serotonin receptor. Finally, the hypothesis that PWS may be a ribosomopathy (ribosomal disease) is also discussed. WIREs RNA 2017, 8:e1417. doi: 10.1002/wrna.1417 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jérôme Cavaillé
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse; UPS and CNRS, LMBE, Toulouse, France
| |
Collapse
|
33
|
Transcriptomic Analysis of THP-1 Macrophages Exposed to Lipoprotein Hydrolysis Products Generated by Lipoprotein Lipase. Lipids 2017; 52:189-205. [DOI: 10.1007/s11745-017-4238-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/02/2017] [Indexed: 11/25/2022]
|
34
|
Emerging cardiac non-coding landscape: The importance of meta-analysis. Biochimie 2017; 133:87-94. [DOI: 10.1016/j.biochi.2016.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/26/2016] [Indexed: 11/23/2022]
|
35
|
Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. Proc Natl Acad Sci U S A 2016; 113:E1625-34. [PMID: 26957605 DOI: 10.1073/pnas.1519292113] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
C/D box small nucleolar RNAs (SNORDs) are small noncoding RNAs, and their best-understood function is to target the methyltransferase fibrillarin to rRNA (for example, SNORD27 performs 2'-O-methylation of A27 in 18S rRNA). Unexpectedly, we found a subset of SNORDs, including SNORD27, in soluble nuclear extract made under native conditions, where fibrillarin was not detected, indicating that a fraction of the SNORD27 RNA likely forms a protein complex different from canonical snoRNAs found in the insoluble nuclear fraction. As part of this previously unidentified complex,SNORD27 regulates the alternative splicing of the transcription factor E2F7p re-mRNA through direct RNA-RNA interaction without methylating the RNA, likely by competing with U1 small nuclear ribonucleoprotein (snRNP). Furthermore, knockdown of SNORD27 activates previously "silent" exons in several other genes through base complementarity across the entire SNORD27 sequence, not just the antisense boxes. Thus, some SNORDs likely function in both rRNA and pre-mRNA processing, which increases the repertoire of splicing regulators and links both processes.
Collapse
|
36
|
Iaea DB, Gale SE, Bielska AA, Krishnan K, Fujiwara H, Jiang H, Maxfield FR, Schlesinger PH, Covey DF, Schaffer JE, Ory DS. A novel intrinsically fluorescent probe for study of uptake and trafficking of 25-hydroxycholesterol. J Lipid Res 2015; 56:2408-19. [PMID: 26497473 DOI: 10.1194/jlr.d064287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/20/2022] Open
Abstract
Cholesterol homeostasis is regulated not only by cholesterol, but also by oxygenated cholesterol species, referred to as oxysterols. Side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), regulate cholesterol homeostasis through feedback inhibition and feed-forward activation of transcriptional pathways that govern cholesterol synthesis, uptake, and elimination, as well as through direct nongenomic actions that modulate cholesterol accessibility in membranes. Elucidating the cellular distribution of 25-HC is required to understand its biological activity at the molecular level. However, studying oxysterol distribution and behavior within cells has proven difficult due to the lack of fluorescent analogs of 25-HC that retain its chemical and physical properties. To address this, we synthesized a novel intrinsically fluorescent 25-HC mimetic, 25-hydroxycholestatrienol (25-HCTL). We show that 25-HCTL modulates sterol homeostatic responses in a similar manner as 25-HC. 25-HCTL associates with lipoproteins in media and is taken up by cells through LDL-mediated endocytosis. In cultured cells, 25-HCTL redistributes among cellular membranes and, at steady state, has a similar distribution as cholesterol, being enriched in both the endocytic recycling compartment as well as the plasma membrane. Our findings indicate that 25-HCTL is a faithful fluorescent 25-HC mimetic that can be used to investigate the mechanisms through which 25-HC regulates sterol homeostatic pathways.
Collapse
Affiliation(s)
- David B Iaea
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Sarah E Gale
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Agata A Bielska
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Kathiresan Krishnan
- Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Hui Jiang
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Paul H Schlesinger
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Douglas F Covey
- Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jean E Schaffer
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
37
|
Yamauchi Y, Iwamoto N, Rogers MA, Abe-Dohmae S, Fujimoto T, Chang CCY, Ishigami M, Kishimoto T, Kobayashi T, Ueda K, Furukawa K, Chang TY, Yokoyama S. Deficiency in the Lipid Exporter ABCA1 Impairs Retrograde Sterol Movement and Disrupts Sterol Sensing at the Endoplasmic Reticulum. J Biol Chem 2015. [PMID: 26198636 DOI: 10.1074/jbc.m115.662668] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan,
| | - Noriyuki Iwamoto
- the Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Maximillian A Rogers
- the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Sumiko Abe-Dohmae
- the Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Toyoshi Fujimoto
- the Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Catherine C Y Chang
- the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Masato Ishigami
- the Institute for Integrated Cell-Material Sciences and Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takuma Kishimoto
- the Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan, and
| | | | - Kazumitsu Ueda
- the Institute for Integrated Cell-Material Sciences and Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Koichi Furukawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ta-Yuan Chang
- the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755,
| | - Shinji Yokoyama
- the Nutritional Health Science Research Center and Department of Food and Nutritional Sciences, Chubu University, Kasugai 487-8501, Japan
| |
Collapse
|
38
|
Jinn S, Brandis KA, Ren A, Chacko A, Dudley-Rucker N, Gale SE, Sidhu R, Fujiwara H, Jiang H, Olsen BN, Schaffer JE, Ory DS. snoRNA U17 regulates cellular cholesterol trafficking. Cell Metab 2015; 21:855-67. [PMID: 25980348 PMCID: PMC4456254 DOI: 10.1016/j.cmet.2015.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/19/2015] [Accepted: 04/05/2015] [Indexed: 12/31/2022]
Abstract
Cholesterol is required for the growth and viability of mammalian cells and is an obligate precursor for steroid hormone synthesis. Using a loss-of-function screen for mutants with defects in intracellular cholesterol trafficking, a Chinese hamster ovary cell mutant with haploinsufficiency of the U17 snoRNA was isolated. U17 is an H/ACA orphan snoRNA, for which a function other than ribosomal processing has not previously been identified. Through expression profiling, we identified hypoxia-upregulated mitochondrial movement regulator (HUMMR) mRNA as a target that is negatively regulated by U17 snoRNA. Upregulation of HUMMR in U17 snoRNA-deficient cells promoted the formation of ER-mitochondrial contacts, decreasing esterification of cholesterol and facilitating cholesterol trafficking to mitochondria. U17 snoRNA and HUMMR regulate mitochondrial synthesis of steroids in vivo and are developmentally regulated in steroidogenic tissues, suggesting that the U17 snoRNA-HUMMR pathway may serve a previously unrecognized, physiological role in gonadal tissue maturation.
Collapse
Affiliation(s)
- Sarah Jinn
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Katrina A Brandis
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Aileen Ren
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Anita Chacko
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nicole Dudley-Rucker
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Sarah E Gale
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Hui Jiang
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Brett N Olsen
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jean E Schaffer
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Dupuis-Sandoval F, Poirier M, Scott MS. The emerging landscape of small nucleolar RNAs in cell biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:381-97. [PMID: 25879954 PMCID: PMC4696412 DOI: 10.1002/wrna.1284] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are a large class of small noncoding RNAs present in all eukaryotes sequenced thus far. As a family, they have been well characterized as playing a central role in ribosome biogenesis, guiding either the sequence-specific chemical modification of pre-rRNA (ribosomal RNA) or its processing. However, in higher eukaryotes, numerous orphan snoRNAs were described over a decade ago, with no known target or ascribed function, suggesting the possibility of alternative cellular functionality. In recent years, thanks in great part to advances in sequencing methodologies, we have seen many examples of the diversity that exists in the snoRNA family on multiple levels. In this review, we discuss the identification of novel snoRNA members, of unexpected binding partners, as well as the clarification and extension of the snoRNA target space and the characterization of diverse new noncanonical functions, painting a new and extended picture of the snoRNA landscape. Under the deluge of novel features and functions that have recently come to light, snoRNAs emerge as a central, dynamic, and highly versatile group of small regulatory RNAs. WIREs RNA 2015, 6:381–397. doi: 10.1002/wrna.1284
Collapse
Affiliation(s)
- Fabien Dupuis-Sandoval
- Biochemistry Department, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Mikaël Poirier
- Biochemistry Department, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Michelle S Scott
- Biochemistry Department and RNA Group, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
40
|
Bratkovič T, Rogelj B. The many faces of small nucleolar RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:438-43. [PMID: 24735946 DOI: 10.1016/j.bbagrm.2014.04.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/15/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are a class of evolutionally conserved non-coding RNAs traditionally associated with nucleotide modifications in other RNA species. Acting as guides pairing with ribosomal (rRNA) and small nuclear RNAs (snRNAs), snoRNAs direct partner enzymes to specific sites for uridine isomerization or ribose methylation, thereby influencing stability, folding and protein-interacting properties of target RNAs. In recent years, however, numerous non-canonical functions have also been ascribed to certain members of the snoRNA group, ranging from regulation of mRNA editing and/or alternative splicing to posttranscriptional gene silencing by a yet poorly understood pathway that may involve microRNA-like mechanisms. While some of these intriguing snoRNAs (the so-called orphan snoRNAs) have no sequence complementarity to rRNA or snRNA, others apparently display dual functionality, performing both traditional and newly elucidated functions. Here, we review the effects elicited by non-canonical snoRNA activities.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Biology, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|