1
|
Goh H, Choi S, Kim J. Synthetic translational coupling element for multiplexed signal processing and cellular control. Nucleic Acids Res 2024; 52:13469-13483. [PMID: 39526390 PMCID: PMC11602170 DOI: 10.1093/nar/gkae980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Repurposing natural systems to develop customized functions in biological systems is one of the main thrusts of synthetic biology. Translational coupling is a common phenomenon in diverse polycistronic operons for efficient allocation of limited genetic space and cellular resources. These beneficial features of translation coupling can provide exciting opportunities for creating novel synthetic biological devices. Here, we introduce a modular synthetic translational coupling element (synTCE) and integrate this design with de novo designed riboregulators, toehold switches. A systematic exploration of sequence domain variants for synTCEs led to the identification of critical design considerations for improving the system performance. Next, this design approach was seamlessly integrated into logic computations and applied to construct multi-output transcripts with well-defined stoichiometric control. This module was further applied to signaling cascades for combined signal transduction and multi-input/multi-output synthetic devices. Further, the synTCEs can precisely manipulate the N-terminal ends of output proteins, facilitating effective protein localization and cellular population control. Therefore, the synTCEs could enhance computational capability and applicability of riboregulators for reprogramming biological systems, leading to future applications in synthetic biology, metabolic engineering and biotechnology.
Collapse
Affiliation(s)
- Hyunseop Goh
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| | - Seungdo Choi
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| |
Collapse
|
2
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
3
|
Shokeen K, Baroi MK, Chahar M, Das D, Saini H, Kumar S. Arginyltransferase 1 (ATE1)-mediated proteasomal degradation of viral haemagglutinin protein: a unique host defence mechanism. J Gen Virol 2024; 105. [PMID: 39207120 DOI: 10.1099/jgv.0.002020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The extensive protein production in virus-infected cells can disrupt protein homeostasis and activate various proteolytic pathways. These pathways utilize post-translational modifications (PTMs) to drive the ubiquitin-mediated proteasomal degradation of surplus proteins. Protein arginylation is the least explored PTM facilitated by arginyltransferase 1 (ATE1) enzyme. Several studies have provided evidence supporting its importance in multiple physiological processes, including ageing, stress, nerve regeneration, actin formation and embryo development. However, its function in viral pathogenesis is still unexplored. The present work utilizes Newcastle disease virus (NDV) as a model to establish the role of the ATE1 enzyme and its activity in pathogenesis. Our data indicate a rise in levels of N-arginylated cellular proteins in the infected cells. Here, we also explore the haemagglutinin-neuraminidase (HN) protein of NDV as a presumable target for arginylation. The data indicate that the administration of Arg amplifies the arginylation process, resulting in reduced stability of the HN protein. ATE1 enzyme activity inhibition and gene expression knockdown studies were also conducted to analyse modulation in HN protein levels, which further substantiated the findings. Moreover, we also observed Arg addition and probable ubiquitin modification to the HN protein, indicating engagement of the proteasomal degradation machinery. Lastly, we concluded that the enhanced levels of the ATE1 enzyme could transfer the Arg residue to the N-terminus of the HN protein, ultimately driving its proteasomal degradation.
Collapse
Affiliation(s)
- Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Manjeet Chahar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Harimohan Saini
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
4
|
Fusco F, Pires MC, Lopes APY, Alves VDS, Gonçalves VM. Influence of the mRNA initial region on protein production: a case study using recombinant detoxified pneumolysin as a model. Front Bioeng Biotechnol 2024; 11:1304965. [PMID: 38260740 PMCID: PMC10800503 DOI: 10.3389/fbioe.2023.1304965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Recombinant proteins are of great importance in modern society, mostly as biopharmaceutical products. However, challenging and complex processes with low production yield are major drawbacks. Normally, the optimization to overcome these obstacles is focused on bioreactor and purification processes, and the biomolecular aspects are neglected, seen as less important. In this work, we present how the 5' mRNA secondary structure region can be relevant for translation and, therefore, protein production. For this, Escherichia coli BL21(DE3) clones, producing recombinant detoxified pneumolysin (PdT) with and without the N-terminal His-tag, were cultivated in 10-L bioreactors. Another version of the pdt gene (version 2) with synonymous changes in the 5'-end nucleotide sequence was also obtained. Protein production, plasmid stability, carbon sources, and acetic acid were quantified during the cultures. Furthermore, in silico mRNA analyses were performed using TIsigner and RNAfold. The results showed that the His-tag presence at the N-terminus generated a minimum 1.5-fold increase in target protein synthesis, which was explained by the in silico mRNA analyses that returned an mRNA secondary structure easier to translate and, therefore, higher protein production than without the His-tag. The pdt gene version 2 showed lower 5' mRNA opening energy than version 1, allowing higher PdT production even without a tag. This work reveals that simple mRNA analyses during heterologous gene design and production steps can help reach high-recombinant protein titers in a shorter time than using only traditional bioprocess optimization strategies.
Collapse
Affiliation(s)
- Filipe Fusco
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil
- Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | - Manuella Cazelato Pires
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil
- Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Vítor dos Santos Alves
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil
- Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
5
|
Yee JX, Kim J, Yeom J. Membrane Proteins as a Regulator for Antibiotic Persistence in Gram-Negative Bacteria. J Microbiol 2023; 61:331-341. [PMID: 36800168 DOI: 10.1007/s12275-023-00024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023]
Abstract
Antibiotic treatment failure threatens our ability to control bacterial infections that can cause chronic diseases. Persister bacteria are a subpopulation of physiological variants that becomes highly tolerant to antibiotics. Membrane proteins play crucial roles in all living organisms to regulate cellular physiology. Although a diverse membrane component involved in persistence can result in antibiotic treatment failure, the regulations of antibiotic persistence by membrane proteins has not been fully understood. In this review, we summarize the recent advances in our understanding with regards to membrane proteins in Gram-negative bacteria as a regulator for antibiotic persistence, highlighting various physiological mechanisms in bacteria.
Collapse
Affiliation(s)
- Jia Xin Yee
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Juhyun Kim
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jinki Yeom
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore. .,Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
6
|
Callahan N, Siegall WB, Bergonzo C, Marino JP, Kelman Z. Contributions from ClpS surface residues in modulating N-terminal peptide binding and their implications for NAAB development. Protein Eng Des Sel 2023; 36:gzad007. [PMID: 37498171 DOI: 10.1093/protein/gzad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Numerous technologies are currently in development for use in next-generation protein sequencing platforms. A notable published approach employs fluorescently-tagged binding proteins to identity the N-terminus of immobilized peptides, in-between rounds of digestion. This approach makes use of N-terminal amino acid binder (NAAB) proteins, which would identify amino acids by chemical and shape complementarity. One source of NAABs is the ClpS protein family, which serve to recruit proteins to bacterial proteosomes based on the identity of the N-terminal amino acid. In this study, a Thermosynechococcus vestitus (also known as Thermosynechococcus elongatus) ClpS2 protein was used as the starting point for direct evolution of an NAAB with affinity and specificity for N-terminal leucine. Enriched variants were analyzed and shown to improve the interaction between the ClpS surface and the peptide chain, without increasing promiscuity. Interestingly, interactions were found that were unanticipated which favor different charged residues located at position 5 from the N-terminus of a target peptide.
Collapse
Affiliation(s)
- Nicholas Callahan
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - William B Siegall
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards & Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards & Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards & Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA
- Biomolecular Labeling Laboratory, IBBR, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
7
|
Dougan DA, Truscott KN. Affinity isolation and biochemical characterization of N-degron ligands using the N-recognin, ClpS. Methods Enzymol 2023. [PMID: 37532398 DOI: 10.1016/bs.mie.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The N-degron pathways are a set of proteolytic systems that relate the half-life of a protein to its N-terminal (Nt) residue. In Escherichia coli the principal N-degron pathway is known as the Leu/N-degron pathway. Proteins degraded by this pathway contain an Nt degradation signal (N-degron) composed of an Nt primary destabilizing (Nd1) residue (Leu, Phe, Trp or Tyr). All Leu/N-degron substrates are recognized by the adaptor protein, ClpS and delivered to the ClpAP protease for degradation. Although many components of the pathway are well defined, the physiological role of this pathway remains poorly understood. To address this gap in knowledge we developed a biospecific affinity chromatography technique to isolate physiological substrates of the Leu/N-degron pathway. In this chapter we describe the use of peptide arrays to determine the binding specificity of ClpS. We demonstrate how the information obtained from the peptide array, when coupled with ClpS affinity chromatography, can be used to specifically elute physiological Leu/N-degron ligands from a bacterial lysate. These techniques are illustrated using E. coli ClpS (EcClpS), but both are broadly suitable for application to related N-recognins and systems, not only for the determination of N-recognin specificity, but also for the identification of natural Leu/N-degron ligands from various bacterial and plant species that contain ClpS homologs.
Collapse
|
8
|
Abstract
Bacterial proteases are a promising post-translational regulation strategy in synthetic circuits because they recognize specific amino acid degradation tags (degrons) that can be fine-tuned to modulate the degradation levels of tagged proteins. For this reason, recent efforts have been made in the search for new degrons. Here we review the up-to-date applications of degradation tags for circuit engineering in bacteria. In particular, we pay special attention to the effects of degradation bottlenecks in synthetic oscillators and introduce mathematical approaches to study queueing that enable the quantitative modelling of proteolytic queues.
Collapse
Affiliation(s)
- Prajakta Jadhav
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Yanyan Chen
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| | - Arantxa Urchueguía
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.,Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| |
Collapse
|
9
|
Fló M, Carrión F, Olivero-Deibe N, Bianchi S, Portela M, Rammauro F, Alvarez B, Pritsch O. Kinetics of Bovine leukemia virus aspartic protease reveals its dimerization and conformational change. PLoS One 2022; 17:e0271671. [PMID: 35867649 PMCID: PMC9307154 DOI: 10.1371/journal.pone.0271671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022] Open
Abstract
The retropepsin (PR) of the Bovine leukemia virus (BLV) plays, as in other retroviruses, a crucial role in the transition from the non-infective viral particle to the infective virion by processing the polyprotein Gag. PR is expressed as an immature precursor associated with Gag, after an occasional −1 ribosomal frameshifting event. Self-hydrolysis of PR at specific N- and C-terminal sites releases the monomer that dimerizes giving rise to the active protease. We designed a strategy to express BLV PR in E. coli as a fusion protein with maltose binding protein, with a six-histidine tag at its N-terminal end, and bearing a tobacco etch virus protease hydrolysis site. This allowed us to obtain soluble and mature recombinant PR in relatively good yields, with exactly the same amino acid composition as the native protein. As PR presents relative promiscuity for the hydrolysis sites we designed four fluorogenic peptide substrates based on Förster resonance energy transfer (FRET) in order to characterize the activity of the recombinant enzyme. These substrates opened the way to perform kinetic studies, allowing us to characterize the dimer-monomer equilibrium. Furthermore, we obtained kinetic evidence for the existence of a conformational change that enables the interaction with the substrate. These results constitute a starting point for the elucidation of the kinetic properties of BLV-PR, and may be relevant not only to improve the chemical warfare against this virus but also to better understand other viral PRs.
Collapse
Affiliation(s)
- Martín Fló
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- * E-mail: (OP); (MF)
| | - Federico Carrión
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Sergio Bianchi
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Biomarcadores Moleculares, Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Facultad de Ciencias, Montevideo, Uruguay
| | - Florencia Rammauro
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Otto Pritsch
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- * E-mail: (OP); (MF)
| |
Collapse
|
10
|
Lentz S, Trossmann VT, Borkner CB, Beyersdorfer V, Rottmar M, Scheibel T. Structure-Property Relationship Based on the Amino Acid Composition of Recombinant Spider Silk Proteins for Potential Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31751-31766. [PMID: 35786828 DOI: 10.1021/acsami.2c09590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Improving biomaterials by engineering application-specific and adjustable properties is of increasing interest. Most of the commonly available materials fulfill the mechanical and physical requirements of relevant biomedical applications, but they lack biological functionality, including biocompatibility and prevention of microbial infestation. Thus, research has focused on customizable, application-specific, and modifiable surface coatings to cope with the limitations of existing biomaterials. In the case of adjustable degradation and configurable interaction with body fluids and cells, these coatings enlarge the applicability of the underlying biomaterials. Silks are interesting coating materials, e.g., for implants, since they exhibit excellent biocompatibility and mechanical properties. Herein, we present putative implant coatings made of five engineered recombinant spider silk proteins derived from the European garden spider Araneus diadematus fibroins (ADF), differing in amino acid sequence and charge. We analyzed the influence of the underlying amino acid composition on wetting behavior, blood compatibility, biodegradability, serum protein adsorption, and cell adhesion. The outcome of the comparison indicates that spider silk coatings can be engineered for explicit biomedical applications.
Collapse
Affiliation(s)
- Sarah Lentz
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Vanessa T Trossmann
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Christian B Borkner
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Vivien Beyersdorfer
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Markus Rottmar
- Laboratory for Materials-Biology Interactions, Empa Swiss Federal Laboratories for Materials Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
- Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
11
|
Bellotto N, Agudo-Canalejo J, Colin R, Golestanian R, Malengo G, Sourjik V. Dependence of diffusion in Escherichia coli cytoplasm on protein size, environmental conditions, and cell growth. eLife 2022; 11:82654. [PMID: 36468683 PMCID: PMC9810338 DOI: 10.7554/elife.82654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Inside prokaryotic cells, passive translational diffusion typically limits the rates with which cytoplasmic proteins can reach their locations. Diffusion is thus fundamental to most cellular processes, but the understanding of protein mobility in the highly crowded and non-homogeneous environment of a bacterial cell is still limited. Here, we investigated the mobility of a large set of proteins in the cytoplasm of Escherichia coli, by employing fluorescence correlation spectroscopy (FCS) combined with simulations and theoretical modeling. We conclude that cytoplasmic protein mobility could be well described by Brownian diffusion in the confined geometry of the bacterial cell and at the high viscosity imposed by macromolecular crowding. We observed similar size dependence of protein diffusion for the majority of tested proteins, whether native or foreign to E. coli. For the faster-diffusing proteins, this size dependence is well consistent with the Stokes-Einstein relation once taking into account the specific dumbbell shape of protein fusions. Pronounced subdiffusion and hindered mobility are only observed for proteins with extensive interactions within the cytoplasm. Finally, while protein diffusion becomes markedly faster in actively growing cells, at high temperature, or upon treatment with rifampicin, and slower at high osmolarity, all of these perturbations affect proteins of different sizes in the same proportions, which could thus be described as changes of a well-defined cytoplasmic viscosity.
Collapse
Affiliation(s)
- Nicola Bellotto
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | | | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany,Rudolf Peierls Centre for Theoretical Physics, University of OxfordOxfordUnited Kingdom
| | - Gabriele Malengo
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| |
Collapse
|
12
|
Zutz A, Hamborg L, Pedersen LE, Kassem MM, Papaleo E, Koza A, Herrgård MJ, Jensen SI, Teilum K, Lindorff-Larsen K, Nielsen AT. A dual-reporter system for investigating and optimizing protein translation and folding in E. coli. Nat Commun 2021; 12:6093. [PMID: 34667164 PMCID: PMC8526717 DOI: 10.1038/s41467-021-26337-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/01/2021] [Indexed: 01/29/2023] Open
Abstract
Strategies for investigating and optimizing the expression and folding of proteins for biotechnological and pharmaceutical purposes are in high demand. Here, we describe a dual-reporter biosensor system that simultaneously assesses in vivo protein translation and protein folding, thereby enabling rapid screening of mutant libraries. We have validated the dual-reporter system on five different proteins and find an excellent correlation between reporter signals and the levels of protein expression and solubility of the proteins. We further demonstrate the applicability of the dual-reporter system as a screening assay for deep mutational scanning experiments. The system enables high throughput selection of protein variants with high expression levels and altered protein stability. Next generation sequencing analysis of the resulting libraries of protein variants show a good correlation between computationally predicted and experimentally determined protein stabilities. We furthermore show that the mutational experimental data obtained using this system may be useful for protein structure calculations.
Collapse
Affiliation(s)
- Ariane Zutz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Louise Hamborg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Maher M Kassem
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Elena Papaleo
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Anna Koza
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Sheila Ingemann Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
13
|
Izert MA, Klimecka MM, Górna MW. Applications of Bacterial Degrons and Degraders - Toward Targeted Protein Degradation in Bacteria. Front Mol Biosci 2021; 8:669762. [PMID: 34026843 PMCID: PMC8138137 DOI: 10.3389/fmolb.2021.669762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
A repertoire of proteolysis-targeting signals known as degrons is a necessary component of protein homeostasis in every living cell. In bacteria, degrons can be used in place of chemical genetics approaches to interrogate and control protein function. Here, we provide a comprehensive review of synthetic applications of degrons in targeted proteolysis in bacteria. We describe recent advances ranging from large screens employing tunable degradation systems and orthogonal degrons, to sophisticated tools and sensors for imaging. Based on the success of proteolysis-targeting chimeras as an emerging paradigm in cancer drug discovery, we discuss perspectives on using bacterial degraders for studying protein function and as novel antimicrobials.
Collapse
Affiliation(s)
| | | | - Maria Wiktoria Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Bouchnak I, van Wijk KJ. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis. J Biol Chem 2021; 296:100338. [PMID: 33497624 PMCID: PMC7966870 DOI: 10.1016/j.jbc.2021.100338] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
ATPases Associated with diverse cellular Activities (AAA+) are a superfamily of proteins that typically assemble into hexameric rings. These proteins contain AAA+ domains with two canonical motifs (Walker A and B) that bind and hydrolyze ATP, allowing them to perform a wide variety of different functions. For example, AAA+ proteins play a prominent role in cellular proteostasis by controlling biogenesis, folding, trafficking, and degradation of proteins present within the cell. Several central proteolytic systems (e.g., Clp, Deg, FtsH, Lon, 26S proteasome) use AAA+ domains or AAA+ proteins to unfold protein substrates (using energy from ATP hydrolysis) to make them accessible for degradation. This allows AAA+ protease systems to degrade aggregates and large proteins, as well as smaller proteins, and feed them as linearized molecules into a protease chamber. This review provides an up-to-date and a comparative overview of the essential Clp AAA+ protease systems in Cyanobacteria (e.g., Synechocystis spp), plastids of photosynthetic eukaryotes (e.g., Arabidopsis, Chlamydomonas), and apicoplasts in the nonphotosynthetic apicomplexan pathogen Plasmodium falciparum. Recent progress and breakthroughs in identifying Clp protease structures, substrates, substrate adaptors (e.g., NblA/B, ClpS, ClpF), and degrons are highlighted. We comment on the physiological importance of Clp activity, including plastid biogenesis, proteostasis, the chloroplast Protein Unfolding Response, and metabolism, across these diverse lineages. Outstanding questions as well as research opportunities and priorities to better understand the essential role of Clp systems in cellular proteostasis are discussed.
Collapse
Affiliation(s)
- Imen Bouchnak
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA.
| |
Collapse
|
15
|
Danchin A, Sekowska A, You C. One-carbon metabolism, folate, zinc and translation. Microb Biotechnol 2020; 13:899-925. [PMID: 32153134 PMCID: PMC7264889 DOI: 10.1111/1751-7915.13550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron-sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongS.A.R. Hong KongChina
| | - Agnieszka Sekowska
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen University1066 Xueyuan Rd518055ShenzhenChina
| |
Collapse
|
16
|
Geissinger SE, Schreiber A, Huber MC, Stühn LG, Schiller SM. Adjustable Bioorthogonal Conjugation Platform for Protein Studies in Live Cells Based on Artificial Compartments. ACS Synth Biol 2020; 9:827-842. [PMID: 32130855 DOI: 10.1021/acssynbio.9b00494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The investigation of complex biological processes in vivo often requires defined multiple bioconjugation and positioning of functional entities on 3D structures. Prominent examples include spatially defined protein complexes in nature, facilitating efficient biocatalysis of multistep reactions. Mimicking natural strategies, synthetic scaffolds should comprise bioorthogonal conjugation reactions and allow for absolute stoichiometric quantification as well as facile scalability through scaffold reproduction. Existing in vivo scaffolding strategies often lack covalent conjugations on geometrically confined scaffolds or precise quantitative characterization. Addressing these shortcomings, we present a bioorthogonal dual conjugation platform based on genetically encoded artificial compartments in vivo, comprising two distinct genetically encoded covalent conjugation reactions and their precise stoichiometric quantification. The SpyTag/SpyCatcher (ST/SC) bioconjugation and the controllable strain-promoted azide-alkyne cycloaddition (SPAAC) were implemented on self-assembled protein membrane-based compartments (PMBCs). The SPAAC reaction yield was quantified to be 23% ± 3% and a ST/SC surface conjugation yield of 82% ± 9% was observed, while verifying the compatibility of both chemical reactions as well as enhanced proteolytic stability. Using tandem mass spectrometry, absolute concentrations of the proteinaceous reactants were calculated to be 0.11 ± 0.05 attomol/cell for PMBC surface-tethered mCherry-ST-His and 0.22 ± 0.09 attomol/cell for PMBC-constituting pAzF-SC-E20F20-His. The established in vivo conjugation platform enables quantifiable protein-protein interaction studies on geometrically defined scaffolds and paves the road to investigate effects of scaffold-tethering on enzyme activity.
Collapse
Affiliation(s)
- Süreyya E. Geissinger
- Zentrum für Biosystemanalyse (ZBSA), University of Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Andreas Schreiber
- Zentrum für Biosystemanalyse (ZBSA), University of Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Matthias C. Huber
- Zentrum für Biosystemanalyse (ZBSA), University of Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Lara G. Stühn
- Zentrum für Biosystemanalyse (ZBSA), University of Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Stefan M. Schiller
- Zentrum für Biosystemanalyse (ZBSA), University of Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
17
|
Non-lethal exposure to H2O2 boosts bacterial survival and evolvability against oxidative stress. PLoS Genet 2020; 16:e1008649. [PMID: 32163413 PMCID: PMC7093028 DOI: 10.1371/journal.pgen.1008649] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 03/24/2020] [Accepted: 02/04/2020] [Indexed: 11/19/2022] Open
Abstract
Unicellular organisms have the prevalent challenge to survive under oxidative stress of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). ROS are present as by-products of photosynthesis and aerobic respiration. These reactive species are even employed by multicellular organisms as potent weapons against microbes. Although bacterial defences against lethal and sub-lethal oxidative stress have been studied in model bacteria, the role of fluctuating H2O2 concentrations remains unexplored. It is known that sub-lethal exposure of Escherichia coli to H2O2 results in enhanced survival upon subsequent exposure. Here we investigate the priming response to H2O2 at physiological concentrations. The basis and the duration of the response (memory) were also determined by time-lapse quantitative proteomics. We found that a low level of H2O2 induced several scavenging enzymes showing a long half-life, subsequently protecting cells from future exposure. We then asked if the phenotypic resistance against H2O2 alters the evolution of resistance against oxygen stress. Experimental evolution of H2O2 resistance revealed faster evolution and higher levels of resistance in primed cells. Several mutations were found to be associated with resistance in evolved populations affecting different loci but, counterintuitively, none of them was directly associated with scavenging systems. Our results have important implications for host colonisation and infections where microbes often encounter reactive oxygen species in gradients. Throughout evolution, bacteria were exposed to reactive oxygen species and evolved the ability to scavenge toxic oxygen radicals. Furthermore, multicellular organisms evolved the ability to produce such oxygen species directed against pathogens. Recent studies also suggest that ROS such as H2O2 play an important role during host gut colonisation by its microbiota. Traditionally, experiments with different antimicrobials have been carried out using fixed concentrations while in nature, including in intra-host environments, microbes are more likely to experience this type of stress in steps or gradients. Here we show that bacteria treated with sub-lethal concentrations of H2O2 (priming) survive far better than non-treated cells when they subsequently encounter a higher concentration. We also found that the 'priming' response has a protective role from lethal mutagenesis. This protection is provided by long-lived proteins that, upon priming, remain at a high level for several generations as determined by time-lapse LC-mass spectrometry. Bacteria that were primed evolved H2O2 resistance faster and to a higher level. Moreover, mutations that increase resistance to H2O2, as determined by whole-genome sequencing (WGS), do not occur in known scavenger encoding genes but in loci coding for other functions, at least in E. coli.
Collapse
|
18
|
Jin H, Kim R, Bhaya D. Deciphering proteolysis pathways for the error-prone DNA polymerase in cyanobacteria. Environ Microbiol 2020; 23:559-571. [PMID: 31908125 DOI: 10.1111/1462-2920.14911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
Protein quality control pathways require AAA+ proteases, such as Clp and Lon. Lon protease maintains UmuD, an important component of the error-prone DNA repair polymerase (Pol V), at very low levels in E. coli. Most members of the phylum Cyanobacteria lack Lon (including the model cyanobacterium, Synechocystis sp. PCC6803), so maintenance of UmuD at low levels must employ different proteases. We demonstrate that the first 19 residues from the N-terminus of UmuD (Sug1-19 ) fused to a reporter protein are adequate to trigger complete proteolysis and that mutation of a single leucine residue (L6) to aspartic acid inhibits proteolysis. This process appears to follow the N-end rule and is mediated by ClpA/P protease and the ClpS adaptor. Additionally, mutations of arginine residues in the Sug1-19 tag suggest that the ClpX/P pathway also plays a role in proteolysis. We propose that there is a dual degron at the N-terminus of the UmuD protein in Synechocystis sp. PCC6803, which is distinct from the degron required for degradation of UmuD in E. coli. The use of two proteolysis pathways to tune levels of UmuD might reflect how a photosynthetic organism responds to multiple environmental stressors.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Plant Biology, Carnegie Institution for Science, Stanford, 94305, CA, USA
| | - Rick Kim
- Department of Plant Biology, Carnegie Institution for Science, Stanford, 94305, CA, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, 94305, CA, USA
| |
Collapse
|
19
|
Bouchnak I, van Wijk KJ. N-Degron Pathways in Plastids. TRENDS IN PLANT SCIENCE 2019; 24:917-926. [PMID: 31300194 DOI: 10.1016/j.tplants.2019.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Protein amino (N) termini are major determinants of protein stability in the cytosol of eukaryotes and prokaryotes, conceptualized in the N-end rule pathway, lately referred to as N-degron pathways. Here we argue for the existence of N-degron pathways in plastids of apicomplexa, algae, and plants. The prokaryotic N-degron pathway depends on a caseinolytic protease (CLP) S recognin (adaptor) for the recognition and delivery of N-degron-bearing substrates to CLP chaperone-protease systems. Diversified CLP systems are found in chloroplasts and nonphotosynthetic plastids, including CLPS homologs that specifically interact with a subset of N-terminal residues and stromal proteins. Chloroplast N-terminome data show enrichment of classic stabilizing residues [Ala (A), Ser (S), Val (V), Thr (T)] and avoidance of charged and large hydrophobic residues. We outline experimental test strategies for plastid N-degron pathways.
Collapse
Affiliation(s)
- Imen Bouchnak
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14850, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
20
|
Gao X, Yeom J, Groisman EA. The expanded specificity and physiological role of a widespread N-degron recognin. Proc Natl Acad Sci U S A 2019; 116:18629-18637. [PMID: 31451664 PMCID: PMC6744884 DOI: 10.1073/pnas.1821060116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All cells use proteases to maintain protein homeostasis. The proteolytic systems known as the N-degron pathways recognize signals at the N terminus of proteins and bring about the degradation of these proteins. The ClpS protein enforces the N-degron pathway in bacteria and bacteria-derived organelles by targeting proteins harboring leucine, phenylalanine, tryptophan, or tyrosine at the N terminus for degradation by the protease ClpAP. We now report that ClpS binds, and ClpSAP degrades, proteins still harboring the N-terminal methionine. We determine that ClpS recognizes a type of degron in intact proteins based on the identity of the fourth amino acid from the N terminus, showing a strong preference for large hydrophobic amino acids. We uncover natural ClpS substrates in the bacterium Salmonella enterica, including SpoT, the essential synthase/hydrolase of the alarmone (p)ppGpp. Our findings expand both the specificity and physiological role of the widespread N-degron recognin ClpS.
Collapse
Affiliation(s)
- Xiaohui Gao
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536
| | - Jinki Yeom
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536;
- Yale Microbial Sciences Institute, West Haven, CT 06516
| |
Collapse
|
21
|
Crnković A, Vargas-Rodriguez O, Söll D. Plasticity and Constraints of tRNA Aminoacylation Define Directed Evolution of Aminoacyl-tRNA Synthetases. Int J Mol Sci 2019; 20:ijms20092294. [PMID: 31075874 PMCID: PMC6540133 DOI: 10.3390/ijms20092294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic incorporation of noncanonical amino acids (ncAAs) has become a powerful tool to enhance existing functions or introduce new ones into proteins through expanded chemistry. This technology relies on the process of nonsense suppression, which is made possible by directing aminoacyl-tRNA synthetases (aaRSs) to attach an ncAA onto a cognate suppressor tRNA. However, different mechanisms govern aaRS specificity toward its natural amino acid (AA) substrate and hinder the engineering of aaRSs for applications beyond the incorporation of a single l-α-AA. Directed evolution of aaRSs therefore faces two interlinked challenges: the removal of the affinity for cognate AA and improvement of ncAA acylation. Here we review aspects of AA recognition that directly influence the feasibility and success of aaRS engineering toward d- and β-AAs incorporation into proteins in vivo. Emerging directed evolution methods are described and evaluated on the basis of aaRS active site plasticity and its inherent constraints.
Collapse
Affiliation(s)
- Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
22
|
Montandon C, Dougan DA, van Wijk KJ. N-degron specificity of chloroplast ClpS1 in plants. FEBS Lett 2019; 593:962-970. [PMID: 30953344 DOI: 10.1002/1873-3468.13378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
The prokaryotic N-degron pathway depends on the Clp chaperone-protease system and the ClpS adaptor for recognition of N-degron bearing substrates. Plant chloroplasts contain a diversified Clp protease, including the ClpS homolog ClpS1. Several candidate ClpS1 substrates have been identified, but the N-degron specificity is unclear. Here, we employed in vitro ClpS1 affinity assays using eight N-degron green fluorescence protein reporters containing either F, Y, L, W, I, or R in the N-terminal position. This demonstrated that ClpS1 has a restricted N-degron specificity, recognizing proteins bearing an N-terminal F or W, only weakly recognizing L, but not recognizing Y or I. This affinity is dependent on two conserved residues in the ClpS1 binding pocket and is sensitive to FR dipeptide competition, suggesting a unique chloroplast N-degron pathway.
Collapse
Affiliation(s)
- Cyrille Montandon
- Plant Biology Section, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, USA
| | - David A Dougan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Klaas J van Wijk
- Plant Biology Section, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Upadhyay A. Structure of proteins: Evolution with unsolved mysteries. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:160-172. [PMID: 31014967 DOI: 10.1016/j.pbiomolbio.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
Evolution of macromolecules could be considered as a milestone in the history of life. Nucleic acids are the long stretches of nucleotides that contain all the possible codes and information of life. On the other hand, proteins are their actual translated outcomes, or reflections of modifications in their structure that have occurred at a slow, but steady rate over a very long period of evolution. Over the years of research, biophysicists, biochemists, molecular and structural biologists have unfurled several layers of the structural convolutions in these chemical molecules; however evolutionists look over their structures through a different prism, which may or may not coincide with others. There remains a need to outline several well-known, but less discussed features of protein structures, like intrinsically disordered states, degron signals and different types of ubiquitin chains providing degradation signals, which help the cellular proteolytic machinery to identify and target the proteins towards degradation pathways. There are several important factors, which are critical for folding of proteins into their native three-dimensional conformations by the cytoplasmic chaperones; but in real time how the chaperones fold the newly synthesized polypeptide sequences into a particular three-dimensional shape within a fraction of second is still a mystery for biologists as well as mathematicians. Multiple similar unsolved or unaddressed questions need to be addressed in detail so that future line of research can dig deeper into the finer details of these structures of the proteins.
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
24
|
Rei Liao JY, van Wijk KJ. Discovery of AAA+ Protease Substrates through Trapping Approaches. Trends Biochem Sci 2019; 44:528-545. [PMID: 30773324 DOI: 10.1016/j.tibs.2018.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022]
Abstract
Proteases play essential roles in cellular proteostasis. Mechanisms through which proteases recognize their substrates are often hard to predict and therefore require experimentation. In vivo trapping allows systematic identification of potential substrates of proteases, their adaptors, and chaperones. This combines in vivo genetic modifications of proteolytic systems, stabilized protease-substrate interactions, affinity enrichments of trapped substrates, and mass spectrometry (MS)-based identification. In vitro approaches, in which immobilized protease components are incubated with isolated cellular proteome, complement this in vivo approach. Both approaches can provide information about substrate recognition signals, degrons, and conditional effects. This review summarizes published trapping studies and their biological outcomes, and provides recommendations for substrate trapping of the processive AAA+ Clp, Lon, and FtsH chaperone proteolytic systems.
Collapse
Affiliation(s)
- Jui-Yun Rei Liao
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
25
|
Sekar K, Rusconi R, Sauls JT, Fuhrer T, Noor E, Nguyen J, Fernandez VI, Buffing MF, Berney M, Jun S, Stocker R, Sauer U. Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria. Mol Syst Biol 2018; 14:e8623. [PMID: 30397005 PMCID: PMC6217170 DOI: 10.15252/msb.20188623] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022] Open
Abstract
In natural environments, microbes are typically non-dividing and gauge when nutrients permit division. Current models are phenomenological and specific to nutrient-rich, exponentially growing cells, thus cannot predict the first division under limiting nutrient availability. To assess this regime, we supplied starving Escherichia coli with glucose pulses at increasing frequencies. Real-time metabolomics and microfluidic single-cell microscopy revealed unexpected, rapid protein, and nucleic acid synthesis already from minuscule glucose pulses in non-dividing cells. Additionally, the lag time to first division shortened as pulsing frequency increased. We pinpointed division timing and dependence on nutrient frequency to the changing abundance of the division protein FtsZ. A dynamic, mechanistic model quantitatively relates lag time to FtsZ synthesis from nutrient pulses and FtsZ protease-dependent degradation. Lag time changed in model-congruent manners, when we experimentally modulated the synthesis or degradation of FtsZ. Thus, limiting abundance of FtsZ can quantitatively predict timing of the first cell division.
Collapse
Affiliation(s)
- Karthik Sekar
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Roberto Rusconi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - John T Sauls
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Tobias Fuhrer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Elad Noor
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Jen Nguyen
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vicente I Fernandez
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Marieke F Buffing
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Suckjoon Jun
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- Section of Molecular Biology, Division of Biological Science, University of California at San Diego, La Jolla, CA, USA
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Mot AC, Prell E, Klecker M, Naumann C, Faden F, Westermann B, Dissmeyer N. Real-time detection of N-end rule-mediated ubiquitination via fluorescently labeled substrate probes. THE NEW PHYTOLOGIST 2018; 217:613-624. [PMID: 28277608 PMCID: PMC5763331 DOI: 10.1111/nph.14497] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/26/2017] [Indexed: 05/18/2023]
Abstract
The N-end rule pathway has emerged as a major system for regulating protein functions by controlling their turnover in medical, animal and plant sciences as well as agriculture. Although novel functions and enzymes of the pathway have been discovered, the ubiquitination mechanism and substrate specificity of N-end rule pathway E3 ubiquitin ligases have remained elusive. Taking the first discovered bona fide plant N-end rule E3 ligase PROTEOLYSIS1 (PRT1) as a model, we used a novel tool to molecularly characterize polyubiquitination live, in real time. We gained mechanistic insights into PRT1 substrate preference and activation by monitoring live ubiquitination using a fluorescent chemical probe coupled to artificial substrate reporters. Ubiquitination was measured by rapid in-gel fluorescence scanning as well as in real time by fluorescence polarization. The enzymatic activity, substrate specificity, mechanisms and reaction optimization of PRT1-mediated ubiquitination were investigated ad hoc instantaneously and with significantly reduced reagent consumption. We demonstrated that PRT1 is indeed an E3 ligase, which has been hypothesized for over two decades. These results demonstrate that PRT1 has the potential to be involved in polyubiquitination of various substrates and therefore pave the way to understanding recently discovered phenotypes of prt1 mutants.
Collapse
Affiliation(s)
- Augustin C. Mot
- Independent Junior Research Group on Protein Recognition and DegradationLeibniz Institute of Plant Biochemistry (IPB)Weinberg 3Halle (Saale)D‐06120Germany
- ScienceCampus Halle – Plant‐based BioeconomyBetty‐Heimann‐Str. 3Halle (Saale)D‐06120Germany
| | - Erik Prell
- Department of Bioorganic ChemistryLeibniz Institute of Plant Biochemistry (IPB)Weinberg 3Halle (Saale)D‐06120Germany
| | - Maria Klecker
- Independent Junior Research Group on Protein Recognition and DegradationLeibniz Institute of Plant Biochemistry (IPB)Weinberg 3Halle (Saale)D‐06120Germany
- ScienceCampus Halle – Plant‐based BioeconomyBetty‐Heimann‐Str. 3Halle (Saale)D‐06120Germany
| | - Christin Naumann
- Independent Junior Research Group on Protein Recognition and DegradationLeibniz Institute of Plant Biochemistry (IPB)Weinberg 3Halle (Saale)D‐06120Germany
- ScienceCampus Halle – Plant‐based BioeconomyBetty‐Heimann‐Str. 3Halle (Saale)D‐06120Germany
| | - Frederik Faden
- Independent Junior Research Group on Protein Recognition and DegradationLeibniz Institute of Plant Biochemistry (IPB)Weinberg 3Halle (Saale)D‐06120Germany
- ScienceCampus Halle – Plant‐based BioeconomyBetty‐Heimann‐Str. 3Halle (Saale)D‐06120Germany
| | - Bernhard Westermann
- Department of Bioorganic ChemistryLeibniz Institute of Plant Biochemistry (IPB)Weinberg 3Halle (Saale)D‐06120Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and DegradationLeibniz Institute of Plant Biochemistry (IPB)Weinberg 3Halle (Saale)D‐06120Germany
- ScienceCampus Halle – Plant‐based BioeconomyBetty‐Heimann‐Str. 3Halle (Saale)D‐06120Germany
| |
Collapse
|
27
|
Yeom J, Wayne KJ, Groisman EA. Sequestration from Protease Adaptor Confers Differential Stability to Protease Substrate. Mol Cell 2017; 66:234-246.e5. [PMID: 28431231 DOI: 10.1016/j.molcel.2017.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/23/2017] [Accepted: 03/14/2017] [Indexed: 12/24/2022]
Abstract
According to the N-end rule, the N-terminal residue of a protein determines its stability. In bacteria, the adaptor ClpS mediates proteolysis by delivering substrates bearing specific N-terminal residues to the protease ClpAP. We now report that the Salmonella adaptor ClpS binds to the N terminus of the regulatory protein PhoP, resulting in PhoP degradation by ClpAP. We establish that the PhoP-activated protein MgtC protects PhoP from degradation by outcompeting ClpS for binding to PhoP. MgtC appears to act exclusively on PhoP, as it did not alter the stability of a different ClpS-dependent ClpAP substrate. Removal of five N-terminal residues rendered PhoP stability independent of both the clpS and mgtC genes. By preserving PhoP protein levels, MgtC enables normal temporal transcription of PhoP-activated genes. The identified mechanism provides a simple means to spare specific substrates from an adaptor-dependent protease.
Collapse
Affiliation(s)
- Jinki Yeom
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Kyle J Wayne
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA; Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA.
| |
Collapse
|
28
|
Kuhlmann NJ, Chien P. Selective adaptor dependent protein degradation in bacteria. Curr Opin Microbiol 2017; 36:118-127. [PMID: 28458096 DOI: 10.1016/j.mib.2017.03.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/12/2017] [Accepted: 03/29/2017] [Indexed: 11/30/2022]
Abstract
Energy dependent proteolysis is essential for all life, but uncontrolled degradation leads to devastating consequences. In bacteria, oligomeric AAA+ proteases are responsible for controlling protein destruction and are regulated in part by adaptor proteins. Adaptors are regulatory factors that shape protease substrate choice by either restricting or enhancing substrate recognition in several ways. In some cases, protease activity or assembly itself requires adaptor binding. Adaptors can also alter specificity by acting as scaffolds to tether particular substrates to already active proteases. Finally, hierarchical assembly of adaptors can use combinations of several activities to enhance the protease's selectivity. Because the lifetime of the constituent proteins directly affects the duration of a particular signaling pathway, regulated proteolysis impacts almost all cellular responses. In this review, we describe recent progress in regulated protein degradation, focusing on fundamental principles of adaptors and how they perform critical biological functions, such as promoting cell cycle progression and quality control.
Collapse
Affiliation(s)
- Nathan J Kuhlmann
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States
| | - Peter Chien
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States; Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States.
| |
Collapse
|
29
|
Wadas B, Piatkov KI, Brower CS, Varshavsky A. Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays. J Biol Chem 2016; 291:20976-20992. [PMID: 27510035 DOI: 10.1074/jbc.m116.747956] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 01/29/2023] Open
Abstract
Nα-terminal arginylation (Nt-arginylation) of proteins is mediated by the Ate1 arginyltransferase (R-transferase), a component of the Arg/N-end rule pathway. This proteolytic system recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. The definitively identified ("canonical") residues that are Nt-arginylated by R-transferase are N-terminal Asp, Glu, and (oxidized) Cys. Over the last decade, several publications have suggested (i) that Ate1 can also arginylate non-canonical N-terminal residues; (ii) that Ate1 is capable of arginylating not only α-amino groups of N-terminal residues but also γ-carboxyl groups of internal (non-N-terminal) Asp and Glu; and (iii) that some isoforms of Ate1 are specific for substrates bearing N-terminal Cys residues. In the present study, we employed arrays of immobilized 11-residue peptides and pulse-chase assays to examine the substrate specificity of mouse R-transferase. We show that amino acid sequences immediately downstream of a substrate's canonical (Nt-arginylatable) N-terminal residue, particularly a residue at position 2, can affect the rate of Nt-arginylation by R-transferase and thereby the rate of degradation of a substrate protein. We also show that the four major isoforms of mouse R-transferase have similar Nt-arginylation specificities in vitro, contrary to the claim about the specificity of some Ate1 isoforms for N-terminal Cys. In addition, we found no evidence for a significant activity of the Ate1 R-transferase toward previously invoked non-canonical N-terminal or internal amino acid residues. Together, our results raise technical concerns about earlier studies that invoked non-canonical arginylation specificities of Ate1.
Collapse
Affiliation(s)
- Brandon Wadas
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Konstantin I Piatkov
- the Center for Biotechnology and Biomedicine, Skolkovo Institute of Science and Technology, Moscow 143026, Russia, and
| | | | - Alexander Varshavsky
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125,
| |
Collapse
|
30
|
Wadas B, Borjigin J, Huang Z, Oh JH, Hwang CS, Varshavsky A. Degradation of Serotonin N-Acetyltransferase, a Circadian Regulator, by the N-end Rule Pathway. J Biol Chem 2016; 291:17178-96. [PMID: 27339900 DOI: 10.1074/jbc.m116.734640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Indexed: 12/22/2022] Open
Abstract
Serotonin N-acetyltransferase (AANAT) converts serotonin to N-acetylserotonin (NAS), a distinct biological regulator and the immediate precursor of melatonin, a circulating hormone that influences circadian processes, including sleep. N-terminal sequences of AANAT enzymes vary among vertebrates. Mechanisms that regulate the levels of AANAT are incompletely understood. Previous findings were consistent with the possibility that AANAT may be controlled through its degradation by the N-end rule pathway. By expressing the rat and human AANATs and their mutants not only in mammalian cells but also in the yeast Saccharomyces cerevisiae, and by taking advantage of yeast genetics, we show here that two "complementary" forms of rat AANAT are targeted for degradation by two "complementary" branches of the N-end rule pathway. Specifically, the N(α)-terminally acetylated (Nt-acetylated) Ac-AANAT is destroyed through the recognition of its Nt-acetylated N-terminal Met residue by the Ac/N-end rule pathway, whereas the non-Nt-acetylated AANAT is targeted by the Arg/N-end rule pathway, which recognizes the unacetylated N-terminal Met-Leu sequence of rat AANAT. We also show, by constructing lysine-to-arginine mutants of rat AANAT, that its degradation is mediated by polyubiquitylation of its Lys residue(s). Human AANAT, whose N-terminal sequence differs from that of rodent AANATs, is longer-lived than its rat counterpart and appears to be refractory to degradation by the N-end rule pathway. Together, these and related results indicate both a major involvement of the N-end rule pathway in the control of rodent AANATs and substantial differences in the regulation of rodent and human AANATs that stem from differences in their N-terminal sequences.
Collapse
Affiliation(s)
- Brandon Wadas
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Jimo Borjigin
- the Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Zheping Huang
- the Department of Immunology, University of Connecticut School of Medicine, Farmington, Connecticut 06030, and
| | - Jang-Hyun Oh
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Cheol-Sang Hwang
- the Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 790-784, South Korea
| | - Alexander Varshavsky
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125,
| |
Collapse
|
31
|
Sekar K, Gentile AM, Bostick JW, Tyo KEJ. N-Terminal-Based Targeted, Inducible Protein Degradation in Escherichia coli. PLoS One 2016; 11:e0149746. [PMID: 26900850 PMCID: PMC4765774 DOI: 10.1371/journal.pone.0149746] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/04/2016] [Indexed: 11/18/2022] Open
Abstract
Dynamically altering protein concentration is a central activity in synthetic biology. While many tools are available to modulate protein concentration by altering protein synthesis rate, methods for decreasing protein concentration by inactivation or degradation rate are just being realized. Altering protein synthesis rates can quickly increase the concentration of a protein but not decrease, as residual protein will remain for a while. Inducible, targeted protein degradation is an attractive option and some tools have been introduced for higher organisms and bacteria. Current bacterial tools rely on C-terminal fusions, so we have developed an N-terminal fusion (Ntag) strategy to increase the possible proteins that can be targeted. We demonstrate Ntag dependent degradation of mCherry and beta-galactosidase and reconfigure the Ntag system to perform dynamic, exogenously inducible degradation of a targeted protein and complement protein depletion by traditional synthesis repression. Model driven analysis that focused on rates, rather than concentrations, was critical to understanding and engineering the system. We expect this tool and our model to enable inducible protein degradation use particularly in metabolic engineering, biological study of essential proteins, and protein circuits.
Collapse
Affiliation(s)
- Karthik Sekar
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States of America
| | - Andrew M. Gentile
- Master of Biotechnology Program, Northwestern University, Evanston, IL, United States of America
| | - John W. Bostick
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States of America
- Department of Pathology, Northwestern University, Chicago, IL, United States of America
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL, United States of America
| | - Keith E. J. Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States of America
- * E-mail:
| |
Collapse
|
32
|
Piatkov KI, Vu TTM, Hwang CS, Varshavsky A. Formyl-methionine as a degradation signal at the N-termini of bacterial proteins. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 2:376-393. [PMID: 26866044 PMCID: PMC4745127 DOI: 10.15698/mic2015.10.231] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/17/2015] [Indexed: 02/04/2023]
Abstract
In bacteria, all nascent proteins bear the pretranslationally formed N-terminal formyl-methionine (fMet) residue. The fMet residue is cotranslationally deformylated by a ribosome-associated deformylase. The formylation of N-terminal Met in bacterial proteins is not strictly essential for either translation or cell viability. Moreover, protein synthesis by the cytosolic ribosomes of eukaryotes does not involve the formylation of N-terminal Met. What, then, is the main biological function of this metabolically costly, transient, and not strictly essential modification of N-terminal Met, and why has Met formylation not been eliminated during bacterial evolution? One possibility is that the similarity of the formyl and acetyl groups, their identical locations in N-terminally formylated (Nt-formylated) and Nt-acetylated proteins, and the recently discovered proteolytic function of Nt-acetylation in eukaryotes might also signify a proteolytic role of Nt-formylation in bacteria. We addressed this hypothesis about fMet-based degradation signals, termed fMet/N-degrons, using specific E. coli mutants, pulse-chase degradation assays, and protein reporters whose deformylation was altered, through site-directed mutagenesis, to be either rapid or relatively slow. Our findings strongly suggest that the formylated N-terminal fMet can act as a degradation signal, largely a cotranslational one. One likely function of fMet/N-degrons is the control of protein quality. In bacteria, the rate of polypeptide chain elongation is nearly an order of magnitude higher than in eukaryotes. We suggest that the faster emergence of nascent proteins from bacterial ribosomes is one mechanistic and evolutionary reason for the pretranslational design of bacterial fMet/N-degrons, in contrast to the cotranslational design of analogous Ac/N-degrons in eukaryotes.
Collapse
Affiliation(s)
- Konstantin I. Piatkov
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
- Center for Biotechnology and Biomedicine, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Tri T. M. Vu
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 790-784, South Korea
| | - Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
33
|
Liu YJ, Liu C, Chang Z, Wadas B, Brower CS, Song ZH, Xu ZL, Shang YL, Liu WX, Wang LN, Dong W, Varshavsky A, Hu RG, Li W. Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway. J Biol Chem 2016; 291:7426-38. [PMID: 26858254 DOI: 10.1074/jbc.m116.714964] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Indexed: 02/05/2023] Open
Abstract
The Ate1 arginyltransferase (R-transferase) is a component of the N-end rule pathway, which recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. Ate1 arginylates N-terminal Asp, Glu, or (oxidized) Cys. The resulting N-terminal Arg is recognized by ubiquitin ligases of the N-end rule pathway. In the yeastSaccharomyces cerevisiae, the separase-mediated cleavage of the Scc1/Rad21/Mcd1 cohesin subunit generates a C-terminal fragment that bears N-terminal Arg and is destroyed by the N-end rule pathway without a requirement for arginylation. In contrast, the separase-mediated cleavage of Rec8, the mammalian meiotic cohesin subunit, yields a fragment bearing N-terminal Glu, a substrate of the Ate1 R-transferase. Here we constructed and used a germ cell-confinedAte1(-/-)mouse strain to analyze the separase-generated C-terminal fragment of Rec8. We show that this fragment is a short-lived N-end rule substrate, that its degradation requires N-terminal arginylation, and that maleAte1(-/-)mice are nearly infertile, due to massive apoptotic death ofAte1(-/-)spermatocytes during the metaphase of meiosis I. These effects ofAte1ablation are inferred to be caused, at least in part, by the failure to destroy the C-terminal fragment of Rec8 in the absence of N-terminal arginylation.
Collapse
Affiliation(s)
- Yu-Jiao Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the College of Marine Life, Ocean University of China, Qingdao 266003, China, and
| | - Chao Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - ZeNan Chang
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Brandon Wadas
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Christopher S Brower
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Zhen-Hua Song
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Liang Xu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Shang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Xiao Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Na Wang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Dong
- the College of Marine Life, Ocean University of China, Qingdao 266003, China, and
| | - Alexander Varshavsky
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125,
| | - Rong-Gui Hu
- the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Li
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,
| |
Collapse
|
34
|
Stein BJ, Grant RA, Sauer RT, Baker TA. Structural Basis of an N-Degron Adaptor with More Stringent Specificity. Structure 2016; 24:232-42. [PMID: 26805523 DOI: 10.1016/j.str.2015.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/11/2015] [Indexed: 11/25/2022]
Abstract
The N-end rule dictates that a protein's N-terminal residue determines its half-life. In bacteria, the ClpS adaptor mediates N-end-rule degradation, by recognizing proteins bearing specific N-terminal residues and delivering them to the ClpAP AAA+ protease. Unlike most bacterial clades, many α-proteobacteria encode two ClpS paralogs, ClpS1 and ClpS2. Here, we demonstrate that both ClpS1 and ClpS2 from A. tumefaciens deliver N-end-rule substrates to ClpA, but ClpS2 has more stringent binding specificity, recognizing only a subset of the canonical bacterial N-end-rule residues. The basis of this enhanced specificity is addressed by crystal structures of ClpS2, with and without ligand, and structure-guided mutagenesis, revealing protein conformational changes and remodeling in the substrate-binding pocket. We find that ClpS1 and ClpS2 are differentially expressed during growth in A. tumefaciens and conclude that the use of multiple ClpS paralogs allows fine-tuning of N-end-rule degradation at the level of substrate recognition.
Collapse
Affiliation(s)
- Benjamin J Stein
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
35
|
Fung AWS, Payoe R, Fahlman RP. Perspectives and Insights into the Competition for Aminoacyl-tRNAs between the Translational Machinery and for tRNA Dependent Non-Ribosomal Peptide Bond Formation. Life (Basel) 2015; 6:life6010002. [PMID: 26729173 PMCID: PMC4810233 DOI: 10.3390/life6010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 12/19/2022] Open
Abstract
Aminoacyl-tRNA protein transferases catalyze the transfer of amino acids from aminoacyl-tRNAs to polypeptide substrates. Different forms of these enzymes are found in the different kingdoms of life and have been identified to be central to a wide variety of cellular processes. L/F-transferase is the sole member of this class of enzyme found in Escherichia coli and catalyzes the transfer of leucine to the N-termini of proteins which result in the targeted degradation of the modified protein. Recent investigations on the tRNA specificity of L/F-transferase have revealed the unique recognition nucleotides for a preferred Leu-tRNALeu isoacceptor substrate. In addition to discussing this tRNA selectivity by L/F-transferase, we present and discuss a hypothesis and its implications regarding the apparent competition for this aminoacyl-tRNA between L/F-transferase and the translational machinery. Our discussion reveals a hypothetical involvement of the bacterial stringent response that occurs upon amino acid limitation as a potential cellular event that may reduce this competition and provide the opportunity for L/F-transferase to readily increase its access to the pool of aminoacylated tRNA substrates.
Collapse
Affiliation(s)
- Angela W S Fung
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, 474-MSB Edmonton, AB T6G 2H7, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Roshani Payoe
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, 474-MSB Edmonton, AB T6G 2H7, Canada.
- Institute of Technology, Faculty of Science and Technology, University of Tartu, Noorse St 1, Tartu 50411, Estonia.
| | - Richard P Fahlman
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, 474-MSB Edmonton, AB T6G 2H7, Canada.
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
36
|
Tryggvesson A, Ståhlberg FM, Töpel M, Tanabe N, Mogk A, Clarke AK. Characterization of ClpS2, an essential adaptor protein for the cyanobacterium Synechococcus elongatus. FEBS Lett 2015; 589:4039-46. [DOI: 10.1016/j.febslet.2015.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022]
|
37
|
Bittner LM, Westphal K, Narberhaus F. Conditional Proteolysis of the Membrane Protein YfgM by the FtsH Protease Depends on a Novel N-terminal Degron. J Biol Chem 2015; 290:19367-78. [PMID: 26092727 DOI: 10.1074/jbc.m115.648550] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 01/16/2023] Open
Abstract
Regulated proteolysis efficiently and rapidly adapts the bacterial proteome to changing environmental conditions. Many protease substrates contain recognition motifs, so-called degrons, that direct them to the appropriate protease. Here we describe an entirely new degron identified in the cytoplasmic N-terminal end of the membrane-anchored protein YfgM of Escherichia coli. YfgM is stable during exponential growth and degraded in stationary phase by the essential FtsH protease. The alarmone (p)ppGpp, but not the previously described YfgM interactors RcsB and PpiD, influence YfgM degradation. By scanning mutagenesis, we define individual amino acids responsible for turnover of YfgM and find that the degron does not at all comply with the known N-end rule pathway. The YfgM degron is a distinct module that facilitates FtsH-mediated degradation when fused to the N terminus of another monotopic membrane protein but not to that of a cytoplasmic protein. Several lines of evidence suggest that stress-induced degradation of YfgM relieves the response regulator RcsB and thereby permits cellular protection by the Rcs phosphorelay system. On the basis of these and other results in the literature, we propose a model for how the membrane-spanning YfgM protein serves as connector between the stress responses in the periplasm and cytoplasm.
Collapse
Affiliation(s)
| | - Kai Westphal
- From Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Franz Narberhaus
- From Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
38
|
Proteomic approaches to identify substrates of the three Deg/HtrA proteases of the cyanobacterium Synechocystis sp. PCC 6803. Biochem J 2015; 468:373-84. [PMID: 25877158 DOI: 10.1042/bj20150097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022]
Abstract
The family of Deg/HtrA proteases plays an important role in quality control of cellular proteins in a wide range of organisms. In the genome of the cyanobacterium Synechocystis sp. PCC 6803, a model organism for photosynthetic research and renewable energy products, three Deg proteases are encoded, termed HhoA, HhoB and HtrA. In the present study, we compared wild-type (WT) Synechocystis cells with the single insertion mutants ΔhhoA, ΔhhoB and ΔhtrA. Protein expression of the remaining Deg/HtrA proteases was strongly affected in the single insertion mutants. Detailed proteomic studies using DIGE (difference gel electrophoresis) and N-terminal COFRADIC (N-terminal combined fractional diagonal chromatography) revealed that inactivation of a single Deg protease has similar impact on the proteomes of the three mutants; differences to WT were observed in enzymes involved in the major metabolic pathways. Changes in the amount of phosphate permease system Pst-1 were observed only in the insertion mutant ΔhhoB. N-terminal COFRADIC analyses on cell lysates of ΔhhoB confirmed changed amounts of many cell envelope proteins, including the phosphate permease systems, compared with WT. In vitro COFRADIC studies were performed to identify the specificity profiles of the recombinant proteases rHhoA, rHhoB or rHtrA added to the Synechocystis WT proteome. The combined in vivo and in vitro N-terminal COFRADIC datasets propose RbcS as a natural substrate for HhoA, PsbO for HhoB and HtrA and Pbp8 for HtrA. We therefore suggest that each Synechocystis Deg protease protects the cell through different, but connected mechanisms.
Collapse
|
39
|
Protein amino-terminal modifications and proteomic approaches for N-terminal profiling. Curr Opin Chem Biol 2015; 24:71-9. [DOI: 10.1016/j.cbpa.2014.10.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 01/24/2023]
|
40
|
van Wijk KJ. Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:75-111. [PMID: 25580835 DOI: 10.1146/annurev-arplant-043014-115547] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plastids, mitochondria, and peroxisomes are key organelles with dynamic proteomes in photosynthetic eukaryotes. Their biogenesis and activity must be coordinated and require intraorganellar protein maturation, degradation, and recycling. The three organelles together are predicted to contain ∼200 presequence peptidases, proteases, aminopeptidases, and specific protease chaperones/adaptors, but the substrates and substrate selection mechanisms are poorly understood. Similarly, lifetime determinants of organellar proteins, such as N-end degrons and tagging systems, have not been identified, but the substrate recognition mechanisms likely share similarities between organelles. Novel degradomics tools for systematic analysis of protein lifetime and proteolysis could define such protease-substrate relationships, degrons, and protein lifetime. Intraorganellar proteolysis is complemented by autophagy of whole organelles or selected organellar content, as well as by cytosolic protein ubiquitination and degradation by the proteasome. This review summarizes (putative) plant organellar protease functions and substrate-protease relationships. Examples illustrate key proteolytic events.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
41
|
Organization, function and substrates of the essential Clp protease system in plastids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:915-30. [PMID: 25482260 DOI: 10.1016/j.bbabio.2014.11.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/21/2023]
Abstract
Intra-plastid proteolysis is essential in plastid biogenesis, differentiation and plastid protein homeostasis (proteostasis). We provide a comprehensive review of the Clp protease system present in all plastid types and we draw lessons from structural and functional information of bacterial Clp systems. The Clp system plays a central role in plastid development and function, through selective removal of miss-folded, aggregated, or otherwise unwanted proteins. The Clp system consists of a tetradecameric proteolytic core with catalytically active ClpP and inactive ClpR subunits, hexameric ATP-dependent chaperones (ClpC,D) and adaptor protein(s) (ClpS1) enhancing delivery of subsets of substrates. Many structural and functional features of the plastid Clp system are now understood though extensive reverse genetics analysis combined with biochemical analysis, as well as large scale quantitative proteomics for loss-of-function mutants of Clp core, chaperone and ClpS1 subunits. Evolutionary diversification of Clp system across non-photosynthetic and photosynthetic prokaryotes and organelles is illustrated. Multiple substrates have been suggested based on their direct interaction with the ClpS1 adaptor or screening of different loss-of-function protease mutants. The main challenge is now to determine degradation signals (degrons) in Clp substrates and substrate delivery mechanisms, as well as functional interactions of Clp with other plastid proteases. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
42
|
Warner JB, Muthusamy AK, Petersson EJ. Specific modulation of protein activity by using a bioorthogonal reaction. Chembiochem 2014; 15:2508-14. [PMID: 25256385 DOI: 10.1002/cbic.201402423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Indexed: 11/06/2022]
Abstract
Unnatural amino acids with bioorthogonal reactive groups have the potential to provide a rapid and specific mechanism for covalently inhibiting a protein of interest. Here, we use mutagenesis to insert an unnatural amino acid containing an azide group (Z) into the target protein at positions such that a "click" reaction with an alkyne modulator (X) will alter the function of the protein. This bioorthogonally reactive pair can engender specificity of X for the Z-containing protein, even if the target is otherwise identical to another protein, allowing for rapid target validation in living cells. We demonstrate our method using inhibition of the Escherichia coli enzyme aminoacyl transferase by both active-site occlusion and allosteric mechanisms. We have termed this a "clickable magic bullet" strategy, and it should be generally applicable to studying the effects of protein inhibition, within the limits of unnatural amino acid mutagenesis.
Collapse
Affiliation(s)
- John B Warner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323 (USA)
| | | | | |
Collapse
|