1
|
Locke TM, Fields R, Gizinski H, Otto GM, MacEwen MJS, Rusnac DV, He P, Shechner DM, McGann CD, Berg MD, Villen J, Sancak Y, Schweppe DK. High-throughput identification of calcium-regulated proteins across diverse proteomes. Cell Rep 2024; 43:114879. [PMID: 39425928 DOI: 10.1016/j.celrep.2024.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Calcium ions play important roles in nearly every biological process, yet whole-proteome analysis of calcium effectors has been hindered by a lack of high-throughput, unbiased, and quantitative methods to identify protein-calcium engagement. To address this, we adapted protein thermostability assays in budding yeast, human cells, and mouse mitochondria. Based on calcium-dependent thermostability, we identified 2,884 putative calcium-regulated proteins across human, mouse, and yeast proteomes. These data revealed calcium engagement of signaling hubs and cellular processes, including metabolic enzymes and the spliceosome. Cross-species comparison of calcium-protein engagement and mutagenesis experiments identified residue-specific cation engagement, even within well-known EF-hand domains. Additionally, we found that the dienoyl-coenzyme A (CoA) reductase DECR1 binds calcium at physiologically relevant concentrations with substrate-specific affinity, suggesting direct calcium regulation of mitochondrial fatty acid oxidation. These discovery-based proteomic analyses of calcium effectors establish a key resource to dissect cation engagement and its mechanistic effects across multiple species and diverse biological processes.
Collapse
Affiliation(s)
- Timothy M Locke
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Hayden Gizinski
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - George M Otto
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Melissa J S MacEwen
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Domnita-Valeria Rusnac
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Peixian He
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - David M Shechner
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Chris D McGann
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Matthew D Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Judit Villen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Zhu Y, Li Q. Multifaceted roles of PDCD6 both within and outside the cell. J Cell Physiol 2024; 239:e31235. [PMID: 38436472 DOI: 10.1002/jcp.31235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Programmed cell death protein 6 (PDCD6) is an evolutionarily conserved Ca2+-binding protein. PDCD6 is involved in regulating multifaceted and pleiotropic cellular processes in different cellular compartments. For instance, nuclear PDCD6 regulates apoptosis and alternative splicing. PDCD6 is required for coat protein complex II-dependent endoplasmic reticulum-to-Golgi apparatus vesicular transport in the cytoplasm. Recent advances suggest that cytoplasmic PDCD6 is involved in the regulation of cytoskeletal dynamics and innate immune responses. Additionally, membranous PDCD6 participates in membrane repair through endosomal sorting complex required for transport complex-dependent membrane budding. Interestingly, extracellular vesicles are rich in PDCD6. Moreover, abnormal expression of PDCD6 is closely associated with many diseases, especially cancer. PDCD6 is therefore a multifaceted but pivotal protein in vivo. To gain a more comprehensive understanding of PDCD6 functions and to focus and stimulate PDCD6 research, this review summarizes key developments in its role in different subcellular compartments, processes, and pathologies.
Collapse
Affiliation(s)
- Yigao Zhu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
3
|
Locke TM, Fields R, Gizinski H, Otto GM, Shechner DM, Berg MD, Villen J, Sancak Y, Schweppe D. High-Throughput Identification of Calcium Regulated Proteins Across Diverse Proteomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.575273. [PMID: 38293219 PMCID: PMC10827220 DOI: 10.1101/2024.01.18.575273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Calcium ions play important roles in nearly every biological process, yet whole-proteome analysis of calcium effectors has been hindered by lack of high-throughput, unbiased, and quantitative methods to identify proteins-calcium engagement. To address this, we adapted protein thermostability assays in the budding yeast, human cells, and mouse mitochondria. Based on calcium-dependent thermostability, we identified 2884 putative calcium-regulated proteins across human, mouse, and yeast proteomes. These data revealed calcium engagement of novel signaling hubs and cellular processes, including metabolic enzymes and the spliceosome. Cross-species comparison of calcium-protein engagement and mutagenesis experiments identified residue-specific cation engagement, even within well-known EF-hand domains. Additionally, we found that the dienoyl-CoA reductase DECR1 binds calcium at physiologically-relevant concentrations with substrate-specific affinity, suggesting direct calcium regulation of mitochondrial fatty acid oxidation. These unbiased, proteomic analyses of calcium effectors establish a key resource to dissect cation engagement and its mechanistic effects across multiple species and diverse biological processes.
Collapse
Affiliation(s)
- Timothy M Locke
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Hayden Gizinski
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - George M Otto
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - David M Shechner
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Matthew D Berg
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Judit Villen
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Devin Schweppe
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Sarafidou T, Galliopoulou E, Apostolopoulou D, Fragkiadakis GA, Moschonas NK. Reconstruction of a Comprehensive Interactome and Experimental Data Analysis of FRA10AC1 May Provide Insights into Its Biological Role in Health and Disease. Genes (Basel) 2023; 14:genes14030568. [PMID: 36980839 PMCID: PMC10048706 DOI: 10.3390/genes14030568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
FRA10AC1, the causative gene for the manifestation of the FRA10A fragile site, encodes a well-conserved nuclear protein characterized as a non-core spliceosomal component. Pre-mRNA splicing perturbations have been linked with neurodevelopmental diseases. FRA10AC1 variants have been, recently, causally linked with severe neuropathological and growth retardation phenotypes. To further elucidate the participation of FRA10AC1 in spliceosomal multiprotein complexes and its involvement in neurological phenotypes related to splicing, we exploited protein–protein interaction experimental data and explored network information and information deduced from transcriptomics. We confirmed the direct interaction of FRA10AC1with ESS2, a non-core spliceosomal protein, mapped their interacting domains, and documented their tissue co-localization and physical interaction at the level of intracellular protein stoichiometries. Although FRA10AC1 and SF3B2, a major core spliceosomal protein, were shown to interact under in vitro conditions, the endogenous proteins failed to co-immunoprecipitate. A reconstruction of a comprehensive, strictly binary, protein–protein interaction network of FRA10AC1 revealed dense interconnectivity with many disease-associated spliceosomal components and several non-spliceosomal regulatory proteins. The topological neighborhood of FRA10AC1 depicts an interactome associated with multiple severe monogenic and multifactorial neurodevelopmental diseases mainly referring to spliceosomopathies. Our results suggest that FRA10AC1 involvement in pre-mRNA processing might be strengthened by interconnecting splicing with transcription and mRNA export, and they propose the broader role(s) of FRA10AC1 in cell pathophysiology.
Collapse
Affiliation(s)
- Theologia Sarafidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
- Correspondence: (T.S.); (N.K.M.)
| | - Eleni Galliopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | | | - Georgios A. Fragkiadakis
- Department of Nutrition and Dietetics Sciences, Hellenic Mediterranean University, Tripitos, 72300 Siteia, Greece
| | - Nicholas K. Moschonas
- School of Medicine, University of Patras, 26500 Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
- Correspondence: (T.S.); (N.K.M.)
| |
Collapse
|
5
|
Yamanaka Y, Ishizuka T, Fujita KI, Fujiwara N, Kurata M, Masuda S. CHERP Regulates the Alternative Splicing of pre-mRNAs in the Nucleus. Int J Mol Sci 2022; 23:ijms23052555. [PMID: 35269695 PMCID: PMC8910253 DOI: 10.3390/ijms23052555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Calcium homeostasis endoplasmic reticulum protein (CHERP) is colocalized with the inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum or perinuclear region, and has been involved in intracellular calcium signaling. Structurally, CHERP carries the nuclear localization signal and arginine/serine-dipeptide repeats, like domain, and interacts with the spliceosome. However, the exact function of CHERP in the nucleus remains unknown. Here, we showed that poly(A)+ RNAs accumulated in the nucleus of CHERP-depleted U2OS cells. Our global analysis revealed that CHERP regulated alternative mRNA splicing events by interaction with U2 small nuclear ribonucleoproteins (U2 snRNPs) and U2 snRNP-related proteins. Among the five alternative splicing patterns analyzed, intron retention was the most frequently observed event. This was in accordance with the accumulation of poly(A)+ RNAs in the nucleus. Furthermore, intron retention and cassette exon choices were influenced by the strength of the 5′ or 3′ splice site, the branch point site, GC content, and intron length. In addition, CHERP depletion induced anomalies in the cell cycle progression into the M phase, and abnormal cell division. These results suggested that CHERP is involved in the regulation of alternative splicing.
Collapse
Affiliation(s)
- Yasutaka Yamanaka
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
| | - Takaki Ishizuka
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
| | - Ken-ichi Fujita
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Naoko Fujiwara
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
| | - Masashi Kurata
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
| | - Seiji Masuda
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
- Correspondence: ; Tel.: +81-742-43-1713
| |
Collapse
|
6
|
Sargeant J, Seiler DK, Costain T, Madreiter-Sokolowski CT, Gordon DE, Peden AA, Malli R, Graier WF, Hay JC. ALG-2 and peflin regulate COPII targeting and secretion in response to calcium signaling. J Biol Chem 2021; 297:101393. [PMID: 34762908 PMCID: PMC8671942 DOI: 10.1016/j.jbc.2021.101393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023] Open
Abstract
ER-to-Golgi transport is the first step in the constitutive secretory pathway, which, unlike regulated secretion, is believed to proceed nonstop independent of Ca2+ flux. However, here we demonstrate that penta-EF hand (PEF) proteins ALG-2 and peflin constitute a hetero-bifunctional COPII regulator that responds to Ca2+ signaling by adopting one of several distinct activity states. Functionally, these states can adjust the rate of ER export of COPII-sorted cargos up or down by ∼50%. We found that at steady-state Ca2+, ALG-2/peflin hetero-complexes bind to ER exit sites (ERES) through the ALG-2 subunit to confer a low, buffered secretion rate, while peflin-lacking ALG-2 complexes markedly stimulate secretion. Upon Ca2+ signaling, ALG-2 complexes lacking peflin can either increase or decrease the secretion rate depending on signaling intensity and duration-phenomena that could contribute to cellular growth and intercellular communication following secretory increases or protection from excitotoxicity and infection following decreases. In epithelial normal rat kidney (NRK) cells, the Ca2+-mobilizing agonist ATP causes ALG-2 to depress ER export, while in neuroendocrine PC12 cells, Ca2+ mobilization by ATP results in ALG-2-dependent enhancement of secretion. Furthermore, distinct Ca2+ signaling patterns in NRK cells produce opposing ALG-2-dependent effects on secretion. Mechanistically, ALG-2-dependent depression of secretion involves decreased levels of the COPII outer shell and increased peflin targeting to ERES, while ALG-2-dependent enhancement of secretion involves increased COPII outer shell and decreased peflin at ERES. These data provide insights into how PEF protein dynamics affect secretion of important physiological cargoes such as collagen I and significantly impact ER stress.
Collapse
Affiliation(s)
- John Sargeant
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Danette Kowal Seiler
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Tucker Costain
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | | | - David E Gordon
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Andrew A Peden
- Department of Biomedical Science and Centre for Membrane Interactions and Dynamics, The University of Sheffield, Sheffield, United Kingdom
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Jesse C Hay
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, USA.
| |
Collapse
|
7
|
Kao CY, Cao EC, Wai HL, Cheng SC. Evidence for complex dynamics during U2 snRNP selection of the intron branchpoint. Nucleic Acids Res 2021; 49:9965-9977. [PMID: 34387687 PMCID: PMC8464032 DOI: 10.1093/nar/gkab695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Splicing of pre-mRNA is initiated by binding of U1 to the 5′ splice site and of Msl5-Mud2 heterodimer to the branch site (BS). Subsequent binding of U2 displaces Msl5-Mud2 from the BS to form the prespliceosome, a step governing branchpoint selection and hence 3′ splice site choice, and linking splicing to myelodysplasia and many cancers in human. Two DEAD-box proteins, Prp5 and Sub2, are required for this step, but neither is stably associated with the pre-mRNA during the reaction. Using BS-mutated ACT1 pre-mRNA, we previously identified a splicing intermediate complex, FIC, which contains U2 and Prp5, but cannot bind the tri-snRNP. We show here that Msl5 remains associated with the upstream cryptic branch site (CBS) in the FIC, with U2 binding a few bases downstream of the BS. U2 mutants that restore U2-BS base pairing enable dissociation of Prp5 and allows splicing to proceed. The CBS is required for splicing rescue by compensatory U2 mutants, and for formation of FIC, demonstrating a role for Msl5 in directing U2 to the BS, and of U2-BS base pairing for release of Prp5 and Msl5-Mud2 to form the prespliceosome. Our results provide insights into how the prespliceosome may form in normal splicing reaction.
Collapse
Affiliation(s)
- Ching-Yang Kao
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan 106, Republic of China.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - En-Cih Cao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsu Lei Wai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan 106, Republic of China.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
8
|
Dopie J, Sweredoski MJ, Moradian A, Belmont AS. Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins. J Cell Biol 2021; 219:151914. [PMID: 32609799 PMCID: PMC7480118 DOI: 10.1083/jcb.201910207] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/03/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
We present a simple ratio method to infer protein composition within cellular structures using proximity labeling approaches but compensating for the diffusion of free radicals. We used tyramide signal amplification (TSA) and label-free mass spectrometry (MS) to compare proteins in nuclear speckles versus centromeres. Our “TSA-MS ratio” approach successfully identified known nuclear speckle proteins. For example, 96% and 67% of proteins in the top 30 and 100 sorted proteins, respectively, are known nuclear speckle proteins, including proteins that we validated here as enriched in nuclear speckles. We show that MFAP1, among the top 20 in our list, forms droplets under certain circumstances and that MFAP1 expression levels modulate the size, stability, and dynamics of nuclear speckles. Localization of MFAP1 and its binding partner, PRPF38A, in droplet-like nuclear bodies precedes formation of nuclear speckles during telophase. Our results update older proteomic studies of nuclear speckles and should provide a useful reference dataset to guide future experimental dissection of nuclear speckle structure and function.
Collapse
Affiliation(s)
- Joseph Dopie
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Department of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, CA
| | - Annie Moradian
- Proteome Exploration Laboratory, Department of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, CA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
9
|
Cao Q, Yin S. The influence of environmental calcium on the branchial morphology in a catadromous fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8945-8952. [PMID: 33405148 DOI: 10.1007/s11356-020-11922-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Eels are exposed to Ca2+ changes during migration between seawater and freshwater. The gill is the main organ of active calcium transport and has a large surface area to be particularly sensitive to environmental changes in the aquatic environment. In this research, we focused on the morphological changes of gill tissues when eels are faced with the environmental calcium challenges. Based on the results of hematoxylin and eosin (HE) staining and immunohistochemistry, compared with the control group (normal Ca2+ environment), the filament and lamella lengths and lamellar frequency (LF) appeared higher in high calcium environment and lower in deficient calcium environment, while the lamella width and filamental lamellar surface area (SAFL) decreased in high calcium environment and increased in deficient calcium environment. And there was no difference in the number filaments in first right gill arch in the three Ca2+ water environment. Transmission electron microscopy was employed to examine the ultrastructural changes in gills in different Ca2+ water environment. The nucleus and endoplasmic reticulum had a tendency to expand in calcium-deficient water, but had a tendency to shrink in high-calcium water comparing with the control group. This study provides the support that branchial surface areas are regulated in different Ca2+ waters through a list of calcium transporters including CACNB2.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Jiangsu, China.
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China.
| |
Collapse
|
10
|
The Penta-EF-Hand ALG-2 Protein Interacts with the Cytosolic Domain of the SOCE Regulator SARAF and Interferes with Ubiquitination. Int J Mol Sci 2020; 21:ijms21176315. [PMID: 32878247 PMCID: PMC7504102 DOI: 10.3390/ijms21176315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022] Open
Abstract
ALG-2 is a penta-EF-hand Ca2+-binding protein and interacts with a variety of proteins in mammalian cells. In order to find new ALG-2-binding partners, we searched a human protein database and retrieved sequences containing the previously identified ALG-2-binding motif type 2 (ABM-2). After selecting 12 high-scored sequences, we expressed partial or full-length GFP-fused proteins in HEK293 cells and performed a semi-quantitative in vitro binding assay. SARAF, a negative regulator of store-operated Ca2+ entry (SOCE), showed the strongest binding activity. Biochemical analysis of Strep-tagged and GFP-fused SARAF proteins revealed ubiquitination that proceeded during pulldown assays under certain buffer conditions. Overexpression of ALG-2 interfered with ubiquitination of wild-type SARAF but not ubiquitination of the F228S mutant that had impaired ALG-2-binding activity. The SARAF cytosolic domain (CytD) contains two PPXY motifs targeted by the WW domains of NEDD4 family E3 ubiquitin ligases. The PPXY motif proximal to the ABM-2 sequence was found to be more important for both in-cell ubiquitination and post-cell lysis ubiquitination. A ubiquitination-defective mutant of SARAF with Lys-to-Arg substitutions in the CytD showed a slower degradation rate by half-life analysis. ALG-2 promoted Ca2+-dependent CytD-to-CytD interactions of SARAF. The ALG-2 dimer may modulate the stability of SARAF by sterically blocking ubiquitination and by bridging SARAF molecules at the CytDs.
Collapse
|
11
|
Wang X, Wu F, Wang H, Duan X, Huang R, Tuersuntuoheti A, Su L, Yan S, Zhao Y, Lu Y, Li K, Yao J, Luo Z, Guo L, Liu J, Chen X, Lu Y, Hu H, Li X, Bao M, Bi X, Du B, Miao S, Cai J, Wang L, Zhou H, Ying J, Song W, Zhao H. PDCD6 cooperates with C-Raf to facilitate colorectal cancer progression via Raf/MEK/ERK activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:147. [PMID: 32746883 PMCID: PMC7398064 DOI: 10.1186/s13046-020-01632-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most common malignancies, and it’s expected that the CRC burden will substantially increase in the next two decades. New biomarkers for targeted treatment and associated molecular mechanism of tumorigenesis remain to be explored. In this study, we investigated whether PDCD6 plays an oncogenic role in colorectal cancer and its underlying mechanism. Methods Programmed cell death protein 6 (PDCD6) expression in CRC samples were analyzed by immunohistochemistry and immunofluorescence. The prognosis between PDCD6 and clinical features were analyzed. The roles of PDCD6 in cellular proliferation and tumor growth were measured by using CCK8, colony formation, and tumor xenograft in nude mice. RNA-sequence (RNA-seq), Mass Spectrum (MS), Co-Immunoprecipitation (Co-IP) and Western blot were utilized to investigate the mechanism of tumor progression. Immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR) were performed to determine the correlation of PDCD6 and MAPK pathway. Results Higher expression levels of PDCD6 in tumor tissues were associated with a poorer prognosis in patients with CRC. Furthermore, PDCD6 increased cell proliferation in vitro and tumor growth in vivo. Mechanistically, RNA-seq showed that PDCD6 could affect the activation of the MAPK signaling pathway. PDCD6 interacted with c-Raf, resulting in the activation of downstream c-Raf/MEK/ERK pathway and the upregulation of core cell proliferation genes such as MYC and JUN. Conclusions These findings reveal the oncogenic effect of PDCD6 in CRC by activating c-Raf/MEK/ERK pathway and indicate that PDCD6 might be a potential prognostic indicator and therapeutic target for patients with colorectal cancer.
Collapse
Affiliation(s)
- Xiaojuan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.,State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, TsinghuaUniversity, Beijing, 100084, China
| | - Fan Wu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Han Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyuan Duan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Rong Huang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Amannisa Tuersuntuoheti
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Luying Su
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Shida Yan
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuechao Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yan Lu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Jinjie Yao
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiwen Luo
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Guo
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianmei Liu
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yalan Lu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hanjie Hu
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingchen Li
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mandula Bao
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinyu Bi
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Boyu Du
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Shiying Miao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Linfang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Haitao Zhou
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianming Ying
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Wei Song
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Hong Zhao
- Department of Hepatobiliary Surgery and Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
12
|
Maki M. Structures and functions of penta-EF-hand calcium-binding proteins and their interacting partners: enigmatic relationships between ALG-2 and calpain-7. Biosci Biotechnol Biochem 2019; 84:651-660. [PMID: 31814542 DOI: 10.1080/09168451.2019.1700099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The penta-EF-hand (PEF) protein family includes ALG-2 (gene name, PDCD6) and its paralogs as well as classical calpain family members. ALG-2 is a prototypic PEF protein that is widely distributed in eukaryotes and interacts with a variety of proteins in a Ca2+-dependent manner. Mammalian ALG-2 and its interacting partners have various modulatory roles including roles in cell death, signal transduction, membrane repair, ER-to-Golgi vesicular transport, and RNA processing. Some ALG-2-interacting proteins are key factors that function in the endosomal sorting complex required for transport (ESCRT) system. On the other hand, mammalian calpain-7 (CAPN7) lacks the PEF domain but contains two microtubule-interacting and trafficking (MIT) domains in tandem. CAPN7 interacts with a subset of ESCRT-III proteins through the MIT domains and regulates EGF receptor downregulation. Structures and functions of ALG-2 and those of its interacting partners as well as relationships with the calpain family are reviewed in this article.
Collapse
Affiliation(s)
- Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
Li M, Xi P, Xu Y, Wang Z, Han X, Ren W, Phouthapane V, Miao J. Taurine Attenuates Streptococcus uberis-Induced Bovine Mammary Epithelial Cells Inflammation via Phosphoinositides/Ca 2+ Signaling. Front Immunol 2019; 10:1825. [PMID: 31447841 PMCID: PMC6692464 DOI: 10.3389/fimmu.2019.01825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022] Open
Abstract
Taurine may alleviate the inflammatory injury induced by Streptococcus uberis (S. uberis) infection by regulating intracellular Ca2+ levels. However, the underlying mechanisms remain unclear. Infection leads to subversion of phosphoinositides (PIs) which are closely related to Ca2+ signaling. In order to investigate whether taurine regulates inflammation by means of PIs/ Ca2+ systems, competitive inhibitors of taurine (β-alanine) siTauT, siPAT1, siPLC, siCaN, siPKC, and inhibitors of PLC (U73122), PKC (RO31-8220), and CaN (FK 506) were used. The results indicate that taurine transfers the extracellular nutrient signal for intercellular innate immunity to phosphoinositides without a need to enter the cytoplasm while regulating intracellular Ca2+ levels during inflammation. Both the Ca2+-PKCα-NF-κB, and Ca2+-CaM-CaN-NFAT signaling pathways of S. uberis infection and the regulatory roles of taurine follow activation of PIs/Ca2+ systems. These data increase our understanding on the mechanisms of multifunctional nutrient, taurine attenuated inflammatory responses caused by S. uberis infection, and provide theoretical support for the prevention of this disease.
Collapse
Affiliation(s)
- Ming Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Panpan Xi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangan Han
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Vanhnaseng Phouthapane
- Biotechnology and Ecology Institute, Ministry of Science and Technology, Vientiane, Laos
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Shibata H. Adaptor functions of the Ca 2+-binding protein ALG-2 in protein transport from the endoplasmic reticulum. Biosci Biotechnol Biochem 2018; 83:20-32. [PMID: 30259798 DOI: 10.1080/09168451.2018.1525274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptosis-linked gene 2 (ALG-2) is a Ca2+-binding protein with five repetitive EF-hand motifs, named penta-EF-hand (PEF) domain. It interacts with various target proteins and functions as a Ca2+-dependent adaptor in diverse cellular activities. In the cytoplasm, ALG-2 is predominantly localized to a specialized region of the endoplasmic reticulum (ER), called the ER exit site (ERES), through its interaction with Sec31A. Sec31A is an outer coat protein of coat protein complex II (COPII) and is recruited from the cytosol to the ERES to form COPII-coated transport vesicles. I will overview current knowledge of the physiological significance of ALG-2 in regulating ERES localization of Sec31A and the following adaptor functions of ALG-2, including bridging Sec31A and annexin A11 to stabilize Sec31A at the ERES, polymerizing the Trk-fused gene (TFG) product, and linking MAPK1-interacting and spindle stabilizing (MISS)-like (MISSL) and microtubule-associated protein 1B (MAP1B) to promote anterograde transport from the ER.
Collapse
Affiliation(s)
- Hideki Shibata
- a Department of Applied Biosciences, Graduate School of Bioagricultural Sciences , Nagoya University , Chikusa-ku , Nagoya , Japan
| |
Collapse
|
15
|
Cheng CH, Guo ZX, Wang AL. The protective effects of taurine on oxidative stress, cytoplasmic free-Ca 2+ and apoptosis of pufferfish (Takifugu obscurus) under low temperature stress. FISH & SHELLFISH IMMUNOLOGY 2018; 77:457-464. [PMID: 29656127 DOI: 10.1016/j.fsi.2018.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
The present study was aimed to investigate the low temperature toxicity and its protection by taurine in pufferfish. The experimental basal diets supplemented with taurine at the rates of 250 (control), 550, 850, 1140, 1430, 1740 mg kg-1 were fed to fish for 8 weeks. The results showed that fish fed diet with taurine had significantly improved weight gain and specific growth rate. After the feeding trial, the fish were then exposed to low temperature stress. The results showed that low temperature stress could induce reactive oxygen species (ROS) generation, disturb the cytoplasm Ca2+ homeostasis, and lead to oxidative stress and apoptosis. Compared with the control group, dietary taurine supplementation groups increased antioxidant enzyme genes such as manganese superoxide dismutase (Mn-SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT), heat shock proteins (HSP70) and complement C3 (C3) mRNA levels under low temperature stress. Meanwhile, dietary taurine supplementation groups reduced ROS generation, and stabilized the cytoplasm Ca2+ under low temperature stress. Furthermore, dietary taurine supplementation groups reduced apoptosis via decreasing caspase-3 activity. This is the first report to demonstrate the mechanisms of taurine against low temperature stress in fish.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China.
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center (SCS-REPIC), PR China.
| | - An-Li Wang
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
16
|
Nanoluciferase Reporter Gene System Directed by Tandemly Repeated Pseudo-Palindromic NFAT-Response Elements Facilitates Analysis of Biological Endpoint Effects of Cellular Ca 2+ Mobilization. Int J Mol Sci 2018; 19:ijms19020605. [PMID: 29463029 PMCID: PMC5855827 DOI: 10.3390/ijms19020605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 01/12/2023] Open
Abstract
NFAT is a cytoplasm-localized hyper-phosphorylated transcription factor that is activated through dephosphorylation by calcineurin, a Ca2+/calmodulin-dependent phosphatase. A non-palindromic NFAT-response element (RE) found in the IL2 promoter region has been commonly used for a Ca2+-response reporter gene system, but requirement of concomitant activation of AP-1 (Fos/Jun) often complicates the interpretation of obtained results. A new nanoluciferase (NanoLuc) reporter gene containing nine-tandem repeats of a pseudo-palindromic NFAT-RE located upstream of the IL8 promoter was designed to monitor Ca2+-induced transactivation activity of NFAT in human embryonic kidney (HEK) 293 cells by measuring luciferase activities of NanoLuc and co-expressed firefly luciferase for normalization. Ionomycin treatment enhanced the relative luciferase activity (RLA), which was suppressed by calcineurin inhibitors. HEK293 cells that stably express human STIM1 and Orai1, components of the store-operated calcium entry (SOCE) machinery, gave a much higher RLA by stimulation with thapsigargin, an inhibitor of sarcoplasmic/endoplamic reticulum Ca2+-ATPase (SERCA). HEK293 cells deficient in a penta-EF-hand Ca2+-binding protein ALG-2 showed a higher RLA value than the parental cells by stimulation with an acetylcholine receptor agonist carbachol. The novel reporter gene system is found to be useful for applications to cell signaling research to monitor biological endpoint effects of cellular Ca2+ mobilization.
Collapse
|
17
|
Egorova PA, Bezprozvanny IB. Inositol 1,4,5-trisphosphate receptors and neurodegenerative disorders. FEBS J 2018; 285:3547-3565. [PMID: 29253316 DOI: 10.1111/febs.14366] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3 R) is an intracellular ion channel that mediates the release of calcium ions from the endoplasmic reticulum. It plays a role in basic biological functions, such as cell division, differentiation, fertilization and cell death, and is involved in developmental processes including learning, memory and behavior. Deregulation of neuronal calcium signaling results in disturbance of cell homeostasis, synaptic loss and dysfunction, eventually leading to cell death. Three IP3 R subtypes have been identified in mammalian cells and the predominant isoform in neurons is IP3 R type 1. Dysfunction of IP3 R type 1 may play a role in the pathogenesis of certain neurodegenerative diseases as enhanced activity of the IP3 R was observed in models of Huntington's disease, spinocerebellar ataxias and Alzheimer's disease. These results suggest that IP3 R-mediated signaling is a potential target for treatment of these disorders. In this review we discuss the structure, functions and regulation of the IP3 R in healthy neurons and in conditions of neurodegeneration.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Zhang D, Wang F, Pang Y, Ke XX, Zhu S, Zhao E, Zhang K, Chen L, Cui H. Down-regulation of CHERP inhibits neuroblastoma cell proliferation and induces apoptosis through ER stress induction. Oncotarget 2017; 8:80956-80970. [PMID: 29113358 PMCID: PMC5655253 DOI: 10.18632/oncotarget.20898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma is a childhood tumor that is derived from the sympathetic nervous system. In recent years, great progress has been made in our understanding of neuroblastoma. However, applying theories to improve disease outcomes remains challenging. In this study, we observed that calcium homeostasis endoplasmic reticulum protein (CHERP) was involved in the maintenance of neuroblastoma cell proliferation and tumorigenicity. Moreover, elevated CHERP expression was positively correlated with poor patient survival, whereas low CHERP expression was predictive of better outcomes. Additional functional studies showed that CHERP knockdown inhibited neuroblastoma cell proliferation in vitro and resulted in defective tumorigenicity in vivo. Moreover, CHERP depletion suppressed neuroblastoma cell proliferation by inducing endoplasmic reticulum stress and cell apoptosis. Considering the functional roles of CHERP in neuroblastoma development and maintenance, CHERP might function as a novel therapeutic target for neuroblastoma patients.
Collapse
Affiliation(s)
- Dunke Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Yi Pang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Xiao-xue Ke
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Shunqin Zhu
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Takahara T, Inoue K, Arai Y, Kuwata K, Shibata H, Maki M. The calcium-binding protein ALG-2 regulates protein secretion and trafficking via interactions with MISSL and MAP1B proteins. J Biol Chem 2017; 292:17057-17072. [PMID: 28864773 DOI: 10.1074/jbc.m117.800201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/31/2017] [Indexed: 01/12/2023] Open
Abstract
Mobilization of intracellular calcium is essential for a wide range of cellular processes, including signal transduction, apoptosis, and vesicular trafficking. Several lines of evidence have suggested that apoptosis-linked gene 2 (ALG-2, also known as PDCD6), a calcium-binding protein, acts as a calcium sensor linking calcium levels with efficient vesicular trafficking, especially at the endoplasmic reticulum (ER)-to-Golgi transport step. However, how ALG-2 regulates these processes remains largely unclear. Here, we report that MAPK1-interacting and spindle-stabilizing (MISS)-like (MISSL), a previously uncharacterized protein, interacts with ALG-2 in a calcium-dependent manner. Live-cell imaging revealed that upon a rise in intracellular calcium levels, GFP-tagged MISSL (GFP-MISSL) dynamically relocalizes in a punctate pattern and colocalizes with ALG-2. MISSL knockdown caused disorganization of the components of the ER exit site, the ER-Golgi intermediate compartment, and Golgi. Importantly, knockdown of either MISSL or ALG-2 attenuated the secretion of secreted alkaline phosphatase (SEAP), a model secreted cargo protein, with similar reductions in secretion by single- and double-protein knockdowns, suggesting that MISSL and ALG-2 act in the same pathway to regulate the secretion process. Furthermore, ALG-2 or MISSL knockdown delayed ER-to-Golgi transport of procollagen type I. We also found that ALG-2 and MISSL interact with microtubule-associated protein 1B (MAP1B) and that MAP1B knockdown reverts the reduced secretion of SEAP caused by MISSL or ALG-2 depletion. These results suggest that a change in the intracellular calcium level plays a role in regulation of the secretory pathway via interaction of ALG-2 with MISSL and MAP1B.
Collapse
Affiliation(s)
- Terunao Takahara
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, and
| | - Kuniko Inoue
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, and
| | - Yumika Arai
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, and
| | - Keiko Kuwata
- the Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Hideki Shibata
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, and
| | - Masatoshi Maki
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, and
| |
Collapse
|
20
|
Wang C, Li R, Huang Y, Wang M, Yang F, Huang D, Wu C, Li Y, Tang Y, Zhang R, Cheng J. Selenoprotein K modulate intracellular free Ca 2+ by regulating expression of calcium homoeostasis endoplasmic reticulum protein. Biochem Biophys Res Commun 2017; 484:734-739. [DOI: 10.1016/j.bbrc.2017.01.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/22/2017] [Indexed: 01/24/2023]
|
21
|
Kanadome T, Shibata H, Kuwata K, Takahara T, Maki M. The calcium-binding protein ALG-2 promotes endoplasmic reticulum exit site localization and polymerization of Trk-fused gene (TFG) protein. FEBS J 2017; 284:56-76. [PMID: 27813252 DOI: 10.1111/febs.13949] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/28/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022]
Abstract
Apoptosis-linked gene 2 (ALG-2), which is a gene product of PDCD6, is a 22-kDa Ca2+ -binding protein. Accumulating evidence points to a role for ALG-2 as a Ca2+ -responsive adaptor protein. On binding to Ca2+ , ALG-2 undergoes a conformational change that facilitates its interaction with various proteins. It also forms a homodimer and heterodimer with peflin, a paralog of ALG-2. However, the differences in cellular roles for the ALG-2 homodimer and ALG-2/peflin heterodimer are unclear. In the present study, we found that Trk-fused gene (TFG) protein interacted with the ALG-2 homodimer. Immunostaining analysis revealed that TFG and ALG-2 partially overlapped at endoplasmic reticulum exit sites (ERES), a platform for COPII-mediated protein transport from the endoplasmic reticulum. Time-lapse live-cell imaging demonstrated that both green fluorescent protein-fused TFG and mCherry-fused ALG-2 are recruited to ERES after thapsigargin treatment, which raises intracellular Ca2+ levels. Furthermore, overexpression of ALG-2 induced the accumulation of TFG at ERES. TFG has an ALG-2-binding motif and deletion of the motif decreased TFG binding to ALG-2 and shortened its half-life at ERES, suggesting a critical role for ALG-2 in retaining TFG at ERES. We also demonstrated, by in vitro cross-linking assays, that ALG-2 promoted the polymerization of TFG in a Ca2+ -dependent manner. Collectively, the results suggest that ALG-2 acts as a Ca2+ -sensitive adaptor to concentrate and polymerize TFG at ERES, supporting a potential role for ALG-2 in COPII-dependent trafficking from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Takashi Kanadome
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Hideki Shibata
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Japan
| | - Terunao Takahara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Masatoshi Maki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| |
Collapse
|
22
|
Maki M, Takahara T, Shibata H. Multifaceted Roles of ALG-2 in Ca(2+)-Regulated Membrane Trafficking. Int J Mol Sci 2016; 17:ijms17091401. [PMID: 27571067 PMCID: PMC5037681 DOI: 10.3390/ijms17091401] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022] Open
Abstract
ALG-2 (gene name: PDCD6) is a penta-EF-hand Ca2+-binding protein and interacts with a variety of proteins in a Ca2+-dependent fashion. ALG-2 recognizes different types of identified motifs in Pro-rich regions by using different hydrophobic pockets, but other unknown modes of binding are also used for non-Pro-rich proteins. Most ALG-2-interacting proteins associate directly or indirectly with the plasma membrane or organelle membranes involving the endosomal sorting complex required for transport (ESCRT) system, coat protein complex II (COPII)-dependent ER-to-Golgi vesicular transport, and signal transduction from membrane receptors to downstream players. Binding of ALG-2 to targets may induce conformational change of the proteins. The ALG-2 dimer may also function as a Ca2+-dependent adaptor to bridge different partners and connect the subnetwork of interacting proteins.
Collapse
Affiliation(s)
- Masatoshi Maki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Terunao Takahara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Hideki Shibata
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
23
|
Dai B, Zhang J, Liu M, Lu J, Zhang Y, Xu Y, Miao J, Yin Y. The role of Ca(2+) mediated signaling pathways on the effect of taurine against Streptococcus uberis infection. Vet Microbiol 2016; 192:26-33. [PMID: 27527761 DOI: 10.1016/j.vetmic.2016.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/20/2016] [Accepted: 06/21/2016] [Indexed: 01/03/2023]
Abstract
To provide insight into the mechanisms of taurine attenuation of pro-inflammatory response in mouse mammary epithelial cell line (EpH4-Ev, purchased by ATCC, USA) after Streptococcus uberis (S. uberis, 0140J) challenge, we infected MECs with S. uberis (2.5×10(7)cfumL(-1), MOI=10) for 3h and quantified changes in TLR-2 and calcium (Ca(2+)) mediated signaling pathways. The results indicate that S. uberis infection significantly increases the expression of TLR-2, intracellular Ca(2+) levels, PLC-γ1 and PKC-α, the activities of transcription factors NF-κB and NFAT, and related cytokines (TNF-α, IL-1β, IL-6, G-CSF, IL-2, KC, IL-15, FasL, MCP-1, and LIX) in culture supernatants. Taurine administration downregulated all these indices, the activities of NF-κB and NFAT. Cytokine secretions were similar using special PKC inhibitor Go 6983 and NFAT inhibitor VIVIT. Our data indicate that S. uberis infection induces pro-inflammatory response of MECs through a TLR-2 mediated signaling pathway. In addition, taurine can prevent MEC damage by affecting both PLC-γ1-Ca(2+)-PKC-α-NF-κB and PLC-γ1-Ca(2+)-NFATs signaling pathways. This is the first report to demonstrate the mechanisms of taurine attenuated pro-inflammatory response in MECs after S. uberis challenge.
Collapse
Affiliation(s)
- Bin Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinqiu Zhang
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ming Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinye Lu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Yuanshu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yulong Yin
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center for Animal & Poultry Science, Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Changsha 410125, China
| |
Collapse
|
24
|
Henzl MT, Frey BB, Wolf AJ. ALG-2 divalent-ion affinity: Calorimetric analysis of the des23 versions reveals high-affinity site for Mg(2). Biophys Chem 2015; 209:28-40. [PMID: 26705706 DOI: 10.1016/j.bpc.2015.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Michael T Henzl
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211.
| | - Benjamin B Frey
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211
| | - Andrew J Wolf
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211
| |
Collapse
|
25
|
Crisci A, Raleff F, Bagdiul I, Raabe M, Urlaub H, Rain JC, Krämer A. Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins. Nucleic Acids Res 2015; 43:10456-73. [PMID: 26420826 PMCID: PMC4666396 DOI: 10.1093/nar/gkv952] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/10/2015] [Indexed: 02/03/2023] Open
Abstract
Splicing factor 1 (SF1) recognizes the branch point sequence (BPS) at the 3′ splice site during the formation of early complex E, thereby pre-bulging the BPS adenosine, thought to facilitate subsequent base-pairing of the U2 snRNA with the BPS. The 65-kDa subunit of U2 snRNP auxiliary factor (U2AF65) interacts with SF1 and was shown to recruit the U2 snRNP to the spliceosome. Co-immunoprecipitation experiments of SF1-interacting proteins from HeLa cell extracts shown here are consistent with the presence of SF1 in early splicing complexes. Surprisingly almost all U2 snRNP proteins were found associated with SF1. Yeast two-hybrid screens identified two SURP domain-containing U2 snRNP proteins as partners of SF1. A short, evolutionarily conserved region of SF1 interacts with the SURP domains, stressing their role in protein–protein interactions. A reduction of A complex formation in SF1-depleted extracts could be rescued with recombinant SF1 containing the SURP-interaction domain, but only partial rescue was observed with SF1 lacking this sequence. Thus, SF1 can initially recruit the U2 snRNP to the spliceosome during E complex formation, whereas U2AF65 may stabilize the association of the U2 snRNP with the spliceosome at later times. In addition, these findings may have implications for alternative splicing decisions.
Collapse
Affiliation(s)
- Angela Crisci
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Flore Raleff
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Ivona Bagdiul
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Monika Raabe
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | | | - Angela Krämer
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
26
|
Structural analysis of the complex between penta-EF-hand ALG-2 protein and Sec31A peptide reveals a novel target recognition mechanism of ALG-2. Int J Mol Sci 2015; 16:3677-99. [PMID: 25667979 PMCID: PMC4346919 DOI: 10.3390/ijms16023677] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
ALG-2, a 22-kDa penta-EF-hand protein, is involved in cell death, signal transduction, membrane trafficking, etc., by interacting with various proteins in mammalian cells in a Ca2+-dependent manner. Most known ALG-2-interacting proteins contain proline-rich regions in which either PPYPXnYP (type 1 motif) or PXPGF (type 2 motif) is commonly found. Previous X-ray crystal structural analysis of the complex between ALG-2 and an ALIX peptide revealed that the peptide binds to the two hydrophobic pockets. In the present study, we resolved the crystal structure of the complex between ALG-2 and a peptide of Sec31A (outer shell component of coat complex II, COPII; containing the type 2 motif) and found that the peptide binds to the third hydrophobic pocket (Pocket 3). While amino acid substitution of Phe85, a Pocket 3 residue, with Ala abrogated the interaction with Sec31A, it did not affect the interaction with ALIX. On the other hand, amino acid substitution of Tyr180, a Pocket 1 residue, with Ala caused loss of binding to ALIX, but maintained binding to Sec31A. We conclude that ALG-2 recognizes two types of motifs at different hydrophobic surfaces. Furthermore, based on the results of serial mutational analysis of the ALG-2-binding sites in Sec31A, the type 2 motif was newly defined.
Collapse
|