1
|
Huang HT, Lo IW, Lin YC, Geng-You L, Lin YS, Zhang LJ, Li TL, Liaw CC, Kuo YH. Kaguacidine A: a novel spirohydantoin-containing cucurbitane glycoside from vines of Momordica charantia L. Nat Prod Res 2024; 38:2179-2186. [PMID: 36606546 DOI: 10.1080/14786419.2022.2164278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
The spirohydantoin-containing cucurbitane-type triterpenoid, kaguacidine A (1), was isolated and purified from 95% ethanol extract of vines of Momordica charantia L. (Cucurbitaceae). Its unprecedented chemical structure, a spirohydantoin substituent at C-23 of cucurbitane, was elucidated by extensive spectroscopic analyses, including HRESIMS, IR, optical rotation, 1 D- and 2 D-NMR spectra. The possible biosynthetic pathway is deduced and may be attributed to the metabolic activity of microbial symbionts in M. charantia L. Compound 1 was evaluated for anti-inflammatory activity against LPS-induced NO production in RAW 264.7 cells and anti-proliferative activity against four cancer cell lines, including HEp-2, MCF-7, Hep-G2, and WiDr. Compound 1 showed moderate anti-inflammatory activity with an IC50 value of 18.5 ± 0.4 μg/mL and weak anti-proliferative activity against MCF-7, HEp-2, Hep-G2, and WiDr with IC50 values of >40, 33.8 ± 0.6, 31.0 ± 0.7, and 27.0 ± 0.7 μM, respectively.
Collapse
Affiliation(s)
- Hung-Tse Huang
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - I-Wen Lo
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Lin
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Liao Geng-You
- School of Medicine, Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Sheng Lin
- Department of Biological Science and Technology, Meiho University, Pingtung, Taiwan
| | - Li-Jie Zhang
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ching Liaw
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yao-Haur Kuo
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Khan AR, Mustafa A, Hyder S, Valipour M, Rizvi ZF, Gondal AS, Yousuf Z, Iqbal R, Daraz U. Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture. BIOLOGY 2022; 11:biology11121763. [PMID: 36552272 PMCID: PMC9775066 DOI: 10.3390/biology11121763] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Food security will be a substantial issue in the near future due to the expeditiously growing global population. The current trend in the agriculture industry entails the extravagant use of synthesized pesticides and fertilizers, making sustainability a difficult challenge. Land degradation, lower production, and vulnerability to both abiotic and biotic stresses are problems caused by the usage of these pesticides and fertilizers. The major goal of sustainable agriculture is to ameliorate productivity and reduce pests and disease prevalence to such a degree that prevents large-scale damage to crops. Agriculture is a composite interrelation among plants, microbes, and soil. Plant microbes play a major role in growth promotion and improve soil fertility as well. Bacillus spp. produces an extensive range of bio-chemicals that assist in plant disease control, promote plant development, and make them suitable for agricultural uses. Bacillus spp. support plant growth by N fixation, P and K solubilization, and phytohormone synthesis, in addition to being the most propitious biocontrol agent. Moreover, Bacilli excrete extracellular metabolites, including antibiotics, lytic enzymes, and siderophores, and demonstrate antagonistic activity against phytopathogens. Bacillus spp. boosts plant resistance toward pathogens by inducing systemic resistance (ISR). The most effective microbial insecticide against insects and pests in agriculture is Bacillus thuringiensis (Bt). Additionally, the incorporation of toxin genes in genetically modified crops increases resistance to insects and pests. There is a constant increase in the identified Bacillus species as potential biocontrol agents. Moreover, they have been involved in the biosynthesis of metallic nanoparticles. The main objective of this review article is to display the uses and application of Bacillus specie as a promising biopesticide in sustainable agriculture. Bacillus spp. strains that are antagonistic and promote plant yield attributes could be valuable in developing novel formulations to lead the way toward sustainable agriculture.
Collapse
Affiliation(s)
- Aimen Razzaq Khan
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Adeena Mustafa
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Sajjad Hyder
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
- Correspondence: (S.H.); (M.V.)
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO 80217, USA
- Correspondence: (S.H.); (M.V.)
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Amjad Shahzad Gondal
- Department of Plant Pathology, Bahauddin Zakariya University Multan, Multan 60000, Pakistan
| | - Zubaida Yousuf
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Umar Daraz
- State Key Laboratory of Grassland Agroecosystem, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Srivastava J, Balaji PV. Clues to reaction specificity in
PLP
‐dependent fold type I aminotransferases of monosaccharide biosynthesis. Proteins 2022; 90:1247-1258. [DOI: 10.1002/prot.26305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jaya Srivastava
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Mumbai India
| | - Petety V. Balaji
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Mumbai India
| |
Collapse
|
4
|
Jia T, Guo D, Han Y, Zhou D. Biosynthesis of UDP-2-acetamido-4-formamido-2,4,6-trideoxy-hexose by WekG, WekE, WekF, and WekD: Enzymes in the Wek pathway responsible for O-antigen Assembly in Escherichia coli O119. Carbohydr Res 2021; 507:108388. [PMID: 34271479 DOI: 10.1016/j.carres.2021.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/15/2022]
Abstract
Considering the importance of bacterial glycoconjugates on virulence and host mimicry, there is a need to better understand the biosynthetic pathways of these unusual sugars to identify critical targets involved in bacterial pathogenesis. In this report, we describe the cloning, overexpression, purification, and biochemical characterization of the four central enzymes in the biosynthesis pathway for UDP-2-acetamido-4-formamido-2,4,6-trideoxy-hexose, WekG, WekE, WekF, and WekD. Product peaks from enzyme-substrate reactions were detected by using a combination of capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS). Putative enzyme assignments were provided by protein sequence analysis. Combined with the mass spectrometric characterization of pathway intermediates, we propose a biosynthetic pathway for UDP-2-acetamido-4-formamido-2,4,6-trideoxy-hexose. This process involves C-4, C-6 dehydration, C-4 amination, and formylation. CID-ESI-MSn result confirmed that the final product is a 4 formamido derivative too rather than the 3 formamido derivatives as reported earlier.
Collapse
Affiliation(s)
- Tianyuan Jia
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; School of Medicine, Southern University of Science and Technology, Shenzhen, China; Key Laboratory of Microbial Functional Genomics, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Dan Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Microbial Functional Genomics, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yanfang Han
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Microbial Functional Genomics, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Dawei Zhou
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Microbial Functional Genomics, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
| |
Collapse
|
5
|
Wang Y, Cao L, Bi M, Wang S, Chen M, Chen X, Ying M, Huang L. Wobble Editing of Cre-box by Unspecific CRISPR/Cas9 Causes CCR Release and Phenotypic Changes in Bacillus pumilus. Front Chem 2021; 9:717609. [PMID: 34434920 PMCID: PMC8381255 DOI: 10.3389/fchem.2021.717609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
CRISPR-associated Cas9 endonuclease (CRISPR/Cas9) systems are widely used to introduce precise mutations, such as knocking in/out at targeted genomic sites. Herein, we successfully disrupted the transcription of multiple genes in Bacillus pumilus LG3145 using a series of unspecific guide RNAs (gRNAs) and UgRNA:Cas9 system-assisted cre-box editing. The bases used as gRNAs shared 30–70% similarity with a consensus sequence, a cis-acting element (cre-box) mediating carbon catabolite repression (CCR) of many genes in Bacillus. This triggers trans-crRNA:Cas9 complex wobble cleavage up/downstream of cre sites in the promoters of multiple genes (up to 7), as confirmed by Sanger sequencing and next-generation sequencing (NGS). LG3145 displayed an obvious CCR release phenotype, including numerous secondary metabolites released into the culture broth, ∼ 1.67 g/L white flocculent protein, pigment overflow causing orange-coloured broth (absorbance = 309 nm), polysaccharide capsules appearing outside cells, improved sugar tolerance, and a two-fold increase in cell density. We assessed the relationship between carbon catabolite pathways and phenotype changes caused by unspecific UgRNA-directed cre site wobble editing. We propose a novel strategy for editing consensus targets at operator sequences that mediates transcriptional regulation in bacteria.
Collapse
Affiliation(s)
- Yingxiang Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Linfeng Cao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Meiying Bi
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Sicheng Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Meiting Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xingyu Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Ming Ying
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Lei Huang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
6
|
Mitochondrial remodelling-a vicious cycle in diabetic complications. Mol Biol Rep 2021; 48:4721-4731. [PMID: 34023988 DOI: 10.1007/s11033-021-06408-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Diabetes mellitus (DM) is a chronic, metabolic condition characterized by excessive blood glucose that causes perturbations in physiological functioning of almost all the organs of human body. This devastating metabolic disease has its implications in cognitive decline, heart damage, renal, retinal and neuronal complications that severely affects quality of life and associated with decreased life expectancy. Mitochondria possess adaptive mechanisms to meet the cellular energy demand and combat cellular stress. In recent years mitochondrial homeostasis has been point of focus where several mechanisms regulating mitochondrial health and function are evaluated. Mitochondrial dynamics plays crucial role in maintaining healthy mitochondria in cell under physiological as well as stress condition. Mitochondrial dynamics and corresponding regulating mechanisms have been implicated in progression of metabolic disorders including diabetes and its complications. In current review we have discussed about role of mitochondrial dynamics under physiological and pathological conditions. Also, modulation of mitochondrial fission and fusion in diabetic complications are described. The available literature supports mitochondrial remodelling as reliable target for diabetic complications.
Collapse
|
7
|
Prasertanan T, Palmer DRJ, Sanders DAR. Snapshots along the catalytic path of KabA, a PLP-dependent aminotransferase required for kanosamine biosynthesis in Bacillus cereus UW85. J Struct Biol 2021; 213:107744. [PMID: 33984505 DOI: 10.1016/j.jsb.2021.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Kanosamine is an antibiotic and antifungal monosaccharide. The kanosamine biosynthetic pathway from glucose 6-phosphate in Bacillus cereus UW85 was recently reported, and the functions of each of the three enzymes in the pathway, KabA, KabB and KabC, were demonstrated. KabA, a member of a subclass of the VIβ family of PLP-dependent aminotransferases, catalyzes the second step in the pathway, generating kanosamine 6-phosphate (K6P) using l-glutamate as the amino-donor. KabA catalysis was shown to be extremely efficient, with a second-order rate constant with respect to K6P transamination of over 107 M-1s-1. Here we report the high-resolution structure of KabA in both the PLP- and PMP-bound forms. In addition, co-crystallization with K6P allowed the structure of KabA in complex with the covalent PLP-K6P adduct to be solved. Co-crystallization or soaking with glutamate or 2-oxoglutarate did not result in crystals with either substrate/product. Reduction of the PLP-KabA complex with sodium cyanoborohydride gave an inactivated enzyme, and crystals of the reduced KabA were soaked with the l-glutamate analog glutarate to mimic the KabA-PLP-l-glutamate complex. Together these four structures give a complete picture of how the active site of KabA recognizes substrates for each half-reaction. The KabA structure is discussed in the context of homologous aminotransferases.
Collapse
Affiliation(s)
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada.
| | - David A R Sanders
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
8
|
Impact of activation of neotrehalosadiamine/kanosamine biosynthetic pathway on the metabolism of Bacillus subtilis. J Bacteriol 2021; 203:JB.00603-20. [PMID: 33619155 PMCID: PMC8092168 DOI: 10.1128/jb.00603-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pentose phosphate (PP) pathway is one of the major sources of cellular NADPH. A B. subtilis zwf mutant that lacks glucose-6-phosphate dehydrogenase (the enzyme that catalyzes the first step of the PP pathway) showed inoculum-dose-dependent growth. This growth defect was suppressed by glcP disruption, which causes the upregulation of an autoinducer neotrehalosadiamine (NTD)/kanosamine biosynthetic pathway. A metabolome analysis showed that the stimulation of NTD/kanosamine biosynthesis caused significant accumulation of TCA cycle intermediates and NADPH. Because the major malic enzyme YtsJ concomitantly generates NADPH through malate-to-pyruvate conversion, de novo NTD/kanosamine biosynthesis can result in an increase in the intracellular NADPH pool via the accumulation of malate. In fact, a zwf mutant grew in malate-supplemented medium. Artificial induction of glcP in the zwf mutant caused a reduction in the intracellular NADPH pool. Moreover, the correlation between the expression level of the NTD/kanosamine biosynthesis operon ntdABC and the intracellular NADPH pool was confirmed. Our results suggest that NTD/kanosamine has the potential to modulate the carbon-energy metabolism through an autoinduction mechanism.ImportanceAutoinducers enable bacteria to sense cell density and to coordinate collective behavior. NTD/kanosamine is an autoinducer produced by B. subtilis and several close relatives, although its physiological function remains unknown. The most important finding of this study was the significance of de novo NTD/kanosamine biosynthesis in the modulation of the central carbon metabolism in B. subtilis We showed that NTD/kanosamine biosynthesis caused an increase in the NADPH pool via the accumulation of TCA cycle intermediates. These results suggest a possible role for NTD/kanosamine in the carbon-energy metabolism. As Bacillus species are widely used for the industrial production of various useful enzymes and compounds, the NTD/kanosamine biosynthetic pathway might be utilized to control metabolic pathways in these industrial strains.
Collapse
|
9
|
Vetter ND, Jagdhane RC, Richter BJ, Palmer DRJ. Carbocyclic Substrate Analogues Reveal Kanosamine Biosynthesis Begins with the α-Anomer of Glucose 6-Phosphate. ACS Chem Biol 2020; 15:2205-2211. [PMID: 32786294 DOI: 10.1021/acschembio.0c00409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NtdC is an NAD-dependent dehydrogenase that catalyzes the conversion of glucose 6-phosphate (G6P) to 3-oxo-glucose 6-phosphate (3oG6P), the first step in kanosamine biosynthesis in Bacillus subtilis and other closely-related bacteria. The NtdC-catalyzed reaction is unusual because 3oG6P undergoes rapid ring opening, resulting in a 1,3-dicarbonyl compound that is inherently unstable due to enolate formation. We have reported the steady-state kinetic behavior of NtdC, but many questions remain about the nature of this reaction, including whether it is the α-anomer, β-anomer, or open-chain form that is the substrate for the enzyme. Here, we report the synthesis of carbocyclic G6P analogues by two routes, one based upon the Ferrier II rearrangement to generate the carbocycle and one based upon a Claisen rearrangement. We were able to synthesize both pseudo-anomers of carbaglucose 6-phosphate (C6P) using the Ferrier approach, and activity assays revealed that the pseudo-α-anomer is a good substrate for NtdC, while the pseudo-β-anomer and the open-chain analogue, sorbitol 6-phosphate (S6P), are not substrates. A more efficient synthesis of α-C6P was achieved using the Claisen rearrangement approach, which allowed for a thorough evaluation of the NtdC-catalyzed oxidation of α-C6P. The requirement for the α-anomer indicates that NtdC and NtdA, the subsequent enzyme in the pathway, have co-evolved to recognize the α-anomer in order to avoid mutarotation between enzymatic steps.
Collapse
Affiliation(s)
- Natasha D. Vetter
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Rajendra C. Jagdhane
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Brett J. Richter
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - David R. J. Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
10
|
Kudo F, Kitayama Y, Miyanaga A, Hirayama A, Eguchi T. Biochemical and Structural Analysis of a Dehydrogenase, KanD2, and an Aminotransferase, KanS2, That Are Responsible for the Construction of the Kanosamine Moiety in Kanamycin Biosynthesis. Biochemistry 2020; 59:1470-1473. [DOI: 10.1021/acs.biochem.0c00204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yukinobu Kitayama
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Akane Hirayama
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
11
|
Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front Microbiol 2019; 10:302. [PMID: 30873135 PMCID: PMC6401651 DOI: 10.3389/fmicb.2019.00302] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Over the last seven decades, applications using members of the Bacillus subtilis group have emerged in both food processes and crop protection industries. Their ability to form survival endospores and the plethora of antimicrobial compounds they produce has generated an increased industrial interest as food preservatives, therapeutic agents and biopesticides. In the growing context of food biopreservation and biological crop protection, this review suggests a comprehensive way to visualize the antimicrobial spectrum described within the B. subtilis group, including volatile compounds. This classification distinguishes the bioactive metabolites based on their biosynthetic pathways and chemical nature: i.e., ribosomal peptides (RPs), volatile compounds, polyketides (PKs), non-ribosomal peptides (NRPs), and hybrids between PKs and NRPs. For each clade, the chemical structure, biosynthesis and antimicrobial activity are described and exemplified. This review aims at constituting a convenient and updated classification of antimicrobial metabolites from the B. subtilis group, whose complex phylogeny is prone to further development.
Collapse
Affiliation(s)
- Simon Caulier
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Laboratory of Phytopathology-Applied Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Catherine Nannan
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Florent Licciardi
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Laboratory of Phytopathology-Applied Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Aumala V, Mollerup F, Jurak E, Blume F, Karppi J, Koistinen AE, Schuiten E, Voß M, Bornscheuer U, Deska J, Master ER. Biocatalytic Production of Amino Carbohydrates through Oxidoreductase and Transaminase Cascades. CHEMSUSCHEM 2019; 12:848-857. [PMID: 30589228 PMCID: PMC6519198 DOI: 10.1002/cssc.201802580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Plant-derived carbohydrates are an abundant renewable resource. Transformation of carbohydrates into new products, including amine-functionalized building blocks for biomaterials applications, can lower reliance on fossil resources. Herein, biocatalytic production routes to amino carbohydrates, including oligosaccharides, are demonstrated. In each case, two-step biocatalysis was performed to functionalize d-galactose-containing carbohydrates by employing the galactose oxidase from Fusarium graminearum or a pyranose dehydrogenase from Agaricus bisporus followed by the ω-transaminase from Chromobacterium violaceum (Cvi-ω-TA). Formation of 6-amino-6-deoxy-d-galactose, 2-amino-2-deoxy-d-galactose, and 2-amino-2-deoxy-6-aldo-d-galactose was confirmed by mass spectrometry. The activity of Cvi-ω-TA was highest towards 6-aldo-d-galactose, for which the highest yield of 6-amino-6-deoxy-d-galactose (67 %) was achieved in reactions permitting simultaneous oxidation of d-galactose and transamination of the resulting 6-aldo-d-galactose.
Collapse
Affiliation(s)
- Ville Aumala
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Filip Mollerup
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Edita Jurak
- Department of Aquatic Biotechnology and Bioproduct EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Fabian Blume
- Department of Chemistry and Materials ScienceAalto UniversityKemistintie 102150EspooFinland
| | - Johanna Karppi
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Antti E. Koistinen
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Eva Schuiten
- Department of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Moritz Voß
- Department of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Uwe Bornscheuer
- Department of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Jan Deska
- Department of Chemistry and Materials ScienceAalto UniversityKemistintie 102150EspooFinland
| | - Emma R. Master
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoOntarioM5S 3E5Canada
| |
Collapse
|
13
|
Kaundinya CR, Savithri HS, Rao KK, Balaji PV. EpsN from Bacillus subtilis 168 has UDP-2,6-dideoxy 2-acetamido 4-keto glucose aminotransferase activity in vitro. Glycobiology 2019; 28:802-812. [PMID: 29982582 DOI: 10.1093/glycob/cwy063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/04/2018] [Indexed: 01/08/2023] Open
Abstract
The gene epsN of Bacillus subtilis 168 was cloned and overexpressed in Escherichia coli. Purified recombinant EpsN is shown to be a pyridoxal 5'-phosphate (PLP)-dependent aminotransferase by absorption spectroscopy, l-cycloserine inhibition and reverse phase HPLC studies. EpsN catalyzes the conversion of UDP-2,6-dideoxy 2-acetamido 4-keto glucose to UDP-2,6-dideoxy 2-acetamido 4-amino glucose. Lys190 was found by sequence comparison and site-directed mutagenesis to form Schiff base with PLP. Mutagenesis studies showed that, in addition to Lys190, Ser185, Glu164, Gly58 and Thr59 are essential for aminotransferase activity.
Collapse
Affiliation(s)
- Chinmayi R Kaundinya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Handanahal S Savithri
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bengaluru, India
| | - K Krishnamurthy Rao
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Petety V Balaji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
14
|
Borriss R, Danchin A, Harwood CR, Médigue C, Rocha EP, Sekowska A, Vallenet D. Bacillus subtilis, the model Gram-positive bacterium: 20 years of annotation refinement. Microb Biotechnol 2018; 11:3-17. [PMID: 29280348 PMCID: PMC5743806 DOI: 10.1111/1751-7915.13043] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome annotation is, nowadays, performed via automatic pipelines that cannot discriminate between right and wrong annotations. Given their importance in increasing the accuracy of the genome annotations of other organisms, it is critical that the annotations of model organisms reflect the current annotation gold standard. The genome of Bacillus subtilis strain 168 was sequenced twenty years ago. Using a combination of inductive, deductive and abductive reasoning, we present a unique, manually curated annotation, essentially based on experimental data. This reveals how this bacterium lives in a plant niche, while carrying a paleome operating system common to Firmicutes and Tenericutes. Dozens of new genomic objects and an extensive literature survey have been included for the sequence available at the INSDC (AccNum AL009126.3). We also propose an extension to Demerec's nomenclature rules that will help investigators connect to this type of curated annotation via the use of common gene names.
Collapse
Affiliation(s)
- Rainer Borriss
- Department of PhytomedicineHumboldt‐Universität zu BerlinLentzeallee 55‐5714195BerlinGermany
| | - Antoine Danchin
- Hôpital de la Pitié‐SalpêtrièreInstitute of Cardiometabolism and Nutrition47 Boulevard de l'Hôpital75013ParisFrance
- School of Biomedical SciencesLi Kashing Faculty of MedicineUniversity of Hong Kong21 Sassoon RoadPok Fu LamSAR Hong KongChina
| | - Colin R. Harwood
- The Centre for Bacterial Cell BiologyNewcastle UniversityBaddiley‐Clark BuildingRichardson RoadNewcastle upon TyneNE2 4AXUK
| | - Claudine Médigue
- CEA DRF Genoscope LABGeMCNRS, UMR8030 Génomique MétaboliqueUniversité d'Evry Val d'EssonneUniversité Paris‐SaclayF‐91057EvryFrance
| | - Eduardo P.C. Rocha
- Microbial Evolutionary Genomics UnitInstitut Pasteur28 rue du Docteur Roux75724Paris Cedex 15France
| | - Agnieszka Sekowska
- Hôpital de la Pitié‐SalpêtrièreInstitute of Cardiometabolism and Nutrition47 Boulevard de l'Hôpital75013ParisFrance
| | - David Vallenet
- CEA DRF Genoscope LABGeMCNRS, UMR8030 Génomique MétaboliqueUniversité d'Evry Val d'EssonneUniversité Paris‐SaclayF‐91057EvryFrance
| |
Collapse
|
15
|
Hirayama A, Chu J, Goto E, Kudo F, Eguchi T. NAD+
-Dependent Dehydrogenase PctP and Pyridoxal 5′-Phosphate Dependent Aminotransferase PctC Catalyze the First Postglycosylation Modification of the Sugar Intermediate in Pactamycin Biosynthesis. Chembiochem 2017; 19:126-130. [DOI: 10.1002/cbic.201700483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Akane Hirayama
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Jinmiao Chu
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Ena Goto
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Fumitaka Kudo
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Tadashi Eguchi
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
16
|
Uddin R, Rafi S. Structural and functional characterization of a unique hypothetical protein (WP_003901628.1) of Mycobacterium tuberculosis: a computational approach. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1822-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Skarbek K, Milewska MJ. Biosynthetic and synthetic access to amino sugars. Carbohydr Res 2016; 434:44-71. [PMID: 27592039 DOI: 10.1016/j.carres.2016.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/11/2016] [Accepted: 08/20/2016] [Indexed: 12/01/2022]
Abstract
Amino sugars are important constituents of a number of biomacromolecules and products of microbial secondary metabolism, including antibiotics. For most of them, the amino group is located at the positions C1, C2 or C3 of the hexose or pentose ring. In biological systems, amino sugars are formed due to the catalytic activity of specific aminotransferases or amidotransferases by introducing an amino functionality derived from L-glutamate or L-glutamine to the keto forms of sugar phosphates or sugar nucleotides. The synthetic introduction of amino functionalities in a regio- and stereoselective manner onto sugar scaffolds represents a substantial challenge. Most of the modern methods of for the preparation of 1-, 2- and 3-amino sugars are those starting from "an active ester" of carbohydrate derivatives, glycals, alcohols, carbonyl compounds and amino acids. A substantial progress in the development of region- and stereoselective methods of amino sugar synthesis has been made in the recent years, due to the application of metal-based catalysts and tethered approaches. A comprehensive review on the current state of knowledge on biosynthesis and chemical synthesis of amino sugars is presented.
Collapse
Affiliation(s)
- Kornelia Skarbek
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland.
| |
Collapse
|
18
|
Zachman-Brockmeyer TR, Thoden JB, Holden HM. Structures of KdnB and KdnA from Shewanella oneidensis: Key Enzymes in the Formation of 8-Amino-3,8-Dideoxy-d-Manno-Octulosonic Acid. Biochemistry 2016; 55:4485-94. [PMID: 27275764 DOI: 10.1021/acs.biochem.6b00439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
8-Amino-3,8-dideoxy-d-manno-octulosonic acid (Kdo8N) is a unique amino sugar that has thus far only been observed on the lipopolysaccharides of marine bacteria belonging to the genus Shewanella. Although its biological function is still unclear, it is thought that the sugar is important for the integrity of the bacterial cell outer membrane. A three-gene cluster required for the biosynthesis of Kdo8N was first identified in Shewanella oneidensis. Here we describe the three-dimensional structures of two of the enzymes required for Kdo8N biosynthesis in S. oneidensis, namely, KdnB and KdnA. The structure of KdnB was solved to 1.85-Å resolution, and its overall three-dimensional architecture places it into the Group III alcohol dehydrogenase superfamily. A previous study suggested that KdnB did not require NAD(P) for activity. Strikingly, although the protein was crystallized in the absence of any cofactors, the electron density map clearly revealed the presence of a tightly bound NAD(H). In addition, a bound metal was observed, which was shown via X-ray fluorescence to be a zinc ion. Unlike other members of the Group III alcohol dehydrogenases, the dinucleotide cofactor in KdnB is tightly bound and cannot be removed without leading to protein precipitation. With respect to KdnA, it is a pyridoxal 5'-phosphate or (PLP)-dependent aminotransferase. For this analysis, the structure of KdnA, trapped in the presence of the external aldimine with PLP and glutamate, was determined to 2.15-Å resolution. The model of KdnA represents the first structure of a sugar aminotransferase that functions on an 8-oxo sugar. Taken together the results reported herein provide new molecular insight into the biosynthesis of Kdo8N.
Collapse
Affiliation(s)
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
19
|
Zhu Y, Xu J, Mei X, Feng Z, Zhang L, Zhang Q, Zhang G, Zhu W, Liu J, Zhang C. Biochemical and Structural Insights into the Aminotransferase CrmG in Caerulomycin Biosynthesis. ACS Chem Biol 2016; 11:943-52. [PMID: 26714051 DOI: 10.1021/acschembio.5b00984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Caerulomycin A (CRM A 1) belongs to a family of natural products containing a 2,2'-bipyridyl ring core structure and is currently under development as a potent novel immunosuppressive agent. Herein, we report the functional characterization, kinetic analysis, substrate specificity, and structure insights of an aminotransferase CrmG in 1 biosynthesis. The aminotransferase CrmG was confirmed to catalyze a key transamination reaction to convert an aldehyde group to an amino group in the 1 biosynthetic pathway, preferring l-glutamate and l-glutamine as the amino donor substrates. The crystal structures of CrmG in complex with the cofactor 5'-pyridoxal phosphate (PLP) or 5'-pyridoxamine phosphate (PMP) or the acceptor substrate were determined to adopt a canonical fold-type I of PLP-dependent enzymes with a unique small additional domain. The structure guided site-directed mutagenesis identified key amino acid residues for substrate binding and catalytic activities, thus providing insights into the transamination mechanism of CrmG.
Collapse
Affiliation(s)
- Yiguang Zhu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jinxin Xu
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiangui Mei
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhan Feng
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Liping Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qingbo Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guangtao Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Weiming Zhu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jinsong Liu
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changsheng Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
20
|
Wang F, Singh S, Xu W, Helmich KE, Miller MD, Cao H, Bingman CA, Thorson JS, Phillips GN. Structural Basis for the Stereochemical Control of Amine Installation in Nucleotide Sugar Aminotransferases. ACS Chem Biol 2015; 10:2048-56. [PMID: 26023720 DOI: 10.1021/acschembio.5b00244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sugar aminotransferases (SATs) are an important class of tailoring enzymes that catalyze the 5'-pyridoxal phosphate (PLP)-dependent stereo- and regiospecific installation of an amino group from an amino acid donor (typically L-Glu or L-Gln) to a corresponding ketosugar nucleotide acceptor. Herein we report the strategic structural study of two homologous C4 SATs (Micromonospora echinospora CalS13 and Escherichia coli WecE) that utilize identical substrates but differ in their stereochemistry of aminotransfer. This study reveals for the first time a new mode of SAT sugar nucleotide binding and, in conjunction with previously reported SAT structural studies, provides the basis from which to propose a universal model for SAT stereo- and regiochemical control of amine installation. Specifically, the universal model put forth highlights catalytic divergence to derive solely from distinctions within nucleotide sugar orientation upon binding within a relatively fixed SAT active site where the available ligand bound structures of the three out of four representative C3 and C4 SAT examples provide a basis for the overall model. Importantly, this study presents a new predictive model to support SAT functional annotation, biochemical study and rational engineering.
Collapse
Affiliation(s)
| | - Shanteri Singh
- Center
for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | - Kate E. Helmich
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | | | | | - Craig A. Bingman
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Jon S. Thorson
- Center
for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - George N. Phillips
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|