1
|
Kalvelage J, Wöhlbrand L, Senkler J, Schumacher J, Ditz N, Bischof K, Winklhofer M, Klingl A, Braun HP, Rabus R. Conspicuous chloroplast with light harvesting-photosystem I/II megacomplex in marine Prorocentrum cordatum. PLANT PHYSIOLOGY 2024; 195:306-325. [PMID: 38330164 PMCID: PMC11181951 DOI: 10.1093/plphys/kiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 02/10/2024]
Abstract
Marine photosynthetic (micro)organisms drive multiple biogeochemical cycles and display a large diversity. Among them, the bloom-forming, free-living dinoflagellate Prorocentrum cordatum CCMP 1329 (formerly P. minimum) stands out with its distinct cell biological features. Here, we obtained insights into the structural properties of the chloroplast and the photosynthetic machinery of P. cordatum using microscopic and proteogenomic approaches. High-resolution FIB/SEM analysis revealed a single large chloroplast (∼40% of total cell volume) with a continuous barrel-like structure, completely lining the inner face of the cell envelope and enclosing a single reticular mitochondrium, the Golgi apparatus, as well as diverse storage inclusions. Enriched thylakoid membrane fractions of P. cordatum were comparatively analyzed with those of the well-studied model-species Arabidopsis (Arabidopsis thaliana) using 2D BN DIGE. Strikingly, P. cordatum possessed a large photosystem-light harvesting megacomplex (>1.5 MDa), which is dominated by photosystems I and II (PSI, PSII), chloroplast complex I, and chlorophyll a-b binding light harvesting complex proteins. This finding parallels the absence of grana in its chloroplast and distinguishes from the predominant separation of PSI and PSII complexes in A. thaliana, indicating a different mode of flux balancing. Except for the core elements of the ATP synthase and the cytb6f-complex, the composition of the other complexes (PSI, PSII, and pigment-binding proteins, PBPs) of P. cordatum differed markedly from those of A. thaliana. Furthermore, a high number of PBPs was detected, accounting for a large share of the total proteomic data (∼65%) and potentially providing P. cordatum with flexible adaptation to changing light regimes.
Collapse
Affiliation(s)
- Jana Kalvelage
- School of Mathematics and Science, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Lars Wöhlbrand
- School of Mathematics and Science, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Jennifer Senkler
- Faculty of Natural Sciences, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Julian Schumacher
- School of Mathematics and Science, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Noah Ditz
- Faculty of Natural Sciences, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Kai Bischof
- Faculty Biology/Chemistry, University of Bremen & MARUM, 28359 Bremen, Germany
| | - Michael Winklhofer
- School of Mathematics and Science, Institute of Biology and Environmental Sciences (IBU), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Andreas Klingl
- Faculty of Biology, Botany, Ludwig-Maximilians-Universität LMU München, 82152 Planegg-Martinsried, Germany
| | - Hans-Peter Braun
- Faculty of Natural Sciences, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Ralf Rabus
- School of Mathematics and Science, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
2
|
Lan Y, Chen Q, Mi H. NdhS interacts with cytochrome b 6 f to form a complex in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:706-716. [PMID: 37493543 DOI: 10.1111/tpj.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023]
Abstract
Cyclic electron transport (CET) around photosystem I (PSI) is crucial for photosynthesis to perform photoprotection and sustain the balance of ATP and NADPH. However, the critical component of CET, cyt b6 f complex (cyt b6 f), functions in CET has yet to be understood entirely. In this study, we found that NdhS, a subunit of NADPH dehydrogenase-like (NDH) complex, interacted with cyt b6 f to form a complex in Arabidopsis. This interaction depended on the N-terminal extension of NdhS, which was conserved in eukaryotic plants but defective in prokaryotic algae. The migration of NdhS was much more in cyt b6 f than in PSI-NDH super-complex. Based on these results, we suggested that NdhS and NADP+ oxidoreductase provide a docking domain for the mobile electron carrier ferredoxin to transfer electrons to the plastoquinone pool via cyt b6 f in eukaryotic photosynthesis.
Collapse
Affiliation(s)
- Yixin Lan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai, 200032, P.R. China
| | - Qi Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai, 200032, P.R. China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai, 200032, P.R. China
| |
Collapse
|
3
|
Barr ZK, Werner T, Tilsner J. Heavy Metal-Associated Isoprenylated Plant Proteins (HIPPs) at Plasmodesmata: Exploring the Link between Localization and Function. PLANTS (BASEL, SWITZERLAND) 2023; 12:3015. [PMID: 37631227 PMCID: PMC10459601 DOI: 10.3390/plants12163015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) are a metallochaperone-like protein family comprising a combination of structural features unique to vascular plants. HIPPs possess both one or two heavy metal-binding domains and an isoprenylation site, facilitating a posttranslational protein lipid modification. Recent work has characterized individual HIPPs across numerous different species and provided evidence for varied functionalities. Interestingly, a significant number of HIPPs have been identified in proteomes of plasmodesmata (PD)-nanochannels mediating symplastic connectivity within plant tissues that play pivotal roles in intercellular communication during plant development as well as responses to biotic and abiotic stress. As characterized functions of many HIPPs are linked to stress responses, plasmodesmal HIPP proteins are potentially interesting candidate components of signaling events at or for the regulation of PD. Here, we review what is known about PD-localized HIPP proteins specifically, and how the structure and function of HIPPs more generally could link to known properties and regulation of PD.
Collapse
Affiliation(s)
- Zoe Kathleen Barr
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Tomáš Werner
- Department of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
4
|
Ogawa T, Kobayashi K, Taniguchi YY, Shikanai T, Nakamura N, Yokota A, Munekage YN. Two cyclic electron flows around photosystem I differentially participate in C4 photosynthesis. PLANT PHYSIOLOGY 2023; 191:2288-2300. [PMID: 36703198 PMCID: PMC10069883 DOI: 10.1093/plphys/kiad032] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
C4 plants assimilate CO2 more efficiently than C3 plants because of their C4 cycle that concentrates CO2. However, the C4 cycle requires additional ATP molecules, which may be supplied by cyclic electron flow (CEF) around photosystem I. One CEF route, which depends on a chloroplast NADH dehydrogenase-like (NDH) complex, is suggested to be crucial for C4 plants despite the low activity in C3 plants. The other route depends on proton gradient regulation 5 (PGR5) and PGR5-like photosynthetic phenotype 1 (PGRL1) and is considered a major CEF route to generate the proton gradient across the thylakoid membrane in C3 plants. However, its contribution to C4 photosynthesis is still unclear. In this study, we investigated the contribution of the two CEF routes to the NADP-malic enzyme subtype of C4 photosynthesis in Flaveria bidentis. We observed that suppressing the NDH-dependent route drastically delayed growth and decreased the CO2 assimilation rate to approximately 30% of the wild-type rate. On the other hand, suppressing the PGR5/PGRL1-dependent route did not affect plant growth and resulted in a CO2 assimilation rate that was approximately 80% of the wild-type rate. Our data indicate that the NDH-dependent CEF substantially contributes to the NADP-malic enzyme subtype of C4 photosynthesis and that the PGR5/PGRL1-dependent route cannot complement the NDH-dependent route in F. bidentis. These findings support the fact that during C4 evolution, photosynthetic electron flow may have been optimized to provide the energy required for C4 photosynthesis.
Collapse
Affiliation(s)
- Takako Ogawa
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kana Kobayashi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yukimi Y Taniguchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Toshiharu Shikanai
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyoku, Kyoto 606-8502, Japan
| | - Naoya Nakamura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Akiho Yokota
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yuri N Munekage
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
5
|
Takahashi H. Cyclic electron flow A to Z. JOURNAL OF PLANT RESEARCH 2022; 135:539-541. [PMID: 35727481 DOI: 10.1007/s10265-022-01402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Hiroko Takahashi
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.
| |
Collapse
|
6
|
Abstract
Light reaction of photosynthesis is efficiently driven by protein complexes arranged in an orderly in the thylakoid membrane. As the 5th complex, NAD(P)H dehydrogenase complex (NDH-1) is involved in cyclic electron flow around photosystem I to protect plants against environmental stresses for efficient photosynthesis. In addition, two kinds of NDH-1 complexes participate in CO2 uptake for CO2 concentration in cyanobacteria. In recent years, great progress has been made in the understanding of the assembly and the structure of NDH-1. However, the regulatory mechanism of NDH-1 in photosynthesis remains largely unknown. Therefore, understanding the regulatory mechanism of NDH-1 is of great significance to reveal the mechanism of efficient photosynthesis. In this mini-review, the author introduces current progress in the research of cyanobacterial NDH-1. Finally, the author summarizes the possible regulatory mechanism of cyanobacterial NDH-1 in photosynthesis and discusses the research prospect.
Collapse
Affiliation(s)
- Mi Hualing
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institutes of Plant Physiology and Ecology, Shanghai, China
| |
Collapse
|
7
|
Rodriguez-Heredia M, Saccon F, Wilson S, Finazzi G, Ruban AV, Hanke GT. Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions. PLANT PHYSIOLOGY 2022; 188:1028-1042. [PMID: 35060611 PMCID: PMC8825262 DOI: 10.1093/plphys/kiab550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Plant tolerance to high light and oxidative stress is increased by overexpression of the photosynthetic enzyme Ferredoxin:NADP(H) reductase (FNR), but the specific mechanism of FNR-mediated protection remains enigmatic. It has also been reported that the localization of this enzyme within the chloroplast is related to its role in stress tolerance. Here, we dissected the impact of FNR content and location on photoinactivation of photosystem I (PSI) and photosystem II (PSII) during high light stress of Arabidopsis (Arabidopsis thaliana). The reaction center of PSII is efficiently turned over during light stress, while damage to PSI takes much longer to repair. Our results indicate a PSI sepcific effect, where efficient oxidation of the PSI primary donor (P700) upon transition from darkness to light, depends on FNR recruitment to the thylakoid membrane tether proteins: thylakoid rhodanase-like protein (TROL) and translocon at the inner envelope of chloroplasts 62 (Tic62). When these interactions were disrupted, PSI photoinactivation occurred. In contrast, there was a moderate delay in the onset of PSII damage. Based on measurements of ΔpH formation and cyclic electron flow, we propose that FNR location influences the speed at which photosynthetic control is induced, resulting in specific impact on PSI damage. Membrane tethering of FNR therefore plays a role in alleviating high light stress, by regulating electron distribution during short-term responses to light.
Collapse
Affiliation(s)
| | - Francesco Saccon
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Sam Wilson
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National de Recherche Agronomique (INRA), Institut de Recherche en Sciences et Technologies pour le Vivant (iRTSV), CEA Grenoble, F-38054 Grenoble cedex 9, France
| | - Alexander V Ruban
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Guy T Hanke
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
8
|
Yamamoto H, Sato N, Shikanai T. Critical Role of NdhA in the Incorporation of the Peripheral Arm into the Membrane-Embedded Part of the Chloroplast NADH Dehydrogenase-Like Complex. PLANT & CELL PHYSIOLOGY 2021; 62:1131-1145. [PMID: 33169158 DOI: 10.1093/pcp/pcaa143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The chloroplast NADH dehydrogenase-like (NDH) complex mediates ferredoxin-dependent plastoquinone reduction in the thylakoid membrane. In angiosperms, chloroplast NDH is composed of five subcomplexes and further forms a supercomplex with photosystem I (PSI). Subcomplex A (SubA) mediates the electron transport and consists of eight subunits encoded by both plastid and nuclear genomes. The assembly of SubA in the stroma has been extensively studied, but it is unclear how SubA is incorporated into the membrane-embedded part of the NDH complex. Here, we isolated a novel Arabidopsis mutant chlororespiratory reduction 16 (crr16) defective in NDH activity. CRR16 encodes a chloroplast-localized P-class pentatricopeptide repeat protein conserved in angiosperms. Transcript analysis of plastid-encoded ndh genes indicated that CRR16 was responsible for the efficient splicing of the group II intron in the ndhA transcript, which encodes a membrane-embedded subunit localized to the connecting site between SubA and the membrane subcomplex (SubM). To analyze the roles of NdhA in the assembly and stability of the NDH complex, the homoplastomic knockout plant of ndhA (ΔndhA) was generated in tobacco (Nicotiana tabacum). Biochemical analyses of crr16 and ΔndhA plants indicated that NdhA was essential for stabilizing SubA and SubE but not for the accumulation of the other three subcomplexes. Furthermore, the crr16 mutant accumulated the SubA assembly intermediates in the stroma more than that in the wild type. These results suggest that NdhA biosynthesis is essential for the incorporation of SubA into the membrane-embedded part of the NDH complex at the final assembly step of the NDH-PSI supercomplex.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Nozomi Sato
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
9
|
Kramer M, Rodriguez-Heredia M, Saccon F, Mosebach L, Twachtmann M, Krieger-Liszkay A, Duffy C, Knell RJ, Finazzi G, Hanke GT. Regulation of photosynthetic electron flow on dark to light transition by ferredoxin:NADP(H) oxidoreductase interactions. eLife 2021; 10:56088. [PMID: 33685582 PMCID: PMC7984839 DOI: 10.7554/elife.56088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/25/2021] [Indexed: 01/12/2023] Open
Abstract
During photosynthesis, electron transport is necessary for carbon assimilation and must be regulated to minimize free radical damage. There is a longstanding controversy over the role of a critical enzyme in this process (ferredoxin:NADP(H) oxidoreductase, or FNR), and in particular its location within chloroplasts. Here we use immunogold labelling to prove that FNR previously assigned as soluble is in fact membrane associated. We combined this technique with a genetic approach in the model plant Arabidopsis to show that the distribution of this enzyme between different membrane regions depends on its interaction with specific tether proteins. We further demonstrate a correlation between the interaction of FNR with different proteins and the activity of alternative photosynthetic electron transport pathways. This supports a role for FNR location in regulating photosynthetic electron flow during the transition from dark to light.
Collapse
Affiliation(s)
- Manuela Kramer
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom.,Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | | | - Francesco Saccon
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom
| | - Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Manuel Twachtmann
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Paris, France
| | - Chris Duffy
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom
| | - Robert J Knell
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat a` l'Energie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National Recherche Agronomique (INRA), Institut de Recherche en Sciences et Technologies pour le Vivant (iRTSV), CEA Grenoble, Grenoble, France
| | - Guy Thomas Hanke
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom.,Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
10
|
Laughlin TG, Savage DF, Davies KM. Recent advances on the structure and function of NDH-1: The complex I of oxygenic photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148254. [PMID: 32645407 DOI: 10.1016/j.bbabio.2020.148254] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022]
Abstract
Photosynthetic NADH dehydrogenase-like complex type-1 (a.k.a, NDH, NDH-1, or NDH-1L) is a multi-subunit, membrane-bound oxidoreductase related to the respiratory complex I. Although originally discovered 30 years ago, a number of recent advances have revealed significant insight into the structure, function, and physiology of NDH-1. Here, we highlight progress in understanding the function of NDH-1 in the photosynthetic light reactions of both cyanobacteria and chloroplasts from biochemical and structural perspectives. We further examine the cyanobacterial-specific forms of NDH-1 that possess vectorial carbonic anhydrase (vCA) activity and function in the CO2-concentrating mechanism (CCM). We compare the proposed mechanism for the cyanobacterial NDH-1 vCA-activity to that of the DAB (DABs accumulates bicarbonate) complex, another putative vCA. Finally, we discuss both new and remaining questions pertaining to the mechanisms of NDH-1 complexes in light of these recent advances.
Collapse
Affiliation(s)
- Thomas G Laughlin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Karen M Davies
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
11
|
Identification of the electron donor to flavodiiron proteins in Synechocystis sp. PCC 6803 by in vivo spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148256. [PMID: 32622739 DOI: 10.1016/j.bbabio.2020.148256] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/18/2023]
Abstract
Flavodiiron proteins (FDPs) of photosynthetic organisms play a photoprotective role by reducing oxygen to water and thus avoiding the accumulation of excess electrons on the photosystem I (PSI) acceptor side under stress conditions. In Synechocystis sp. PCC 6803 grown under high CO2, both FDPs Flv1 and Flv3 are indispensable for oxygen reduction. We performed a detailed in vivo kinetic study of wild-type (WT) and Δflv1/3 strains of Synechocystis using light-induced NADPH fluorescence and near-infrared absorption of iron-sulfur clusters from ferredoxin and the PSI acceptors (FAFB), collectively named FeS. These measurements were performed under conditions where the Calvin-Benson cycle is inactive or poorly activated. Under such conditions, the NADPH decay following a short illumination decays in parallel in both strains and exhibits a time lag which is correlated to the presence of reduced FeS. On the contrary, reduced FeS decays much faster in WT than in Δflv1/3 (13 vs 2 s-1). These data unambiguously show that reduced ferredoxin, or possibly reduced FAFB, is the direct electron donor to the Flv1/Flv3 heterodimer. Evidences for large reduction of (FAFB) and recombination reactions within PSI were also provided by near-infrared absorption. Mutants lacking either the NDH1-L complex, the homolog of complex I of respiration, or the Pgr5 protein show no difference with WT in the oxidation of reduced FeS following a short illumination. These observations question the participation of a significant cyclic electron flow in cyanobacteria during the first seconds of the induction phase of photosynthesis.
Collapse
|
12
|
Structural insights into NDH-1 mediated cyclic electron transfer. Nat Commun 2020; 11:888. [PMID: 32060291 PMCID: PMC7021789 DOI: 10.1038/s41467-020-14732-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023] Open
Abstract
NDH-1 is a key component of the cyclic-electron-transfer around photosystem I (PSI CET) pathway, an important antioxidant mechanism for efficient photosynthesis. Here, we report a 3.2-Å-resolution cryo-EM structure of the ferredoxin (Fd)-NDH-1L complex from the cyanobacterium Thermosynechococcus elongatus. The structure reveals three β-carotene and fifteen lipid molecules in the membrane arm of NDH-1L. Regulatory oxygenic photosynthesis-specific (OPS) subunits NdhV, NdhS and NdhO are close to the Fd-binding site whilst NdhL is adjacent to the plastoquinone (PQ) cavity, and they play different roles in PSI CET under high-light stress. NdhV assists in the binding of Fd to NDH-1L and accelerates PSI CET in response to short-term high-light exposure. In contrast, prolonged high-light irradiation switches on the expression and assembly of the NDH-1MS complex, which likely contains no NdhO to further accelerate PSI CET and reduce ROS production. We propose that this hierarchical mechanism is necessary for the survival of cyanobacteria in an aerobic environment. NDH-1 is a key component of the cyclic-electron-transfer around photosystem I pathway, an antioxidant mechanism for efficient photosynthesis. Here, authors report a cryo-EM structure of the ferredoxin (Fd)-NDH-1L complex from the cyanobacterium Thermosynechococcus elongatus.
Collapse
|
13
|
Nakano H, Yamamoto H, Shikanai T. Contribution of NDH-dependent cyclic electron transport around photosystem I to the generation of proton motive force in the weak mutant allele of pgr5. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:369-374. [PMID: 30878346 DOI: 10.1016/j.bbabio.2019.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/29/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023]
Abstract
In angiosperms, cyclic electron transport (CET) around photosystem I (PSI) consists of two pathways, depending on PGR5/PGRL1 proteins and the chloroplast NDH complex. In single mutants defective in chloroplast NDH, photosynthetic electron transport is only slightly affected at low light intensity, but in double mutants impaired in both CET pathways photosynthesis and plant growth are severely affected. The question is whether this strong mutant phenotype observed in double mutants can be simply explained by the additive effect of defects in both CET pathways. In this study, we used the weak mutant allele of pgr5-2 for the background of double mutants to avoid possible problems caused by the secondary effects due to the strong mutant phenotype. In two double mutants, crr2-2 pgr5-2 and ndhs-1 pgr5-2, the plant growth was unaffected and linear electron transport was only slightly affected. However, NPQ induction was more severely impaired in the double mutants than in the pgr5-2 single mutant. A similar trend was observed in the size of the proton motive force. Despite the slight reduction in photosystem II parameters, PSI parameters were severely affected in the pgr5-2 single mutant, the phenotype that was further enhanced by adding the NDH defects. Despite the lack of ∆pH-dependent regulation at the cytochrome b6f complex (donor-side regulation of PSI), the plastoquinone pool was more reduced in the double mutants than in the pgr5-2 single mutants. This phenotype suggests that both PGR5/PGRL1- and NDH-dependent CET contribute to supply sufficient acceptors from PSI by balancing the ATP/NADPH production ratio.
Collapse
Affiliation(s)
- Hiroshi Nakano
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
14
|
Saura P, Kaila VRI. Molecular dynamics and structural models of the cyanobacterial NDH-1 complex. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2019; 1860:201-208. [PMID: 30448269 PMCID: PMC6358722 DOI: 10.1016/j.bbabio.2018.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
NDH-1 is a gigantic redox-driven proton pump linked with respiration and cyclic electron flow in cyanobacterial cells. Based on experimentally resolved X-ray and cryo-EM structures of the respiratory complex I, we derive here molecular models of two isoforms of the cyanobacterial NDH-1 complex involved in redox-driven proton pumping (NDH-1L) and CO2-fixation (NDH-1MS). Our models show distinct structural and dynamic similarities to the core architecture of the bacterial and mammalian respiratory complex I. We identify putative plastoquinone-binding sites that are coupled by an electrostatic wire to the proton pumping elements in the membrane domain of the enzyme. Molecular simulations suggest that the NDH-1L isoform undergoes large-scale hydration changes that support proton-pumping within antiporter-like subunits, whereas the terminal subunit of the NDH-1MS isoform lacks such structural motifs. Our work provides a putative molecular blueprint for the complex I-analogue in the photosynthetic energy transduction machinery and demonstrates that general mechanistic features of the long-range proton-pumping machinery are evolutionary conserved in the complex I-superfamily.
Collapse
Affiliation(s)
- Patricia Saura
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstraße 4, Garching D-85747, Germany
| | - Ville R I Kaila
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstraße 4, Garching D-85747, Germany.
| |
Collapse
|
15
|
Structure of the complex I-like molecule NDH of oxygenic photosynthesis. Nature 2019; 566:411-414. [PMID: 30742075 DOI: 10.1038/s41586-019-0921-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
Cyclic electron flow around photosystem I (PSI) is a mechanism by which photosynthetic organisms balance the levels of ATP and NADPH necessary for efficient photosynthesis1,2. NAD(P)H dehydrogenase-like complex (NDH) is a key component of this pathway in most oxygenic photosynthetic organisms3,4 and is the last large photosynthetic membrane-protein complex for which the structure remains unknown. Related to the respiratory NADH dehydrogenase complex (complex I), NDH transfers electrons originating from PSI to the plastoquinone pool while pumping protons across the thylakoid membrane, thereby increasing the amount of ATP produced per NADP+ molecule reduced4,5. NDH possesses 11 of the 14 core complex I subunits, as well as several oxygenic-photosynthesis-specific (OPS) subunits that are conserved from cyanobacteria to plants3,6. However, the three core complex I subunits that are involved in accepting electrons from NAD(P)H are notably absent in NDH3,5,6, and it is therefore not clear how NDH acquires and transfers electrons to plastoquinone. It is proposed that the OPS subunits-specifically NdhS-enable NDH to accept electrons from its electron donor, ferredoxin3-5,7. Here we report a 3.1 Å structure of the 0.42-MDa NDH complex from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1, obtained by single-particle cryo-electron microscopy. Our maps reveal the structure and arrangement of the principal OPS subunits in the NDH complex, as well as an unexpected cofactor close to the plastoquinone-binding site in the peripheral arm. The location of the OPS subunits supports a role in electron transfer and defines two potential ferredoxin-binding sites at the apex of the peripheral arm. These results suggest that NDH could possess several electron transfer routes, which would serve to maximize plastoquinone reduction and avoid deleterious off-target chemistry of the semi-plastoquinone radical.
Collapse
|
16
|
Yamamoto H, Shikanai T. PGR5-Dependent Cyclic Electron Flow Protects Photosystem I under Fluctuating Light at Donor and Acceptor Sides. PLANT PHYSIOLOGY 2019; 179:588-600. [PMID: 30464024 PMCID: PMC6426425 DOI: 10.1104/pp.18.01343] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 05/14/2023]
Abstract
In response to a sudden increase in light intensity, plants must cope with absorbed excess photon energy to protect photosystems from photodamage. Under fluctuating light, PSI is severely photodamaged in the Arabidopsis (Arabidopsis thaliana) proton gradient regulation5 (pgr5) mutant defective in the main pathway of PSI cyclic electron transport (CET). Here, we aimed to determine how PSI is protected by two proposed regulatory roles of CET via transthylakoid ΔpH formation: (1) reservation of electron sink capacity by adjusting the ATP/NADPH production ratio (acceptor-side regulation) and (2) down-regulation of the cytochrome b 6 f complex activity called photosynthetic control for slowing down the electron flow toward PSI (donor-side regulation). We artificially enhanced donor- and acceptor-side regulation in the wild-type and pgr5 backgrounds by introducing the pgr1 mutation conferring the hypersensitivity of the cytochrome b 6 f complex to luminal acidification and moss Physcomitrella patens flavodiiron protein genes, respectively. Enhanced photosynthetic control partially alleviated PSI photodamage in the pgr5 mutant background but restricted linear electron transport under constant high light, suggesting that the strength of photosynthetic control should be optimized. Flavodiiron protein-dependent oxygen photoreduction formed a large electron sink and alleviated PSI photoinhibition, accompanied by the induction of photosynthetic control. Thus, donor-side regulation is essential for PSI photoprotection but acceptor-side regulation also is important to rapidly induce donor-side regulation. In angiosperms, PGR5-dependent CET is required for both functions.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502 Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502 Japan
| |
Collapse
|
17
|
Schuller JM, Birrell JA, Tanaka H, Konuma T, Wulfhorst H, Cox N, Schuller SK, Thiemann J, Lubitz W, Sétif P, Ikegami T, Engel BD, Kurisu G, Nowaczyk MM. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science 2018; 363:257-260. [PMID: 30573545 DOI: 10.1126/science.aau3613] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
Photosynthetic complex I enables cyclic electron flow around photosystem I, a regulatory mechanism for photosynthetic energy conversion. We report a 3.3-angstrom-resolution cryo-electron microscopy structure of photosynthetic complex I from the cyanobacterium Thermosynechococcus elongatus. The model reveals structural adaptations that facilitate binding and electron transfer from the photosynthetic electron carrier ferredoxin. By mimicking cyclic electron flow with isolated components in vitro, we demonstrate that ferredoxin directly mediates electron transfer between photosystem I and complex I, instead of using intermediates such as NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate). A large rate constant for association of ferredoxin to complex I indicates efficient recognition, with the protein subunit NdhS being the key component in this process.
Collapse
Affiliation(s)
- Jan M Schuller
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - James A Birrell
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hannes Wulfhorst
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany.,Daiichi Sankyo Deutschland GmbH, Zielstattstr. 48, 81379 München, Germany
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany.,Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Sandra K Schuller
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Jacqueline Thiemann
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Pierre Sétif
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan. .,Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
18
|
Kato Y, Odahara M, Fukao Y, Shikanai T. Stepwise evolution of supercomplex formation with photosystem I is required for stabilization of chloroplast NADH dehydrogenase-like complex: Lhca5-dependent supercomplex formation in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:937-948. [PMID: 30176081 DOI: 10.1111/tpj.14080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 05/25/2023]
Abstract
In angiosperms, such as Arabidopsis and barley, the chloroplast NADH dehydrogenase-like (NDH) complex associates with two copies of photosystem I (PSI) supercomplex to form an NDH-PSI supercomplex for the stabilization of the NDH complex. Two linker proteins, Lhca5 and Lhca6, are members of the light-harvesting complex I (LHCI) family and mediate this supercomplex formation. The liverwort Marchantia polymorpha has branched from the basal land plant lineage and has neither Lhca5 nor Lhca6. Consequently, the NDH complex does not form a supercomplex with PSI in this plant. The Lhca6 gene does not seem to exist also in the moss Physcomitrella patens (Physcomitrella). Conversely, the Lhca5 gene has been found in Physcomitrella, although experimental evidence is still lacking for its contribution to NDH-PSI supercomplex formation as a linker. Here, we biochemically characterized the Lhca5 knock-out mutant (lhca5) in Physcomitrella. The NDH-PSI supercomplex observed in wild-type Physcomitrella was absent in the lhca5 mutant. Lhca5 protein was detected in this NDH-PSI supercomplex. Some PSI and NDH subunits were co-immunoprecipitated with Lhca5-HA. These results indicate that the Physcomitrella gene is the functional ortholog of Lhca5 reported in Arabidopsis. Between Physcomitrella and Arabidopsis, the stromal loop region is highly conserved in Lhca5 proteins but not in other LHCI members. We found that Lhca5 contributed to the stable accumulation of the NDH complex, but part of the NDH complex was still sensitive to high light intensity, even in the wild-type. We considered that angiosperms acquired another linker protein, Lhca6, to further stabilize the NDH complex.
Collapse
Affiliation(s)
- Yoshinobu Kato
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Masaki Odahara
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo, 171-8501, Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
19
|
Buchert F, Hamon M, Gäbelein P, Scholz M, Hippler M, Wollman FA. The labile interactions of cyclic electron flow effector proteins. J Biol Chem 2018; 293:17559-17573. [PMID: 30228184 PMCID: PMC6231120 DOI: 10.1074/jbc.ra118.004475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/05/2018] [Indexed: 12/16/2022] Open
Abstract
The supramolecular organization of membrane proteins (MPs) is sensitive to environmental changes in photosynthetic organisms. Isolation of MP supercomplexes from the green algae Chlamydomonas reinhardtii, which are believed to contribute to cyclic electron flow (CEF) between the cytochrome b6f complex (Cyt-b6f) and photosystem I (PSI), proved difficult. We were unable to isolate a supercomplex containing both Cyt-b6f and PSI because in our hands, most of Cyt-b6f did not comigrate in sucrose density gradients, even upon using chemical cross-linkers or amphipol substitution of detergents. Assisted by independent affinity purification and MS approaches, we utilized disintegrating MP assemblies and demonstrated that the algae-specific CEF effector proteins PETO and ANR1 are bona fide Cyt-b6f interactors, with ANR1 requiring the presence of an additional, presently unknown, protein. We narrowed down the Cyt-b6f interface, where PETO is loosely attached to cytochrome f and to a stromal region of subunit IV, which also contains phosphorylation sites for the STT7 kinase.
Collapse
Affiliation(s)
- Felix Buchert
- From the Institut de Biologie Physico-Chimique, UMR7141 CNRS-Sorbonne-Université, 13 Rue P et M Curie, 75005 Paris, France
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Marion Hamon
- the Institut de Biologie Physico-Chimique, UMR8226/FRC550 CNRS-Sorbonne-Université, 13 Rue P et M Curie, 75005 Paris, France
| | - Philipp Gäbelein
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Martin Scholz
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Michael Hippler
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Francis-André Wollman
- From the Institut de Biologie Physico-Chimique, UMR7141 CNRS-Sorbonne-Université, 13 Rue P et M Curie, 75005 Paris, France,
| |
Collapse
|
20
|
Nikkanen L, Toivola J, Trotta A, Diaz MG, Tikkanen M, Aro E, Rintamäki E. Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system. PLANT DIRECT 2018; 2:e00093. [PMID: 31245694 PMCID: PMC6508795 DOI: 10.1002/pld3.93] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/12/2018] [Accepted: 10/15/2018] [Indexed: 05/18/2023]
Abstract
Linear electron transport in the thylakoid membrane drives photosynthetic NADPH and ATP production, while cyclic electron flow (CEF) around photosystem I only promotes the translocation of protons from stroma to thylakoid lumen. The chloroplast NADH dehydrogenase-like complex (NDH) participates in one CEF route transferring electrons from ferredoxin back to the plastoquinone pool with concomitant proton pumping to the lumen. CEF has been proposed to balance the ratio of ATP/NADPH production and to control the redox poise particularly in fluctuating light conditions, but the mechanisms regulating the NDH complex remain unknown. We have investigated potential regulation of the CEF pathways by the chloroplast NADPH-thioredoxin reductase (NTRC) in vivo by using an Arabidopsis knockout line of NTRC as well as lines overexpressing NTRC. Here, we present biochemical and biophysical evidence showing that NTRC stimulates the activity of NDH-dependent CEF and is involved in the regulation of generation of proton motive force, thylakoid conductivity to protons, and redox balance between the thylakoid electron transfer chain and the stroma during changes in light conditions. Furthermore, protein-protein interaction assays suggest a putative thioredoxin-target site in close proximity to the ferredoxin-binding domain of NDH, thus providing a plausible mechanism for redox regulation of the NDH ferredoxin:plastoquinone oxidoreductase activity.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Jouni Toivola
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Andrea Trotta
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Manuel Guinea Diaz
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Mikko Tikkanen
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Eva‐Mari Aro
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Eevi Rintamäki
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| |
Collapse
|
21
|
Guan X, Chen S, Voon CP, Wong KB, Tikkanen M, Lim BL. FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors. FRONTIERS IN PLANT SCIENCE 2018; 9:410. [PMID: 29670639 PMCID: PMC5893904 DOI: 10.3389/fpls.2018.00410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/14/2018] [Indexed: 05/24/2023]
Abstract
Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP+ oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids.
Collapse
Affiliation(s)
- Xiaoqian Guan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shuai Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chia Pao Voon
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kam-Bo Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Mikko Tikkanen
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Boon L. Lim
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
22
|
Otani T, Kato Y, Shikanai T. Specific substitutions of light-harvesting complex I proteins associated with photosystem I are required for supercomplex formation with chloroplast NADH dehydrogenase-like complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:122-130. [PMID: 29385648 DOI: 10.1111/tpj.13846] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/15/2018] [Indexed: 05/25/2023]
Abstract
In Arabidopsis, the chloroplast NADH-dehydrogenase-like (NDH) complex is sandwiched between two copies of photosystem I (PSI) supercomplex, consisting of a PSI core and four light-harvesting complex I (LHCI) proteins (PSI-LHCI) to form the NDH-PSI supercomplex. Two minor LHCI proteins, Lhca5 and Lhca6, contribute to the interaction of each PSI-LHCI copy with the NDH complex. Here, large-pore blue-native gel electrophoresis revealed that, in addition to this complex, there were at least two types of higher-order association of more LHCI copies with the NDH complex. In single-particle images, this higher-order association of PSI-LHCI preferentially occurs at the left side of the NDH complex when viewed from the stromal side, placing subcomplex A at the top (Yadav et al., Biochim. Biophys. Acta - Bioenerg., 1858, 2017, 12). The association was impaired in the lhca6 mutant but not in the lhca5 mutant, suggesting that the left copy of PSI-LHCI was linked to the NDH complex via Lhca6. From an analysis of subunit compositions of the NDH-PSI supercomplex in lhca5 and lhca6 mutants, we propose that Lhca6 substitutes for Lhca2 in the left copy of PSI-LHCI, whereas Lhca5 substitutes for Lhca4 in the right copy. In the lhca2 mutant, Lhca3 was specifically stabilized in the NDH-PSI supercomplex through heterodimer formation with Lhca6. In the left copy of PSI-LHCI, subcomplex B, Lhca6 and NdhD likely formed the core of the supercomplex interaction. In contrast, a larger protein complex, including at least subcomplexes B and L and NdhB, was needed to form the contact site with Lhca5 in the right copy of PSI-LHCI.
Collapse
Affiliation(s)
- Takuto Otani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshinobu Kato
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
23
|
Kato Y, Sugimoto K, Shikanai T. NDH-PSI Supercomplex Assembly Precedes Full Assembly of the NDH Complex in Chloroplast. PLANT PHYSIOLOGY 2018; 176:1728-1738. [PMID: 29203556 PMCID: PMC5813578 DOI: 10.1104/pp.17.01120] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/30/2017] [Indexed: 05/21/2023]
Abstract
The chloroplast NADH dehydrogenase-like (NDH) complex is structurally similar to respiratory complex I and mediates PSI cyclic electron flow. In Arabidopsis (Arabidopsis thaliana), chloroplast NDH is composed of at least 29 subunits and associates with two copies of PSI to form the NDH-PSI supercomplex. Here, we found that CHLORORESPIRATORY REDUCTION3 (CRR3) is an assembly factor required for the accumulation of subcomplex B (SubB) of chloroplast NDH. In Suc density gradient centrifugation, CRR3 was detected in three protein complexes. Accumulation of the largest peak III complex was impaired in mutants defective in the SubB subunits PnsB2-PnsB5. The oligomeric form of CRR3 likely functions to assemble the core of SubB to form the peak III complex as an assembly intermediate. A defect in the PnsL3 subunit increased the level of the peak III complex, suggesting that CRR3 was released from the assembly intermediate after PnsL3 binding. Unlike PnsB2-PnsB5 and PnsL3, PnsB1 was not absolutely necessary for stabilizing SubB. PnsB1 is likely incorporated into the intermediate at the final step during SubB assembly. Lhca6 is a linker protein mediating NDH-PSI supercomplex formation, and its site of contact with NDH was suggested to be SubB. In the lhca6 mutant, accumulation of the peak III complex was impaired, suggesting that SubB interacted with Lhca6 during the step of SubB assembly. The process of supercomplex formation was triggered before the completion of the NDH assembly. Consistent with its predicted function, CRR3 accumulated in young leaves, where the NDH complex was assembled.
Collapse
Affiliation(s)
- Yoshinobu Kato
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuhiko Sugimoto
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Strand DD, Fisher N, Kramer DM. The higher plant plastid NAD(P)H dehydrogenase-like complex (NDH) is a high efficiency proton pump that increases ATP production by cyclic electron flow. J Biol Chem 2017; 292:11850-11860. [PMID: 28559282 DOI: 10.1074/jbc.m116.770792] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/26/2017] [Indexed: 12/31/2022] Open
Abstract
Cyclic electron flow around photosystem I (CEF) is critical for balancing the photosynthetic energy budget of the chloroplast by generating ATP without net production of NADPH. We demonstrate that the chloroplast NADPH dehydrogenase complex, a homolog to respiratory Complex I, pumps approximately two protons from the chloroplast stroma to the lumen per electron transferred from ferredoxin to plastoquinone, effectively increasing the efficiency of ATP production via CEF by 2-fold compared with CEF pathways involving non-proton-pumping plastoquinone reductases. By virtue of this proton-pumping stoichiometry, we hypothesize that NADPH dehydrogenase not only efficiently contributes to ATP production but operates near thermodynamic reversibility, with potentially important consequences for remediating mismatches in the thylakoid energy budget.
Collapse
Affiliation(s)
- Deserah D Strand
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48823
| | - Nicholas Fisher
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48823
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48823; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48823.
| |
Collapse
|
25
|
Otani T, Yamamoto H, Shikanai T. Stromal Loop of Lhca6 is Responsible for the Linker Function Required for the NDH-PSI Supercomplex Formation. PLANT & CELL PHYSIOLOGY 2017; 58:851-861. [PMID: 28184910 DOI: 10.1093/pcp/pcx009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/15/2017] [Indexed: 05/25/2023]
Abstract
The light-harvesting complex I (LHCI) proteins in Arabidopsis thaliana are encoded by six genes. Major LHCI proteins (Lhca1-Lhca4) harvest light energy and transfer the resulting excitation energy to the PSI core by forming a PSI supercomplex. In contrast, the minor LHCI proteins Lhca5 and Lhca6 contribute to supercomplex formation between the PSI supercomplex and the chloroplast NADH dehydrogenase-like (NDH) complex, although Lhca5 is also solely associated with the PSI supercomplex. Lhca6 was branched from Lhca2 during the evolution of land plants. In this study, we focused on the molecular evolution involved in the transition from a major LHCI, Lhca2, to the linker protein Lhca6. To elucidate the domains of Lhca6 responsible for linker function, we systematically swapped domains between the two LHCI proteins. To overcome problems due to the low stability of chimeric proteins, we employed sensitive methods to evaluate supercomplex formation: we monitored NDH activity by using Chl fluorescence analysis and detected NDH-PSI supercomplex formation by using protein blot analysis in the form of two-dimensional blue-native (BN)/SDS-PAGE. The stromal loop of Lhca6 was shown to be necessary and sufficient for linker function. Chimeric Lhca6, in which the stromal loop was substituted by that of Lhca2, was not functional as a linker and was detected at the position of the PSI supercomplex in the BN-polyacrylamide gel. The stromal loop of Lhca6 is likely to be necessary for the interaction with chloroplast NDH, rather than for the association with the PSI supercomplex.
Collapse
Affiliation(s)
- Takuto Otani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
26
|
Shikanai T, Yamamoto H. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts. MOLECULAR PLANT 2017; 10:20-29. [PMID: 27575692 DOI: 10.1016/j.molp.2016.08.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 05/05/2023]
Abstract
Photosynthetic electron transport is coupled to proton translocation across the thylakoid membrane, resulting in the formation of a trans-thylakoid proton gradient (ΔpH) and membrane potential (Δψ). Ion transporters and channels localized to the thylakoid membrane regulate the contribution of each component to the proton motive force (pmf). Although both ΔpH and Δψ contribute to ATP synthesis as pmf, only ΔpH downregulates photosynthetic electron transport via the acidification of the thylakoid lumen by inducing thermal dissipation of excessive absorbed light energy from photosystem II antennae and slowing down of the electron transport through the cytochrome b6f complex. To optimize the tradeoff between efficient light energy utilization and protection of both photosystems against photodamage, plants have to regulate the pmf amplitude and its components, ΔpH and Δψ. Cyclic electron transport around photosystem I (PSI) is a major regulator of the pmf amplitude by generating pmf independently of the net production of NADPH by linear electron transport. Chloroplast ATP synthase relaxes pmf for ATP synthesis, and its activity should be finely tuned for maintaining the size of the pmf during steady-state photosynthesis. Pseudo-cyclic electron transport mediated by flavodiiron protein (Flv) forms a large electron sink, which is essential for PSI photoprotection in fluctuating light in cyanobacteria. Flv is conserved from cyanobacteria to gymnosperms but not in angiosperms. The Arabidopsis proton gradient regulation 5 (pgr5) mutant is defective in the main pathway of PSI cyclic electron transport. By introducing Physcomitrella patens genes encoding Flvs, the function of PSI cyclic electron transport was substituted by that of Flv-dependent pseudo-cyclic electron transport. In transgenic plants, the size of the pmf was complemented to the wild-type level but the contribution of ΔpH to the total pmf was lower than that in the wild type. In the pgr5 mutant, the size of the pmf was drastically lowered by the absence of PSI cyclic electron transport. In the mutant, ΔpH occupied the majority of pmf, suggesting the presence of a mechanism for the homeostasis of luminal pH in the light. To avoid damage to photosynthetic electron transport by periods of excess solar energy, plants employ an intricate regulatory network involving alternative electron transport pathways, ion transporters/channels, and pH-dependent mechanisms for downregulating photosynthetic electron transport.
Collapse
Affiliation(s)
- Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076 Japan.
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076 Japan
| |
Collapse
|
27
|
Atkinson JT, Campbell I, Bennett GN, Silberg JJ. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways. Biochemistry 2016; 55:7047-7064. [DOI: 10.1021/acs.biochem.6b00831] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua T. Atkinson
- Systems,
Synthetic, and Physical Biology Graduate Program, Rice University, MS-180, 6100 Main Street, Houston, Texas 77005, United States
| | - Ian Campbell
- Biochemistry
and Cell Biology Graduate Program, Rice University, MS-140, 6100
Main Street, Houston, Texas 77005, United States
| | - George N. Bennett
- Department
of Biosciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, MS-362,
6100 Main Street, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department
of Biosciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
28
|
Gao F, Zhao J, Chen L, Battchikova N, Ran Z, Aro EM, Ogawa T, Ma W. The NDH-1L-PSI Supercomplex Is Important for Efficient Cyclic Electron Transport in Cyanobacteria. PLANT PHYSIOLOGY 2016; 172:1451-1464. [PMID: 27621424 PMCID: PMC5100770 DOI: 10.1104/pp.16.00585] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/08/2016] [Indexed: 05/19/2023]
Abstract
Two mutants isolated from a tagging library of Synechocystis sp. strain PCC 6803 were sensitive to high light and had a tag in sll1471 encoding CpcG2, a linker protein for photosystem I (PSI)-specific antenna. Both mutants demonstrated strongly impaired NDH-1-dependent cyclic electron transport. Blue native-polyacrylamide gel electrophoresis followed by immunoblotting and mass spectrometry analyses of the wild type and a mutant containing CpcG2 fused with yellow fluorescent protein-histidine6 indicated the presence of a novel NDH-1L-CpcG2-PSI supercomplex, which was absent in the cpcG2 deletion mutant, the PSI-less mutant, and several other strains deficient in NDH-1L and/or NDH-1M. Coimmunoprecipitation and pull-down analyses on CpcG2-yellow fluorescent protein-histidine6, using antibody against green fluorescent protein and nickel column chromatography, confirmed the association of CpcG2 with the supercomplex. Conversely, the use of antibodies against NdhH or NdhK after blue native-polyacrylamide gel electrophoresis and in coimmunoprecipitation experiments verified the necessity of CpcG2 in stabilizing the supercomplex. Furthermore, deletion of CpcG2 destabilized NDH-1L as well as its degradation product NDH-1M and significantly decreased the number of functional PSI centers, consistent with the involvement of CpcG2 in NDH-1-dependent cyclic electron transport. The CpcG2 deletion, however, had no effect on respiration. Thus, we propose that the formation of an NDH-1L-CpcG2-PSI supercomplex in cyanobacteria facilitates PSI cyclic electron transport via NDH-1L.
Collapse
Affiliation(s)
- Fudan Gao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Jiaohong Zhao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Liping Chen
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Natalia Battchikova
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Zhaoxing Ran
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Eva-Mari Aro
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Teruo Ogawa
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Weimin Ma
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.);
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| |
Collapse
|
29
|
Yamamoto H, Fan X, Sugimoto K, Fukao Y, Peng L, Shikanai T. CHLORORESPIRATORY REDUCTION 9 is a Novel Factor Required for Formation of Subcomplex A of the Chloroplast NADH Dehydrogenase-Like Complex. PLANT & CELL PHYSIOLOGY 2016; 57:2122-2132. [PMID: 27481895 DOI: 10.1093/pcp/pcw130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
In vascular plants, the chloroplast NADH dehydrogenase-like (NDH) complex, a homolog of respiratory NADH:quinone oxidoreductase (Complex I), mediates plastoquinone reduction using ferredoxin as an electron donor in cyclic electron transport around PSI in the thylakoid membrane. In angiosperms, chloroplast NDH is composed of five subcomplexes and forms a supercomplex with PSI. The modular assembly of stroma-protruded subcomplex A, which corresponds to the Q module of Complex I, was recently reported. However, the factors involved in the specific assembly steps have not been completely identified. Here, we isolated an Arabidopsis mutant, chlororespiratory reduction 9 (crr9), defective in NDH activity. The CRR9 gene encodes a novel stromal protein without any known functional domains or motifs. CRR9 is highly conserved in cyanobacteria and land plants but not in green algae, which do not have chloroplast NDH. Blue native-PAGE and immunoblot analyses of thylakoid proteins indicated that formation of subcomplex A was impaired in crr9 CRR9 was specifically required for the accumulation of NdhK, a subcomplex A subunit, in NDH assembly intermediates in the stroma. Furthermore, two-dimensional clear native/SDS-PAGE analysis of the stroma fraction indicated that incorporation of NdhM into NDH assembly intermediate complex 400 was impaired in crr9 These results suggest that CRR9 is a novel factor required for the formation of NDH subcomplex A.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
- CREST, Japan Science and Technology Agency Chiyoda-ku Tokyo, 102-0076 Japan
| | - Xiangyuan Fan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kazuhiko Sugimoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Lianwei Peng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
- CREST, Japan Science and Technology Agency Chiyoda-ku Tokyo, 102-0076 Japan
| |
Collapse
|
30
|
Takagi D, Hashiguchi M, Sejima T, Makino A, Miyake C. Photorespiration provides the chance of cyclic electron flow to operate for the redox-regulation of P700 in photosynthetic electron transport system of sunflower leaves. PHOTOSYNTHESIS RESEARCH 2016; 129:279-90. [PMID: 27116126 DOI: 10.1007/s11120-016-0267-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/18/2016] [Indexed: 05/24/2023]
Abstract
To elucidate the molecular mechanism to oxidize the reaction center chlorophyll, P700, in PSI, we researched the effects of partial pressure of O2 (pO2) on photosynthetic characteristic parameters in sunflower (Helianthus annuus L.) leaves. Under low CO2 conditions, the oxidation of P700 was stimulated; however the decrease in pO2 suppressed its oxidation. Electron fluxes in PSII [Y(II)] and PSI [Y(I)] showed pO2-dependence at low CO2 conditions. H(+)-consumption rate, estimated from Y(II) and CO2-fixation/photorespiration rates (JgH(+)), showed the positive curvature relationship with the dissipation rate of electrochromic shift signal (V H (+) ), which indicates H(+)-efflux rate from lumen to stroma in chloroplasts. Therefore, these electron fluxes contained, besides CO2-fixation/photorespiration-dependent electron fluxes, non-H(+)-consumption electron fluxes including Mehler-ascorbate peroxidase (MAP)-pathway. Y(I) that was larger than Y(II) surely implies the functioning of cyclic electron flow (CEF). Both MAP-pathway and CEF were suppressed at lower pO2, with plastoquinone-pool reduced. That is, photorespiration prepares the redox-poise of photosynthetic electron transport system for CEF activity as an electron sink. Excess Y(II), [ΔY(II)] giving the curvature relationship with V H (+) , and excess Y(I) [ΔCEF] giving the difference between Y(I) and Y(II) were used as an indicator of MAP-pathway and CEF activity, respectively. Although ΔY(II) was negligible and did not show positive relationship to the oxidation-state of P700, ΔCEF showed positive linear relationship to the oxidation-state of P700. These facts indicate that CEF cooperatively with photorespiration regulates the redox-state of P700 to suppress the over-reduction in PSI under environmental stress conditions.
Collapse
Affiliation(s)
- Daisuke Takagi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Masaki Hashiguchi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takehiro Sejima
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Amane Makino
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
31
|
Shikanai T. Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I. PHOTOSYNTHESIS RESEARCH 2016; 129:253-60. [PMID: 26858094 DOI: 10.1007/s11120-016-0227-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/27/2016] [Indexed: 05/07/2023]
Abstract
Cyclic electron transport around photosystem I (PSI) generates ∆pH across the thylakoid membrane without net production of NADPH. In angiosperms, two pathways of PSI cyclic electron transport operate. The main pathway depends on PGR5/PGRL1 proteins and is likely identical to the historical Arnon's pathway. The minor pathway depends on chloroplast NADH dehydrogenase-like (NDH) complex. In assays of their rates in vivo, the two independent pathways are often mixed together. Theoretically, linear electron transport from water to NADP(+) cannot satisfy the ATP/NADPH production ratio required by the Calvin-Benson cycle and photorespiration. PGR5/PGRL1-dependent PSI cyclic electron transport contributes substantially to the supply of ATP for CO2 fixation, as does linear electron transport. Also, the contribution of chloroplast NDH cannot be ignored, especially at low light intensity, although the extent of the contribution depends on the plant species. An increase in proton conductivity of ATP synthase may compensate ATP synthesis to some extent in the pgr5 mutant. Combined with the decreased rate of ∆pH generation, however, this mechanism sacrifices homeostasis of the thylakoid lumen pH, seriously disturbing the pH-dependent regulation of photosynthetic electron transport, induction of qE, and downregulation of the cytochrome b 6 f complex. PGR5/PGRL1-dependent PSI cyclic electron transport produces sufficient proton motive force for ATP synthesis and the regulation of photosynthetic electron transport.
Collapse
Affiliation(s)
- Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0076, Japan.
| |
Collapse
|
32
|
Shikanai T. Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1015-22. [DOI: 10.1016/j.bbabio.2015.10.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 11/28/2022]
|
33
|
NdhV subunit regulates the activity of type-1 NAD(P)H dehydrogenase under high light conditions in cyanobacterium Synechocystis sp. PCC 6803. Sci Rep 2016; 6:28361. [PMID: 27329499 PMCID: PMC4916593 DOI: 10.1038/srep28361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/01/2016] [Indexed: 12/25/2022] Open
Abstract
The cyanobacterial NAD(P)H dehydrogenase (NDH-1) complexes play crucial roles in variety of bioenergetic reactions. However, the regulative mechanism of NDH-1 under stressed conditions is still unclear. In this study, we detected that the NDH-1 activity is partially impaired, but the accumulation of NDH-1 complexes was little affected in the NdhV deleted mutant (ΔndhV) at low light in cyanobacterium Synechocystis sp. PCC 6803. ΔndhV grew normally at low light but slowly at high light under inorganic carbon limitation conditions (low pH or low CO2), meanwhile the activity of CO2 uptake was evidently lowered than wild type even at pH 8.0. The accumulation of NdhV in thylakoids strictly relies on the presence of the hydrophilic subcomplex of NDH-1. Furthermore, NdhV was co-located with hydrophilic subunits of NDH-1 loosely associated with the NDH-1L, NDH-1MS' and NDH-1M complexes. The level of the NdhV was significantly increased at high light and deletion of NdhV suppressed the up-regulation of NDH-1 activity, causing the lowered the photosynthetic oxygen evolution at pH 6.5 and high light. These data indicate that NdhV is an intrinsic subunit of hydrophilic subcomplex of NDH-1, required for efficient operation of cyclic electron transport around photosystem I and CO2 uptake at high lights.
Collapse
|
34
|
Veit S, Nagadoi A, Rögner M, Rexroth S, Stoll R, Ikegami T. The cyanobacterial cytochrome b6f subunit PetP adopts an SH3 fold in solution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:705-14. [DOI: 10.1016/j.bbabio.2016.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/02/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022]
|
35
|
He Z, Mi H. Functional Characterization of the Subunits N, H, J, and O of the NAD(P)H Dehydrogenase Complexes in Synechocystis sp. Strain PCC 6803. PLANT PHYSIOLOGY 2016; 171:1320-32. [PMID: 27208236 PMCID: PMC4902626 DOI: 10.1104/pp.16.00458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/15/2016] [Indexed: 05/25/2023]
Abstract
The cyanobacterial NAD(P)H dehydrogenase (NDH-1) complexes play crucial roles in variety of bioenergetic reactions such as respiration, CO2 uptake, and cyclic electron transport around PSI. Recently, substantial progress has been made in identifying the composition of subunits of NDH-1 complexes. However, the localization and the physiological roles of several subunits in cyanobacteria are not fully understood. Here, by constructing fully segregated ndhN, ndhO, ndhH, and ndhJ null mutants in Synechocystis sp. strain PCC 6803, we found that deletion of ndhN, ndhH, or ndhJ but not ndhO severely impaired the accumulation of the hydrophilic subunits of the NDH-1 in the thylakoid membrane, resulting in disassembly of NDH-1MS, NDH-1MS', as well as NDH-1L, finally causing the severe growth suppression phenotype. In contrast, deletion of NdhO affected the growth at pH 6.5 in air. In the cytoplasm, either NdhH or NdhJ deleted mutant, but neither NdhN nor NdhO deleted mutant, failed to accumulate the NDH-1 assembly intermediate consisting of NdhH, NdhJ, NdhK, and NdhM. Based on these results, we suggest that NdhN, NdhH, and NdhJ are essential for the stability and the activities of NDH-1 complexes, while NdhO for NDH-1 functions under the condition of inorganic carbon limitation in Synechocystis sp. strain PCC 6803. We discuss the roles of these subunits and propose a new NDH-1 model.
Collapse
Affiliation(s)
- Zhihui He
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200032, China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200032, China
| |
Collapse
|
36
|
Yamori W. Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. JOURNAL OF PLANT RESEARCH 2016; 129:379-95. [PMID: 27023791 DOI: 10.1007/s10265-016-0816-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/06/2016] [Indexed: 05/18/2023]
Abstract
Plants in natural environments must cope with diverse, highly dynamic, and unpredictable conditions. They have mechanisms to enhance the capture of light energy when light intensity is low, but they can also slow down photosynthetic electron transport to prevent the production of reactive oxygen species and consequent damage to the photosynthetic machinery under excess light. Plants need a highly responsive regulatory system to balance the photosynthetic light reactions with downstream metabolism. Various mechanisms of regulation of photosynthetic electron transport under stress have been proposed, however the data have been obtained mainly under environmentally stable and controlled conditions. Thus, our understanding of dynamic modulation of photosynthesis under dramatically fluctuating natural environments remains limited. In this review, first I describe the magnitude of environmental fluctuations under natural conditions. Next, I examine the effects of fluctuations in light intensity, CO2 concentration, leaf temperature, and relative humidity on dynamic photosynthesis. Finally, I summarize photoprotective strategies that allow plants to maintain the photosynthesis under stressful fluctuating environments. The present work clearly showed that fluctuation in various environmental factors resulted in reductions in photosynthetic rate in a stepwise manner at every environmental fluctuation, leading to the conclusion that fluctuating environments would have a large impact on photosynthesis.
Collapse
Affiliation(s)
- Wataru Yamori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo, 113-0033, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
37
|
Yamori W, Shikanai T. Physiological Functions of Cyclic Electron Transport Around Photosystem I in Sustaining Photosynthesis and Plant Growth. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:81-106. [PMID: 26927905 DOI: 10.1146/annurev-arplant-043015-112002] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The light reactions in photosynthesis drive both linear and cyclic electron transport around photosystem I (PSI). Linear electron transport generates both ATP and NADPH, whereas PSI cyclic electron transport produces ATP without producing NADPH. PSI cyclic electron transport is thought to be essential for balancing the ATP/NADPH production ratio and for protecting both photosystems from damage caused by stromal overreduction. Two distinct pathways of cyclic electron transport have been proposed in angiosperms: a major pathway that depends on the PROTON GRADIENT REGULATION 5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE 1 (PGRL1) proteins, which are the target site of antimycin A, and a minor pathway mediated by the chloroplast NADH dehydrogenase-like (NDH) complex. Recently, the regulation of PSI cyclic electron transport has been recognized as essential for photosynthesis and plant growth. In this review, we summarize the possible functions and importance of the two pathways of PSI cyclic electron transport.
Collapse
Affiliation(s)
- Wataru Yamori
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan;
- Precursory Research for Embryonic Science and Technology (PRESTO) and
| | - Toshiharu Shikanai
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
38
|
Peltier G, Aro EM, Shikanai T. NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:55-80. [PMID: 26735062 DOI: 10.1146/annurev-arplant-043014-114752] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oxygenic photosynthesis converts solar energy into chemical energy in the chloroplasts of plants and microalgae as well as in prokaryotic cyanobacteria using a complex machinery composed of two photosystems and both membrane-bound and soluble electron carriers. In addition to the major photosynthetic complexes photosystem II (PSII), cytochrome b6f, and photosystem I (PSI), chloroplasts also contain minor components, including a well-conserved type I NADH dehydrogenase (NDH-1) complex that functions in close relationship with photosynthesis and likewise originated from the endosymbiotic cyanobacterial ancestor. Some plants and many microalgal species have lost plastidial ndh genes and a functional NDH-1 complex during evolution, and studies have suggested that a plastidial type II NADH dehydrogenase (NDH-2) complex substitutes for the electron transport activity of NDH-1. However, although NDH-1 was initially thought to use NAD(P)H as an electron donor, recent research has demonstrated that both chloroplast and cyanobacterial NDH-1s oxidize reduced ferredoxin. We discuss more recent findings related to the biochemical composition and activity of NDH-1 and NDH-2 in relation to the physiology and regulation of photosynthesis, particularly focusing on their roles in cyclic electron flow around PSI, chlororespiration, and acclimation to changing environments.
Collapse
Affiliation(s)
- Gilles Peltier
- Institute of Environmental Biology and Biotechnology, CEA, CNRS, Aix-Marseille University, CEA Cadarache, 13018 Saint-Paul-lès-Durance, France;
| | - Eva-Mari Aro
- Department of Biochemistry, University of Turku, 20014 Turku, Finland;
| | | |
Collapse
|
39
|
Takahashi H, Schmollinger S, Lee JH, Schroda M, Rappaport F, Wollman FA, Vallon O. PETO Interacts with Other Effectors of Cyclic Electron Flow in Chlamydomonas. MOLECULAR PLANT 2016; 9:558-568. [PMID: 26768121 DOI: 10.1016/j.molp.2015.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
While photosynthetic linear electron flow produces both ATP and NADPH, cyclic electron flow (CEF) around photosystem I (PSI) and cytochrome b6f generates only ATP. CEF is thus essential to balance the supply of ATP and NADPH for carbon fixation; however, it remains unclear how the system tunes the relative levels of linear and cyclic flow. Here, we show that PETO, a transmembrane thylakoid phosphoprotein specific of green algae, contributes to the stimulation of CEF when cells are placed in anoxia. In oxic conditions, PETO co-fractionates with other thylakoid proteins involved in CEF (ANR1, PGRL1, FNR). In PETO-knockdown strains, interactions between these CEF proteins are affected. Anoxia triggers a reorganization of the membrane, so that a subpopulation of PSI and cytochrome b6f now co-fractionates with the CEF effectors in sucrose gradients. The absence of PETO impairs this reorganization. Affinity purification identifies ANR1 as a major interactant of PETO. ANR1 contains two ANR domains, which are also found in the N-terminal region of NdhS, the ferredoxin-binding subunit of the plant ferredoxin-plastoquinone oxidoreductase (NDH). We propose that the ANR domain was co-opted by two unrelated CEF systems (PGR and NDH), possibly as a sensor of the redox state of the membrane.
Collapse
Affiliation(s)
- Hiroko Takahashi
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, Paris 75005, France
| | - Stefan Schmollinger
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Kaiserlautern 67663, Germany
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Kaiserlautern 67663, Germany
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, Paris 75005, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, Paris 75005, France
| | - Olivier Vallon
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, Paris 75005, France.
| |
Collapse
|
40
|
Xu M, Lv J, Fu P, Mi H. Oscillation Kinetics of Post-illumination Increase in Chl Fluorescence in Cyanobacterium Synechocystis PCC 6803. FRONTIERS IN PLANT SCIENCE 2016; 7:108. [PMID: 26913039 PMCID: PMC4753382 DOI: 10.3389/fpls.2016.00108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/20/2016] [Indexed: 05/21/2023]
Abstract
After termination of longer-illumination (more than 30 s), the wild type of Synechocystis PCC 6803 showed the oscillation kinetics of post-illumination increase in Chl fluorescence: a fast phase followed by one or two slow phases. Unlike the wild type, ndh-B defective mutant M55 did not show any post-illumination increase under the same conditions, indicating that not only the fast phase, but also the slow phases were related to the NDH-mediated cyclic electron flow around photosystem I (PS I) to plastoquinone (PQ). The fast phase was stimulated by dark incubation or in the presence of Calvin cycle inhibitor, iodoacetamide (IA) or cyclic photophosphorylation cofactor, phenazine methosulphate (PMS), implying the redox changes of PQ by electrons generated at PS I reduced side, probably NAD(P)H or ferredoxin (Fd). In contrast, the slow phases disappeared after dark starvation or in the presence of IA or PMS, and reappeared by longer re-illumination, suggesting that they are related to the redox changes of PQ by the electrons from the photoreductants produced in carbon assimilation process. Both the fast phase and slow phases were stimulated at high temperature and the slow phase was promoted by response to high concentration of NaCl. The mutant M55 without both phases could not survive under the stressed conditions.
Collapse
Affiliation(s)
- Min Xu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chines Academy of SciencesShanghai, China
| | - Jing Lv
- Renewable Energy Research Center, China University of PetroleumBeijing, China
| | - Pengcheng Fu
- Renewable Energy Research Center, China University of PetroleumBeijing, China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chines Academy of SciencesShanghai, China
| |
Collapse
|
41
|
Gao F, Zhao J, Wang X, Qin S, Wei L, Ma W. NdhV Is a Subunit of NADPH Dehydrogenase Essential for Cyclic Electron Transport in Synechocystis sp. Strain PCC 6803. PLANT PHYSIOLOGY 2016; 170:752-60. [PMID: 26644505 PMCID: PMC4734563 DOI: 10.1104/pp.15.01430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/01/2015] [Indexed: 05/29/2023]
Abstract
Two mutants sensitive to heat stress for growth and impaired in NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET) were isolated from the cyanobacterium Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in the same sll0272 gene, encoding a protein highly homologous to NdhV identified in Arabidopsis (Arabidopsis thaliana). Deletion of the sll0272 gene (ndhV) did not influence the assembly of NDH-1 complexes and the activities of CO2 uptake and respiration but reduced the activity of NDH-CET. NdhV interacted with NdhS, a ferredoxin-binding subunit of cyanobacterial NDH-1 complex. Deletion of NdhS completely abolished NdhV, but deletion of NdhV had no effect on the amount of NdhS. Reduction of NDH-CET activity was more significant in ΔndhS than in ΔndhV. We therefore propose that NdhV cooperates with NdhS to accept electrons from reduced ferredoxin.
Collapse
Affiliation(s)
- Fudan Gao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiaohong Zhao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaozhuo Wang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shen Qin
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lanzhen Wei
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Weimin Ma
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
42
|
He Z, Xu M, Wu Y, Lv J, Fu P, Mi H. NdhM Subunit Is Required for the Stability and the Function of NAD(P)H Dehydrogenase Complexes Involved in CO2 Uptake in Synechocystis sp. Strain PCC 6803. J Biol Chem 2015; 291:5902-5912. [PMID: 26703473 PMCID: PMC4786724 DOI: 10.1074/jbc.m115.698084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 12/29/2022] Open
Abstract
The cyanobacterial type I NAD(P)H dehydrogenase (NDH-1) complexes play a crucial role in a variety of bioenergetic reactions such as respiration, CO2 uptake, and cyclic electron transport around photosystem I. Two types of NDH-1 complexes, NDH-1MS and NDH-1MS', are involved in the CO2 uptake system. However, the composition and function of the complexes still remain largely unknown. Here, we found that deletion of ndhM caused inactivation of NDH-1-dependent cyclic electron transport around photosystem I and abolishment of CO2 uptake, resulting in a lethal phenotype under air CO2 condition. The mutation of NdhM abolished the accumulation of the hydrophilic subunits of the NDH-1, such as NdhH, NdhI, NdhJ, and NdhK, in the thylakoid membrane, resulting in disassembly of NDH-1MS and NDH-1MS' as well as NDH-1L. In contrast, the accumulation of the hydrophobic subunits was not affected in the absence of NdhM. In the cytoplasm, the NDH-1 subcomplex assembly intermediates including NdhH and NdhK were seriously affected in the ΔndhM mutant but not in the NdhI-deleted mutant ΔndhI. In vitro protein interaction analysis demonstrated that NdhM interacts with NdhK, NdhH, NdhI, and NdhJ but not with other hydrophilic subunits of the NDH-1 complex. These results suggest that NdhM localizes in the hydrophilic subcomplex of NDH-1 complexes as a core subunit and is essential for the function of NDH-1MS and NDH-1MS' involved in CO2 uptake in Synechocystis sp. strain PCC 6803.
Collapse
Affiliation(s)
- Zhihui He
- From the National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai 200032, China and
| | - Min Xu
- From the National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai 200032, China and
| | - Yaozong Wu
- From the National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai 200032, China and
| | - Jing Lv
- Renewable Energy Research Center, China University of Petroleum Beijing, 18 Fuxue Road, Changping, Beijing 102249, China
| | - Pengcheng Fu
- Renewable Energy Research Center, China University of Petroleum Beijing, 18 Fuxue Road, Changping, Beijing 102249, China
| | - Hualing Mi
- From the National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai 200032, China and.
| |
Collapse
|
43
|
He Z, Zheng F, Wu Y, Li Q, Lv J, Fu P, Mi H. NDH-1L interacts with ferredoxin via the subunit NdhS in Thermosynechococcus elongatus. PHOTOSYNTHESIS RESEARCH 2015; 126:341-349. [PMID: 25630976 DOI: 10.1007/s11120-015-0090-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
The large size complex of cyanobacterial NAD(P)H dehydrogenase (NDH-1) complex (NDH-1L) plays crucial role in a variety of bioenergetic reactions such as respiration and cyclic electron flow around photosystem I. Although the complex has been isolated and identified, its biochemical function still remains to be clarified. Here, we highly purified the NDH-1L complex from the cells of Thermosynechococcus elongatus by Ni(2+) affinity chromatography and size-exclusion chromatography. The purified NDH-1L complex has an apparent total molecular mass of approximately 500 kDa. 14 known subunits were identified by mass spectrometry and immunoblotting, including the NdhS subunit containing ferredoxin (Fd)-docking site domain. Surface plasmon resonance measurement demonstrates that the NDH-1L complex could bind to Fd with the binding constant (K D) of 59 µM. Yeast two-hybrid system assay further confirmed the interaction of Fd with NdhS and indicated that NdhH is involved in the interaction. Our results provide direct biochemical evidence that the cyanobacterial NDH-1 complex catalyzes the electron transport from reduced Fd to plastoquinone via NdhS and NdhH.
Collapse
Affiliation(s)
- Zhihui He
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China
| | - Fangfang Zheng
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China
| | - Yaozong Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China
| | - Qinghua Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China
| | - Jing Lv
- Renewable Energy Research Center, China University of Petroleum Beijing, 18 Fuxue Road, Changping, Beijing, 102249, China
| | - Pengcheng Fu
- Renewable Energy Research Center, China University of Petroleum Beijing, 18 Fuxue Road, Changping, Beijing, 102249, China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
44
|
Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:247-55. [PMID: 26498190 DOI: 10.1016/j.bbabio.2015.10.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023]
Abstract
Cyanobacteria have evolved elaborate electron transport pathways to carry out photosynthesis and respiration, and to dissipate excess energy in order to limit cellular damage. Our understanding of the complexity of these systems and their role in allowing cyanobacteria to cope with varying environmental conditions is rapidly improving, but many questions remain. We summarize current knowledge of cyanobacterial electron transport pathways, including the possible roles of alternative pathways in photoprotection. We describe extracellular electron transport, which is as yet poorly understood. Biological photovoltaic devices, which measure electron output from cells, and which have been proposed as possible means of renewable energy generation, may be valuable tools in understanding cyanobacterial electron transfer pathways, and enhanced understanding of electron transfer may allow improvements in the efficiency of power output. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
|
45
|
Suorsa M. Cyclic electron flow provides acclimatory plasticity for the photosynthetic machinery under various environmental conditions and developmental stages. FRONTIERS IN PLANT SCIENCE 2015; 6:800. [PMID: 26442093 PMCID: PMC4585005 DOI: 10.3389/fpls.2015.00800] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/14/2015] [Indexed: 05/03/2023]
Abstract
Photosynthetic electron flow operates in two modes, linear and cyclic. In cyclic electron flow (CEF), electrons are recycled around photosystem I. As a result, a transthylakoid proton gradient (ΔpH) is generated, leading to the production of ATP without concomitant production of NADPH, thus increasing the ATP/NADPH ratio within the chloroplast. At least two routes for CEF exist: a PROTON GRADIENT REGULATION5-PGRL1-and a chloroplast NDH-like complex mediated pathway. This review focuses on recent findings concerning the characteristics of both CEF routes in higher plants, with special emphasis paid on the crucial role of CEF in under challenging environmental conditions and developmental stages.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| |
Collapse
|
46
|
Fan X, Zhang J, Li W, Peng L. The NdhV subunit is required to stabilize the chloroplast NADH dehydrogenase-like complex in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:221-31. [PMID: 25728844 DOI: 10.1111/tpj.12807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 05/06/2023]
Abstract
The chloroplast NADH dehydrogenase-like (NDH) complex is involved in cyclic electron transport around photosystem I (PSI) and chlororespiration. Although the NDH complex was discovered more than 20 years ago, its low abundance and fragile nature render it recalcitrant to analysis, and it is thought that some of its subunits remain to be identified. Here, we identified the NDH subunit NdhV that readily disassociates from the NDH complex in the presence of detergent, salt and alkaline solutions. The Arabidopsis ndhv mutant is partially defective in the accumulation of NDH subcomplex A (SubA) and SubE, resulting in impaired NDH activity. NdhV was mainly detected in the wild-type thylakoid membrane, and its accumulation in thylakoids strictly depended on the presence of the NDH complex. Quantitative immunoblot analysis revealed that NdhV and NdhN occur at close to equimolar concentrations. Furthermore, several NDH subunits were co-immunopurified with NdhV using a combination of chemical crosslinking and an affinity chromatography assay. These data indicate that NdhV is an intrinsic subunit of NDH. We found that NdhV did not directly affect NDH activity, but that NDH SubA and SubE were more rapidly degraded in ndhv than in the wild type under high-light treatment. We propose that NdhV is an NDH subunit that stabilizes this complex, especially under high-light conditions.
Collapse
Affiliation(s)
- Xiangyuan Fan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | |
Collapse
|
47
|
Ma W, Ogawa T. Oxygenic photosynthesis-specific subunits of cyanobacterial NADPH dehydrogenases. IUBMB Life 2015; 67:3-8. [DOI: 10.1002/iub.1341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/09/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Weimin Ma
- Department of Biology; College of Life and Environment Sciences; Shanghai Normal University; Shanghai China
| | - Teruo Ogawa
- Bioscience Center; Nagoya University; Chikusa Nagoya Japan
| |
Collapse
|
48
|
Wang C, Yamamoto H, Shikanai T. Role of cyclic electron transport around photosystem I in regulating proton motive force. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:931-8. [PMID: 25481109 DOI: 10.1016/j.bbabio.2014.11.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
In addition to ∆pH formed across the thylakoid membrane, membrane potential contributes to proton motive force (pmf) in chloroplasts. However, the regulation of photosynthetic electron transport is mediated solely by ∆pH. To assess the contribution of two cyclic electron transport pathways around photosystem I (one depending on PGR5/PGRL1 and one on NDH) to pmf formation, electrochromic shift (ECS) was analyzed in the Arabidopsis pgr5 mutant, NDH-defective mutants (ndhs and crr4-2), and their double mutants (ndhs pgr5 and crr4-2 pgr5). In pgr5, the size of the pmf, as represented by ECSt, was reduced by 30% to 47% compared with that in the wild type (WT). A gH+ parameter, which is considered to represent the activity of ATP synthase, was enhanced at high light intensities. However, gH+ recovered to its low-light levels after 20 min in the dark, implying that the elevation in gH+ is due to the disturbed regulation of ATP synthase rather than to photodamage. After long dark adaptation more than 2 h, gH+ was higher in pgr5 than in the WT. During induction of photosynthesis, gH+ was more rapidly elevated in pgr5 than that in the WT. Both results suggest that ATP synthase is not fully inactivated in the dark in pgr5. In the NDH-deficient mutants, ECSt was slightly but significantly lower than in the WT, whereas gH+ was not affected. In the double mutants, ECSt was even lower than in pgr5. These results suggest that both PGR5/PGRL1- and NDH-dependent pathways contribute to pmf formation, although to different extents. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Caijuan Wang
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan.
| |
Collapse
|
49
|
Xu M, Shi N, Li Q, Mi H. An active supercomplex of NADPH dehydrogenase mediated cyclic electron flow around Photosystem I from the panicle chloroplast of Oryza sativa. Acta Biochim Biophys Sin (Shanghai) 2014; 46:757-65. [PMID: 25074414 DOI: 10.1093/abbs/gmu064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chloroplast NAD(P)H dehydrogenase-like complex (NDH) plays a crucial role in the protection of plants against oxidative stress. In higher plants, NDH interacts with Photosystem I (PSI) to form an NDH-PSI supercomplex. However, the chloroplast supercomplex with NADPH oxidation activity remains to be identified. Here, we reported the identification of a supercomplex of NDH with NADPH-nitroblue tetrazolium oxidoreductase activity in the chloroplast of rice panicle. The active supercomplex from the panicle chloroplast contained higher amounts of the NDH subunits (NdhH, NdhK, and NdhA) than that from the flag leaf chloroplast. The highly active supercomplex might underlie the high activity of the NADPH-dependent NDH pathway and the larger proton gradient across thylakoid membranes via cyclic electron flow around PSI, as well as the higher maximal photochemical efficiency of Photosystem II at the flowering to grain-filling stage. The supercomplex is suggested to be essential for the high efficiency of photosynthesis and play a protective role in the grain formation in rice plant.
Collapse
|
50
|
Deletion of an electron donor-binding subunit of the NDH-1 complex, NdhS, results in a heat-sensitive growth phenotype in Synechocystis sp. PCC 6803. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0596-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|