1
|
Sagar R, Azoidis I, Zivko C, Xydia A, Oh ES, Rosenberg PB, Lyketsos CG, Mahairaki V, Avramopoulos D. Excitatory Neurons Derived from Human-Induced Pluripotent Stem Cells Show Transcriptomic Differences in Alzheimer's Patients from Controls. Cells 2023; 12:1990. [PMID: 37566069 PMCID: PMC10417412 DOI: 10.3390/cells12151990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
The recent advances in creating pluripotent stem cells from somatic cells and differentiating them into a variety of cell types is allowing us to study them without the caveats associated with disease-related changes. We generated induced Pluripotent Stem Cells (iPSCs) from eight Alzheimer's disease (AD) patients and six controls and used lentiviral delivery to differentiate them into excitatory glutamatergic neurons. We then performed RNA sequencing on these neurons and compared the Alzheimer's and control transcriptomes. We found that 621 genes show differences in expression levels at adjusted p < 0.05 between the case and control derived neurons. These genes show significant overlap and directional concordance with genes reported from a single-cell transcriptome study of AD patients; they include five genes implicated in AD from genome-wide association studies and they appear to be part of a larger functional network as indicated by an excess of interactions between them observed in the protein-protein interaction database STRING. Exploratory analysis with Uniform Manifold Approximation and Projection (UMAP) suggests distinct clusters of patients, based on gene expression, who may be clinically different. Our research outcomes will enable the precise identification of distinct biological subtypes among individuals with Alzheimer's disease, facilitating the implementation of tailored precision medicine strategies.
Collapse
Affiliation(s)
- Ram Sagar
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ioannis Azoidis
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ariadni Xydia
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Esther S. Oh
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul B. Rosenberg
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Constantine G. Lyketsos
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Bando SY, Bertonha FB, Menezes PHN, Takahara AK, Khaled NA, Santos P, S Junqueira M, Cesar RM, Moreira-Filho CA. Transcriptomic analysis reveals distinct adaptive molecular mechanism in the hippocampal CA3 from rats susceptible or not-susceptible to hyperthermia-induced seizures. Sci Rep 2023; 13:10265. [PMID: 37355705 PMCID: PMC10290664 DOI: 10.1038/s41598-023-37535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/23/2023] [Indexed: 06/26/2023] Open
Abstract
Febrile seizures during early childhood are a relevant risk factor for the development of mesial temporal lobe epilepsy. Nevertheless, the molecular mechanism induced by febrile seizures that render the brain susceptible or not-susceptible to epileptogenesis remain poorly understood. Because the temporal investigation of such mechanisms in human patients is impossible, rat models of hyperthermia-induced febrile seizures have been used for that purpose. Here we conducted a temporal analysis of the transcriptomic and microRNA changes in the ventral CA3 of rats that develop (HS group) or not-develop (HNS group) seizures after hyperthermic insult on the eleventh postnatal day. The selected time intervals corresponded to acute, latent, and chronic phases of the disease. We found that the transcriptional differences between the HS and the HNS groups are related to inflammatory pathways, immune response, neurogenesis, and dendritogenesis in the latent and chronic phases. Additionally, the HNS group expressed a greater number of miRNAs (some abundantly expressed) as compared to the HS group. These results indicate that HNS rats were able to modulate their inflammatory response after insult, thus presenting better tissue repair and re-adaptation. Potential therapeutic targets, including genes, miRNAs and signaling pathways involved in epileptogenesis were identified.
Collapse
Affiliation(s)
- Silvia Y Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil.
| | - Fernanda B Bertonha
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Pedro H N Menezes
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - André K Takahara
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Nathália A Khaled
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Paula Santos
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Mara S Junqueira
- Department of Radiology and Oncology, Centro de Investigação Translacional em Oncologia-Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Roberto M Cesar
- Department of Computer Science, Instituto de Matemática e Estatística da Universidade de São Paulo, São Paulo, SP, 05508-040, Brazil
| | - Carlos A Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| |
Collapse
|
3
|
Moore SJ, Cazares VA, Temme SJ, Murphy GG. Age-related deficits in neuronal physiology and cognitive function are recapitulated in young mice overexpressing the L-type calcium channel, Ca V 1.3. Aging Cell 2023; 22:e13781. [PMID: 36703244 PMCID: PMC10014069 DOI: 10.1111/acel.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
The calcium dysregulation hypothesis of brain aging posits that an age-related increase in neuronal calcium concentration is responsible for alterations in a variety of cellular processes that ultimately result in learning and memory deficits in aged individuals. We previously generated a novel transgenic mouse line, in which expression of the L-type voltage-gated calcium, CaV 1.3, is increased by ~50% over wild-type littermates. Here, we show that, in young mice, this increase is sufficient to drive changes in neuronal physiology and cognitive function similar to those observed in aged animals. Specifically, there is an increase in the magnitude of the postburst afterhyperpolarization, a deficit in spatial learning and memory (assessed by the Morris water maze), a deficit in recognition memory (assessed in novel object recognition), and an overgeneralization of fear to novel contexts (assessed by contextual fear conditioning). While overexpression of CaV 1.3 recapitulated these key aspects of brain aging, it did not produce alterations in action potential firing rates, basal synaptic communication, or spine number/density. Taken together, these results suggest that increased expression of CaV 1.3 in the aged brain is a crucial factor that acts in concert with age-related changes in other processes to produce the full complement of structural, functional, and behavioral outcomes that are characteristic of aged animals.
Collapse
Affiliation(s)
- Shannon J. Moore
- Michigan Neuroscience InstituteAnn ArborMichiganUSA
- Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Victor A. Cazares
- Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of PsychologyWilliams CollegeWilliamstownMassachusettsUSA
| | | | - Geoffrey G. Murphy
- Michigan Neuroscience InstituteAnn ArborMichiganUSA
- Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
4
|
Peppercorn K, Kleffmann T, Jones O, Hughes S, Tate W. Secreted Amyloid Precursor Protein Alpha, a Neuroprotective Protein in the Brain Has Widespread Effects on the Transcriptome and Proteome of Human Inducible Pluripotent Stem Cell-Derived Glutamatergic Neurons Related to Memory Mechanisms. Front Neurosci 2022; 16:858524. [PMID: 35692428 PMCID: PMC9179159 DOI: 10.3389/fnins.2022.858524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Secreted amyloid precursor protein alpha (sAPPα) processed from a parent human brain protein, APP, can modulate learning and memory. It has potential for development as a therapy preventing, delaying, or even reversing Alzheimer’s disease. In this study a comprehensive analysis to understand how it affects the transcriptome and proteome of the human neuron was undertaken. Human inducible pluripotent stem cell (iPSC)-derived glutamatergic neurons in culture were exposed to 1 nM sAPPα over a time course and changes in the transcriptome and proteome were identified with RNA sequencing and Sequential Window Acquisition of All THeoretical Fragment Ion Spectra-Mass Spectrometry (SWATH-MS), respectively. A large subset (∼30%) of differentially expressed transcripts and proteins were functionally involved with the molecular biology of learning and memory, consistent with reported links of sAPPα to memory enhancement, as well as neurogenic, neurotrophic, and neuroprotective phenotypes in previous studies. Differentially regulated proteins included those encoded in previously identified Alzheimer’s risk genes, APP processing related proteins, proteins involved in synaptogenesis, neurotransmitters, receptors, synaptic vesicle proteins, cytoskeletal proteins, proteins involved in protein and organelle trafficking, and proteins important for cell signalling, transcriptional splicing, and functions of the proteasome and lysosome. We have identified a complex set of genes affected by sAPPα, which may aid further investigation into the mechanism of how this neuroprotective protein affects memory formation and how it might be used as an Alzheimer’s disease therapy.
Collapse
Affiliation(s)
- Katie Peppercorn
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Torsten Kleffmann
- Division of Health Sciences, Research Infrastructure Centre, University of Otago, Dunedin, New Zealand
| | - Owen Jones
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Stephanie Hughes
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Warren Tate
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- *Correspondence: Warren Tate,
| |
Collapse
|
5
|
Kabir MT, Uddin MS, Abdeen A, Ashraf GM, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM. Evidence Linking Protein Misfolding to Quality Control in Progressive Neurodegenerative Diseases. Curr Top Med Chem 2021; 20:2025-2043. [PMID: 32552649 DOI: 10.2174/1568026620666200618114924] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Several proteolytic systems including ubiquitin (Ub)-proteasome system (UPS), chaperonemediated autophagy (CMA), and macroautophagy are used by the mammalian cells to remove misfolded proteins (MPs). UPS mediates degradation of most of the MPs, where Ub-conjugated substrates are deubiquitinated, unfolded, and passed through the proteasome's narrow chamber, and eventually break into smaller peptides. It has been observed that the substrates that show a specific degradation signal, the KFERQ sequence motif, can be delivered to and go through CMA-mediated degradation in lysosomes. Macroautophagy can help in the degradation of substrates that are prone to aggregation and resistant to both the CMA and UPS. In the aforesaid case, cargoes are separated into autophagosomes before lysosomal hydrolase-mediated degradation. Even though the majority of the aggregated and MPs in the human proteome can be removed via cellular protein quality control (PQC), some mutant and native proteins tend to aggregate into β-sheet-rich oligomers that exhibit resistance to all identified proteolytic processes and can, therefore, grow into extracellular plaques or inclusion bodies. Indeed, the buildup of protease-resistant aggregated and MPs is a usual process underlying various protein misfolding disorders, including neurodegenerative diseases (NDs) for example Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. In this article, we have focused on the contribution of PQC in the degradation of pathogenic proteins in NDs.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Jones K, Angelozzi M, Gangishetti U, Haseeb A, de Charleroy C, Lefebvre V, Bhattaram P. Human Adult Fibroblast-like Synoviocytes and Articular Chondrocytes Exhibit Prominent Overlap in Their Transcriptomic Signatures. ACR Open Rheumatol 2021; 3:359-370. [PMID: 33931959 PMCID: PMC8207692 DOI: 10.1002/acr2.11255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives Fibroblast‐like synoviocytes (FLS) and articular chondrocytes (AC) derive from a common pool of embryonic precursor cells. They are currently believed to engage in largely distinct differentiation programs to build synovium and articular cartilage and maintain healthy tissues throughout life. We tested this hypothesis by deeply characterizing and comparing their transcriptomic attributes. Methods We profiled the transcriptomes of freshly isolated AC, synovium, primary FLS, and dermal fibroblasts from healthy adult humans using bulk RNA sequencing assays and downloaded published single‐cell RNA sequencing data from freshly isolated human FLS. We integrated all data to define cell‐specific signatures and validated findings with quantitative reverse transcription PCR of human samples and RNA hybridization of mouse joint sections. Results We identified 212 AC and 168 FLS markers on the basis of exclusive or enriched expression in either cell and 294 AC/FLS markers on the basis of similar expression in both cells. AC markers included joint‐specific and pan‐cartilaginous genes. FLS and AC/FLS markers featured 37 and 55 joint‐specific genes, respectively, and 131 and 239 pan‐fibroblastic genes, respectively. These signatures included many previously unrecognized markers with potentially important joint‐specific roles. AC/FLS markers overlapped in their expression patterns among all FLS and AC subpopulations, suggesting that they fulfill joint‐specific properties in all, rather than in discrete, AC and FLS subpopulations. Conclusion This study broadens knowledge and identifies a prominent overlap of the human adult AC and FLS transcriptomic signatures. It also provides data resources to help further decipher mechanisms underlying joint homeostasis and degeneration and to improve the quality control of tissues engineered for regenerative treatments.
Collapse
Affiliation(s)
- Kyle Jones
- Emory University School of Medicine, Atlanta, Georgia
| | - Marco Angelozzi
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Abdul Haseeb
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
7
|
Ji M, Zhao Z, Li Y, Xu P, Shi J, Li Z, Wang K, Huang X, Liu B. FBXO6-mediated RNASET2 ubiquitination and degradation governs the development of ovarian cancer. Cell Death Dis 2021; 12:317. [PMID: 33767133 PMCID: PMC7994844 DOI: 10.1038/s41419-021-03580-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
RNASET2 (Ribonuclease T2) functions as a tumor suppressor in preventing ovarian tumorigenesis. However, the mechanisms underlying the regulation of RNASET2 protein are completely unknown. Here we identified the F-box protein FBXO6, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the ubiquitin E3 ligase for RNASET2. We found that the interaction between FBXO6 and RNASET2 induced RNASET2 instability through the ubiquitin-mediated proteasome degradation pathway. FBXO6 promoted K48-dependent ubiquitination of RNASET2 via its FBA domain. Through analysis of the TCGA dataset, we found that FBXO6 was significantly increased in ovarian cancer tissues and the high expression of FBXO6 was related to the poor overall survival (OS) of ovarian cancer patients at advanced stages. An inverse correlation between the protein levels of FBXO6 and RNASET2 was observed in clinic ovarian cancer samples. Depletion of FBXO6 promoted ovarian cancer cells proliferation, migration, and invasion, which could be partially reversed by RNASET2 silencing. Thus, our data revealed a novel FBXO6-RNASET2 axis, which might contribute to the development of ovarian cancer. We propose that inhibition of FBXO6 might represent an effective therapeutic strategy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Mei Ji
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhao Zhao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Penglin Xu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Shi
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaige Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaotian Huang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
8
|
Qazi IH, Cao Y, Yang H, Angel C, Pan B, Zhou G, Han H. Impact of Dietary Selenium on Modulation of Expression of Several Non-Selenoprotein Genes Related to Key Ovarian Functions, Female Fertility, and Proteostasis: a Transcriptome-Based Analysis of the Aging Mice Ovaries. Biol Trace Elem Res 2021; 199:633-648. [PMID: 32430805 DOI: 10.1007/s12011-020-02192-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023]
Abstract
Female reproductive (ovarian) aging is characterized by a marked decline in quantity and quality of follicles and oocytes, as well as alterations in the surrounding ovarian stroma. In our previous report, we have shown that dietary selenium (Se) insufficiency and supplementation differentially impacted the reproductive efficiency in aging mice; however, the precise understanding of such modulation is still incomplete. In the present study, we sought to determine the impact of low (mildly low level) and moderately high (medium level) Se diets on expression profile of non-selenoprotein genes in the ovaries of aging mice. For this purpose, the aged mice were divided in two groups and fed either a low Se (Se-L; 0.08 mg Se/kg) diet or a moderately high Se (Se-M; 0.33 mg Se/kg) diet. RNA-seq analysis revealed that a total of 168 genes were differentially expressed between the two groups. From these, 72 and 96 differentially expressed genes (DEGs) were found to be upregulated and downregulated, respectively. Gene Ontology (GO) and pathways enrichment (KEGG) analyses revealed that these DEGs were enriched in several key GO terms and biological pathways including PI3K-Akt signaling pathway, steroid hormone biosynthesis, signaling pathways regulating pluripotency of stem cells, Hippo signaling pathway, ovarian steroidogenesis, and Wnt signaling pathway. Further filtering of RNA-seq data revealed that several DEGs such as Star, Hsd3b6, Scd1, Bmp7, Aqp8, Gas1, Fzd1, and Wwc1 were implicated in key ovarian- and fertility-related functions. In addition, some of the DEGs were related to ER homeostasis and/or proteostasis. These results highlight that dietary low and moderately high (medium level) Se diets, in addition to modulation of selenoproteins, can also have an impact on expression of several non-selenoprotein genes in the ovaries of aging mice. To sum up, these findings add more value to our understanding of Se modulation of ovarian functions and female fertility and will pave a way for the focused mechanistic and functional studies in this domain.
Collapse
Affiliation(s)
- Izhar Hyder Qazi
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, 67210, Sindh, Pakistan
| | - Yutao Cao
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Haoxuan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Christiana Angel
- Department of Veterinary Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, 67210, Sindh, Pakistan
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Hongbing Han
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
10
|
Kumar D, Ambasta RK, Kumar P. Ubiquitin biology in neurodegenerative disorders: From impairment to therapeutic strategies. Ageing Res Rev 2020; 61:101078. [PMID: 32407951 DOI: 10.1016/j.arr.2020.101078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
The abnormal accumulation of neurotoxic proteins is the typical hallmark of various age-related neurodegenerative disorders (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis and Multiple sclerosis. The anomalous proteins, such as Aβ, Tau in Alzheimer's disease and α-synuclein in Parkinson's disease, perturb the neuronal physiology and cellular homeostasis in the brain thereby affecting the millions of human lives across the globe. Here, ubiquitin proteasome system (UPS) plays a decisive role in clearing the toxic metabolites in cells, where any aberrancy is widely reported to exaggerate the neurodegenerative pathologies. In spite of well-advancement in the ubiquitination research, their molecular markers and mechanisms for target-specific protein ubiquitination and clearance remained elusive. Therefore, this review substantiates the role of UPS in the brain signaling and neuronal physiology with their mechanistic role in the NDD's specific pathogenic protein clearance. Moreover, current and future promising therapies are discussed to target UPS-mediated neurodegeneration for better public health.
Collapse
|
11
|
The Ubiquitin System in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:195-221. [PMID: 32274758 DOI: 10.1007/978-3-030-38266-7_8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, most prevalent in the elderly population and has a significant impact on individuals and their family as well as the health care system and the economy. While the number of patients affected by various forms of dementia including AD is on the increase, there is currently no cure. Although genome-wide association studies have identified genetic markers for familial AD, the molecular mechanisms underlying the initiation and development of both familial and sporadic AD remain poorly understood. Most neurodegenerative diseases and in particular those associated with dementia have been defined as proteinopathies due to the presence of intra- and/or extracellular protein aggregates in the brain of affected individuals. Although loss of proteostasis in AD has been known for decades, it is only in recent years that we have come to appreciate the role of ubiquitin-dependent mechanisms in brain homeostasis and in brain diseases. Ubiquitin is a highly versatile post-translational modification which regulates many aspects of protein fate and function, including protein degradation by the Ubiquitin-Proteasome System (UPS), autophagy-mediated removal of damaged organelles and proteins, lysosomal turnover of membrane proteins and of extracellular molecules brought inside the cell through endocytosis. Amyloid-β (Aβ) fragments as well as hyperphosphorylation of Tau are hallmarks of AD, and these are found in extracellular plaques and intracellular fibrils in the brain of individuals with AD, respectively. Yet, whether it is the oligomeric or the soluble species of Aβ and Tau that mediate toxicity is still unclear. These proteins impact on mitochondrial energy metabolism, inflammation, as well as a number of housekeeping processes including protein degradation through the UPS and autophagy. In this chapter, we will discuss the role of ubiquitin in neuronal homeostasis as well as in AD; summarise crosstalks between the enzymes that regulate protein ubiquitination and the toxic proteins Tau and Aβ; highlight emerging molecular mechanisms in AD as well as future strategies which aim to exploit the ubiquitin system as a source for next-generation therapeutics.
Collapse
|
12
|
Kumar D, Kumar P. Integrated Mechanism of Lysine 351, PARK2, and STUB1 in AβPP Ubiquitination. J Alzheimers Dis 2019; 68:1125-1150. [DOI: 10.3233/jad-181219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
13
|
Yoshida Y, Mizushima T, Tanaka K. Sugar-Recognizing Ubiquitin Ligases: Action Mechanisms and Physiology. Front Physiol 2019; 10:104. [PMID: 30837888 PMCID: PMC6389600 DOI: 10.3389/fphys.2019.00104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022] Open
Abstract
F-box proteins, the substrate recognition subunits of SKP1–CUL1–F-box protein (SCF) E3 ubiquitin ligase complexes, play crucial roles in various cellular events mediated by ubiquitination. Several sugar-recognizing F-box proteins exist in both mammalian and plant cells. Although glycoproteins generally reside outside of cells, or in organelles of the secretory pathway, these lectin-type F-box proteins reside in the nucleocytoplasmic compartment. Mammalian sugar-recognizing F-box proteins commonly bind to the innermost position of N-glycans through a unique small hydrophobic pocket in their loops. Two cytosolic F-box proteins, Fbs1 and Fbs2, recognize high-mannose glycans synthesized in the ER, and SCFFbs1 and SCFFbs2 ubiquitinate excess unassembled or misfolded glycoproteins in the ERAD pathway by recognizing the innermost glycans, which serve as signals for aberrant proteins. On the other hand, endomembrane-bound Fbs3 recognizes complex glycans as well as high-mannose glycans, and SCFFbs3 ubiquitinates exposed glycoproteins in damaged lysosomes fated for elimination by selective autophagy. Plants express stress-inducible lectin-type F-box proteins recognizing a wider range of N- and O-glycans, suggesting that the roles of mammalian and plant lectin-type F-box proteins have diverged over the course of evolution to recognize species-specific targets with distinct functions. These sugar-recognizing F-box proteins interpret glycans in the cytosol as markers of unwanted proteins and organelles, and degrade them via the proteasome or autophagy.
Collapse
Affiliation(s)
- Yukiko Yoshida
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tsunehiro Mizushima
- Graduate School of Life Science, Picobiology Institute, University of Hyogo, Kobe, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
14
|
Wei X, Bu J, Mo X, Lv B, Wang X, Hou B. The prognostic significance of FBXO2 expression in colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5054-5062. [PMID: 31949582 PMCID: PMC6962918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/25/2018] [Indexed: 06/10/2023]
Abstract
Colorectal cancer is the third most frequently diagnosed malignancy, and the prognosis at advanced tumor stages remains poor. FBXO2, a member of the F-box protein family, is a cytoplasmic protein and an ubiquitin ligase. The aim of this study was to investigate the role of FBXO2 in colorectal cancer. The expression levels of Ki67, N-cadherin and FBXO2 were detected in 195 pairs of primary CRC tissues using immunohistochemistry (IHC). The associations among Ki67, N-cadherin, and FBXO2 expression, as well as the clinicopathological parameters, were analyzed. Survival curves were calculated with the Kaplan-Meier method. Univariate and multivariate analyses were performed to explore the prognostic significance of Ki67, N-cadherin, and FBXO2 expression. We found that the positive rates of Ki67, N-cadherin and FBXO2 expression in CRC tissue samples were 55.9%, 65.1%, 62.6%, respectively. The high expression levels of Ki67 and N-cadherin were significantly correlated with CRC size (P = 0.01) and metastasis (P = 0.01), respectively. The high expression level of FBXO2 was significantly correlated with CRC metastasis (P = 0.04) and AJCC stage (P = 0.029). A Cox regression analysis revealed that FBXO2 is an independent prognostic factor for CRC patients (HR 1.817, 95% CI 1.106-2.983, P = 0.018). FBXO2 may serve as a biomarker for metastasis and a reliable predictor for poor prognosis in CRC patients.
Collapse
Affiliation(s)
- Xinying Wei
- Department of Gastrointestinal Surgery, Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai, Guangdong Province, China
| | - Juyuan Bu
- Department of Gastrointestinal Surgery, Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai, Guangdong Province, China
| | - Xiangqiong Mo
- Department of Gastrointestinal Surgery, Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai, Guangdong Province, China
| | - Baojun Lv
- Department of Gastrointestinal Surgery, Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai, Guangdong Province, China
| | - Xiao Wang
- Department of Gastrointestinal Surgery, Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai, Guangdong Province, China
| | - Bingzong Hou
- Department of Gastrointestinal Surgery, Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai, Guangdong Province, China
| |
Collapse
|
15
|
Hartman BH, Bӧscke R, Ellwanger DC, Keymeulen S, Scheibinger M, Heller S. Fbxo2 VHC mouse and embryonic stem cell reporter lines delineate in vitro-generated inner ear sensory epithelia cells and enable otic lineage selection and Cre-recombination. Dev Biol 2018; 443:64-77. [PMID: 30179592 DOI: 10.1016/j.ydbio.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
While the mouse has been a productive model for inner ear studies, a lack of highly specific genes and tools has presented challenges. The absence of definitive otic lineage markers and tools is limiting in vitro studies of otic development, where innate cellular heterogeneity and disorganization increase the reliance on lineage-specific markers. To address this challenge in mice and embryonic stem (ES) cells, we targeted the lineage-specific otic gene Fbxo2 with a multicistronic reporter cassette (Venus/Hygro/CreER = VHC). In otic organoids derived from ES cells, Fbxo2VHC specifically delineates otic progenitors and inner ear sensory epithelia. In mice, Venus expression and CreER activity reveal a cochlear developmental gradient, label the prosensory lineage, show enrichment in a subset of type I vestibular hair cells, and expose strong expression in adult cerebellar granule cells. We provide a toolbox of multiple spectrally distinct reporter combinations for studies that require use of fluorescent reporters, hygromycin selection, and conditional Cre-mediated recombination.
Collapse
Affiliation(s)
- Byron H Hartman
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | - Robert Bӧscke
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Department of Otolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| | - Daniel C Ellwanger
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Sawa Keymeulen
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Program in Human Biology, Stanford University School of Humanities and Sciences, Stanford, CA 94305, United States
| | - Mirko Scheibinger
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Stefan Heller
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
16
|
Fang YY, Zeng P, Qu N, Ning LN, Chu J, Zhang T, Zhou XW, Tian Q. Evidence of altered depression and dementia-related proteins in the brains of young rats after ovariectomy. J Neurochem 2018; 146:703-721. [DOI: 10.1111/jnc.14537] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/01/2018] [Accepted: 06/19/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Ying-Yan Fang
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| | - Peng Zeng
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| | - Na Qu
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
- Affiliated Mental Health Center; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Lin-Na Ning
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| | - Jiang Chu
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| | - Teng Zhang
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| | - Xin-Wen Zhou
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| | - Qing Tian
- Department of Pathology and Pathophysiology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
17
|
Zhang HJ, Tian J, Qi XK, Xiang T, He GP, Zhang H, Yu X, Zhang X, Zhao B, Feng QS, Chen MY, Zeng MS, Zeng YX, Feng L. Epstein-Barr virus activates F-box protein FBXO2 to limit viral infectivity by targeting glycoprotein B for degradation. PLoS Pathog 2018; 14:e1007208. [PMID: 30052682 PMCID: PMC6082576 DOI: 10.1371/journal.ppat.1007208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/08/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human cancer-related virus closely associated with lymphoid and epithelial malignancies, and EBV glycoprotein B (gB) plays an essential role in viral entry into both B cells and epithelial cells by promoting cell-cell fusion. EBV gB is exclusively modified with high-mannose-linked N-glycans and primarily localizes to the endoplasmic reticulum (ER) with low levels on the plasma membrane (PM). However, the mechanism through which gB is regulated within host cells is largely unknown. Here, we report the identification of F-box only protein 2 (FBXO2), an SCF ubiquitin ligase substrate adaptor that preferentially binds high-mannose glycans and attenuates EBV infectivity by targeting N-glycosylated gB for degradation. gB possesses seven N-glycosylation sites, and FBXO2 directly binds to these high-mannose moieties through its sugar-binding domain. The interaction promotes the degradation of glycosylated gB via the ubiquitin-proteasome pathway. Depletion of FBXO2 not only stabilizes gB but also promotes its transport from the ER to the PM, resulting in enhanced membrane fusion and viral entry. FBXO2 is expressed in epithelial cells but not B cells, and EBV infection up-regulates FBXO2 levels. In summary, our findings highlight the significance of high-mannose modification of gB and reveal a novel host defense mechanism involving glycoprotein homeostasis regulation.
Collapse
Affiliation(s)
- Hao-Jiong Zhang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jinxiu Tian
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xue-Kang Qi
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tong Xiang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gui-Ping He
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hua Zhang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xibao Yu
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiao Zhang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Bingchun Zhao
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qi-Sheng Feng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Mu-Sheng Zeng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi-Xin Zeng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lin Feng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
18
|
Sun X, Wang T, Guan ZR, Zhang C, Chen Y, Jin J, Hua D. FBXO2, a novel marker for metastasis in human gastric cancer. Biochem Biophys Res Commun 2017; 495:2158-2164. [PMID: 29269301 DOI: 10.1016/j.bbrc.2017.12.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/17/2017] [Indexed: 12/21/2022]
Abstract
FBXO2 belongs to the F-box family of proteins, is a cytoplasmic protein and ubiquitin ligase F-box protein with specificity for high-mannose glycoproteins. Recently published studies indicate that other members of the F-box family, such as SKP2 and FBXW7, are involved in the development of gastric cancer. The role of FBXO2 in the process of tumorigenesis, including gastric cancer, is still unknown. In this study, we show that the level of FBXO2 is highly correlated with lymph node metastasis, and that overall survival (OS) of patients with high FBXO2 expression is significantly shorter than patients with low FBXO2 expression. FBXO2 promoted the proliferation and migration of human gastric cancer cells, whereas knockdown of FBXO2 by siRNA led to a decrease in those activities. Down-regulating FBXO2 reduced epithelial-mesenchymal transition (EMT) in gastric cancer cells, with increased expression of E-cadherin and decreased expression of N-cadherin and vimentin. In summary, our findings suggest that FBXO2-regulated EMT led to carcinogenicity in gastric cancer and may be a novel target in the diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Xu Sun
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Zhang-Rui Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chun Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yun Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Dong Hua
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China.
| |
Collapse
|
19
|
Hu YS, Xin J, Hu Y, Zhang L, Wang J. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach. Alzheimers Res Ther 2017; 9:29. [PMID: 28446202 PMCID: PMC5406904 DOI: 10.1186/s13195-017-0252-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/01/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. METHOD In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. RESULTS We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. CONCLUSION By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.
Collapse
Affiliation(s)
- Yan-Shi Hu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070 China
| | - Juncai Xin
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070 China
| | - Ying Hu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070 China
| | - Lei Zhang
- School of Computer Science and Technology, Tianjin University, Tianjin, 300072 China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070 China
| |
Collapse
|
20
|
Abstract
Newly synthesized transmembrane proteins undergo a series of steps to ensure that only the required amount of correctly folded protein is localized to the membrane. The regulation of protein quality and its abundance at the membrane are often controlled by ubiquitination, a multistep enzymatic process that results in the attachment of ubiquitin, or chains of ubiquitin to the target protein. Protein ubiquitination acts as a signal for sorting, trafficking, and the removal of membrane proteins via endocytosis, a process through which multiple ubiquitin ligases are known to specifically regulate the functions of a number of ion channels, transporters, and signaling receptors. Endocytic removal of these proteins through ubiquitin-dependent endocytosis provides a way to rapidly downregulate the physiological outcomes, and defects in such controls are directly linked to human pathologies. Recent evidence suggests that ubiquitination is also involved in the shedding of membranes and associated proteins as extracellular vesicles, thereby not only controlling the cell surface levels of some membrane proteins, but also their potential transport to neighboring cells. In this review, we summarize the mechanisms and functions of ubiquitination of membrane proteins and provide specific examples of ubiquitin-dependent regulation of membrane proteins.
Collapse
Affiliation(s)
- Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Tanya Henshall
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| |
Collapse
|
21
|
Liu B, Lu H, Li D, Xiong X, Gao L, Wu Z, Lu Y. Aberrant Expression of FBXO2 Disrupts Glucose Homeostasis Through Ubiquitin-Mediated Degradation of Insulin Receptor in Obese Mice. Diabetes 2017; 66:689-698. [PMID: 27932386 DOI: 10.2337/db16-1104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/01/2016] [Indexed: 11/13/2022]
Abstract
Insulin resistance is a critical factor in the development of metabolic disorders, including type 2 diabetes (T2DM). However, its molecular mechanisms remain incompletely understood. In this study, we found that F-box only protein 2 (FBXO2), a substrate recognition component of the Skp1-Cul1-F-box protein (SCF) E3 ubiquitin ligase complex, was upregulated in livers of obese mice. Furthermore, using a protein purification approach combined with high-performance liquid chromatography/tandem mass spectrometry, we carried out a system-wide screening of FBXO2 substrates, in which the insulin receptor (IR) was identified as a substrate for FBXO2. SCFFBXO2 acts as an E3 ligase targeting the IR for ubiquitin-dependent degradation to regulate insulin signaling integrity. As a result, adenovirus-mediated overexpression of FBXO2 in healthy mice led to hyperglycemia, glucose intolerance, and insulin resistance, whereas ablation of FBXO2 alleviated diabetic phenotypes in obese mice. Therefore, our results identify SCFFBXO2 as an E3 ligase for the IR in the liver, which might provide a novel therapeutic target for treating T2DM and related metabolic disorders.
Collapse
Affiliation(s)
- Bin Liu
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Huangshi Cental Hospital of Edong Healthcare Group, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duanzhuo Li
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Huangshi Cental Hospital of Edong Healthcare Group, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Xuelian Xiong
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Gao
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, China
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Lu
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Huangshi Cental Hospital of Edong Healthcare Group, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Wruck W, Schröter F, Adjaye J. Meta-Analysis of Transcriptome Data Related to Hippocampus Biopsies and iPSC-Derived Neuronal Cells from Alzheimer's Disease Patients Reveals an Association with FOXA1 and FOXA2 Gene Regulatory Networks. J Alzheimers Dis 2016; 50:1065-82. [PMID: 26890743 DOI: 10.3233/jad-150733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the incidence of Alzheimer's disease (AD) is continuously increasing in the aging population worldwide, effective therapies are not available. The interplay between causative genetic and environmental factors is partially understood. Meta-analyses have been performed on aspects such as polymorphisms, cytokines, and cognitive training. Here, we propose a meta-analysis approach based on hierarchical clustering analysis of a reliable training set of hippocampus biopsies, which is condensed to a gene expression signature. This gene expression signature was applied to various test sets of brain biopsies and iPSC-derived neuronal cell models to demonstrate its ability to distinguish AD samples from control. Thus, our identified AD-gene signature may form the basis for determination of biomarkers that are urgently needed to overcome current diagnostic shortfalls. Intriguingly, the well-described AD-related genes APP and APOE are not within the signature because their gene expression profiles show a lower correlation to the disease phenotype than genes from the signature. This is in line with the differing characteristics of the disease as early-/late-onset or with/without genetic predisposition. To investigate the gene signature's systemic role(s), signaling pathways, gene ontologies, and transcription factors were analyzed which revealed over-representation of response to stress, regulation of cellular metabolic processes, and reactive oxygen species. Additionally, our results clearly point to an important role of FOXA1 and FOXA2 gene regulatory networks in the etiology of AD. This finding is in corroboration with the recently reported major role of the dopaminergic system in the development of AD and its regulation by FOXA1 and FOXA2.
Collapse
|
23
|
Torabi Moghadam B, Dabrowski M, Kaminska B, Grabherr MG, Komorowski J. Combinatorial identification of DNA methylation patterns over age in the human brain. BMC Bioinformatics 2016; 17:393. [PMID: 27663458 PMCID: PMC5034667 DOI: 10.1186/s12859-016-1259-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023] Open
Abstract
Background DNA methylation plays a key role in developmental processes, which is reflected in changing methylation patterns at specific CpG sites over the lifetime of an individual. The underlying mechanisms are complex and possibly affect multiple genes or entire pathways. Results We applied a multivariate approach to identify combinations of CpG sites that undergo modifications when transitioning between developmental stages. Monte Carlo feature selection produced a list of ranked and statistically significant CpG sites, while rule-based models allowed for identifying particular methylation changes in these sites. Our rule-based classifier reports combinations of CpG sites, together with changes in their methylation status in the form of easy-to-read IF-THEN rules, which allows for identification of the genes associated with the underlying sites. Conclusion We utilized machine learning and statistical methods to discretize decision class (age) values to get a general pattern of methylation changes over the lifespan. The CpG sites present in the significant rules were annotated to genes involved in brain formation, general development, as well as genes linked to cancer and Alzheimer’s disease. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1259-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Behrooz Torabi Moghadam
- Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University, Uppsala, Sweden
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Manfred G Grabherr
- Department of Medical Biochemistry and Microbiology/BILS, Genomics, Uppsala University, Uppsala, Sweden
| | - Jan Komorowski
- Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University, Uppsala, Sweden. .,Institute of Computer Science, Polish Academy of Sciences, 01-248, Warszawa, Poland.
| |
Collapse
|
24
|
Gong B, Radulovic M, Figueiredo-Pereira ME, Cardozo C. The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer's Disease and Spinal Cord Injury. Front Mol Neurosci 2016; 9:4. [PMID: 26858599 PMCID: PMC4727241 DOI: 10.3389/fnmol.2016.00004] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/07/2016] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is a crucial protein degradation system in eukaryotes. Herein, we will review advances in the understanding of the role of several proteins of the UPS in Alzheimer’s disease (AD) and functional recovery after spinal cord injury (SCI). The UPS consists of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin and ubiquitin-like molecules, and the proteasome itself. An extensive body of work links UPS dysfunction with AD pathogenesis and progression. More recently, the UPS has been shown to have vital roles in recovery of function after SCI. The ubiquitin hydrolase (Uch-L1) has been proposed to increase cellular levels of mono-ubiquitin and hence to increase rates of protein turnover by the UPS. A low Uch-L1 level has been linked with Aβ accumulation in AD and reduced neuroregeneration after SCI. One likely mechanism for these beneficial effects of Uch-L1 is reduced turnover of the PKA regulatory subunit and consequently, reduced signaling via CREB. The neuron-specific F-box protein Fbx2 ubiquitinates β-secretase thus targeting it for proteasomal degradation and reducing generation of Aβ. Both Uch-L1 and Fbx2 improve synaptic plasticity and cognitive function in mouse AD models. The role of Fbx2 after SCI has not been examined, but abolishing ß-secretase reduces neuronal recovery after SCI, associated with reduced myelination. UBB+1, which arises through a frame-shift mutation in the ubiquitin gene that adds 19 amino acids to the C-terminus of ubiquitin, inhibits proteasomal function and is associated with increased neurofibrillary tangles in patients with AD, Pick’s disease and Down’s syndrome. These advances in understanding of the roles of the UPS in AD and SCI raise new questions but, also, identify attractive and exciting targets for potential, future therapeutic interventions.
Collapse
Affiliation(s)
- Bing Gong
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA
| | - Miroslav Radulovic
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA; National Center of Excellence for the Medical Consequences of Spinal Cord Injury (SCI)Bronx, NY, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, and the Graduate School and University Center, The City University of New York New York, NY, USA
| | - Christopher Cardozo
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA; National Center of Excellence for the Medical Consequences of Spinal Cord Injury (SCI)Bronx, NY, USA
| |
Collapse
|
25
|
Exploring novel mechanistic insights in Alzheimer's disease by assessing reliability of protein interactions. Sci Rep 2015; 5:13634. [PMID: 26346705 PMCID: PMC4562155 DOI: 10.1038/srep13634] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 08/03/2015] [Indexed: 01/08/2023] Open
Abstract
Protein interaction networks are widely used in computational biology as a graphical means of representing higher-level systemic functions in a computable form. Although, many algorithms exist that seamlessly collect and measure protein interaction information in network models, they often do not provide novel mechanistic insights using quantitative criteria. Measuring information content and knowledge representation in network models about disease mechanisms becomes crucial particularly when exploring new target candidates in a well-defined functional context of a potential disease mechanism. To this end, we have developed a knowledge-based scoring approach that uses literature-derived protein interaction features to quantify protein interaction confidence. Thereby, we introduce the novel concept of knowledge cliffs, regions of the interaction network where a significant gap between high scoring and low scoring interactions is observed, representing a divide between established and emerging knowledge on disease mechanism. To show the application of this approach, we constructed and assessed reliability of a protein-protein interaction model specific to Alzheimer’s disease, which led to screening, and prioritization of four novel protein candidates. Evaluation of the identified candidates showed that two of them are already followed in clinical trials for testing potential AD drugs.
Collapse
|
26
|
Loss of F-box only protein 2 (Fbxo2) disrupts levels and localization of select NMDA receptor subunits, and promotes aberrant synaptic connectivity. J Neurosci 2015; 35:6165-78. [PMID: 25878288 DOI: 10.1523/jneurosci.3013-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptors (NMDARs) play an essential role in some forms of synaptic plasticity, learning, and memory. Therefore, these receptors are highly regulated with respect to their localization, activation, and abundance both within and on the surface of mammalian neurons. Fundamental questions remain, however, regarding how this complex regulation is achieved. Using cell-based models and F-box Only Protein 2 (Fbxo2) knock-out mice, we found that the ubiquitin ligase substrate adaptor protein Fbxo2, previously reported to facilitate the degradation of the NMDAR subunit GluN1 in vitro, also functions to regulate GluN1 and GluN2A subunit levels in the adult mouse brain. In contrast, GluN2B subunit levels are not affected by the loss of Fbxo2. The loss of Fbxo2 results in greater surface localization of GluN1 and GluN2A, together with increases in the synaptic markers PSD-95 and Vglut1. These synaptic changes do not manifest as neurophysiological differences or alterations in dendritic spine density in Fbxo2 knock-out mice, but result instead in increased axo-dendritic shaft synapses. Together, these findings suggest that Fbxo2 controls the abundance and localization of specific NMDAR subunits in the brain and may influence synapse formation and maintenance.
Collapse
|
27
|
Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 2015; 47:e147. [PMID: 25766616 PMCID: PMC4351408 DOI: 10.1038/emm.2014.117] [Citation(s) in RCA: 589] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022] Open
Abstract
Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.
Collapse
|
28
|
Atkin G, Paulson H. Ubiquitin pathways in neurodegenerative disease. Front Mol Neurosci 2014; 7:63. [PMID: 25071440 PMCID: PMC4085722 DOI: 10.3389/fnmol.2014.00063] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/19/2014] [Indexed: 12/11/2022] Open
Abstract
Control of proper protein synthesis, function, and turnover is essential for the health of all cells. In neurons these demands take on the additional importance of supporting and regulating the highly dynamic connections between neurons that are necessary for cognitive function, learning, and memory. Regulating multiple unique synaptic protein environments within a single neuron while maintaining cell health requires the highly regulated processes of ubiquitination and degradation of ubiquitinated proteins through the proteasome. In this review, we examine the effects of dysregulated ubiquitination and protein clearance on the handling of disease-associated proteins and neuronal health in the most common neurodegenerative diseases.
Collapse
Affiliation(s)
- Graham Atkin
- Department of Neurology, University of Michigan Ann Arbor, MI, USA
| | - Henry Paulson
- Department of Neurology, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
29
|
Koenig PA, Ploegh HL. Protein quality control in the endoplasmic reticulum. F1000PRIME REPORTS 2014; 6:49. [PMID: 25184039 PMCID: PMC4108957 DOI: 10.12703/p6-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
THE TOPOLOGICAL BARRIERS DEFINED BY BIOLOGICAL MEMBRANES ARE NOT IMPERMEABLE: from small solutes to intact proteins, specialized transport and translocation mechanisms adjust to the cell's needs. Here, we review the removal of unwanted proteins from the endoplasmic reticulum (ER) and emphasize the need to extend observations from tissue culture models and simple eukaryotes to studies in whole animals. The variation in protein production and composition that characterizes different cell types and tissues requires tailor-made solutions to exert proper control over both protein synthesis and breakdown. The ER is an organelle essential to achieve and maintain such homeostasis.
Collapse
Affiliation(s)
- Paul-Albert Koenig
- Klinikum rechts der Isar, Technische Universität München, Institut für Klinische Chemie und Pathobiochemie, Ismaninger Straße22, 81675 MünchenGermany
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research9 Cambridge Center, Cambridge, 02142 MAUSA
| |
Collapse
|