1
|
Kim HJ, Shin HR, Yoon H, Park MS, Kim BG, Moon JI, Kim WJ, Park SG, Kim KT, Kim HN, Choi JY, Ryoo HM. Peptidylarginine deiminase 2 plays a key role in osteogenesis by enhancing RUNX2 stability through citrullination. Cell Death Dis 2023; 14:576. [PMID: 37648716 PMCID: PMC10468518 DOI: 10.1038/s41419-023-06101-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Peptidylarginine deiminase (PADI) 2 catalyzes the post-translational conversion of peptidyl-arginine to peptidyl-citrulline in a process called citrullination. However, the precise functions of PADI2 in bone formation and homeostasis remain unknown. In this study, our objective was to elucidate the function and regulatory mechanisms of PADI2 in bone formation employing global and osteoblast-specific Padi2 knockout mice. Our findings demonstrate that Padi2 deficiency leads to the loss of bone mass and results in a cleidocranial dysplasia (CCD) phenotype with delayed calvarial ossification and clavicular hypoplasia, due to impaired osteoblast differentiation. Mechanistically, Padi2 depletion significantly reduces RUNX2 levels, as PADI2-dependent stabilization of RUNX2 protected it from ubiquitin-proteasomal degradation. Furthermore, we discovered that PADI2 binds to RUNX2 and citrullinates it, and identified ten PADI2-induced citrullination sites on RUNX2 through high-resolution LC-MS/MS analysis. Among these ten citrullination sites, the R381 mutation in mouse RUNX2 isoform 1 considerably reduces RUNX2 levels, underscoring the critical role of citrullination at this residue in maintaining RUNX2 protein stability. In conclusion, these results indicate that PADI2 plays a distinct role in bone formation and osteoblast differentiation by safeguarding RUNX2 against proteasomal degradation. In addition, we demonstrate that the loss-of-function of PADI2 is associated with CCD, thereby providing a new target for the treatment of bone diseases.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Heein Yoon
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Min-Sang Park
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, South Korea
| | - Jae-I Moon
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Seung Gwa Park
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Ki-Tae Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Skeletal Disease Analysis Center, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Yoon H, Park SG, Kim HJ, Shin HR, Kim KT, Cho YD, Moon JI, Park MS, Kim WJ, Ryoo HM. Nicotinamide enhances osteoblast differentiation through activation of the mitochondrial antioxidant defense system. Exp Mol Med 2023; 55:1531-1543. [PMID: 37464093 PMCID: PMC10393969 DOI: 10.1038/s12276-023-01041-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 07/20/2023] Open
Abstract
Although the normal physiological level of oxidative stress is beneficial for maintaining bone homeostasis, imbalance between reactive oxygen species (ROS) production and antioxidant defense can cause various bone diseases. The purpose of this study was to determine whether nicotinamide (NAM), an NAD+ precursor, can support the maintenance of bone homeostasis by regulating osteoblasts. Here, we found that NAM enhances osteoblast differentiation and mitochondrial metabolism. NAM increases the expression of antioxidant enzymes, which is due to increased FOXO3A transcriptional activity via SIRT3 activation. NAM has not only a preventive effect against weak and chronic oxidative stress but also a therapeutic effect against strong and acute exposure to H2O2 in osteoblast differentiation. Collectively, the results indicate that NAM increases mitochondrial biogenesis and antioxidant enzyme expression through activation of the SIRT3-FOXO3A axis, which consequently enhances osteoblast differentiation. These results suggest that NAM could be a potential preventive or therapeutic agent for bone diseases caused by ROS.
Collapse
Affiliation(s)
- Heein Yoon
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Seung Gwa Park
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Hyun-Jung Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Ki-Tae Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Young-Dan Cho
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, 03080, South Korea
| | - Jae-I Moon
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Min-Sang Park
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea.
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Krishnan RH, Sadu L, Akshaya RL, Gomathi K, Saranya I, Das UR, Satishkumar S, Selvamurugan N. Circ_CUX1/miR-130b-5p/p300 axis for parathyroid hormone-stimulation of Runx2 activity in rat osteoblasts: A combined bioinformatic and experimental approach. Int J Biol Macromol 2023; 225:1152-1163. [PMID: 36427609 DOI: 10.1016/j.ijbiomac.2022.11.176] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone (PTH) regulates the expression of bone remodeling genes by enhancing the activity of Runx2 in osteoblasts. p300, a histone acetyltransferase, acetylated Runx2 to activate the expression of its target genes. PTH stimulated the expression of p300 in rat osteoblastic cells. Increasing studies suggested the potential of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and circular RNAs (circRNAs), in regulating gene expression under both physiological and pathological conditions. In this study, we hypothesized that PTH regulates Runx2 activity via ncRNAs-mediated p300 expression in rat osteoblastic cells. Bioinformatics and experimental approaches identified PTH-upregulation of miR-130b-5p and circ_CUX1 that putatively target p300 and miR-130b-5p, respectively. An antisense-mediated knockdown of circ_CUX1 was performed to determine the sponging activity of circ_CUX1. Knockdown of circ_CUX1 promoted miR-130b-5p activity and reduced p300 expression, resulting in decreased Runx2 acetylation in rat osteoblastic cells. Further, bioinformatics analysis identified the possible signaling pathways that regulate Runx2 activity and osteoblast differentiation via circ_CUX1/miR-130b-5p/p300 axis. The predicted circ_CUX1/miR-130b-5p/p300 axis might pave the way for better diagnostic and therapeutic approaches for bone-related diseases.
Collapse
Affiliation(s)
- R Hari Krishnan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Lakshana Sadu
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Gomathi
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - I Saranya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Udipt Ranjan Das
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sneha Satishkumar
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
4
|
Greenblatt MB, Shim JH, Bok S, Kim JM. The Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Pathway in Osteoblasts. J Bone Metab 2022; 29:1-15. [PMID: 35325978 PMCID: PMC8948490 DOI: 10.11005/jbm.2022.29.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 12/01/2022] Open
Abstract
Extracellular signal-regulated kinases (ERKs) are evolutionarily ancient signal transducers of the mitogen-activated protein kinase (MAPK) family that have long been linked to the regulation of osteoblast differentiation and bone formation. Here, we review the physiological functions, biochemistry, upstream activators, and downstream substrates of the ERK pathway. ERK is activated in skeletal progenitors and regulates osteoblast differentiation and skeletal mineralization, with ERK serving as a key regulator of Runt-related transcription factor 2, a critical transcription factor for osteoblast differentiation. However, new evidence highlights context-dependent changes in ERK MAPK pathway wiring and function, indicating a broader set of physiological roles associated with changes in ERK pathway components or substrates. Consistent with this importance, several human skeletal dysplasias are associated with dysregulation of the ERK MAPK pathway, including neurofibromatosis type 1 and Noonan syndrome. The continually broadening array of drugs targeting the ERK pathway for the treatment of cancer and other disorders makes it increasingly important to understand how interference with this pathway impacts bone metabolism, highlighting the importance of mouse studies to model the role of the ERK MAPK pathway in bone formation.
Collapse
Affiliation(s)
- Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
- Research Division, Hospital for Special Surgery, New York, NY,
USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
- Horae Gene Therapy Center, and Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA,
USA
| | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
| | - Jung-Min Kim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
| |
Collapse
|
5
|
Gomathi K, Rohini M, Partridge NC, Selvamurugan N. Regulation of transforming growth factor-β1-stimulation of Runx2 acetylation for matrix metalloproteinase 13 expression in osteoblastic cells. Biol Chem 2022; 403:305-315. [PMID: 34643076 DOI: 10.1515/hsz-2021-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/30/2021] [Indexed: 01/12/2023]
Abstract
Transforming growth factor beta 1 (TGF-β1) functions as a coupling factor between bone development and resorption. Matrix metalloproteinase 13 (MMP13) is important in bone remodeling, and skeletal dysplasia is caused by a deficiency in MMP13 expre-ssion. Runx2, a transcription factor is essential for bone development, and MMP13 is one of its target genes. TGF-β1 promoted Runx2 phosphorylation, which was necessary for MMP13 production in osteoblastic cells, as we previously shown. Since the phosphorylation of some proteins causes them to be degraded by the ubiquitin/proteasome pathway, we hypothesized that TGF-β1 might stabilize the phosphorylated Runx2 protein for its activity by other post-translational modification (PTM). This study demonstrated that TGF-β1-stimulated Runx2 acetylation in rat osteoblastic cells. p300, a histone acetyltransferase interacted with Runx2, and it promoted Runx2 acetylation upon TGF-β1-treatment in these cells. Knockdown of p300 decreased the TGF-β1-stimulated Runx2 acetylation and MMP13 expression in rat osteoblastic cells. TGF-β1-treatment stimulated the acetylated Runx2 bound at the MMP13 promoter, and knockdown of p300 reduced this effect in these cells. Overall, our studies identified the transcriptional regulation of MMP13 by TGF-β1 via Runx2 acetylation in rat osteoblastic cells, and these findings contribute to the knowledge of events presiding bone metabolism.
Collapse
Affiliation(s)
- Kanagaraj Gomathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Muthukumar Rohini
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nicola C Partridge
- Department of Molecular Pathobiology, New York University College Dentistry, New York, NY, USA
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
6
|
Shin HR, Kim BS, Kim HJ, Yoon H, Kim WJ, Choi JY, Ryoo HM. Excessive osteoclast activation by osteoblast paracrine factor RANKL is a major cause of the abnormal long bone phenotype in Apert syndrome model mice. J Cell Physiol 2022; 237:2155-2168. [PMID: 35048384 PMCID: PMC9303724 DOI: 10.1002/jcp.30682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
The fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling pathway plays important roles in the development and growth of the skeleton. Apert syndrome caused by gain‐of‐function mutations of FGFR2 results in aberrant phenotypes of the skull, midface, and limbs. Although short limbs are representative features in patients with Apert syndrome, the causative mechanism for this limb defect has not been elucidated. Here we quantitatively confirmed decreases in the bone length, bone mineral density, and bone thickness in the Apert syndrome model of gene knock‐in Fgfr2S252W/+ (EIIA‐Fgfr2S252W/+) mice. Interestingly, despite these bone defects, histological analysis showed that the endochondral ossification process in the mutant mice was similar to that in wild‐type mice. Tartrate‐resistant acid phosphatase staining revealed that trabecular bone loss in mutant mice was associated with excessive osteoclast activity despite accelerated osteogenic differentiation. We investigated the osteoblast–osteoclast interaction and found that the increase in osteoclast activity was due to an increase in the Rankl level of osteoblasts in mutant mice and not enhanced osteoclastogenesis driven by the activation of FGFR2 signaling in bone marrow‐derived macrophages. Consistently, Col1a1‐Fgfr2S252W/+ mice, which had osteoblast‐specific expression of Fgfr2 S252W, showed significant bone loss with a reduction of the bone length and excessive activity of osteoclasts was observed in the mutant mice. Taken together, the present study demonstrates that the imbalance in osteoblast and osteoclast coupling by abnormally increased Rankl expression in Fgfr2S252W/+ mutant osteoblasts is a major causative mechanism for bone loss and short long bones in Fgfr2S252W/+ mice.
Collapse
Affiliation(s)
- Hye-Rim Shin
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Bong-Soo Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Jung Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Heein Yoon
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Skeletal Disease Analysis Center, Korea Mouse Phenotyping Center (KMPC), School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Li W, Feng W, Su X, Luo D, Li Z, Zhou Y, Zhu Y, Zhang M, Chen J, Liu B, Huang H. SIRT6 protects vascular smooth muscle cell from osteogenic transdifferentiation via Runx2 in chronic kidney disease. J Clin Invest 2021; 132:150051. [PMID: 34793336 PMCID: PMC8718147 DOI: 10.1172/jci150051] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/12/2021] [Indexed: 12/03/2022] Open
Abstract
Vascular calcification (VC) is regarded as an important pathological change lacking effective treatment and associated with high mortality. Sirtuin 6 (SIRT6) is a member of the Sirtuin family, a class III histone deacetylase and a key epigenetic regulator. SIRT6 has a protective role in patients with chronic kidney disease (CKD). However, the exact role and molecular mechanism of SIRT6 in VC in patients with CKD remain unclear. Here, we demonstrated that SIRT6 was markedly downregulated in peripheral blood mononuclear cells (PBMCs) and in the radial artery tissue of patients with CKD with VC. SIRT6-transgenic (SIRT6-Tg) mice showed alleviated VC, while vascular smooth muscle cell–specific (VSMC-specific) SIRT6 knocked-down mice showed severe VC in CKD. SIRT6 suppressed the osteogenic transdifferentiation of VSMCs via regulation of runt-related transcription factor 2 (Runx2). Coimmunoprecipitation (co-IP) and immunoprecipitation (IP) assays confirmed that SIRT6 bound to Runx2. Moreover, Runx2 was deacetylated by SIRT6 and further promoted nuclear export via exportin 1 (XPO1), which in turn caused degradation of Runx2 through the ubiquitin-proteasome system. These results demonstrated that SIRT6 prevented VC by suppressing the osteogenic transdifferentiation of VSMCs, and as such targeting SIRT6 may be an appealing therapeutic target for VC in CKD.
Collapse
Affiliation(s)
- Wenxin Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weijing Feng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Shenzhen, China
| | - Xiaoyan Su
- Department of Nephropathy, Tungwah Hospital of Sun Yat-Sen University, Dongguan, China
| | - Dongling Luo
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhibing Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongqiao Zhou
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Zhu
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mengbi Zhang
- Department of Nephropathy, Tungwah Hospital of Sun Yat-Sen University, Dongguan, China
| | - Jie Chen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baohua Liu
- Shenzhen University Health Science Center, ShenZhen University, Shenzhen, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Li J, Mo C, Guo Y, Zhang B, Feng X, Si Q, Wu X, Zhao Z, Gong L, He D, Shao J. Roles of peptidyl-prolyl isomerase Pin1 in disease pathogenesis. Theranostics 2021; 11:3348-3358. [PMID: 33537091 PMCID: PMC7847688 DOI: 10.7150/thno.45889] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Pin1 belongs to the peptidyl-prolyl cis-trans isomerases (PPIases) superfamily and catalyzes the cis-trans conversion of proline in target substrates to modulate diverse cellular functions including cell cycle progression, cell motility, and apoptosis. Dysregulation of Pin1 has wide-ranging influences on the fate of cells; therefore, it is closely related to the occurrence and development of various diseases. This review summarizes the current knowledge of Pin1 in disease pathogenesis.
Collapse
Affiliation(s)
- Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Chunfen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yifan Guo
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Bowen Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Xiao Feng
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Qiuyue Si
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xiaobo Wu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Zhe Zhao
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Lixin Gong
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dan He
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Jichun Shao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Nakashima H, Yasunaga M, Yoshida M, Yamaguchi M, Takahashi S, Kajiya H, Tamaoki S, Ohno J. Low Concentration of Etoposide Induces Enhanced Osteogenesis in MG63 Cells via Pin1 Activation. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hiroki Nakashima
- Section of Orthodontics, Department of Oral Growth and Development, Fukuoka Dental College
- Oral Medicine Research Center, Fukuoka Dental College
| | - Madoka Yasunaga
- Section of Orthodontics, Department of Oral Growth and Development, Fukuoka Dental College
- Oral Medicine Research Center, Fukuoka Dental College
| | - Mizuki Yoshida
- Oral Medicine Research Center, Fukuoka Dental College
- Section of Gerodontology, Department of General Dentistry, Fukuoka Dental College
| | - Masahiro Yamaguchi
- Oral Medicine Research Center, Fukuoka Dental College
- Section of Gerodontology, Department of General Dentistry, Fukuoka Dental College
| | - Saki Takahashi
- Section of Orthodontics, Department of Oral Growth and Development, Fukuoka Dental College
- Oral Medicine Research Center, Fukuoka Dental College
| | - Hiroshi Kajiya
- Oral Medicine Research Center, Fukuoka Dental College
- Section of Geriatric Dentistry, Department of General Dentistry, Fukuoka Dental College
| | - Sachio Tamaoki
- Section of Orthodontics, Department of Oral Growth and Development, Fukuoka Dental College
| | - Jun Ohno
- Oral Medicine Research Center, Fukuoka Dental College
| |
Collapse
|
10
|
Kim WJ, Shin HL, Kim BS, Kim HJ, Ryoo HM. RUNX2-modifying enzymes: therapeutic targets for bone diseases. Exp Mol Med 2020; 52:1178-1184. [PMID: 32788656 PMCID: PMC8080656 DOI: 10.1038/s12276-020-0471-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023] Open
Abstract
RUNX2 is a master transcription factor of osteoblast differentiation. RUNX2 expression in the bone and osteogenic front of a suture is crucial for cranial suture closure and membranous bone morphogenesis. In this manner, the regulation of RUNX2 is precisely controlled by multiple posttranslational modifications (PTMs) mediated by the stepwise recruitment of multiple enzymes. Genetic defects in RUNX2 itself or in its PTM regulatory pathways result in craniofacial malformations. Haploinsufficiency in RUNX2 causes cleidocranial dysplasia (CCD), which is characterized by open fontanelle and hypoplastic clavicles. In contrast, gain-of-function mutations in FGFRs, which are known upstream stimulating signals of RUNX2 activity, cause craniosynostosis (CS) characterized by premature suture obliteration. The identification of these PTM cascades could suggest suitable drug targets for RUNX2 regulation. In this review, we will focus on the mechanism of RUNX2 regulation mediated by PTMs, such as phosphorylation, prolyl isomerization, acetylation, and ubiquitination, and we will summarize the therapeutics associated with each PTM enzyme for the treatment of congenital cranial suture anomalies.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Lim Shin
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Bong-Soo Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Jung Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Mo Ryoo
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
11
|
Hasan MR, Takatalo M, Ma H, Rice R, Mustonen T, Rice DP. RAB23 coordinates early osteogenesis by repressing FGF10-pERK1/2 and GLI1. eLife 2020; 9:55829. [PMID: 32662771 PMCID: PMC7423339 DOI: 10.7554/elife.55829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in the gene encoding Ras-associated binding protein 23 (RAB23) cause Carpenter Syndrome, which is characterized by multiple developmental abnormalities including polysyndactyly and defects in skull morphogenesis. To understand how RAB23 regulates skull development, we generated Rab23-deficient mice that survive to an age where skeletal development can be studied. Along with polysyndactyly, these mice exhibit premature fusion of multiple sutures resultant from aberrant osteoprogenitor proliferation and elevated osteogenesis in the suture. FGF10-driven FGFR1 signaling is elevated in Rab23-/-sutures with a consequent imbalance in MAPK, Hedgehog signaling and RUNX2 expression. Inhibition of elevated pERK1/2 signaling results in the normalization of osteoprogenitor proliferation with a concomitant reduction of osteogenic gene expression, and prevention of craniosynostosis. Our results suggest a novel role for RAB23 as an upstream negative regulator of both FGFR and canonical Hh-GLI1 signaling, and additionally in the non-canonical regulation of GLI1 through pERK1/2.
Collapse
Affiliation(s)
- Md Rakibul Hasan
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Hongqiang Ma
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Ritva Rice
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - David Pc Rice
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
MicroRNA-16, via FGF2 Regulation of the ERK/MAPK Pathway, Is Involved in the Magnesium-Promoted Osteogenic Differentiation of Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3894926. [PMID: 32411326 PMCID: PMC7201663 DOI: 10.1155/2020/3894926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 12/26/2022]
Abstract
microRNAs (miRNAs) participate in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). However, few reports have discussed the effect of miRNAs on the magnesium chloride (MgCl2)-induced promotion of osteogenic differentiation of BMSCs, a process involved in the healing of bone tissue. As determined in the present investigation, MgCl2 decreased miR-16 levels; increased levels of fibroblast growth factor 2 (FGF2), p-p38, and p-ERK; and promoted the osteogenic differentiation of BMSCs. Enhancement of miR-16 levels by an miR-16 mimic blocked these MgCl2-induced changes. Moreover, luciferase reporter assays confirmed that miR-16 binds to the 3'UTR region of FGF2 mRNA. Down-regulation of FGF2 blocked the MgCl2-induced increases of p-p38 and p-ERK and the promotion of the osteogenic differentiation of BMSCs. Furthermore, over-expression of miR-16 attenuated the MgCl2-induced overproduction of p-p38 and p-ERK1/2 and the high levels of osteogenic differentiation, effects that were reversed by elevated expression of FGF2. In summary, the present findings provide a mechanism by which miR-16 regulates MgCl2-induced promotion of osteogenic differentiation by targeting FGF2-mediated activation of the ERK/MAPK pathway.
Collapse
|
13
|
Cho YD, Kim BS, Kim WJ, Kim HJ, Baek JH, Woo KM, Seol YJ, Ku Y, Ryoo HM. Histone acetylation together with DNA demethylation empowers higher plasticity in adipocytes to differentiate into osteoblasts. Gene 2020; 733:144274. [DOI: 10.1016/j.gene.2019.144274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
|
14
|
Kim HJ, Kim WJ, Ryoo HM. Post-Translational Regulations of Transcriptional Activity of RUNX2. Mol Cells 2020; 43:160-167. [PMID: 31878768 PMCID: PMC7057842 DOI: 10.14348/molcells.2019.0247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/04/2019] [Indexed: 01/20/2023] Open
Abstract
Runt-related transcription factor 2 (RUNX2) is a key transcription factor for bone formation and osteoblast differentiation. Various signaling pathways and mechanisms that regulate the expression and transcriptional activity of RUNX2 have been thoroughly investigated since the involvement of RUNX2 was first reported in bone formation. As the regulation of Runx2 expression by extracellular signals has recently been reviewed, this review focuses on the regulation of post-translational RUNX2 activity. Transcriptional activity of RUNX2 is regulated at the post-translational level by various enzymes including kinases, acetyl transferases, deacetylases, ubiquitin E3 ligases, and prolyl isomerases. We describe a sequential and linear causality between post-translational modifications of RUNX2 by these enzymes. RUNX2 is one of the most important osteogenic transcription factors; however, it is not a suitable drug target. Here, we suggest enzymes that directly regulate the stability and/or transcriptional activity of RUNX2 at a post-translational level as effective drug targets for treating bone diseases.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Kim B, Shin H, Kim W, Kim H, Cho Y, Yoon H, Baek J, Woo K, Lee Y, Ryoo H. PIN1 Attenuation Improves Midface Hypoplasia in a Mouse Model of Apert Syndrome. J Dent Res 2019; 99:223-232. [PMID: 31869252 DOI: 10.1177/0022034519893656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Premature fusion of the cranial suture and midface hypoplasia are common features of syndromic craniosynostosis caused by mutations in the FGFR2 gene. The only treatment for this condition involves a series of risky surgical procedures designed to correct defects in the craniofacial bones, which must be performed until brain growth has been completed. Several pharmacologic interventions directed at FGFR2 downstream signaling have been tested as potential treatments for premature coronal suture fusion in a mouse model of Apert syndrome. However, there are no published studies that have targeted for the pharmacologic treatment of midface hypoplasia. We used Fgfr2S252W/+ knock-in mice as a model of Apert syndrome and morphometric analyses to identify causal hypoplastic sites in the midface region. Three-dimensional geometric and linear analyses of Fgfr2S252W/+ mice at postnatal day 0 demonstrated distinct morphologic variance. The premature fusion of anterior facial bones, such as the maxilla, nasal, and frontal bones, rather than the cranium or cranial base, is the main contributing factor toward the anterior-posterior skull length shortening. The cranial base of the mouse model had a noticeable downward slant around the intersphenoid synchondrosis, which is related to distortion of the airway. Within a skull, the facial shape variance was highly correlated with the cranial base angle change along Fgfr2 S252W mutation-induced craniofacial anomalies. The inhibition of an FGFR2 downstream signaling enzyme, PIN1, via genetic knockdown or use of a PIN1 inhibitor, juglone, attenuated the aforementioned deformities in a mouse model of Apert syndrome. Overall, these results indicate that FGFR2 signaling is a key contributor toward abnormal anterior-posterior dimensional growth in the midface region. Our study suggests a novel therapeutic option for the prevention of craniofacial malformations induced by mutations in the FGFR2 gene.
Collapse
Affiliation(s)
- B Kim
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - H Shin
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - W Kim
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - H Kim
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - Y Cho
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea.,Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - H Yoon
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - J Baek
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - K Woo
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - Y Lee
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - H Ryoo
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Cbfα1 hinders autophagy by DSPP upregulation in odontoblast differentiation. Int J Biochem Cell Biol 2019; 115:105578. [DOI: 10.1016/j.biocel.2019.105578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/28/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
|
17
|
Wang JZ, Zhang YH, Bai J, Liu YW, Du WT. PIN1, a perspective on genetic biomarker for nonalcoholic fatty liver disease (NAFLD). Metabol Open 2019; 3:100014. [PMID: 32812930 PMCID: PMC7424804 DOI: 10.1016/j.metop.2019.100014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE A novel genetic and molecular basis of nonalcoholic fatty liver disease (NAFLD) was explored. STUDY DESIGN A 38-year-old male, who has no bad living and dietary habits, was diagnosed as NAFLD. The potential pathogenic role of Pin1 was evaluated by enzyme-linked immunosorbent (ELISA) assay and single nucleotide polymorphism (SNP) sequencing. RESULTS ELISA determined a six-time higher concentration of plasma Pin1 compared to our previous data. Nine PIN1 SNPs were sequenced and classified according to their NAFLD-pathogenic risks, suggesting that rs2233678 and rs2287839 may be the most important genotypes that result in Pin1 overexpression and NAFLD development. CONCLUSION In summary, this work explores a novel basis for early-onset NAFLD and highlights that elevated plasma Pin1 may predict NAFLD risk at early stage. Hypothetically, inhibiting Pin1 may benefit NAFLD prevention in the future.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Corresponding author. Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan, 056002, Hebei Province, China.
| | | | | | - Yan-Wei Liu
- Affiliated Hospital, College of Medicine, College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, PR China
| | - Wen-Tao Du
- Affiliated Hospital, College of Medicine, College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, PR China
| |
Collapse
|
18
|
Shin HR, Bae HS, Kim BS, Yoon HI, Cho YD, Kim WJ, Choi KY, Lee YS, Woo KM, Baek JH, Ryoo HM. PIN1 is a new therapeutic target of craniosynostosis. Hum Mol Genet 2019; 27:3827-3839. [PMID: 30007339 PMCID: PMC6216213 DOI: 10.1093/hmg/ddy252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023] Open
Abstract
Gain-of-function mutations in fibroblast growth factor receptors (FGFRs) cause congenital skeletal anomalies, including craniosynostosis (CS), which is characterized by the premature closure of craniofacial sutures. Apert syndrome (AS) is one of the severest forms of CS, and the only treatment is surgical expansion of prematurely fused sutures in infants. Previously, we demonstrated that the prolyl isomerase peptidyl-prolyl cis-trans isomerase interacting 1 (PIN1) plays a critical role in mediating FGFR signaling and that Pin1+/- mice exhibit delayed closure of cranial sutures. In this study, using both genetic and pharmacological approaches, we tested whether PIN1 modulation could be used as a therapeutic regimen against AS. In the genetic approach, we crossbred Fgfr2S252W/+, a mouse model of AS, and Pin1+/- mice. Downregulation of Pin1 gene dosage attenuated premature cranial suture closure and other phenotypes of AS in Fgfr2S252W/+ mutant mice. In the pharmacological approach, we intraperitoneally administered juglone, a PIN1 enzyme inhibitor, to pregnant Fgfr2S252W/+ mutant mice and found that this treatment successfully interrupted fetal development of AS phenotypes. Primary cultured osteoblasts from Fgfr2S252W/+ mutant mice expressed high levels of FGFR2 downstream target genes, but this phenotype was attenuated by PIN1 inhibition. Post-translational stabilization and activation of Runt-related transcription factor 2 (RUNX2) in Fgfr2S252W/+ osteoblasts were also attenuated by PIN1 inhibition. Based on these observations, we conclude that PIN1 enzyme activity is important for FGFR2-induced RUNX2 activation and craniofacial suture morphogenesis. Moreover, these findings highlight that juglone or other PIN1 inhibitors represent viable alternatives to surgical intervention for treatment of CS and other hyperostotic diseases.
Collapse
Affiliation(s)
- H R Shin
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H S Bae
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - B S Kim
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H I Yoon
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Y D Cho
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Periodontology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - W J Kim
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - K Y Choi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Y S Lee
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - K M Woo
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - J H Baek
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H M Ryoo
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are expressed throughout all stages of skeletal development. In the limb bud and in cranial mesenchyme, FGF signaling is important for formation of mesenchymal condensations that give rise to bone. Once skeletal elements are initiated and patterned, FGFs regulate both endochondral and intramembranous ossification programs. In this chapter, we review functions of the FGF signaling pathway during these critical stages of skeletogenesis, and explore skeletal malformations in humans that are caused by mutations in FGF signaling molecules.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Pierre J Marie
- UMR-1132 Inserm (Institut national de la Santé et de la Recherche Médicale) and University Paris Diderot, Sorbonne Paris Cité, Hôpital Lariboisière, Paris, France
| |
Collapse
|
20
|
Sun L, Lin C, Li X, Xing L, Huo D, Sun J, Zhang L, Yang H. Comparative Phospho- and Acetyl Proteomics Analysis of Posttranslational Modifications Regulating Intestine Regeneration in Sea Cucumbers. Front Physiol 2018; 9:836. [PMID: 30018572 PMCID: PMC6037860 DOI: 10.3389/fphys.2018.00836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Sea cucumbers exposed to stressful circumstances eviscerate most internal organs, and then regenerate them rapidly under favorable environments. Reversible protein phosphorylation and acetylation are major modifications regulating protein function. Herein, for the first time, we perform quantitative phospho- and acetyl proteomics analyses of intestine regeneration in a sea cucumber species Apostichopus japonicus. We identified 1,862 phosphorylation sites in 1,169 proteins, and 712 acetylation sites in 470 proteins. Of the 147 and 251 proteins differentially modified by phosphorylation and acetylation, respectively, most were related to cytoskeleton biogenesis, protein synthesis and modification, signal recognition and transduction, energy production and conversion, or substance transport and metabolism. Phosphorylation appears to play a more important role in signal recognition and transduction than acetylation, while acetylation is of greater importance in posttranslational modification, protein turnover, chaperones; energy production and conversion; amino acid and lipid transport and metabolism. These results expanded our understanding of the regulatory mechanisms of posttranslational modifications in intestine regeneration of sea cucumbers after evisceration.
Collapse
Affiliation(s)
- Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoni Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingchun Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Aukes K, Forsman C, Brady NJ, Astleford K, Blixt N, Sachdev D, Jensen ED, Mansky KC, Schwertfeger KL. Breast cancer cell-derived fibroblast growth factors enhance osteoclast activity and contribute to the formation of metastatic lesions. PLoS One 2017; 12:e0185736. [PMID: 28968431 PMCID: PMC5624603 DOI: 10.1371/journal.pone.0185736] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) have been implicated in promoting breast cancer growth and progression. While the autocrine effects of FGFR activation in tumor cells have been extensively studied, little is known about the effects of tumor cell-derived FGFs on cells in the microenvironment. Because FGF signaling has been implicated in the regulation of bone formation and osteoclast differentiation, we hypothesized that tumor cell-derived FGFs are capable of modulating osteoclast function and contributing to growth of metastatic lesions in the bone. Initial studies examining FGFR expression during osteoclast differentiation revealed increased expression of FGFR1 in osteoclasts during differentiation. Therefore, studies were performed to determine whether tumor cell-derived FGFs are capable of promoting osteoclast differentiation and activity. Using both non-transformed and transformed cell lines, we demonstrate that breast cancer cells express a number of FGF ligands that are known to activate FGFR1. Furthermore our results demonstrate that inhibition of FGFR activity using the clinically relevant inhibitor BGJ398 leads to reduced osteoclast differentiation and activity in vitro. Treatment of mice injected with tumor cells into the femurs with BGJ398 leads to reduced osteoclast activity and bone destruction. Together, these studies demonstrate that tumor cell-derived FGFs enhance osteoclast function and contribute to the formation of metastatic lesions in breast cancer.
Collapse
Affiliation(s)
- Kelly Aukes
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cynthia Forsman
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nicholas J. Brady
- Microbiology, Cancer Biology and Immunology Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kristina Astleford
- Developmental and Surgical Science, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nicholas Blixt
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Deepali Sachdev
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eric D. Jensen
- Department of Diagnostic and Biological Science, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kim C. Mansky
- Developmental and Surgical Science, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (KLS); (KCM)
| | - Kathryn L. Schwertfeger
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (KLS); (KCM)
| |
Collapse
|
22
|
Pin1 Modulates the Synaptic Content of NMDA Receptors via Prolyl-Isomerization of PSD-95. J Neurosci 2017; 36:5437-47. [PMID: 27194325 DOI: 10.1523/jneurosci.3124-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/14/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Phosphorylation of serine/threonine residues preceding a proline regulates the fate of its targets through postphosphorylation conformational changes catalyzed by the peptidyl-prolyl cis-/trans isomerase Pin1. By flipping the substrate between two different functional conformations, this enzyme exerts a fine-tuning of phosphorylation signals. Pin1 has been detected in dendritic spines and shafts where it regulates protein synthesis required to sustain the late phase of long-term potentiation (LTP). Here, we demonstrate that Pin1 residing in postsynaptic structures can interact with postsynaptic density protein-95 (PSD-95), a key scaffold protein that anchors NMDA receptors (NMDARs) in PSD via GluN2-type receptor subunits. Pin1 recruitment by PSD-95 occurs at specific serine-threonine/proline consensus motifs localized in the linker region connecting PDZ2 to PDZ3 domains. Upon binding, Pin1 triggers structural changes in PSD-95, thus negatively affecting its ability to interact with NMDARs. In electrophysiological experiments, larger NMDA-mediated synaptic currents, evoked in CA1 principal cells by Schaffer collateral stimulation, were detected in hippocampal slices obtained from Pin1(-/-) mice compared with controls. Similar results were obtained in cultured hippocampal cells expressing a PSD-95 mutant unable to undergo prolyl-isomerization, thus indicating that the action of Pin1 on PSD-95 is critical for this effect. In addition, an enhancement in spine density and size was detected in CA1 principal cells of Pin1(-/-) or in Thy-1GFP mice treated with the pharmacological inhibitor of Pin1 catalytic activity PiB.Our data indicate that Pin1 controls synaptic content of NMDARs via PSD-95 prolyl-isomerization and the expression of dendritic spines, both required for LTP maintenance. SIGNIFICANCE STATEMENT PSD-95, a membrane-associated guanylate kinase, is the major scaffolding protein at excitatory postsynaptic densities and a potent regulator of synaptic strength and plasticity. The activity of PSD-95 is tightly controlled by several post-translational mechanisms including proline-directed phosphorylation. This signaling cascade regulates the fate of its targets through postphosphorylation conformational modifications catalyzed by the peptidyl-prolyl cis-/trans isomerase Pin1. Here, we uncover a new role of Pin1 in glutamatergic signaling. By interacting with PSD-95, Pin1 dampens PSD-95 ability to complex with NMDARs, thus negatively affecting NMDAR signaling and spine morphology. Our findings further emphasize the emerging role of Pin1 as a key modulator of synaptic transmission.
Collapse
|
23
|
Kim WJ, Islam R, Kim BS, Cho YD, Yoon WJ, Baek JH, Woo KM, Ryoo HM. Direct Delivery of Recombinant Pin1 Protein Rescued Osteoblast Differentiation of Pin1-Deficient Cells. J Cell Physiol 2017; 232:2798-2805. [PMID: 27800612 DOI: 10.1002/jcp.25673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 11/06/2022]
Abstract
Pin1 is a peptidyl prolyl cis-trans isomerase that specifically binds to the phosphoserine-proline or phosphothreonine-proline motifs of several proteins. We reported that Pin1 plays a critical role in the fate determination of Smad1/5, Runx2, and β-catenin that are indispensable nuclear proteins for osteoblast differentiation. Though several chemical inhibitors has been discovered for Pin1, no activator has been reported as of yet. In this study, we directly introduced recombinant Pin1 protein successfully into the cytoplasm via fibroin nanoparticle encapsulated in cationic lipid. This nanoparticle-lipid complex delivered its cargo with a high efficiency and a low cytotoxicity. Direct delivery of Pin1 leads to increased Runx2 and Smad signaling and resulted in recovery of the osteogenic marker genes expression and the deposition of mineral in Pin1-deficient cells. These result indicated that a direct Pin1 protein delivery method could be a potential therapeutics for the osteopenic diseases. J. Cell. Physiol. 232: 2798-2805, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Bong-Soo Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Young-Dan Cho
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Bae HS, Yoon WJ, Cho YD, Islam R, Shin HR, Kim BS, Lim JM, Seo MS, Cho SA, Choi KY, Baek SH, Kim HG, Woo KM, Baek JH, Lee YS, Ryoo HM. An HDAC Inhibitor, Entinostat/MS-275, Partially Prevents Delayed Cranial Suture Closure in Heterozygous Runx2 Null Mice. J Bone Miner Res 2017; 32:951-961. [PMID: 28052439 DOI: 10.1002/jbmr.3076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant skeletal disorder caused by mutations in RUNX2, coding a key transcription factor of early osteogenesis. CCD patients suffer from developmental defects in cranial bones. Despite numerous investigations and clinical approaches, no therapeutic strategy has been suggested to prevent CCD. Here, we show that fetal administration of Entinostat/MS-275, a class I histone deacetylase (HDAC)-specific inhibitor, partially prevents delayed closure of cranial sutures in Runx2+/- mice strain of C57BL/6J by two mechanisms: 1) posttranslational acetylation of Runx2 protein, which stabilized the protein and activated its transcriptional activity; and 2) epigenetic regulation of Runx2 and other bone marker genes. Moreover, we show that MS-275 stimulates osteoblast proliferation effectively both in vivo and in vitro, suggesting that delayed skeletal development in CCD is closely related to the decreased number of progenitor cells as well as the delayed osteogenic differentiation. These findings provide the potential benefits of the therapeutic strategy using MS-275 to prevent CCD. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Han-Sol Bae
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Young-Dan Cho
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea.,Department of Periodontology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Bong-Soo Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Jin-Muk Lim
- Biomedical Knowledge Engineering Laboratory, Institute of Human-Environment Interface Biology, Seoul National University, Republic of Korea
| | - Min-Seok Seo
- Interdisciplinary Program in Bioinformatics and CHO&KIM Genomics, Seoul National University, Seoul, Republic of Korea
| | - Seo-Ae Cho
- Interdisciplinary Program in Bioinformatics and CHO&KIM Genomics, Seoul National University, Seoul, Republic of Korea
| | - Kang-Young Choi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Hak Baek
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hong-Gee Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea.,Biomedical Knowledge Engineering Laboratory, Institute of Human-Environment Interface Biology, Seoul National University, Republic of Korea
| | - Kyung-Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Islam R, Yoon WJ, Ryoo HM. Pin1, the Master Orchestrator of Bone Cell Differentiation. J Cell Physiol 2017; 232:2339-2347. [PMID: 27225727 DOI: 10.1002/jcp.25442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
Pin1 is an enzyme that specifically recognizes the peptide bond between phosphorylated serine or threonine (pS/pT-P) and proline. This recognition causes a conformational change of its substrate, which further regulates downstream signaling. Pin1-/- mice show developmental bone defects and reduced mineralization. Pin1 targets RUNX2 (Runt-Related Transcription Factor 2), SMAD1/5, and β-catenin in the FGF, BMP, and WNT pathways, respectively. Pin1 has multiple roles in the crosstalk between different anabolic bone signaling pathways. For example, it controls different aspects of osteoblastogenesis and increases the transcriptional activity of Runx2, both directly and indirectly. Pin1 also influences osteoclastogenesis at different stages by targeting PU.1 (Purine-rich nucleic acid binding protein 1), C-FOS, and DC-STAMP. The phenotype of Pin1-/- mice has led to the recent identification of multiple roles of Pin1 in different molecular pathways in bone cells. These roles suggest that Pin1 can be utilized as an efficient drug target in congenital and acquired bone diseases. J. Cell. Physiol. 232: 2339-2347, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Park KH, Cho EH, Bae WJ, Kim HS, Lim HC, Park YD, Lee MO, Cho ES, Kim EC. Role of PIN1 on in vivo periodontal tissue and in vitro cells. J Periodontal Res 2017; 52:617-627. [PMID: 28198538 DOI: 10.1111/jre.12430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Although expression of peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (PIN1) was reported in bone tissue, the precise role of PIN1 in periodontal tissue and cells remain unclear. MATERIAL & METHODS To elucidate the roles of PIN1 in periodontal tissue, its expression in periodontal tissue and cells, and effects on in vitro 4 osteoblast differentiation and the underlying signaling mechanisms were evaluated. RESULTS PIN1 was expressed in mouse periodontal tissues including periodontal ligament cells (PDLCs), cementoblasts and osteoblasts at the developing root formation stage (postnatal, PN14) and functional stage of tooth (PN28). Treatment of PIN1 inhibitor juglone, and gene silencing by RNA interference promoted osteoblast differentiation in PDLCs and cementoblasts, whereas the overexpression of PIN1 inhibited. Moreover, osteogenic medium-induced activation of AMPK, mTOR, Akt, ERK, p38 and NF-jB pathways were enhanced by PIN1 siRNA, but attenuated by PIN1 overexpression. Runx2 expressions were induced by PIN1 siRNA, but downregulated by PIN1 overexpression. CONCLUSION In summary, this study is the first to demonstrate that PIN1 is expressed in developing periodontal tissue, and in vitro PDLCs and cementoblasts. PIN1 inhibition stimulates osteoblast differentiation, and thus may play an important role in periodontal regeneration.
Collapse
Affiliation(s)
- K-H Park
- Department of Orthodontics, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - E-H Cho
- Department of Orthodontics, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - W-J Bae
- Department of Oral and Maxillofacial Pathology, and Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| | - H-S Kim
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - H-C Lim
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Y-D Park
- Department of Preventive and Society Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - M-O Lee
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - E-S Cho
- Department of Oral Anatomy, Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - E-C Kim
- Department of Oral and Maxillofacial Pathology, and Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
27
|
Stabley JN, Towler DA. Arterial Calcification in Diabetes Mellitus: Preclinical Models and Translational Implications. Arterioscler Thromb Vasc Biol 2017; 37:205-217. [PMID: 28062508 PMCID: PMC5480317 DOI: 10.1161/atvbaha.116.306258] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus increasingly afflicts our aging and dysmetabolic population. Type 2 diabetes mellitus and the antecedent metabolic syndrome represent the vast majority of the disease burden-increasingly prevalent in children and older adults. However, type 1 diabetes mellitus is also advancing in preadolescent children. As such, a crushing wave of cardiometabolic disease burden now faces our society. Arteriosclerotic calcification is increased in metabolic syndrome, type 2 diabetes mellitus, and type 1 diabetes mellitus-impairing conduit vessel compliance and function, thereby increasing the risk for dementia, stroke, heart attack, limb ischemia, renal insufficiency, and lower extremity amputation. Preclinical models of these dysmetabolic settings have provided insights into the pathobiology of arterial calcification. Osteochondrogenic morphogens in the BMP-Wnt signaling relay and transcriptional regulatory programs driven by Msx and Runx gene families are entrained to innate immune responses-responses activated by the dysmetabolic state-to direct arterial matrix deposition and mineralization. Recent studies implicate the endothelial-mesenchymal transition in contributing to the phenotypic drift of mineralizing vascular progenitors. In this brief overview, we discuss preclinical disease models that provide mechanistic insights-and point to challenges and opportunities to translate these insights into new therapeutic strategies for our patients afflicted with diabetes mellitus and its arteriosclerotic complications.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Arteries/metabolism
- Arteries/pathology
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diet, High-Fat
- Disease Models, Animal
- Female
- Genetic Predisposition to Disease
- Humans
- Hyperlipidemias/complications
- Hyperlipidemias/genetics
- Male
- Phenotype
- Plaque, Atherosclerotic
- Rats
- Signal Transduction
- Translational Research, Biomedical
- Vascular Calcification/etiology
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- John N Stabley
- From the Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Dwight A Towler
- From the Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
28
|
Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations. Int J Mol Sci 2016; 17:ijms17091495. [PMID: 27618008 PMCID: PMC5037772 DOI: 10.3390/ijms17091495] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/15/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022] Open
Abstract
Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14). Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer's disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.
Collapse
|
29
|
The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1652417. [PMID: 27073801 PMCID: PMC4814634 DOI: 10.1155/2016/1652417] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 02/05/2023]
Abstract
MicroRNAs are involved in many cellular and molecular activities and played important roles in many biological and pathological processes, such as tissue formation, cancer development, diabetes, neurodegenerative diseases, and cardiovascular diseases. Recently, it has been reported that microRNAs can modulate the differentiation and activities of osteoblasts and osteoclasts, the key cells that are involved in bone remodeling process. Meanwhile, the results from our and other research groups showed that the expression profiles of microRNAs in the serum and bone tissues are significantly different in postmenopausal women with or without fractures compared to the control. Therefore, it can be postulated that microRNAs might play important roles in bone remodeling and that they are very likely to be involved in the pathological process of postmenopausal osteoporosis. In this review, we will present the updated research on the regulatory roles of microRNAs in osteoblasts and osteoclasts and the expression profiles of microRNAs in osteoporosis and osteoporotic fracture patients. The perspective of serum microRNAs as novel biomarkers in bone loss disorders such as osteoporosis has also been discussed.
Collapse
|
30
|
Ji Q, Xu X, Xu Y, Fan Z, Kang L, Li L, Liang Y, Guo J, Hong T, Li Z, Zhang Q, Ye Q, Wang Y. miR-105/Runx2 axis mediates FGF2-induced ADAMTS expression in osteoarthritis cartilage. J Mol Med (Berl) 2016; 94:681-94. [PMID: 26816250 DOI: 10.1007/s00109-016-1380-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/27/2015] [Accepted: 01/10/2016] [Indexed: 12/21/2022]
Abstract
UNLABELLED Fibroblast growth factor 2 (FGF2) plays an important role in the development of osteoarthritis (OA) through the regulation of cartilage degradation. However, the molecular mechanism underlying FGF2-induced OA is poorly characterized. MicroRNAs (miRNAs) maintain cartilage homeostasis. To examine whether FGF2 regulates OA through the modulation of miRNA, we screened potential miRNA molecules that could be regulated through FGF2 using microarray analysis. The results showed that microRNA-105 (miR-105) was significantly downregulated in chondrocytes stimulated with FGF2. Runt-related transcription factor 2 (Runx2), a key transcription factor involved in OA, has been identified as a novel potential target of miR-105. FGF2 suppressed miR-105 expression through the recruitment of the subunit of the nuclear factor kappa B transcription complex p65 to the miR-105 promoter. The knockdown of Runx2 mimicked the effect of miR-105 and abolished the ability of miR-105 to regulate the expression of a disintegrin-like and metalloproteinase with thrombospondin 4 (ADAMTS4), ADAMTS5, ADAMTS7 and ADAMTS12, both of which are responsible for the degradation of collagen 2A1 (COL2A1) and aggrecan (ACAN). miR-105 is also required for FGF2/p65-induced Runx2 activation and ADAMTS expression. Moreover, miR-105 expression was downregulated in OA patients and inversely correlated with the expression of Runx2, ADAMTS7 and ADAMTS12, which were upregulated in OA patients. These data highlight that the FGF2/p65/miR-105/Runx2/ADAMTS axis might play an important role in OA pathogenesis and that miR-105 might be a potential diagnostic target and useful strategy for OA treatment. KEY MESSAGE Runx2 was identified as a novel direct target of miR-105. FGF2 inhibits miR-105 transcription through recruitment of p65 to miR-105 promoter. p65/miR-105 is essential for FGF2-mediated Runx2 and ADAMTS upregulation. miR-105 is downregulated in OA and inversely correlated with Runx2 expression.
Collapse
Affiliation(s)
- Quanbo Ji
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, 100853, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yameng Xu
- Department of Traditional Chinese Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhongyi Fan
- Department of Oncology, General Hospital of Chinese People's Liberation Army, Beijing, 100853, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Ling Li
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yingchun Liang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jing Guo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Tian Hong
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Zhongli Li
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, 100853, China
| | - Qiang Zhang
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, 100853, China. .,Department of Orthopaedic Surgery, Royal Liverpool University Hospital, Prescot Street, Liverpool, UK.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Yan Wang
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, 100853, China.
| |
Collapse
|
31
|
Shin HR, Islam R, Yoon WJ, Lee T, Cho YD, Bae HS, Kim BS, Woo KM, Baek JH, Ryoo HM. Pin1-mediated Modification Prolongs the Nuclear Retention of β-Catenin in Wnt3a-induced Osteoblast Differentiation. J Biol Chem 2016; 291:5555-5565. [PMID: 26740630 DOI: 10.1074/jbc.m115.698563] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 11/06/2022] Open
Abstract
The canonical Wnt signaling pathway, in which β-catenin nuclear localization is a crucial step, plays an important role in osteoblast differentiation. Pin1, a prolyl isomerase, is also known as a key enzyme in osteogenesis. However, the role of Pin1 in canonical Wnt signal-induced osteoblast differentiation is poorly understood. We found that Pin1 deficiency caused osteopenia and reduction of β-catenin in bone lining cells. Similarly, Pin1 knockdown or treatment with Pin1 inhibitors strongly decreased the nuclear β-catenin level, TOP flash activity, and expression of bone marker genes induced by canonical Wnt activation and vice versa in Pin1 overexpression. Pin1 interacts directly with and isomerizes β-catenin in the nucleus. The isomerized β-catenin could not bind to nuclear adenomatous polyposis coli, which drives β-catenin out of the nucleus for proteasomal degradation, which consequently increases the retention of β-catenin in the nucleus and might explain the decrease of β-catenin ubiquitination. These results indicate that Pin1 could be a critical target to modulate β-catenin-mediated osteogenesis.
Collapse
Affiliation(s)
- Hye-Rim Shin
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Rabia Islam
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Won-Joon Yoon
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Taegyung Lee
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Young-Dan Cho
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and; Periodontology, School of Dentistry, Seoul National University, Seoul, 110-749, Korea
| | - Han-Sol Bae
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Bong-Su Kim
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Kyung-Mi Woo
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Jeong-Hwa Baek
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Hyun-Mo Ryoo
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and.
| |
Collapse
|
32
|
Ko JY, Chuang PC, Ke HJ, Chen YS, Sun YC, Wang FS. MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation. Bone 2015; 81:80-88. [PMID: 26141838 DOI: 10.1016/j.bone.2015.06.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/08/2015] [Accepted: 06/29/2015] [Indexed: 12/27/2022]
Abstract
Glucocorticoid treatment reportedly increases the morbidity of osteoporotic or osteonecrotic disorders. Exacerbated bone acquisition and escalated marrow adipogenesis are prominent pathological features of glucocorticoid-mediated skeletal disorders. MicroRNAs reportedly modulate tissue metabolism and remodeling. This study was undertaken to investigate the biological roles of microRNA-29a (miR-29a) in skeletal and fat metabolism in the pathogenesis of glucocorticoid-induced osteoporosis. Transgenic mice overexpressing miR-29a precursor or wild-type mice were given methylprednisolone. Bone mass, microarchitecture and histology were assessed by dual energy X-ray absorptiometry, μCT and histomorphometry. Differential gene expression and signaling components were delineated by quantitative RT-PCR and immunoblotting. Glucocorticoid treatment accelerated bone loss and marrow fat accumulation in association with decreased miR-29a expression. The miR-29a transgenic mice had high bone mineral density, trabecular microarchitecture and cortical thickness. miR-29a overexpression mitigated the glucocorticoid-induced impediment of bone mass, skeletal microstructure integrity and mineralization reaction and attenuated fatty marrow histopathology. Ex vivo, miR-29a increased osteogenic differentiation capacity and alleviated the glucocorticoid-induced promotion of adipocyte formation in primary bone-marrow mesenchymal progenitor cell cultures. Through inhibition of histone deacetylase 4 (HDAC4) expression, miR-29a restored acetylated Runx2 and β-catenin abundances and reduced RANKL, leptin and glucocorticoid receptor expression in glucocorticoid-mediated osteoporosis bone tissues. Taken together, glucocorticoid suppression of miR-29a signaling disturbed the balances between osteogenic and adipogenic activities, and thereby interrupted bone formation and skeletal homeostasis. miR-29a inhibition of HDAC4 stabilized the acetylation state of Runx2 and β-catenin that ameliorated the detrimental effects of glucocorticoid on mineralization and lipogenesis reactions in bone tissue microenvironments. This study highlighted emerging skeletal-anabolic actions of miR-29a signaling in the progression of glucocorticoid-induced bone tissue destruction. Sustaining miR-29a actions is beneficial in protecting against glucocorticoid-mediated osteoporosis.
Collapse
Affiliation(s)
- Jih-Yang Ko
- Departments of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Huei-Jin Ke
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chih Sun
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Centre for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
33
|
Dong CL, Liu HZ, Zhang ZC, Zhao HL, Zhao H, Huang Y, Yao JH, Sun TS. The influence of MicroRNA-150 in Osteoblast Matrix Mineralization. J Cell Biochem 2015. [PMID: 26212040 DOI: 10.1002/jcb.25245] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chun-Ling Dong
- Department of Nursing; Linyi People's Hospital; Linyi 276003 P.R. China
| | - Hao-Zhi Liu
- Department of Pharmacology; Linyi Health School; Linyi 276000 P.R. China
| | - Zhen-Chun Zhang
- Department of Rheumatism Immunity; Linyi People's Hospital; Linyi 276003 P.R. China
| | - Huan-Li Zhao
- Department of Orthopedics; Linyi People's Hospital; Linyi 276003 P.R. China
| | - Hui Zhao
- Department of Rheumatism Immunity; Linyi People's Hospital; Linyi 276003 P.R. China
| | - Yan Huang
- Department of Nursing; Linyi People's Hospital; Linyi 276003 P.R. China
| | - Jian-Hua Yao
- Department of Nursing; Linyi People's Hospital; Linyi 276003 P.R. China
| | - Tian-Sheng Sun
- Department of Nursing; Linyi People's Hospital; Linyi 276003 P.R. China
| |
Collapse
|
34
|
Abstract
Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Pierre J Marie
- UMR-1132, Institut National de la Santé et de la Recherche Médicale, Hopital Lariboisiere, 75475 Paris Cedex 10, France; Université Paris Diderot, Sorbonne Paris Cité, 75475 Paris Cedex 10, France
| |
Collapse
|
35
|
Vimalraj S, Arumugam B, Miranda P, Selvamurugan N. Runx2: Structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 2015; 78:202-8. [DOI: 10.1016/j.ijbiomac.2015.04.008] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 02/07/2023]
|
36
|
Hu C, Zhang T, Ren B, Deng Z, Cai L, Lei J, Ping A. Effect of vacuum-assisted closure combined with open bone grafting to promote rabbit bone graft vascularization. Med Sci Monit 2015; 21:1200-6. [PMID: 25913359 PMCID: PMC4428317 DOI: 10.12659/msm.892939] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Patients with composite bone non-union and soft tissue defects are difficult to treat. Vacuum-assisted closure (VAC) combined with open bone grafting is one of the most effective treatments at present. The aim of the present study was to preliminarily investigate the effect and mechanism of VAC combined with open bone grafting to promote rabbit bone graft vascularization, and to propose a theoretical basis for clinical work. Material/Methods Twenty-four New Zealand white rabbits were randomly divided into an experimental and a control group. Allogeneic bones were grafted and banded with the proximal femur with a suture. The experimental group had VAC whereas the control group had normal wound closure. The bone vascularization rate was compared based on X-ray imaging, fluorescent bone labeling (labeled tetracycline hydrochloride and calcein), calcium content in the callus, and expression of fibroblast growth factor-2 (FGF-2) in bone allografts by Western blot analysis at the 4th, 8th, and 12th week after surgery. Results At the 4th, 8th, and 12th week after surgery, the results of the tests demonstrated that the callus was larger, contained more calcium (p<0.05), and expressed FGF-2 at higher levels (p<0.05) in the experimental group than in the control group. Fluorescent bone labeling showed the distance between the two fluorescent ribbons was significantly shorter in the control group than in the experimental group at the 8th and 12th week after surgery. Conclusions VAC combined with open bone grafting promoted rabbit bone graft vascularization.
Collapse
Affiliation(s)
- Chao Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Taogen Zhang
- Department of Orthopedics, People' Hospital of Daye City, Daye, Hubei, China (mainland)
| | - Bin Ren
- Department of Radio-Chemo Therapy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Zhouming Deng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Jun Lei
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Ansong Ping
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
37
|
The prolyl hydroxylase inhibitor dimethyloxalylglycine enhances dentin sialophoshoprotein expression through VEGF-induced Runx2 stabilization. PLoS One 2014; 9:e112078. [PMID: 25369078 PMCID: PMC4219688 DOI: 10.1371/journal.pone.0112078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/13/2014] [Indexed: 01/19/2023] Open
Abstract
Prolyl hydroxylase (PHD) inhibitors are suggested as therapeutic agents for tissue regeneration based on their ability to induce pro-angiogenic responses. In this study, we examined the effect of the PHD inhibitor dimethyloxalylglycine (DMOG) on odontoblast maturation and sought to determine the underlying mechanism using MDPC-23 odontoblast-like cells. DMOG significantly enhanced matrix mineralization, confirmed by alizarin red staining and by measurement of the calcium content. DMOG dose-dependently increased alkaline phosphatase activity and the expressions of dentin sialophosphoprotein (Dspp) and osteocalcin. To determine the underlying events leading to DMOG-induced Dspp expression, we analyzed the effect of DMOG on Runx2. Knockdown of Runx2 using siRNAs decreased Dspp expression and prevented DMOG-induced Dspp expression. DMOG enhanced the transcriptional activity and level of Runx2 protein but not Runx2 transcript, and this enhancement was linked to the inhibitory effects of DMOG on the degradation of Runx2 protein. The vascular endothelial growth factor (VEGF) siRNAs profoundly decreased the Runx2 protein levels and inhibited the DMOG-increased Runx2 protein. Recombinant VEGF protein treatment significantly and dose-dependently increased the transcriptional activity and level of the Runx2 protein but not Runx2 transcript. Dspp expression was also enhanced by VEGF. Last, we examined the involvement of the Erk mitogen-activated protein kinase and Pin1 pathway in VEGF-enhanced Runx2 because this pathway can regulate the stability and activity of the Runx2 protein. VEGF stimulated Erk activation, and the inhibitors of Erk and Pin1 hampered VEGF-enhanced Runx2 protein. Taken together, the results of this study provide evidence that DMOG can enhance Dspp expression through VEGF-induced stabilization of Runx2 protein, and thus, suggest that DMOG can be used as a therapeutic tool for enhancing odontoblast maturation in dental procedures.
Collapse
|