1
|
Fernández JJ, Mancebo C, Garcinuño S, March G, Alvarez Y, Alonso S, Inglada L, Blanco J, Orduña A, Montero O, Sandoval TA, Cubillos-Ruiz JR, Bustamante-Munguira E, Fernández N, Crespo MS. Innate IRE1α-XBP1 activation by viral single-stranded RNA and its influence on lung cytokine production during SARS-CoV-2 pneumonia. Genes Immun 2024; 25:43-54. [PMID: 38146001 DOI: 10.1038/s41435-023-00243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
The utilization of host-cell machinery during SARS-CoV-2 infection can overwhelm the protein-folding capacity of the endoplasmic reticulum and activate the unfolded protein response (UPR). The IRE1α-XBP1 arm of the UPR could also be activated by viral RNA via Toll-like receptors. Based on these premises, a study to gain insight into the pathogenesis of COVID-19 disease was conducted using nasopharyngeal exudates and bronchioloalveolar aspirates. The presence of the mRNA of spliced XBP1 and a high expression of cytokine mRNAs were observed during active infection. TLR8 mRNA showed an overwhelming expression in comparison with TLR7 mRNA in bronchioloalveolar aspirates of COVID-19 patients, thus suggesting the presence of monocytes and monocyte-derived dendritic cells (MDDCs). In vitro experiments in MDDCs activated with ssRNA40, a synthetic mimic of SARS-CoV-2 RNA, showed induction of XBP1 splicing and the expression of proinflammatory cytokines. These responses were blunted by the IRE1α inhibitor MKC8866, the TLR8 antagonist CU-CPT9a, and knockdown of TLR8 receptor. In contrast, the IRE1α-XBP1 activator IXA4 enhanced these responses. Based on these findings, the TLR8/IRE1α system seems to play a significant role in the induction of the proinflammatory cytokines associated with severe COVID-19 disease and might be a druggable target to control cytokine storm.
Collapse
Affiliation(s)
- José J Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Cristina Mancebo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Sonsoles Garcinuño
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Gabriel March
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Yolanda Alvarez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Sara Alonso
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Luis Inglada
- Servicio de Medicina Interna, Hospital Universitario Rio-Hortega, 47012, Valladolid, Spain
| | - Jesús Blanco
- Servicio de Medicina Intensiva, Hospital Universitario Rio-Hortega, 47012, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Orduña
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Olimpio Montero
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Tito A Sandoval
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Juan R Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Elena Bustamante-Munguira
- Servicio de Medicina Intensiva, Hospital Clínico Universitario de Valladolid, 47003, Valladolid, Spain
| | - Nieves Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain.
| |
Collapse
|
2
|
Grando K, Bessho S, Harrell K, Kyrylchuk K, Pantoja AM, Olubajo S, Albicoro FJ, Klein-Szanto A, Tükel Ç. Bacterial amyloid curli activates the host unfolded protein response via IRE1α in the presence of HLA-B27. Gut Microbes 2024; 16:2392877. [PMID: 39189642 DOI: 10.1080/19490976.2024.2392877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (STm) causes gastroenteritis and can progress to reactive arthritis (ReA). STm forms biofilms in the gut that secrete the amyloid curli, which we previously demonstrated can trigger autoimmunity in mice. HLA-B27 is a genetic risk factor for ReA; activation of the unfolded protein response (UPR) due to HLA-B27 misfolding is thought to play a critical role in ReA pathogenesis. To determine whether curli exacerbates HLA-B27-induced UPR, bone marrow-derived macrophages (BMDMs) isolated from HLA-B27 transgenic (tg) mice were used. BMDMs treated with purified curli exhibited elevated UPR compared to C57BL/6, and curli-induced IL-6 was reduced by pre-treating macrophages with inhibitors of the IRE1α branch of the UPR. In BMDMs, intracellular curli colocalized with GRP78, a regulator of the UPR. In vivo, acute infection with wild-type STm increased UPR markers in the ceca of HLA-B27tg mice compared to C57BL/6. STm biofilms that contain curli were visible in the lumen of cecal tissue sections. Furthermore, curli was associated with macrophages in the lamina propria, colocalizing with GRP78. Together, these results suggest that UPR plays a role in the curli-induced inflammatory response, especially in the presence of HLA-B27, a possible mechanistic link between STm infection and genetic susceptibility to ReA.
Collapse
Affiliation(s)
- Kaitlyn Grando
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Shingo Bessho
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kayla Harrell
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathrine Kyrylchuk
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alejandro M Pantoja
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sophia Olubajo
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Francisco J Albicoro
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | | | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Awasthi D, Chopra S, Cho BA, Emmanuelli A, Sandoval TA, Hwang SM, Chae CS, Salvagno C, Tan C, Vasquez-Urbina L, Fernandez Rodriguez JJ, Santagostino SF, Iwawaki T, Romero-Sandoval EA, Crespo MS, Morales DK, Iliev ID, Hohl TM, Cubillos-Ruiz JR. Inflammatory ER stress responses dictate the immunopathogenic progression of systemic candidiasis. J Clin Invest 2023; 133:e167359. [PMID: 37432737 PMCID: PMC10471176 DOI: 10.1172/jci167359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Recognition of pathogen-associated molecular patterns can trigger the inositol-requiring enzyme 1 α (IRE1α) arm of the endoplasmic reticulum (ER) stress response in innate immune cells. This process maintains ER homeostasis and also coordinates diverse immunomodulatory programs during bacterial and viral infections. However, the role of innate IRE1α signaling in response to fungal pathogens remains elusive. Here, we report that systemic infection with the human opportunistic fungal pathogen Candida albicans induced proinflammatory IRE1α hyperactivation in myeloid cells that led to fatal kidney immunopathology. Mechanistically, simultaneous activation of the TLR/IL-1R adaptor protein MyD88 and the C-type lectin receptor dectin-1 by C. albicans induced NADPH oxidase-driven generation of ROS, which caused ER stress and IRE1α-dependent overexpression of key inflammatory mediators such as IL-1β, IL-6, chemokine (C-C motif) ligand 5 (CCL5), prostaglandin E2 (PGE2), and TNF-α. Selective ablation of IRE1α in leukocytes, or treatment with an IRE1α pharmacological inhibitor, mitigated kidney inflammation and prolonged the survival of mice with systemic C. albicans infection. Therefore, controlling IRE1α hyperactivation may be useful for impeding the immunopathogenic progression of disseminated candidiasis.
Collapse
Affiliation(s)
| | - Sahil Chopra
- Department of Obstetrics and Gynecology, and
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Byuri A. Cho
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, and
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| | | | | | | | | | - Chen Tan
- Department of Obstetrics and Gynecology, and
| | | | - Jose J. Fernandez Rodriguez
- Unit of Excellence, Institute of Biology and Molecular Genetics, CSIC–Universidad de Valladolid, Valladolid, Spain
| | - Sara F. Santagostino
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, and Weill Cornell Medicine, New York, New York, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - E. Alfonso Romero-Sandoval
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mariano Sanchez Crespo
- Unit of Excellence, Institute of Biology and Molecular Genetics, CSIC–Universidad de Valladolid, Valladolid, Spain
| | | | - Iliyan D. Iliev
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
- Department of Medicine and
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York, USA
| | - Tobias M. Hohl
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Juan R. Cubillos-Ruiz
- Department of Obstetrics and Gynecology, and
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
4
|
Sánchez Crespo M, Montero O, Fernandez N. The role of PAF in immunopathology: From immediate hypersensitivity reactions to fungal defense. Biofactors 2022; 48:1217-1225. [PMID: 36176024 PMCID: PMC10087027 DOI: 10.1002/biof.1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/03/2022] [Indexed: 12/24/2022]
Abstract
Platelet-activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) was discovered when the mechanisms involved in the deposition of immune complex in tissues were being scrutinized in the experimental model of rabbit serum sickness. The initial adscription of PAF to IgE-dependent anaphylaxis was soon extended after disclosing its release from phagocytes stimulated by calcium mobilizing agents, formylated peptides, and phagocytosable particles. This explains why ongoing research in the field turned to the analysis of immune cell types and stimuli involved in PAF production with the purpose of establishing its role in pathology. This was spurred by the identification of the chemical structure of PAF and the enzymic mechanisms involved in its biosynthesis and degradation, which showed commonalities with those involved in eicosanoid production and the Lands' cycle of phospholipid fatty acid remodeling. The reassignment of PAF function in immunopathology is explained by the finding that the most robust mechanisms leading to PAF production are associated with opsonic and non-opsonic phagocytosis, depending on the cell type. While polymorphonuclear leukocytes exhibit opsonic phagocytosis, monocyte-derived dendritic cells show a marked preference for non-opsonic phagocytosis associated with C-type lectin receptors. This is particularly relevant to the defense against fungal invasion and explains why PAF exerts an autocrine feed-forwarding mechanism required for the selective expression of some cytokines.
Collapse
Affiliation(s)
- Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Olimpio Montero
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Nieves Fernandez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular, y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
5
|
Does Training Innate Immunity Confer Broad-spectrum Protection Against Bone and Joint Infection in a Mouse Model? Clin Orthop Relat Res 2020; 478:2670-2681. [PMID: 32858720 PMCID: PMC7571992 DOI: 10.1097/corr.0000000000001461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The innate immune system can recall previous immunologic challenges and thus respond more effectively to subsequent unrelated challenges, a phenomenon called trained immunity. Training the innate immune system before surgery might be a potential option to prevent bone and joint infection. QUESTIONS/PURPOSES (1) Does the training process cause adverse effects such as fever or organ injury? (2) Does training the innate immune system confer broad-spectrum protection against bone and joint infection in a mouse model? (3) Does trained immunity remain effective for up to 8 weeks in this mouse model? METHODS After randomization and group information blinding, we trained the innate immune system of C57BL/6 mice (n = 20 for each group) by intravenously injecting them with either 0.1 mg of zymosan (a toll-like receptor 2 agonist), 0.1 mg of lipopolysaccharide (a toll-like receptor 4 agonist), or normal saline (control). For assessing the host response and possible organ injury after training and infection challenge, we monitored rectal temperature, collected blood to determine leukocyte counts, and performed biochemical and proinflammatory cytokine analyses. After 2 weeks, we then assessed whether trained immunity could prevent infections in an intraarticular implant model subjected to a local or systemic challenge with a broad spectrum of bacterial species (Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Streptococcus pyogenes, or Pseudomonas aeruginosa) in terms of culture-positive rate and colony counts. The proportion of culture-positive joint samples from trained and control groups were compared after 4 weeks. Finally, we increased the interval between training and bacterial challenge up to 8 weeks to assess the durability of training efficacies. RESULTS Training with zymosan and lipopolysaccharide caused mild and transient stress in host animals in terms of elevated rectal temperature and higher blood urea nitrogen, creatinine, alanine aminotransferase, and aspartate aminotransferase levels. Trained mice had fewer culture-positive joint samples after local inoculation with S. aureus (control: 100% [20 of 20]; zymosan: 55% [11 of 20], relative risk 0.55 [95% CI 0.37 to 0.82]; p = 0.001; lipopolysaccharide: 60% [12 of 20], RR 0.60 [95% CI 0.42 to 0.86]; p = 0.003) and systemic challenge with S. aureus (control: 70% [14 of 20]; zymosan: 15% [3 of 20], RR 0.21 [95% CI 0.07 to 0.63]; p = 0.001; lipopolysaccharide: 15% [3 of 20], RR 0.21 [95% CI 0.07 to 0.63]; p = 0.001) than controls. We observed similar patterns of enhanced protection against local and systemic challenge of E. coli, E. faecalis, S. pyogenes, and P. aeruginosa. Zymosan-trained mice were more effectively protected against both local (control: 20 of 20 [100%], zymosan: 14 of 20 [70%], RR 0.70 [95% CI 0.53 to 0.93]; p = 0.02) and systemic (control: 70% [14 of 20]; zymosan: 30% [6 of 20], RR 0.43 [95% CI 0.21 to 0.89]; p = 0.03) challenge with S. aureus for up to 8 weeks than controls. CONCLUSIONS Trained immunity confers mild stress and broad-spectrum protection against bone and joint infection in a mouse model. The protection conferred by immunity training lasted up to 8 weeks in this mouse model. The results of the current research support further study of this presurgical strategy to mitigate bone and joint infection in other large animal models. CLINICAL RELEVANCE If large animal models substantiate the efficacy and safety of presurgical immunity training-based strategies, clinical trials would be then warranted to translate this strategy into clinical practice.
Collapse
|
6
|
Tricarboxylic Acid Cycle Activity and Remodeling of Glycerophosphocholine Lipids Support Cytokine Induction in Response to Fungal Patterns. Cell Rep 2020; 27:525-536.e4. [PMID: 30970255 DOI: 10.1016/j.celrep.2019.03.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/30/2019] [Accepted: 03/08/2019] [Indexed: 01/28/2023] Open
Abstract
Increased glycolysis parallels immune cell activation, but the role of pyruvate remains largely unexplored. We found that stimulation of dendritic cells with the fungal surrogate zymosan causes decreases of pyruvate, citrate, itaconate, and α-ketoglutarate, while increasing oxaloacetate, succinate, lactate, oxygen consumption, and pyruvate dehydrogenase activity. Expression of IL10 and IL23A (the gene encoding the p19 chain of IL-23) depended on pyruvate dehydrogenase activity. Mechanistically, pyruvate reinforced histone H3 acetylation, and acetate rescued the effect of mitochondrial pyruvate carrier inhibition, most likely because it is a substrate of the acetyl-CoA producing enzyme ACSS2. Mice lacking the receptor of the lipid mediator platelet-activating factor (PAF; 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine) showed reduced production of IL-10 and IL-23 that is explained by the requirement of acetyl-CoA for PAF biosynthesis and its ensuing autocrine function. Acetyl-CoA therefore intertwines fatty acid remodeling of glycerophospholipids and energetic metabolism during cytokine induction.
Collapse
|
7
|
Using high-throughput sequencing to explore the anti-inflammatory effects of α-mangostin. Sci Rep 2019; 9:15626. [PMID: 31666566 PMCID: PMC6821923 DOI: 10.1038/s41598-019-52036-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Lipopolysaccharide (LPS) causes an inflammatory response, and α-mangostin (α-MG) is an ingredient of a Chinese herbal medicine with anti-inflammatory effects. We investigated the mechanism by which α-MG reduces LPS-stimulated IEC-6 cells inflammation. A genome-wide examination of control, LPS-stimulated, and α-MG-pretreated cells was performed with the Illumina Hiseq sequencing platform, and gene expression was verified with quantitative real-time PCR (qPCR). Among the 37,199 genes profiled, 2014 genes were regulated in the LPS group, and 475 genes were regulated in the α-MG group. GO enrichment and KEGG pathway analyses of the differentially expressed genes (DEGs) showed that they were mainly related to inflammation and oxidative stress. Based on the transcriptomic results, we constructed a rat model of inflammatory bowel disease (IBD) with LPS and investigated the effects of α-MG on NLRP3 inflammasomes. After LPS stimulation, the rat intestinal villi were significantly detached, with congestion and hemorrhage; the intestinal epithelial cell nuclei were deformed; and the mitochondria were swollen. However, after pretreatment with α-MG, the intestinal villus congestion and hemorrhage were reduced, the epithelial nuclei were rounded, and the mitochondrial morphology was intact. qPCR and western blotting were used to detect NLRP3, caspase 1, interleukin (IL)-18, and IL-1β expression at the gene and protein levels. Their expression increased at both the transcript and protein levels after LPS stimulation, whereas it decreased after pretreatment with α-MG. This study provides new methods and ideas for the treatment of inflammation. α-MG may have utility as a drug for intestinal inflammation.
Collapse
|
8
|
Dai Y, Zang Y, Li J, Liu Y, Wan B. miR-181a and miR-203 inhibit migration and invasion of laryngeal carcinoma cells by interacting with ATF2. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:133-141. [PMID: 31933727 PMCID: PMC6944000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/21/2018] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) have been recognized to modulate the progression of tumorigenesis by serving as oncogenes or tumor suppressors. Despite the involvement of miR-181a and miR-203 in several cancers as has been substantiated, their roles in laryngeal carcinoma (LC) remain unclear. In this study, the abundances of miR-181a, miR-203 and activating transcription factor 2 (ATF2) mRNA in LC cell lines were detected by RT-qPCR. Western blot was performed to detect the protein levels of N-cadherin, E-cadherin and ATF2. Cell migration and invasion ability were assessed by Trans-well assay. The putative binding sites between miR-181a or miR-203 and ATF2 were predicted using Bioinformatics software and further validated by Dual-Luciferase reporter and RNA immunoprecipitation (RIP) assays. Results showed reduced abundances of miR-181a and miR-203 in LC cell lines. Introduction of miR-181a or miR-203 reduced cell migration and invasion, which was further confirmed by the reduction of N-cadherin and increase of E-cadherin in LC cells. ATF2 was identified to be a potential target of miR-181a and miR-203. Absence of ATF2 overturned the stimulatory effects of anti-miR-181a and anti-miR-203 on cell migration and invasion in LC cells. Our findings suggested that miR-181a and miR-203 attenuated cell migration and invasion ability by directly targeting ATF2 in LC, providing novel insight into the regulatory mechanisms of miR-181a and miR-203 in LC.
Collapse
Affiliation(s)
- Yacuo Dai
- Department of Otolaryngology, Jinzhou Medical UniversityJinzhou, China
- Department of Otolaryngology, Henan Provincial People’s HospitalZhengzhou, China
| | - Yanzi Zang
- Department of Otolaryngology, Henan Provincial People’s HospitalZhengzhou, China
| | - Jing Li
- Department of Otolaryngology, Henan Provincial People’s HospitalZhengzhou, China
| | - Yangfan Liu
- Department of Otolaryngology, Henan Provincial People’s HospitalZhengzhou, China
| | - Baoluo Wan
- Department of Otolaryngology, Henan Provincial People’s HospitalZhengzhou, China
| |
Collapse
|
9
|
Functional analyses of the interaction of chicken interleukin 23 subunit p19 with IL-12 subunit p40 to form the IL-23 complex. Mol Immunol 2017; 92:54-67. [DOI: 10.1016/j.molimm.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022]
|
10
|
Jo S, Koo BS, Lee B, Kwon E, Lee YL, Chung H, Sung IH, Park YS, Kim TH. A novel role for bone-derived cells in ankylosing spondylitis: Focus on IL-23. Biochem Biophys Res Commun 2017; 491:787-793. [DOI: 10.1016/j.bbrc.2017.07.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
11
|
Márquez S, Fernández JJ, Terán-Cabanillas E, Herrero C, Alonso S, Azogil A, Montero O, Iwawaki T, Cubillos-Ruiz JR, Fernández N, Crespo MS. Endoplasmic Reticulum Stress Sensor IRE1α Enhances IL-23 Expression by Human Dendritic Cells. Front Immunol 2017; 8:639. [PMID: 28674530 PMCID: PMC5475432 DOI: 10.3389/fimmu.2017.00639] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
Human monocyte-derived dendritic cells (DCs) exposed to pathogen-associated molecular patterns (PAMPs) undergo bioenergetic changes that influence the immune response. We found that stimulation with PAMPs enhanced glycolysis in DCs, whereas oxidative phosphorylation remained unaltered. Glucose starvation and the hexokinase inhibitor 2-deoxy-d-glucose (2-DG) modulated cytokine expression in stimulated DCs. Strikingly, IL23A was markedly induced upon 2-DG treatment, but not during glucose deprivation. Since 2-DG can also rapidly inhibit protein N-glycosylation, we postulated that this compound could induce IL-23 in DCs via activation of the endoplasmic reticulum (ER) stress response. Indeed, stimulation of DCs with PAMPs in the presence of 2-DG robustly activated inositol-requiring protein 1α (IRE1α) signaling and to a lesser extent the PERK arm of the unfolded protein response. Additional ER stressors such as tunicamycin and thapsigargin also promoted IL-23 expression by PAMP-stimulated DCs. Pharmacological, biochemical, and genetic analyses using conditional knockout mice revealed that IL-23 induction in ER stressed DCs stimulated with PAMPs was IRE1α/X-box binding protein 1-dependent upon zymosan stimulation. Interestingly, we further evidenced PERK-mediated and CAAT/enhancer-binding protein β-dependent trans-activation of IL23A upon lipopolysaccharide treatment. Our findings uncover that the ER stress response can potently modulate cytokine expression in PAMP-stimulated human DCs.
Collapse
Affiliation(s)
- Saioa Márquez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - José Javier Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Eli Terán-Cabanillas
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, United States.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, United States.,Unidad Académica de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Carmen Herrero
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Sara Alonso
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Alicia Azogil
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Olimpio Montero
- Centro para el Desarrollo de la Biotecnología, CSIC, Parque Tecnológico de Boecillo, Valladolid, Spain
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kazanawa Medical University, Ishikawa, Japan
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, United States.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, United States
| | - Nieves Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.,Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Mariano Sánchez Crespo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
12
|
Watson G, Ronai ZA, Lau E. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacol Res 2017; 119:347-357. [PMID: 28212892 PMCID: PMC5457671 DOI: 10.1016/j.phrs.2017.02.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/16/2023]
Abstract
Stringent transcriptional regulation is crucial for normal cellular biology and organismal development. Perturbations in the proper regulation of transcription factors can result in numerous pathologies, including cancer. Thus, understanding how transcription factors are regulated and how they are dysregulated in disease states is key to the therapeutic targeting of these factors and/or the pathways that they regulate. Activating transcription factor 2 (ATF2) has been studied in a number of developmental and pathological conditions. Recent findings have shed light on the transcriptional, post-transcriptional, and post-translational regulatory mechanisms that influence ATF2 function, and thus, the transcriptional programs coordinated by ATF2. Given our current knowledge of its multiple levels of regulation and function, ATF2 represents a paradigm for the mechanistic complexity that can regulate transcription factor function. Thus, increasing our understanding of the regulation and function of ATF2 will provide insights into fundamental regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into a genomic response through transcription factors. Characterization of ATF2 dysfunction in the context of pathological conditions, particularly in cancer biology and response to therapy, will be important in understanding how pathways controlled by ATF2 or other transcription factors might be therapeutically exploited. In this review, we provide an overview of the currently known upstream regulators and downstream targets of ATF2.
Collapse
Affiliation(s)
- Gregory Watson
- Department of Tumor Biology and Program in Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, 3109601, Israel
| | - Eric Lau
- Department of Tumor Biology and Program in Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
13
|
Zhang S, Dong X, Ji T, Chen G, Shan L. Long non-coding RNA UCA1 promotes cell progression by acting as a competing endogenous RNA of ATF2 in prostate cancer. Am J Transl Res 2017; 9:366-375. [PMID: 28337266 PMCID: PMC5340673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related deaths in elder men. This disease has limited therapeutic options and poor prognosis as the underlying molecular mechanisms are not clearly understood. LncRNA UCA1 functions as an oncogene in many types of cancers. However, the role of UCA1 in PCa remains unclear. In the present study, we showed that UCA1 was significantly up-regulated in PCa cell lines and tissue samples. High UCA1 expression was positively associated with high gleason score, advanced TNM stage and shorter overall survival of PCa patients. Inhibition of UCA1 suppressed PCa cells proliferation, migration and invasion in vitro. Moreover, UCA1 depletion inhibited the growth of PCa cells in vivo. In addition, we found that ATF2 was a direct target gene of UCA1. UCA1 regulated ATF2 expression through functioning as a competing endogenous RNA (ceRNA). UCA1 directly interacted with miR-204 and decreased the binding of miR-204 to ATF2 3'UTR, which suppressed the degradation of ATF2 mRNA by miR-204. In summary, we unveil a branch of the UCA1-miR-204-ATF2 pathway that regulates the progression of PCa. The inhibition of UCA1 expression may be a promising strategy for PCa therapy.
Collapse
Affiliation(s)
- Shilong Zhang
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s HospitalZhengzhou 450003, Henan, China
| | - Xinxin Dong
- Department of Nephrology, People’s Hospital of Zhengzhou University, Henan Provincial People’s HospitalZhengzhou 450003, Henan, China
| | - Tongyu Ji
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s HospitalZhengzhou 450003, Henan, China
| | - Guoxiao Chen
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s HospitalZhengzhou 450003, Henan, China
| | - Lei Shan
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s HospitalZhengzhou 450003, Henan, China
| |
Collapse
|
14
|
Su K, Wang CF, Zhang Y, Cai YJ, Zhang YY, Zhao Q. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway. Biomed Pharmacother 2016; 82:180-91. [PMID: 27470354 DOI: 10.1016/j.biopha.2016.04.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer has been the fourth most common cancer killing many women across the world. Carnosic acid (CA), as a phenolic diterpene, has been suggested to against cancer, exerting protective effects associated with inflammatory cytokines. It is aimed to demonstrate the therapeutic role of carnosic acid against cervical cancer and indicate its underlying molecular mechanisms. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) was performed to assess the possible anti-proliferative effects of carnosic acid. And also, colony formation was used to further estimate carnosic acid's ability in suppressing cervical cancer cells proliferation. Flow cytometry assays were performed here to indicate the alterations of cervical cancer cells cycle and the development of apoptosis. Western blot assays and RT-PCR were also applied to clarify the apoptosis-associated signaling pathways affected by reactive oxygen species (ROS) generation. And immunofluorescence was used to detect ROS-positive cells. In vivo experiments, CaSki xenograft model samples of nude mice were involved to further elucidate the effects of carnosic acid. In our results, we found that carnosic acid exerted anti-tumor ability in vitro supported by up-regulation of apoptosis and ROS production in cervical cancer cells. Also, acceleration of ROS led to the phospharylation of (c-Jun N-terminal kinase (JNK) and its-related signals, as well as activation of Endoplasmic Reticulum (ER) stress, promoting the progression of apoptosis via stimulating Caspase3 expression. The development and growth of xenograft tumors in nude mice were found to be inhibited by the administration of carnosic acid for five weeks. And the suppressed role of carnosic acid in proliferation of cervical cancer cells and apoptosis of nude mice with tumor tissues were observed in our study. Taken together, our data indicated that carnosic acid resulted in apoptosis both in vitro and vivo experiments via promoting ROS and activating JNK signaling pathways in human cervical cancer cells, which supplied a potential therapy for the application of carnosic acid in clinical treatment.
Collapse
Affiliation(s)
- Ke Su
- Department of gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou City, Henan 450052, PR China
| | - Chun-Fang Wang
- Department of gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou City, Henan 450052, PR China
| | - Ying Zhang
- Department of gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou City, Henan 450052, PR China
| | - Yu-Jie Cai
- Department of gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou City, Henan 450052, PR China
| | - Yan-Yan Zhang
- Department of gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou City, Henan 450052, PR China
| | - Qian Zhao
- Department of gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou City, Henan 450052, PR China.
| |
Collapse
|
15
|
Welsby I, Goriely S. Regulation of Interleukin-23 Expression in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:167-189. [DOI: 10.1007/978-94-024-0921-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Rodríguez M, Márquez S, Montero O, Alonso S, Frade JG, Crespo MS, Fernández N. Pharmacological inhibition of eicosanoids and platelet-activating factor signaling impairs zymosan-induced release of IL-23 by dendritic cells. Biochem Pharmacol 2015; 102:78-96. [PMID: 26673542 DOI: 10.1016/j.bcp.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
Abstract
The engagement of the receptors for fungal patterns induces the expression of cytokines, the release of arachidonic acid, and the production of PGE2 in human dendritic cells (DC), but few data are available about other lipid mediators that may modulate DC function. The combined antagonism of leukotriene (LT) B4, cysteinyl-LT, and platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) inhibited IL23A mRNA expression in response to the fungal surrogate zymosan and to a lower extent TNFA (tumor necrosis factor-α) and CSF2 (granulocyte macrophage colony-stimulating factor) mRNA. The combination of lipid mediators and the lipid extract of zymosan-conditioned medium increased the induction of IL23A by LPS (bacterial lipopolysaccharide), thus suggesting that unlike LPS, zymosan elicits the production of mediators at a concentration enough for optimal response. Zymosan induced the release of LTB4, LTE4, 12-hydroxyeicosatetraenoic acid (12-HETE), and PAF C16:0. DC showed a high expression and detectable Ser663 phosphorylation of 5-lipoxygenase in response to zymosan, and a high expression and activity of LPCAT1/2 (lysophosphatidylcholine acyltransferase 1 and 2), the enzymes that incorporate acetate from acetyl-CoA into choline-containing lysophospholipids to produce PAF. Pharmacological modulation of the arachidonic acid cascade and the PAF receptor inhibited the binding of P-71Thr-ATF2 (activating transcription factor 2) to the IL23A promoter, thus mirroring their effects on the expression of IL23A mRNA and IL-23 protein. These results indicate that LTB4, cysteinyl-LT, and PAF, acting through their cognate G protein-coupled receptors, contribute to the phosphorylation of ATF2 and play a central role in IL23A promoter trans-activation and the cytokine signature induced by fungal patterns.
Collapse
Affiliation(s)
- Mario Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Saioa Márquez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Olimpio Montero
- Centro para el Desarrollo de la Biotecnología, CSIC, Parque Tecnológico de Boecillo, Valladolid, Spain
| | - Sara Alonso
- Instituto de Biología y Genética Molecular, CSIC, 47003 Valladolid, Spain
| | - Javier García Frade
- Servicio de Hematología, Hospital Universitario Rio-Hortega, 47012 Valladolid, Spain
| | | | - Nieves Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
17
|
Proinflammatory cytokine interleukin-1β suppresses cold-induced thermogenesis in adipocytes. Cytokine 2015; 77:107-14. [PMID: 26556104 DOI: 10.1016/j.cyto.2015.11.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/15/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the effects of interleukin-1β (IL-1β), a typical proinflammatory cytokine on the β-adrenoreceptor-stimulated induction of uncoupling protein 1 (UCP1) expression in adipocytes. IL-1β mRNA expression levels were upregulated in white adipose tissues of obese mice and in RAW264.7 macrophages under conditions designed to mimic obese adipose tissue. Isoproterenol-stimulated induction of UCP1 mRNA expression was significantly inhibited in C3H10T1/2 adipocytes by conditioned medium from lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in comparison with control conditioned medium. This inhibition was significantly attenuated in the presence of recombinant IL-1 receptor antagonist and IL-1β antibody, suggesting that activated macrophage-derived IL-1β is an important cytokine for inhibition of β-adrenoreceptor-stimulated UCP1 induction in adipocytes. IL-1β suppressed isoproterenol-induced UCP1 mRNA expression in C3H10T1/2 adipocytes, and this effect was partially but significantly abrogated by inhibition of extracellular signal-regulated kinase (ERK). IL-1β also suppressed the isoproterenol-induced activation of the UCP1 promoter and transcription factors binding to the cAMP response element. Moreover, intraperitoneal administration of IL-1β suppressed cold-induced UCP1 expression in adipose tissues. These findings suggest that IL-1β upregulated in obese adipose tissues suppresses β-adrenoreceptor-stimulated induction of UCP1 expression through ERK activation in adipocytes.
Collapse
|