1
|
Zhang X, Yu C, Song L. Progress on the Regulation of the Host Immune Response by Parasite-Derived Exosomes. Pathogens 2024; 13:623. [PMID: 39204224 PMCID: PMC11357678 DOI: 10.3390/pathogens13080623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Exosomes are membrane-bound structures released by cells into the external environment that carry a significant amount of important cargo, such as proteins, DNA, RNA, and lipids. They play a crucial role in intercellular communication. Parasites have complex life cycles and can release exosomes at different stages. Exosomes released by parasitic pathogens or infected cells contain parasitic nucleic acids, antigenic molecules, virulence factors, drug-resistant proteins, proteases, lipids, etc. These components can regulate host gene expression across species or modulate signaling pathways, thereby dampening or activating host immune responses, causing pathological damage, and participating in disease progression. This review focuses on the means by which parasitic exosomes modulate host immune responses, elaborates on the pathogenic mechanisms of parasites, clarifies the interactions between parasites and hosts, and provides a theoretical basis and research directions for the prevention and treatment of parasitic diseases.
Collapse
Affiliation(s)
| | - Chuanxin Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China;
| | - Lijun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China;
| |
Collapse
|
2
|
Susa KJ, Kruse AC, Blacklow SC. Tetraspanins: structure, dynamics, and principles of partner-protein recognition. Trends Cell Biol 2024; 34:509-522. [PMID: 37783654 PMCID: PMC10980598 DOI: 10.1016/j.tcb.2023.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Tetraspanins are a large, highly conserved family of four-pass transmembrane (TM) proteins that play critical roles in a variety of essential cellular functions, including cell migration, protein trafficking, maintenance of membrane integrity, and regulation of signal transduction. Tetraspanins carry out these biological functions primarily by interacting with partner proteins. Here, we summarize significant advances that have revealed fundamental principles underpinning structure-function relationships in tetraspanins. We first review the structural features of tetraspanin ectodomains and full-length apoproteins, and then discuss how recent structural studies of tetraspanin complexes have revealed plasticity in partner-protein recognition that enables tetraspanins to bind to remarkably different protein families, viral proteins, and antibody fragments. Finally, we discuss major questions and challenges that remain in studying tetraspanin complexes.
Collapse
Affiliation(s)
- Katherine J Susa
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Maharjan S, Kirk RS, Lawton SP, Walker AJ. Human growth factor-mediated signalling through lipid rafts regulates stem cell proliferation, development and survival of Schistosoma mansoni. Open Biol 2024; 14:230262. [PMID: 38195062 PMCID: PMC10776228 DOI: 10.1098/rsob.230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024] Open
Abstract
Although the mechanisms by which schistosomes grow and develop in humans are poorly defined, their unique outer tegument layer, which interfaces with host blood, is considered vital to homeostasis of the parasite. Here, we investigated the importance of tegument lipid rafts to the biology of Schistosoma mansoni in the context of host-parasite interactions. We demonstrate the temporal clustering of lipid rafts in response to human epidermal growth factor (EGF) during early somule development, concomitant with the localization of anteriorly orientated EGF receptors (EGFRs) and insulin receptors, mapped using fluorescent EGF/insulin ligand. Methyl-β-cyclodextrin (MβCD)-mediated depletion of cholesterol from lipid rafts abrogated the EGFR/IR binding at the parasite surface and led to modulation of protein kinase C, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and Akt signalling pathways within the parasite. Furthermore, MβCD-mediated lipid raft disruption, and blockade of EGFRs using canertinib, profoundly reduced somule motility and survival, and attenuated stem cell proliferation and somule growth and development particularly to the fast-growing liver stage. These findings provide a novel paradigm for schistosome development and vitality in the host, driven through host-parasite interactions at the tegument, that might be exploitable for developing innovative therapeutic approaches to combat human schistosomiasis.
Collapse
Affiliation(s)
- Shradha Maharjan
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Scott P. Lawton
- Centre for Epidemiology and Planetary Health, SRUC School of Veterinary Medicine, Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
4
|
Amer EI, Allam SR, Hassan AY, El-Fakharany EM, Agwa MM, Khattab SN, Sheta E, El-Faham MH. Can antibody conjugated nanomicelles alter the prospect of antibody targeted therapy against schistosomiasis mansoni? PLoS Negl Trop Dis 2023; 17:e0011776. [PMID: 38039267 PMCID: PMC10691730 DOI: 10.1371/journal.pntd.0011776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/07/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND CLA (conjugated linoleic acid)-mediated activation of the schistosome tegument-associated sphingomyelinase and consequent disruption of the outer membrane might allow host antibodies to access the apical membrane antigens. Here, we investigated a novel approach to enhance specific antibody delivery to concealed surface membrane antigens of Schistosoma mansoni utilising antibody-conjugated-CLA nanomicelle technology. METHODOLOGY/PRINCIPAL FINDINGS We invented and characterised an amphiphilic CLA-loaded whey protein co-polymer (CLA-W) as an IV injectable protein nanocarrier. Rabbit anti-Schistosoma mansoni infection (anti-SmI) and anti-Schistosoma mansoni alkaline phosphatase specific IgG antibodies were purified from rabbit sera and conjugated to the surface of CLA-W co-polymer to form antibody-conjugated-CLA-W nanomicelles (Ab-CLA-W). We investigated the schistosomicidal effects of CLA-W and Ab-CLA-W in a mouse model of Schistosoma mansoni against early and late stages of infection. Results showed that conjugation of nanomicelles with antibodies, namely anti-SmI, significantly enhanced the micelles' schistosomicidal and anti-pathology activities at both the schistosomula and adult worm stages of the infection resulting in 64.6%-89.9% reductions in worm number; 72.5-94% and 66.4-85.2% reductions in hepatic eggs and granulomas, respectively. Treatment induced overall improvement in liver histopathology, reducing granuloma size and fibrosis and significantly affecting egg viability. Indirect immunofluorescence confirmed CLA-W-mediated antigen exposure on the worm surface. Electron microscopy revealed extensive ultrastructural damage in worm tegument induced by anti-SmI-CLA-W. CONCLUSION/SIGNIFICANCE The novel antibody-targeted nano-sized CLA delivery system offers great promise for treatment of Schistosoma mansoni infection and control of its transmission. Our in vivo observations confirm an immune-mediated enhanced effect of the schistosomicidal action of CLA and hints at the prospect of nanotechnology-based immunotherapy, not only for schistosomiasis, but also for other parasitic infections in which chemotherapy has been shown to be immune-dependent. The results propose that the immunodominant reactivity of the anti-SmI serum, Schistosoma mansoni fructose biphosphate aldolase, SmFBPA, merits serious attention as a therapeutic and vaccine candidate.
Collapse
Affiliation(s)
- Eglal I. Amer
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sonia R. Allam
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Aceel Y. Hassan
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Mona M. Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Sherine N. Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa H. El-Faham
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Shakir EMN, Rinaldi G, Kirk RS, Walker AJ. Schistosoma mansoni excretory-secretory products induce protein kinase signalling, hyperkinesia, and stem cell proliferation in the opposite sex. Commun Biol 2023; 6:985. [PMID: 37752334 PMCID: PMC10522684 DOI: 10.1038/s42003-023-05333-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Adult male and female schistosomes in copula dwell within human blood vessels and lay eggs that cause the major Neglected Tropical Disease human schistosomiasis. How males and females communicate to each other is poorly understood; however, male-female physical interaction is known to be important. Here, we investigate whether excretory-secretory products (ESPs), released into the external milieu by mature Schistosoma mansoni, might induce responses in the opposite sex. We demonstrate that ESPs adhere to the surface of opposite sex worms inducing the activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) pathways, particularly in the parasite tegument. Furthermore, we show that mature worms stimulated signalling in juvenile worms. Strikingly, we demonstrate that ESPs from the opposite sex promote stem cell proliferation, in an ERK- and p38 MAPK-dependent manner, in the tegument and within the testes of males, and the ovaries and vitellaria of females. Hyperkinesia also occurs following opposite sex ESP exposure. Our findings support the hypothesis that male and female schistosomes may communicate over distance to modulate key processes underlying worm development and disease progression, opening unique avenues for schistosomiasis control.
Collapse
Affiliation(s)
- Eman M N Shakir
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK.
| |
Collapse
|
6
|
Zhu P, Wu K, Zhang C, Batool SS, Li A, Yu Z, Huang J. Advances in new target molecules against schistosomiasis: A comprehensive discussion of physiological structure and nutrient intake. PLoS Pathog 2023; 19:e1011498. [PMID: 37498810 PMCID: PMC10374103 DOI: 10.1371/journal.ppat.1011498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Schistosomiasis, a severe parasitic disease, is primarily caused by Schistosoma mansoni, Schistosoma japonicum, or Schistosoma haematobium. Currently, praziquantel is the only recommended drug for human schistosome infection. However, the lack of efficacy of praziquantel against juvenile worms and concerns about the emergence of drug resistance are driving forces behind the research for an alternative medication. Schistosomes are obligatory parasites that survive on nutrients obtained from their host. The ability of nutrient uptake depends on their physiological structure. In short, the formation and maintenance of the structure and nutrient supply are mutually reinforcing and interdependent. In this review, we focus on the structural features of the tegument, esophagus, and intestine of schistosomes and their roles in nutrient acquisition. Moreover, we introduce the significance and modes of glucose, lipids, proteins, and amino acids intake in schistosomes. We linked the schistosome structure and nutrient supply, introduced the currently emerging targets, and analyzed the current bottlenecks in the research and development of drugs and vaccines, in the hope of providing new strategies for the prevention and control of schistosomiasis.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaobin Zhang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Syeda Sundas Batool
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Anqiao Li
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
7
|
Siddiqui AJ, Bhardwaj J, Saxena J, Jahan S, Snoussi M, Bardakci F, Badraoui R, Adnan M. A Critical Review on Human Malaria and Schistosomiasis Vaccines: Current State, Recent Advancements, and Developments. Vaccines (Basel) 2023; 11:vaccines11040792. [PMID: 37112704 PMCID: PMC10146311 DOI: 10.3390/vaccines11040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
Malaria and schistosomiasis are two major parasitic diseases that remain leading causes of morbidity and mortality worldwide. Co-infections of these two parasites are common in the tropics, where both diseases are endemic. The clinical consequences of schistosomiasis and malaria are determined by a variety of host, parasitic, and environmental variables. Chronic schistosomiasis causes malnutrition and cognitive impairments in children, while malaria can cause fatal acute infections. There are effective drugs available to treat malaria and schistosomiasis. However, the occurrence of allelic polymorphisms and the rapid selection of parasites with genetic mutations can confer reduced susceptibility and lead to the emergence of drug resistance. Moreover, the successful elimination and complete management of these parasites are difficult due to the lack of effective vaccines against Plasmodium and Schistosoma infections. Therefore, it is important to highlight all current vaccine candidates undergoing clinical trials, such as pre-erythrocytic and erythrocytic stage malaria, as well as a next-generation RTS,S-like vaccine, the R21/Matrix-M vaccine, that conferred 77% protection against clinical malaria in a Phase 2b trial. Moreover, this review also discusses the progress and development of schistosomiasis vaccines. Furthermore, significant information is provided through this review on the effectiveness and progress of schistosomiasis vaccines currently under clinical trials, such as Sh28GST, Sm-14, and Sm-p80. Overall, this review provides insights into recent progress in malarial and schistosomiasis vaccines and their developmental approaches.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Ludhiana—Chandigarh State Hwy, Mohali 140413, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaharHaddas BP74, Monastir 5000, Tunisia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1017, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| |
Collapse
|
8
|
Fifty years of the schistosome tegument: discoveries, controversies, and outstanding questions. Int J Parasitol 2021; 51:1213-1232. [PMID: 34767805 DOI: 10.1016/j.ijpara.2021.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022]
Abstract
The unique multilaminate appearance of the tegument surface of schistosomes was first described in 1973, in one of the earliest volumes of the International Journal for Parasitology. The present review, published almost 50 years later, traces the development of our knowledge of the tegument, starting with those earliest cytological advances, particularly the surface plasma membrane-membranocalyx complex, through an era of protein discovery to the modern age of protein characterization, aided by proteomics. More recently, analysis of single cell transcriptomes of schistosomes is providing insight into the organisation of the cell bodies that support the surface syncytium. Our understanding of the tegument, notably the nature of the proteins present within the plasma membrane and membranocalyx, has provided insights into how the schistosomes interact with their hosts but many aspects of how the tegument functions remain unanswered. Among the unresolved aspects are those concerned with maintenance and renewal of the surface membrane complex, and whether surface proteins and membrane components are recycled. Current controversies arising from investigations about whether the tegument is a source of extracellular vesicles during parasitism, and if it is covered with glycolytic enzymes, are evaluated in the light of cytological and proteomic knowledge of the layer.
Collapse
|
9
|
Panzner U, Excler JL, Kim JH, Marks F, Carter D, Siddiqui AA. Recent Advances and Methodological Considerations on Vaccine Candidates for Human Schistosomiasis. FRONTIERS IN TROPICAL DISEASES 2021; 2:719369. [PMID: 39280170 PMCID: PMC11392908 DOI: 10.3389/fitd.2021.719369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Schistosomiasis remains a neglected tropical disease of major public health concern with high levels of morbidity in various parts of the world. Although considerable efforts in implementing mass drug administration programs utilizing praziquantel have been deployed, schistosomiasis is still not contained. A vaccine may therefore be an essential part of multifaceted prevention control efforts. In the 1990s, a joint United Nations committee promoting parasite vaccines shortlisted promising candidates including for schistosomiasis discussed below. After examining the complexity of immune responses in human hosts infected with schistosomes, we review and discuss the antigen design and preclinical and clinical development of the four leading vaccine candidates: Sm-TSP-2 in Phase 1b/2b, Sm14 in Phase 2a/2b, Sm-p80 in Phase 1 preparation, and Sh28GST in Phase 3. Our assessment of currently leading vaccine candidates revealed some methodological issues that preclude a fair comparison between candidates and the rationale to advance in clinical development. These include (1) variability in animal models - in particular non-human primate studies - and predictive values of each for protection in humans; (2) lack of consensus on the assessment of parasitological and immunological parameters; (3) absence of reliable surrogate markers of protection; (4) lack of well-designed parasitological and immunological natural history studies in the context of mass drug administration with praziquantel. The controlled human infection model - while promising and unique - requires validation against efficacy outcomes in endemic settings. Further research is also needed on the impact of advanced adjuvants targeting specific parts of the innate immune system that may induce potent, protective and durable immune responses with the ultimate goal of achieving meaningful worm reduction.
Collapse
Affiliation(s)
- Ursula Panzner
- International Vaccine Institute, Seoul, South Korea
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Jerome H Kim
- International Vaccine Institute, Seoul, South Korea
| | - Florian Marks
- International Vaccine Institute, Seoul, South Korea
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- University of Antananarivo, Antananarivo, Madagascar
| | | | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
10
|
Pinto-Almeida A, Mendes TMF, Ferreira P, Abecasis AB, Belo S, Anibal FF, Allegretti SM, Galinaro CA, Carrilho E, Afonso A. A Comparative Proteomic Analysis of Praziquantel-Susceptible and Praziquantel-Resistant Schistosoma mansoni Reveals Distinct Response Between Male and Female Animals. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.664642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a chronic neglected tropical disease saddling millions of people in the world, mainly children living in poor rural areas. Praziquantel (PZQ) is currently the only drug used for the treatment and control of this disease. However, the extensive use of this drug has brought concern about the emergence of PZQ-resistance/tolerance by Schistosoma mansoni. Studies of Schistosoma spp. genome, transcriptome, and proteome are crucial to better understand this situation. In this in vitro study, we compare the proteomes of a S. mansoni variant strain stably resistant to PZQ and isogenic to its fully susceptible parental counterpart, identifying proteins from male and female adult parasites of PZQ-resistant and PZQ-susceptible strains, exposed and not exposed to PZQ. A total of 60 Schistosoma spp. proteins were identified, some of which present or absent in either strain, which may putatively be involved in the PZQ-resistance phenomenon. These proteins were present in adult parasites not exposed to PZQ, but some of them disappeared when these adult parasites were exposed to the drug. Understanding the development of PZQ-resistance in S. mansoni is crucial to prolong the efficacy of the current drug and develop markers for monitoring the potential emergence of drug resistance.
Collapse
|
11
|
Panzner U, Boissier J. Natural Intra- and Interclade Human Hybrid Schistosomes in Africa with Considerations on Prevention through Vaccination. Microorganisms 2021; 9:microorganisms9071465. [PMID: 34361901 PMCID: PMC8305539 DOI: 10.3390/microorganisms9071465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/04/2022] Open
Abstract
Causal agents of schistosomiasis are dioecious, digenean schistosomes affecting mankind in 76 countries. Preventive measures are manifold but need to be complemented by vaccination for long-term protection; vaccine candidates in advanced pre-clinical/clinical stages include Sm14, Sm-TSP-2/Sm-TSP-2Al®, Smp80/SchistoShield®, and Sh28GST/Bilhvax®. Natural and anthropogenic changes impact on breaking species isolation barriers favoring introgressive hybridization, i.e., allelic exchange among gene pools of sympatric, interbreeding species leading to instant large genetic diversity. Phylogenetic distance matters, thus the less species differ phylogenetically the more likely they hybridize. PubMed and Embase databases were searched for publications limited to hybridale confirmation by mitochondrial cytochrome c oxidase (COX) and/or nuclear ribosomal internal transcribed spacer (ITS). Human schistosomal hybrids are predominantly reported from West Africa with clustering in the Senegal River Basin, and scattering to Europe, Central and Eastern Africa. Noteworthy is the dominance of Schistosoma haematobium interbreeding with human and veterinary species leading due to hybrid vigor to extinction and homogenization as seen for S. guineensis in Cameroon and S. haematobium in Niger, respectively. Heterosis seems to advantage S. haematobium/S. bovis interbreeds with dominant S. haematobium-ITS/S. bovis-COX1 profile to spread from West to East Africa and reoccur in France. S. haematobium/S. mansoni interactions seen among Senegalese and Côte d’Ivoirian children are unexpected due to their high phylogenetic distance. Detecting pure S. bovis and S. bovis/S. curassoni crosses capable of infecting humans observed in Corsica and Côte d’Ivoire, and Niger, respectively, is worrisome. Taken together, species hybridization urges control and preventive measures targeting human and veterinary sectors in line with the One-Health concept to be complemented by vaccination protecting against transmission, infection, and disease recurrence. Functional and structural diversity of naturally occurring human schistosomal hybrids may impact current vaccine candidates requiring further research including natural history studies in endemic areas targeted for clinical trials.
Collapse
Affiliation(s)
- Ursula Panzner
- Division of Infectious Diseases and Tropical Medicine, Ludwig Maximilian University of Munich, 80539 Munich, Germany
- Swiss Tropical and Public Health Institute, University of Basel, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +49-176-6657-2910
| | - Jerome Boissier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan, 66860 Perpignan, France;
| |
Collapse
|
12
|
Barbosa MMF, Kanno AI, Pancakova V, Gonçalves VM, Malley R, Faria LP, Leite LCC. Optimization of Expression and Purification of Schistosoma mansoni Antigens in Fusion with Rhizavidin. Mol Biotechnol 2021; 63:983-991. [PMID: 34165770 PMCID: PMC8223184 DOI: 10.1007/s12033-021-00355-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/13/2021] [Indexed: 12/20/2022]
Abstract
Schistosomiasis causes significant morbidity and mortality. Vaccine efforts to date indicate the need to increase the immunogenicity of Schistosoma antigens. The multiple antigen-presenting system, whereby proteins are genetically fused to rhizavidin and affinity linked to biotinylated templates, enables the generation of robust immune responses. The objective of this work was to express and purify the S. mansoni antigens, SmTSP-2 and SmCD59.2, in fusion with rhizavidin. The fusion with rhizavidin greatly decreased the expression level of rSmTSP-2, but not rSmCD59.2, and both were expressed in the insoluble fraction, requiring optimization of culture conditions. Evaluation of different E. coli strains and media showed that BL21-DE3 cultured in Terrific Broth provided the highest expression levels of both proteins. Investigation of a range of time and temperature of induction showed that E. coli strains expressing rRzv:SmTSP-2 and rRzv:SmCD59.2 showed the highest protein production at 23 °C for 15 h. Recombinant proteins were purified by a single step of affinity chromatography allowing isolation of these proteins in high concentration and purity. The optimization process increased final soluble protein yield of rRzv:SmTSP-2 by fourfold and rRzv:SmCD59.2 by tenfold, providing ~ 20 mg/L of each protein. Optimized fusion protein production will allow antigen use in biotin–rhizavidin affinity platforms.
Collapse
Affiliation(s)
- Mayra M F Barbosa
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, Brasil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alex I Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, Brasil
| | - Violeta Pancakova
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, Brasil.,UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), 69100, Villeurbanne, France
| | - Viviane M Gonçalves
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, Brasil
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Boston, USA
| | - Leonardo P Faria
- Laboratório de Biomarcadores e Inflamação, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Luciana C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, Brasil.
| |
Collapse
|
13
|
Barbosa MMF, Kanno AI, Farias LP, Madej M, Sipos G, Sbrana S, Romani L, Boraschi D, Leite LCC, Italiani P. Primary and Memory Response of Human Monocytes to Vaccines: Role of Nanoparticulate Antigens in Inducing Innate Memory. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:931. [PMID: 33917456 PMCID: PMC8067467 DOI: 10.3390/nano11040931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023]
Abstract
Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.
Collapse
Affiliation(s)
- Mayra M. Ferrari Barbosa
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Alex Issamu Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Leonardo Paiva Farias
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 40296-710, Brazil;
| | - Mariusz Madej
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
| | - Gergö Sipos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
| | - Silverio Sbrana
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, 54100 Massa, Italy;
| | - Luigina Romani
- Dipartimento di Medicina e Chirurgia, University of Perugia, 06132 Perugia, Italy;
| | - Diana Boraschi
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Paola Italiani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
14
|
Human serum activates the tegument of female schistosomes and supports recovery from Praziquantel. Parasitol Res 2020; 120:209-221. [PMID: 33263166 PMCID: PMC7846515 DOI: 10.1007/s00436-020-06968-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Schistosomiasis is one of the most devastating parasitic disease in the world. Schistosoma spp. survive for decades within the vasculature of their human hosts. They have evolved a vast array of mechanisms to avoid the immune reaction of the host. Due to their sexual dimorphism, with the female worm lying within the gynecophoric canal of the male worm, it is the male that is exposed to the immediate environment and the soluble parts of the host’s immune response. To understand how the worms are so successful in fending off the immune attacks of the host, comparative analyses of both worm sexes in human serum (with or without Praziquantel) were performed using scanning electron microscopy, transmission electron microscopy, and immunohistochemistry. Further, gene expression analyses of tegument-specific genes were performed. Following the incubation in human serum, males and females out of pairs show morphological changes such as an altered structure of the pits below the surface and an increased number of pits per area. In addition, female schistosomes presented a marked tuft-like repulsion of their opsonized surface. The observed resistance of females to Praziquantel seemed to depend on active proteins in the human serum. Moreover, different expression profiles of tegument-specific genes indicate different functions of female_single and male_single teguments in response to human serum. Our results indicate that female schistosomes developed different evasion strategies toward the host’s immune system in comparison to males that might lead to more robustness and has to be taken into account for the development of new anti-schistosomal drugs.
Collapse
|
15
|
Yang Y, Liu XR, Greenberg ZJ, Zhou F, He P, Fan L, Liu S, Shen G, Egawa T, Gross ML, Schuettpelz LG, Li W. Open conformation of tetraspanins shapes interaction partner networks on cell membranes. EMBO J 2020; 39:e105246. [PMID: 32974937 PMCID: PMC7507038 DOI: 10.15252/embj.2020105246] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Tetraspanins, including CD53 and CD81, regulate a multitude of cellular processes through organizing an interaction network on cell membranes. Here, we report the crystal structure of CD53 in an open conformation poised for partner interaction. The large extracellular domain (EC2) of CD53 protrudes away from the membrane surface and exposes a variable region, which is identified by hydrogen-deuterium exchange as the common interface for CD53 and CD81 to bind partners. The EC2 orientation in CD53 is supported by an extracellular loop (EC1). At the closed conformation of CD81, however, EC2 disengages from EC1 and rotates toward the membrane, thereby preventing partner interaction. Structural simulation shows that EC1-EC2 interaction also supports the open conformation of CD81. Disrupting this interaction in CD81 impairs the accurate glycosylation of its CD19 partner, the target for leukemia immunotherapies. Moreover, EC1 mutations in CD53 prevent the chemotaxis of pre-B cells toward a chemokine that supports B-cell trafficking and homing within the bone marrow, a major CD53 function identified here. Overall, an open conformation is required for tetraspanin-partner interactions to support myriad cellular processes.
Collapse
Affiliation(s)
- Yihu Yang
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | | | - Zev J Greenberg
- Division of Hematology and OncologyDepartment of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Fengbo Zhou
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Peng He
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Lingling Fan
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Shixuan Liu
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Guomin Shen
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Takeshi Egawa
- Department of Pediatrics Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | | | - Laura G Schuettpelz
- Division of Hematology and OncologyDepartment of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Weikai Li
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
16
|
Leow CY, Willis C, Chuah C, Leow CH, Jones M. Immunogenicity, antibody responses and vaccine efficacy of recombinant annexin B30 against Schistosoma mansoni. Parasite Immunol 2020; 42:e12693. [PMID: 31880816 DOI: 10.1111/pim.12693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023]
Abstract
AIMS Schistosomes infect approximately 250 million people worldwide. To date, there is no effective vaccine available for the prevention of schistosome infection in endemic regions. There remains a need to develop means to confer long-term protection of individuals against reinfection. In this study, an annexin, namely annexin B30, which is highly expressed in the tegument of Schistosoma mansoni was selected to evaluate its immunogenicity and protective efficacy in a mouse model. METHODS AND RESULTS Bioinformatics analysis showed that there were three potential linear B-cell epitopes and four conformational B-cell epitopes predicted from annexin B30, respectively. Full-length annexin B30 was cloned and expressed in Escherichia coli BL21(DE3). In the presence of adjuvants, the soluble recombinant protein was evaluated for its protective efficacy in two independent vaccine trials. Immunization of CBA mice with recombinant annexin B30 formulated either in alum only or alum/CpG induced a mixed Th1/Th2 cytokine profile but no significant protection against schistosome infection was detected. CONCLUSION Recombinant annexin B30 did not confer significant protection against the parasite. The molecule may not be suitable for vaccine development. However, it could be an ideal biomarker recommended for immunodiagnostics development.
Collapse
Affiliation(s)
- Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Charlene Willis
- School of Environment and Science, Griffith University, Nathan, Qld, Australia
| | - Candy Chuah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Malaysia
| | - Malcolm Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
17
|
Biter AB, Pollet J, Chen WH, Strych U, Hotez PJ, Bottazzi ME. A method to probe protein structure from UV absorbance spectra. Anal Biochem 2019; 587:113450. [DOI: 10.1016/j.ab.2019.113450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/15/2023]
|
18
|
Purushothaman G, Thiruvenkatam V. High Yield Expression of Recombinant CD151 in E. coli and a Structural Insight into Cholesterol Binding Domain. Mol Biotechnol 2019; 61:905-915. [PMID: 31541430 DOI: 10.1007/s12033-019-00212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CD151 is an abundantly expressed eukaryotic transmembrane protein on the cell surface. It is involved in cell adhesion, angiogenesis and signal transduction as well in disease conditions such as cancer and viral infections. However, the molecular mechanism of CD151 activation is poorly understood due to the lack of structural information. By considering the difficulties in expressing the membrane protein in E. coli, herein we introduce the strategic design for the effective expression of recombinant CD151 protein in E. coli with high yield, that would aid for the structural studies. CD151 having four transmembrane domain (TMD's) along with small and a large extracellular loop (LEL) is constructed in parts to enhance the soluble expression of the protein attached with fusion tag. This has led to the high yield of the recombinant CD151 protein in the designed constructs. The recombinant CD151 protein is characterized and confirmed by western blot, CD and Mass peptide fingerprint. The molecular dynamics simulations (MDS) for the full-length CD151 shows conformational changes in the LEL of the protein in the presence and absence of cholesterol and indicate the certainty of closed and open conformation of CD151 based on cholesterol binding. The MDS results have led to the understanding of the possible underlying mechanism for the activation of the CD151 protein.
Collapse
Affiliation(s)
- Gayathri Purushothaman
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
19
|
McKenzie M, Kirk RS, Walker AJ. Glucose Uptake in the Human Pathogen Schistosoma mansoni Is Regulated Through Akt/Protein Kinase B Signaling. J Infect Dis 2019; 218:152-164. [PMID: 29309602 PMCID: PMC5989616 DOI: 10.1093/infdis/jix654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background In Schistosoma mansoni, the facilitated glucose transporter SGTP4, which is expressed uniquely in the apical surface tegumental membranes of the parasite, imports glucose from host blood to support its growth, development, and reproduction. However, the molecular mechanisms that underpin glucose uptake in this blood fluke are not understood. Methods In this study we employed techniques including Western blotting, immunolocalization, confocal laser scanning microscopy, pharmacological assays, and RNA interference to functionally characterize and map activated Akt in S mansoni. Results We find that Akt, which could be activated by host insulin and l-arginine, was active in the tegument layer of both schistosomules and adult worms. Blockade of Akt attenuated the expression and evolution of SGTP4 at the surface of the host-invading larval parasite life-stage, and suppressed SGTP4 expression at the tegument in adults; concomitant glucose uptake by the parasite was also attenuated in both scenarios. Conclusions These findings shed light on crucial mechanistic signaling processes that underpin the energetics of glucose uptake in schistosomes, which may open up novel avenues for antischistosome drug development.
Collapse
Affiliation(s)
- Maxine McKenzie
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| |
Collapse
|
20
|
Keitel WA, Potter GE, Diemert D, Bethony J, El Sahly HM, Kennedy JK, Patel SM, Plieskatt JL, Jones W, Deye G, Bottazzi ME, Hotez PJ, Atmar RL. A phase 1 study of the safety, reactogenicity, and immunogenicity of a Schistosoma mansoni vaccine with or without glucopyranosyl lipid A aqueous formulation (GLA-AF) in healthy adults from a non-endemic area. Vaccine 2019; 37:6500-6509. [PMID: 31515141 DOI: 10.1016/j.vaccine.2019.08.075] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Schistosomiasis caused by Schistosoma mansoni (Sm) is a chronic, debilitating and potentially deadly neglected tropical disease. The licensure of a vaccine to prevent schistosomiasis would represent a major breakthrough in public health. METHODS The safety and immunogenicity of a candidate Sm vaccine were assessed in this phase I, double-blind, dose-escalation trial. Seventy-two healthy Sm-naïve 18-50 year olds were randomized to receive 3 doses ∼ 8 weeks apart of saline placebo, or 10 µg, 30 µg, or 100 µg of recombinant Sm-Tetraspanin-2 vaccine formulated on aluminum hydroxide adjuvant (Sm-TSP-2/Al) with or without 5 µg of glucopyranosyl lipid A aqueous formulation (GLA-AF). Clinical and serologic responses were assessed for 1 year after dose 3. RESULTS Vaccines were safe and well-tolerated. The most common reactions were injection site tenderness and pain, and headache and fatigue. Tenderness and pain were more frequent in groups receiving vaccine with GLA-AF than placebo (p = 0.0036 and p = 0.0014, respectively). Injection site reactions among those given Sm-TSP-2/Al with GLA-AF lasted 1.22 and 1.33 days longer than those receiving Sm-TSP-2/Al without GLA-AF or placebo (p < 0.001 for both). Dose- and adjuvant-related increases in serum IgG against Sm-TSP-2 were observed. Peak IgG levels occurred 14 days after dose 3. Seroresponse frequencies were low among recipients of Sm-TSP-2/Al without GLA-AF, but higher among subjects receiving 30 µg or 100 µg of Sm-TSP-2/Al with GLA-AF. More seroresponses were observed among those given 30 µg or 100 µg of Sm-TSP-2/Al with GLA-AF compared to placebo (p = 0.023 and p < 0.001, respectively). Seroresponse frequencies were 0%, 30%, 50%, and 89%, respectively, among those given placebo, or 10 µg, 30 µg or 100 µg of Sm-TSP-2/Al with GLA-AF, suggesting a dose-response relationship for Sm-TSP-2/Al with GLA-AF (p = 0.0001). CONCLUSIONS Sm-TSP-2/Al with or without GLA-AF was safe and well tolerated in a Sm-naïve population. A vaccine like the one under development may represent our best hope to eliminating this neglected tropical disease.
Collapse
Affiliation(s)
- W A Keitel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States.
| | | | - D Diemert
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - J Bethony
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - H M El Sahly
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - S M Patel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - J L Plieskatt
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - W Jones
- Division of Microbiology and Infectious Diseases (DMID), National Institutes of Allergy and Infectious. Diseases (NIAID), National Institutes of Health (NIH), United States
| | - G Deye
- Division of Microbiology and Infectious Diseases (DMID), National Institutes of Allergy and Infectious. Diseases (NIAID), National Institutes of Health (NIH), United States
| | - M E Bottazzi
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States; Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - P J Hotez
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States; Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - R L Atmar
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Du X, Jones MK, Nawaratna SSK, Ranasinghe S, Xiong C, Cai P, McManus DP, You H. Gene Expression in Developmental Stages of Schistosoma japonicum Provides Further Insight into the Importance of the Schistosome Insulin-Like Peptide. Int J Mol Sci 2019; 20:ijms20071565. [PMID: 30925781 PMCID: PMC6480100 DOI: 10.3390/ijms20071565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
We showed previously that the Schistosoma japonicum insulin-like peptide (SjILP) binds the worm insulin receptors, thereby, activating the parasite’s insulin pathway and emphasizing its important role in regulating uptake of glucose, a nutrient essential for parasite survival. Here we show that SjILP is differentially expressed in the schistosome life cycle and is especially highly transcribed in eggs, miracidia, and adult female worms. RNA inference was employed to knockdown SjILP in adults in vitro, with suppression confirmed by significantly reduced protein production, declined adenosine diphosphate levels, and reduction in glucose consumption. Immunolocalization showed that SjILP is located to lateral gland cells of mature intra-ovular miracidia in the schistosome egg, and is distributed on the ciliated epithelium and internal cell masses of newly transformed miracidia. In schistosomula, SjILP is present on the tegument in two antero-lateral points, indicating highly polarized expression during cercarial transformation. Analysis of serum from S. japonicum-infected mice by ELISA using a recombinant form of SjILP as an antigen revealed IgG immunoreactivity to this molecule at 7 weeks post-infection indicating it is likely secreted from mature eggs into the host circulation. These findings provide further insights on ILP function in schistosomes and its essential roles in parasite survival and growth in different development stages.
Collapse
Affiliation(s)
- Xiaofeng Du
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| | - Malcolm K Jones
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia.
| | - Sujeevi S K Nawaratna
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
- School of Medicine, Griffith University, Gold Coast 4222, Australia.
| | - Shiwanthi Ranasinghe
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| | - Chunrong Xiong
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214000, China.
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| |
Collapse
|
22
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
23
|
Chaiyadet S, Krueajampa W, Hipkaeo W, Plosan Y, Piratae S, Sotillo J, Smout M, Sripa B, Brindley PJ, Loukas A, Laha T. Suppression of mRNAs encoding CD63 family tetraspanins from the carcinogenic liver fluke Opisthorchis viverrini results in distinct tegument phenotypes. Sci Rep 2017; 7:14342. [PMID: 29084967 PMCID: PMC5662742 DOI: 10.1038/s41598-017-13527-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/25/2017] [Indexed: 02/05/2023] Open
Abstract
The liver fluke Opisthorchis viverrini infects 10 million people in Southeast Asia and causes cholangiocarcinoma (CCA). Fluke secreted and tegumental proteins contribute to the generation of a tumorigenic environment and are targets for drug and vaccine-based control measures. Herein, we identified two tetraspanins belonging to the CD63 family (Ov-TSP-2 and Ov-TSP-3) that are abundantly expressed in the tegument proteome of O. viverrini. Ov-tsp-2 and tsp-3 transcripts were detected in all developmental stages of O. viverrini. Protein fragments corresponding to the large extracellular loop (LEL) of each TSP were produced in recombinant form and antibodies were raised in rabbits. Ov-TSP-2 and TSP-3 were detected in whole worm extracts and excretory/secretory products of O. viverrini and reacted with sera from infected hamsters and humans. Antibodies confirmed localization of Ov-TSP-2 and TSP-3 to the adult fluke tegument. Using RNA interference, Ov-tsp-2 and tsp-3 mRNA expression was significantly suppressed for up to 21 days in vitro. Ultrastructural observation of tsp-2 and tsp-3 dsRNA-treated flukes resulted in phenotypes with increased tegument thickness, increased vacuolation (tsp-2) and reduced electron density (tsp-3). These studies confirm the importance of CD63 family tegument tetraspanins in parasitic flukes and support efforts to target these proteins for vaccine development.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watchara Krueajampa
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wiphawi Hipkaeo
- Electron microscopy Laboratory, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yada Plosan
- Electron microscopy Laboratory, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supawadee Piratae
- Office of Academic Affairs, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, Thailand
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Michael Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, 20037, USA
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
24
|
Cameron TC, Cooke I, Faou P, Toet H, Piedrafita D, Young N, Rathinasamy V, Beddoe T, Anderson G, Dempster R, Spithill TW. A novel ex vivo immunoproteomic approach characterising Fasciola hepatica tegumental antigens identified using immune antibody from resistant sheep. Int J Parasitol 2017; 47:555-567. [PMID: 28455238 DOI: 10.1016/j.ijpara.2017.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/19/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
Abstract
A more thorough understanding of the immunological interactions between Fasciola spp. and their hosts is required if we are to develop new immunotherapies to control fasciolosis. Deeper knowledge of the antigens that are the target of the acquired immune responses of definitive hosts against both Fasciola hepatica and Fasciola gigantica will potentially identify candidate vaccine antigens. Indonesian Thin Tail sheep express a high level of acquired immunity to infection by F. gigantica within 4weeks of infection and antibodies in Indonesian Thin Tail sera can promote antibody-dependent cell-mediated cytotoxicity against the surface tegument of juvenile F. gigantica in vitro. Given the high protein sequence similarity between F. hepatica and F. gigantica, we hypothesised that antibody from F. gigantica-infected sheep could be used to identify the orthologous proteins in the tegument of F. hepatica. Purified IgG from the sera of F. gigantica-infected Indonesian Thin Tail sheep collected pre-infection and 4weeks p.i. were incubated with live adult F. hepatica ex vivo and the immunosloughate (immunoprecipitate) formed was isolated and analysed via liquid chromatography-electrospray ionisation-tandem mass spectrometry to identify proteins involved in the immune response. A total of 38 proteins were identified at a significantly higher abundance in the immunosloughate using week 4 IgG, including eight predicted membrane proteins, 20 secreted proteins, nine proteins predicted to be associated with either the lysosomes, the cytoplasm or the cytoskeleton and one protein with an unknown cellular localization. Three of the membrane proteins are transporters including a multidrug resistance protein, an amino acid permease and a glucose transporter. Interestingly, a total of 21 of the 38 proteins matched with proteins recently reported to be associated with the proposed small exosome-like extracellular vesicles of adult F. hepatica, suggesting that the Indonesian Thin Tail week 4 IgG is either recognising individual proteins released from extracellular vesicles or is immunoprecipitating intact exosome-like extracellular vesicles. Five extracellular vesicle membrane proteins were identified including two proteins predicted to be associated with vesicle transport/ exocytosis (VPS4, vacuolar protein sorting-associated protein 4b and the Niemann-Pick C1 protein). RNAseq analysis of the developmental transcription of the 38 immunosloughate proteins showed that the sequences are expressed over a wide abundance range with 21/38 transcripts expressed at a relatively high level from metacercariae to the adult life cycle stage. A notable feature of the immunosloughates was the absence of cytosolic proteins which have been reported to be secreted markers for damage to adult flukes incubated in vitro, suggesting that the proteins observed are not inadvertent contaminants leaking from damaged flukes ex vivo. The identification of tegument protein antigens shared between F. gigantica and F. hepatica is beneficial in terms of the possible development of a dual purpose vaccine effective against both fluke species.
Collapse
Affiliation(s)
- Timothy C Cameron
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Ira Cooke
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia; Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia
| | - Pierre Faou
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Hayley Toet
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - David Piedrafita
- School of Applied and Biomedical Sciences, Federation University, Churchill, Victoria, Australia
| | - Neil Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Vignesh Rathinasamy
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Glenn Anderson
- Virbac (Australia) Pty Ltd, Milperra, New South Wales, Australia
| | - Robert Dempster
- Virbac (Australia) Pty Ltd, Milperra, New South Wales, Australia
| | - Terry W Spithill
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
25
|
Lopes MD, Oliveira FM, Coelho IEV, Passos MJF, Alves CC, Taranto AG, Júnior MC, Santos LL, Fonseca CT, Villar JAFP, Lopes DO. Epitopes rationally selected through computational analyses induce T‐cell proliferation in mice and are recognized by serum from individuals infected with
Schistosoma mansoni. Biotechnol Prog 2017; 33:804-814. [DOI: 10.1002/btpr.2463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/03/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Marcelo D. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Flávio M. Oliveira
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Ivan E. V. Coelho
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Maria J. F. Passos
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del‐ReiDivinópolis MG Brasil
| | - Clarice C. Alves
- Grupo de Pesquisa em Biologia Parasitária e Imunologia, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte MG30190‐002 Brasil
| | - Alex G. Taranto
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Moacyr C. Júnior
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Luciana L. Santos
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Cristina T. Fonseca
- Grupo de Pesquisa em Biologia Parasitária e Imunologia, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte MG30190‐002 Brasil
| | - José A. F. P. Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del‐ReiDivinópolis MG Brasil
| | - Débora O. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| |
Collapse
|
26
|
Du X, McManus DP, Cai P, Hu W, You H. Identification and functional characterisation of a Schistosoma japonicum insulin-like peptide. Parasit Vectors 2017; 10:181. [PMID: 28407789 PMCID: PMC5391603 DOI: 10.1186/s13071-017-2095-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/18/2017] [Indexed: 02/07/2023] Open
Abstract
Background Previous studies have shown that insulin receptors in schistosomes, triggered by host insulin, play an important role in parasite growth, development and fecundity by regulating glucose metabolism. However, limited information is available on the recently identified endogenous insulin-like peptide (ILP) in blood flukes. Results We isolated ILPs from Schistosoma japonicum (SjILP) and S. recognised (SmILP) and present results of their molecular and structural analysis. SjILP shares 63% amino acid identity with SmILP, but only 18% identity with human insulin. There is high cross immunological reactivity between the S. japonicum and S. mansoni ILPs as observed in western blots using an anti-SjILP polyclonal antibody. ADP binding/hydrolysis ability was observed in both SjILP and SmILP, but not in human insulin, suggesting a parasite-specific role for ILP compared with host insulin. Protein binding assays using the Octet-RED system showed SjILP binds S. japonicum IRs (SjIR1 and SjIR2) strongly. An anti-phospho antibody against extracellular signal-regulated kinase (Erk) recognised a 44-kDa target band in an extract of adult worms after stimulation by rSjILP in vitro, suggesting an important role for SjILP in activating SjIRs and in regulating downstream signal transduction. Immunolocalisation showed SjILP is located on the tegument and the underlying musculature, similar to that observed for SjIR1, but it is also present throughout the parenchyma of males and in the vitelline cells of females, the same locations as SjIR2 described in an earlier published study of ours. The same localisation of SjILP and the SjIRs is suggestive of an interaction between the insulin-like peptide and the IRs. In addition to binding host insulin, schistosomes also can express their own endogenous ILPs, which can activate the parasite insulin signal pathway, thereby playing a critical role in worm growth, development and fertility. Conclusions These findings shed new light on ILPs in schistosomes, providing further insight into the distinct and specialised functions of SjIR1 and 2 in S. japonicum and their interaction with host insulin. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2095-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofeng Du
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Wei Hu
- School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 207 Ruijin Er Road, Shanghai, 200025, China
| | - Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
27
|
You H, Gobert GN, Du X, Pali G, Cai P, Jones MK, McManus DP. Functional characterisation of Schistosoma japonicum acetylcholinesterase. Parasit Vectors 2016; 9:328. [PMID: 27283196 PMCID: PMC4901427 DOI: 10.1186/s13071-016-1615-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acetylcholinesterase (AChE) is an important metabolic enzyme of schistosomes present in the musculature and on the surface of the blood stage where it has been implicated in the modulation of glucose scavenging from mammalian host blood. As both a target for the antischistosomal drug metrifonate and as a potential vaccine candidate, AChE has been characterised in the schistosome species Schistosoma mansoni, S. haematobium and S. bovis, but not in S. japonicum. Recently, using a schistosome protein microarray, a predicted S. japonicum acetylcholinesterase precursor was significantly targeted by protective IgG1 immune responses in S. haematobium-exposed individuals that had acquired drug-induced resistance to schistosomiasis after praziquantel treatment. RESULTS We report the full-length cDNA sequence and describe phylogenetic and molecular structural analysis to facilitate understanding of the biological function of AChE (SjAChE) in S. japonicum. The protein has high sequence identity (88 %) with the AChEs in S. mansoni, S. haematobium and S. bovis and has 25 % sequence similarity with human AChE, suggestive of a highly specialised role for the enzyme in both parasite and host. We immunolocalized SjAChE and demonstrated its presence on the surface of adult worms and schistosomula, as well as its lower expression in parenchymal regions. The relatively abundance of AChE activity (90 %) present on the surface of adult S. japonicum when compared with that reported in other schistosomes suggests SjAChE may be a more effective drug or immunological target against this species. We also demonstrate that the classical inhibitor of AChE, BW285c51, inhibited AChE activity in tegumental extracts of paired worms, single males and single females by 59, 22 and 50 %, respectively, after 24 h incubation with 200 μM BW284c51. CONCLUSIONS These results build on previous studies in other schistosome species indicating major differences in the enzyme between parasite and mammalian host, and provide further support for the design of an anti-schistosome intervention targeting AChE.
Collapse
Affiliation(s)
- Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Geoffrey N Gobert
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Xiaofeng Du
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gabor Pali
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Malcolm K Jones
- School of Veterinary Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
28
|
Labbunruang N, Phadungsil W, Tesana S, Smooker PM, Grams R. Similarity of a 16.5kDa tegumental protein of the human liver fluke Opisthorchis viverrini to nematode cytoplasmic motility protein. Mol Biochem Parasitol 2016; 207:1-9. [PMID: 27140280 DOI: 10.1016/j.molbiopara.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 01/26/2023]
Abstract
Opisthorchis viverrini is the causative agent of human opisthorchiasis in Thailand and long lasting infection with the parasite has been correlated with the development of cholangiocarcinoma. In this work we have molecularly characterized the first member of a protein family carrying two DM9 repeats in this parasite (OvDM9-1). InterPro and other protein family databases describe the DM9 repeat as a protein domain of unknown function that has been first noted in Drosophila melanogaster. Two paralogous proteins have been partially characterized in the genus Fasciola, Fasciola hepatica TP16.5, a novel tegumental antigen in human fascioliasis and, recently F. gigantica DM9-1, a parenchymal protein with structural similarity to nematode cytoplasmic motility protein (MFP2). In this study, we show further evidence that this family of trematode proteins is related to MFP2 in sequence and structure. Soluble recombinant OvDM9-1 was used for structural analyses and for production of specific antisera. The native protein was detected in soluble and insoluble crude worm extracts and in seemingly various oligomeric forms in the latter. The potential for oligomerization was supported by cross-linking experiments of recombinant OvDM9-1. Structure prediction suggested a β-rich secondary structure of the protein and this was supported by a circular dichroism analysis. Molecular modeling in Phyre2 identified both MFP2 domains as distant homologs of OvDM9-1. The protein was located in tegumental type tissue and the cecal epithelium in the mature parasite. Recombinant OvDM9-1 was used as target in indirect ELISA but sera from infected hamsters showed only marginal reactivity towards it. It is proposed that OvDM9-1 and other members of this protein family have a role in cellular transport through functions on the cytoskeleton.
Collapse
Affiliation(s)
- Nipawan Labbunruang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand
| | - Wansika Phadungsil
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand
| | - Smarn Tesana
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peter M Smooker
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand.
| |
Collapse
|
29
|
The omic approach to parasitic trematode research—a review of techniques and developments within the past 5 years. Parasitol Res 2016; 115:2523-43. [DOI: 10.1007/s00436-016-5079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/26/2022]
|
30
|
Exploring molecular variation in Schistosoma japonicum in China. Sci Rep 2015; 5:17345. [PMID: 26621075 PMCID: PMC4664899 DOI: 10.1038/srep17345] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects more than 200 million people worldwide. The main disease-causing agents, Schistosoma japonicum, S. mansoni and S. haematobium, are blood flukes that have complex life cycles involving a snail intermediate host. In Asia, S. japonicum causes hepatointestinal disease (schistosomiasis japonica) and is challenging to control due to a broad distribution of its snail hosts and range of animal reservoir hosts. In China, extensive efforts have been underway to control this parasite, but genetic variability in S. japonicum populations could represent an obstacle to eliminating schistosomiasis japonica. Although a draft genome sequence is available for S. japonicum, there has been no previous study of molecular variation in this parasite on a genome-wide scale. In this study, we conducted the first deep genomic exploration of seven S. japonicum populations from mainland China, constructed phylogenies using mitochondrial and nuclear genomic data sets, and established considerable variation between some of the populations in genes inferred to be linked to key cellular processes and/or pathogen-host interactions. Based on the findings from this study, we propose that verifying intraspecific conservation in vaccine or drug target candidates is an important first step toward developing effective vaccines and chemotherapies against schistosomiasis.
Collapse
|
31
|
Gonçalves de Assis NR, Batistoni de Morais S, Figueiredo BCP, Ricci ND, de Almeida LA, da Silva Pinheiro C, Martins VDP, Oliveira SC. DNA Vaccine Encoding the Chimeric Form of Schistosoma mansoni Sm-TSP2 and Sm29 Confers Partial Protection against Challenge Infection. PLoS One 2015; 10:e0125075. [PMID: 25942636 PMCID: PMC4420270 DOI: 10.1371/journal.pone.0125075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/19/2015] [Indexed: 12/23/2022] Open
Abstract
Schistosomiasis is an important parasitic disease worldwide that affects more than 207 million people in 76 countries and causes approximately 250,000 deaths per year. The best long-term strategy to control schistosomiasis is through immunization combined with drug treatment. Due to the ability of DNA vaccines to generate humoral and cellular immune responses, such vaccines are considered a promising approach against schistosomiasis. Sm29 and tetraspanin-2 (Sm-TSP2) are two proteins that are located in the S. mansoni tegument of adult worms and schistosomula and induce high levels of protection through recombinant protein immunization. In this study, we transfected BHK-21 cells with plasmids encoding Sm29, Sm-TSP2 or a chimera containing both genes. Using RT-PCR analysis and western blot, we confirmed that the DNA vaccine constructs were transcribed and translated, respectively, in BHK-21 cells. After immunization of mice, we evaluated the reduction in worm burden. We observed worm burden reductions of 17-22%, 22%, 31-32% and 24-32% in animals immunized with the pUMVC3/Sm29, pUMVC3/SmTSP-2, pUMVC3/Chimera and pUMVC3/Sm29 + pUMVC3/SmTSP-2 plasmids, respectively. We evaluated the humoral response elicited by DNA vaccines, and animals immunized with pUMVC3/Sm29 and pUMVC3/Sm29 + pUMVC3/SmTSP-2 showed higher titers of anti-Sm29 antibodies. The cytokine profile produced by the spleen cells of immunized mice was then evaluated. We observed higher production of Th1 cytokines, such as TNF-α and IFN-γ, in vaccinated mice and no significant production of IL-4 and IL-5. The DNA vaccines tested in this study showed the ability to generate a protective immune response against schistosomiasis, probably through the production of Th1 cytokines. However, future strategies aiming to optimize the protective response induced by a chimeric DNA construct need to be developed.
Collapse
Affiliation(s)
- Natan Raimundo Gonçalves de Assis
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270–901, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, 31270–901, Belo Horizonte, MG, Brazil
| | - Suellen Batistoni de Morais
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270–901, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, 31270–901, Belo Horizonte, MG, Brazil
| | - Bárbara Castro Pimentel Figueiredo
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270–901, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, 31270–901, Belo Horizonte, MG, Brazil
| | - Natasha Delaqua Ricci
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270–901, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, 31270–901, Belo Horizonte, MG, Brazil
| | - Leonardo Augusto de Almeida
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270–901, Belo Horizonte, MG, Brazil
| | - Carina da Silva Pinheiro
- Departamento de Biointeração do Instituto de Ciências da Saúde, Universidade Federal da Bahia, 40110–100, Salvador, BA, Brazil
| | | | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270–901, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, 31270–901, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
32
|
Leow CY, Willis C, Hofmann A, Jones MK. Structure-function analysis of apical membrane-associated molecules of the tegument of schistosome parasites of humans: prospects for identification of novel targets for parasite control. Br J Pharmacol 2015; 172:1653-63. [PMID: 25176442 PMCID: PMC4376446 DOI: 10.1111/bph.12898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 06/12/2014] [Accepted: 08/26/2014] [Indexed: 02/02/2023] Open
Abstract
Neglected tropical diseases are a group of some 17 diseases that afflict poor and predominantly rural people in developing nations. One significant disease that contributes to substantial morbidity in endemic areas is schistosomiasis, caused by infection with one of five species of blood fluke belonging to the trematode genus Schistosoma. Although there is one drug available for treatment of affected individuals in clinics, or for mass administration in endemic regions, there is a need for new therapies. A prominent target organ of schistosomes, either for drug or vaccine development, is the peculiar epithelial syncytium that forms the body wall (tegument) of this parasite. This dynamic layer is maintained and organized by concerted activity of a range of proteins, among which are the abundant tegumentary annexins. In this review, we will outline advances in structure-function analyses of these annexins, as a means to understanding tegument cell biology in host-parasite interaction and their potential exploitation as targets for anti-schistosomiasis therapies.
Collapse
Affiliation(s)
- Chiuan Yee Leow
- School of Veterinary Science, The University of QueenslandGatton, Queensland, Australia
- Infectious Diseases, QIMR Berghofer Medical Research InstituteHerston, Queensland, Australia
- Institute for Research in Molecular Medicine, Universiti Sains MalaysiaPenang, Malaysia
| | - Charlene Willis
- Infectious Diseases, QIMR Berghofer Medical Research InstituteHerston, Queensland, Australia
- Structural Chemistry Program, Eskitis Institute, Griffith UniversityBrisbane, Queensland, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith UniversityBrisbane, Queensland, Australia
- Faculty of Veterinary Science, The University of MelbourneParkville, Victoria, Australia
| | - Malcolm K Jones
- School of Veterinary Science, The University of QueenslandGatton, Queensland, Australia
| |
Collapse
|