1
|
Balasubramonian B, Selcer KW. Steroid sulfatase in mouse liver and testis: Characterization, ontogeny and localization. Steroids 2024; 210:109483. [PMID: 39053631 DOI: 10.1016/j.steroids.2024.109483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Steroid hormones often circulate in the plasma as inactive sulfated forms, such as estrone sulfate and dehydroepiandrosterone sulfate. The enzyme steroid sulfatase (STS) converts these steroids into active forms, mainly estrogens, in peripheral tissues. STS is present in most tissues, but it occurs at higher levels in certain organs, notably liver and placenta. In this study, we examined the tissue distribution of STS in a prominent laboratory model, the house mouse (Mus musculus). Tissues included were heart, liver, small intestine, skeletal muscle, and gonads of both sexes. An 3H-estrone-sulfate conversion assay was used to measure STS activity in tissue homogenates and extracts. STS activities were high for hepatic tissue homogenates of both genders. Testicular STS levels were similar to those of liver, while STS activities of ovary, small intestine, heart, and muscle were considerably lower. The specific STS inhibitors, EMATE and STX-64 virtually eliminated STS activity in hepatic microsomes and cytosols, verifying that the observed enzyme activity was due to STS. Enzyme kinetic assays showed Km values of 8.6 µM for liver and 9.1 µM for testis, using E1S as substrate. Hepatic and testicular STS activities, measured in CHAPS-extracted microsome, were low up to 5 weeks of age and were higher through 56 weeks. Western blotting, with a specific STS antibody, confirmed the presence of STS protein (65 Da) in both liver and testis. Immunofluorescence of tissue sections detected the presence of STS protein in hepatocytes, in testicular Leydig cells and in seminiferous tubules (Leydig cells and developing germ cells). These results suggest that STS may have a significant role in testicular function.
Collapse
Affiliation(s)
| | - Kyle W Selcer
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Wang J, Feng Y, Liu B, Xie W. Estrogen sulfotransferase and sulfatase in steroid homeostasis, metabolic disease, and cancer. Steroids 2024; 201:109335. [PMID: 37951289 PMCID: PMC10842091 DOI: 10.1016/j.steroids.2023.109335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Sulfation and desulfation of steroids are opposing processes that regulate the activation, metabolism, excretion, and storage of steroids, which account for steroid homeostasis. Steroid sulfation and desulfation are catalyzed by cytosolic sulfotransferase and steroid sulfatase, respectively. By modifying and regulating steroids, cytosolic sulfotransferase (SULT) and steroid sulfatase (STS) are also involved in the pathophysiology of steroid-related diseases, such as hormonal dysregulation, metabolic disease, and cancer. The estrogen sulfotransferase (EST, or SULT1E1) is a typical member of the steroid SULTs. This review is aimed to summarize the roles of SULT1E1 and STS in steroid homeostasis and steroid-related diseases.
Collapse
Affiliation(s)
- Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ye Feng
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Brian Liu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
3
|
Wahlang B. RISING STARS: Sex differences in toxicant-associated fatty liver disease. J Endocrinol 2023; 258:e220247. [PMID: 37074385 PMCID: PMC10330380 DOI: 10.1530/joe-22-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Based on biological sex, the consequential health outcomes from exposures to environmental chemicals or toxicants can differ in disease pathophysiology, progression, and severity. Due to basal differences in cellular and molecular processes resulting from sexual dimorphism of organs including the liver and additional factors influencing 'gene-environment' interactions, males and females can exhibit different responses to toxicant exposures. Associations between environmental/occupational chemical exposures and fatty liver disease (FLD) have been well-acknowledged in human epidemiologic studies and their causal relationships demonstrated in experimental models. However, studies related to sex differences in liver toxicology are still limited to draw any inferences on sex-dependent chemical toxicity. The purpose of this review is to highlight the present state of knowledge on the existence of sex differences in toxicant-associated FLD (TAFLD), discuss potential underlying mechanisms driving these differences, implications of said differences on disease susceptibility, and emerging concepts. Chemicals of interest include various categories of pollutants that have been investigated in TAFLD, namely persistent organic pollutants, volatile organic compounds, and metals. Insight into research areas requiring further development is also discussed, with the objective of narrowing the knowledge gap on sex differences in environmental liver diseases. Major conclusions from this review exercise are that biological sex influences TAFLD risks, in part due to (i) toxicant disruption of growth hormone and estrogen receptor signaling, (ii) basal sex differences in energy mobilization and storage, and (iii) differences in chemical metabolism and subsequent body burden. Finally, further sex-dependent toxicological assessments are warranted for the development of sex-specific intervention strategies.
Collapse
Affiliation(s)
- Banrida Wahlang
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
4
|
Xu H, Xu J, Liu X, Song W, Lyu X, Guo X, Hu W, Yang H, Wang L, Pan H, Chen J, Xing X, Zhu H, Sun W, Gong F. Serum metabolomics profiling of improved metabolic syndrome is characterized by decreased pro-inflammatory biomarkers: A longitudinal study in Chinese male adults. Nutr Res 2023; 115:13-25. [PMID: 37216838 DOI: 10.1016/j.nutres.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
Metabolic syndrome (MetS) is a serious global health concern. The objective of this study is to dynamically investigate the changes of metabolic profiles and metabolites in Chinese male MetS subjects after an 18 months diet and exercise intervention. Fifty male MetS patients defined according to International Diabetes Federation 2005 guidelines were subjected to diet and exercise counseling for 18 months. Serum samples were taken at baseline, 12 months, and 18 months, respectively, for clinical evaluation and metabolomics analyses. Diet and exercise intervention for 18 months achieved significant improvements in the metabolic profiles of all participants. Nineteen subjects (38.0%) exhibited MetS remission at the end of the study. A total of 812 relative features were characterized and 61 were successfully identified. Furthermore, 17 differential metabolites were of significance at both time points (baseline-12 months, baseline-18 months) and presented nonlinear trends through time. Eight metabolites (47.1%) were predominantly converged to inflammation and oxidative stress. Pro-inflammatory biomarkers were remarkably decreased after 18 months of intervention, and prostaglandin E2, neuroprotectin D1, and taxiphyllin in combination were firstly found to demonstrate a fair discriminative power (area under curve = 0.911) to predict the improvement of MetS undergone diet and exercise intervention. The significant shift of metabolomic profiling after 18 months of lifestyle counseling provide a novel insight and reveal that earlier inflammation control may be of potential benefit in MetS management.
Collapse
Affiliation(s)
- Hanyuan Xu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiyu Xu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyan Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Song
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xiaorui Lyu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaonan Guo
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenjing Hu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jichun Chen
- Nutrition Department, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, China
| | - Xiaoping Xing
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Wei Sun
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
5
|
Balasubramonian B, Selcer KW. The phytochemical curcumin inhibits steroid sulfatase activity in rat liver tissue and NIH-3T3 mouse fibroblast cells. Steroids 2023; 191:109163. [PMID: 36581086 DOI: 10.1016/j.steroids.2022.109163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Curcumin is a phytochemical derived from the spice turmeric that is reported to have therapeutic effects. We are studying the enzyme steroid sulfatase (STS), which removes the sulfate group from inactive steroid hormones in peripheral tissues and we were interested in the effect of curcumin on STS activity due to its structural composition (polyphenolic). We sought to determine if curcumin affects STS activity in two model systems, rat liver and NIH-3T3 mouse fibroblast cells. STS assays were performed on tissue extracts of rat liver, and on NIH-3T3 microsomes and cells, with and without curcumin. Male and female rat liver extracts contained substantial amounts of STS activity, with males averaging higher (4-11 %) levels. Estradiol inhibited STS activity in livers of both sexes at 20 and 10 µM. Curcumin acted as a competitive inhibitor of STS activity in rat liver extracts, with a Ki of 19.8 µM in males and 9.3 µM in females. Curcumin also inhibited STS activity in NIH-3T3 microsomes at both 20 µM and 10 µM, and in whole NIH-3T3 cells at 20 µM. These data are the first to demonstrate STS inhibition by curcumin. Inhibition of STS results in lower active steroid hormone (estrogens and androgens) levels in tissues, possibly altering modulation of immune responses by these steroids.
Collapse
Affiliation(s)
| | - Kyle W Selcer
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| |
Collapse
|
6
|
Selcer K, Balasubramonian B, Miller D, Kerr J, DiFrancesco M, Ojha S, Urbano R. Steroid sulfatase in the mouse NIH-3T3 fibroblast cell line: Characterization, and downregulation by glucocorticoids. Steroids 2021; 174:108890. [PMID: 34280393 DOI: 10.1016/j.steroids.2021.108890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/03/2021] [Accepted: 07/06/2021] [Indexed: 11/26/2022]
Abstract
Steroid hormones often circulate in the blood as inactive sulfated forms, such as estrone sulfate and dehydroepiandrosterone sulfate. The enzyme steroid sulfatase (STS) converts these steroids into active forms, mainly estrogens, in peripheral tissues. We have previously characterized STS activity in human and mouse breast and bone tissues, and we have shown that STS can provide estrogens to these tissues from circulating sulfated precursors. This study was designed to characterize STS activity in a mouse fibroblast cell line (NIH-3T3). Using a radioactive estrone sulfate (E1S) conversion assay, we detected STS activity in cultured NIH-3T3 cells. This activity was blocked by the STS inhibitors EMATE and STX-64, indicating authentic STS activity. We also found that microsomes prepared from NIH-3T3 cells had relatively high STS activity and that cytosols had low activity, consistent with the known distribution of this enzyme to the endoplasmic reticulum. Michaelis-Menten analysis of the NIH-3T3 microsomes indicated a Km of 10.9 µM using E1S as substrate. Primary fibroblasts prepared from mouse ears and tails also had measurable STS activity, as indicated by 3H-E1S conversion assay, further supporting the conclusion that fibroblasts possess STS. Furthermore, Western blotting confirmed the presence of immunoreactive STS in NIH-3T3 microsomes. With regard to regulation, treatments of cultured NIH-3T3 cells revealed that cortisol and the synthetic glucocorticoids dexamethasone and prednisolone decreased STS activity, as we have found for cell lines from other tissues. The effect of cortisol was seen at both 10 µM and 1.0 µM but not at 0.1 µM. Western blotting also indicated a decrease in STS immunoreactivity in cortisol-treated microsomes. The reduction in STS activity by dexamethasone in whole cells was reversed by the glucocorticoid receptor antagonist RU-486, indicating that glucocorticoid downregulation of STS activity is receptor mediated. An inhibition assay on NIH-3T3 microsomes revealed that STS activity was inhibited significantly by 10 µM estradiol-17β, a known substrate inhibitor of E1S for STS, but not by 10 µM cortisol. This is consistent with the idea that cortisol inhibits STS in NIH-3T3 cells through a regulatory mechanism rather than by substrate inhibition. Our results could have important implications regarding local estrogen production by STS in fibroblasts, which are the most common connective tissue cells in the body, and on possible regulation of local estrogen levels by cortisol.
Collapse
Affiliation(s)
- Kyle Selcer
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| | | | - Dylan Miller
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Jade Kerr
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Mia DiFrancesco
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Sanjana Ojha
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Rachel Urbano
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Anbar HS, Isa Z, Elounais JJ, Jameel MA, Zib JH, Samer AM, Jawad AF, El-Gamal MI. Steroid sulfatase inhibitors: the current landscape. Expert Opin Ther Pat 2021; 31:453-472. [PMID: 33783295 DOI: 10.1080/13543776.2021.1910237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Steroid sulfatase (STS) enzyme is responsible for transforming the inactive sulfate metabolites of steroid sex hormones into the active free steroids. Both the deficiency and the over-expression of STS are associated with the pathophysiology of certain diseases. This article provides the readership with a comprehensive review about STS enzyme and its recently reported inhibitors.Areas covered: In the present article, we reviewed the structure, location, and substrates of STS enzyme, physiological functions of STS, and disease states related to over-expression or deficiency of STS enzyme. STS inhibitors reported during the last five years (2016-present) have been reviewed as well.Expert opinion: Irosustat is the most successful STS inhibitor drug candidate so far. It is currently under investigation in clinical trials for treatment of estrogen-dependent breast cancer. Non-steroidal sulfamate is the most favorable scaffold for STS inhibitor design. They can be beneficial for the treatment of hormone-dependent cancers and neurodegenerative disorders without significant estrogenic side effects. Moreover, dual-acting molecules (inhibitors of STS + another synergistic mechanism) can be therapeutically efficient.
Collapse
Affiliation(s)
- Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Zahraa Isa
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Jana J Elounais
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mariam A Jameel
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Joudi H Zib
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya M Samer
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya F Jawad
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
8
|
Le Magueresse-Battistoni B. Endocrine disrupting chemicals and metabolic disorders in the liver: What if we also looked at the female side? CHEMOSPHERE 2021; 268:129212. [PMID: 33359838 DOI: 10.1016/j.chemosphere.2020.129212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 05/07/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are linked to the worldwide epidemic incidence of metabolic disorders and fatty liver diseases, which affects quality of life and represents a high economic cost to society. Energy homeostasis exhibits strong sexual dimorphic traits, and metabolic organs respond to EDCs depending on sex, such as the liver, which orchestrates both drug elimination and glucose and lipid metabolism. In addition, fatty liver diseases show a strong sexual bias, which in part could also originate from sex differences observed in gut microbiota. The aim of this review is to highlight significant differences in endocrine and metabolic aspects of the liver, between males and females throughout development and into adulthood. It is also to illustrate how the male and female liver differently cope with exposure to various EDCs such as bisphenols, phthalates and persistent organic chemicals in order to draw attention to the need to include both sexes in experimental studies. Interesting data come from analyses of the composition and diversity of the gut microbiota in males exposed to the mentioned EDCs showing significant correlations with hepatic lipid accumulation and metabolic disorders but information on females is lacking or incomplete. As industrialization increases, the list of anthropogenic chemicals to which humans will be exposed will also likely increase. In addition to strengthening existing regulations, encouraging populations to protect themselves and promoting the substitution of harmful chemicals with safe products, innovative strategies based on sex differences in the gut microbiota and in the gut-liver axis could be optimistic outlook.
Collapse
|
9
|
Bracht JR, Vieira‐Potter VJ, De Souza Santos R, Öz OK, Palmer BF, Clegg DJ. The role of estrogens in the adipose tissue milieu. Ann N Y Acad Sci 2019; 1461:127-143. [DOI: 10.1111/nyas.14281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Orhan K. Öz
- Department of RadiologyUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Biff F. Palmer
- Department of MedicineUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Deborah J. Clegg
- College of Nursing and Health ProfessionsDrexel University Philadelphia Pennsylvania
| |
Collapse
|
10
|
Bi Y, Wang Y, Xie W. The interplay between hepatocyte nuclear factor 4α (HNF4α) and cholesterol sulfotransferase (SULT2B1b) in hepatic energy homeostasis. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
11
|
Yoo HS, Napoli JL. Quantification of Dehydroepiandrosterone, 17β-Estradiol, Testosterone, and Their Sulfates in Mouse Tissues by LC-MS/MS. Anal Chem 2019; 91:14624-14630. [PMID: 31644264 DOI: 10.1021/acs.analchem.9b03759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a high-performance, liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) assay to quantify without derivatizaton dehyroepiandrosterone (DHEA), 17β-estradiol (E2), testosterone (T), and their sulfates in serum and tissues. This assay functions well with multiple adipose depots, a previously unattained analysis. To delipidate and facilitate recovery, tissues were homogenized in acetonitrile, and the homogenate was frozen. The supernatant was evaporated, resuspended in an aqueous acetate buffer, and extracted with hexane to separate free (unconjugated) from sulfated steroids. Sulfated steroids in the aqueous medium were then hydrolyzed with sulfatase and extracted with hexane. Each extract was analyzed separately. HPLC resolution combined with the sensitivity and specificity of MS/MS allowed quantification of DHEA, E2, and T with 10, 10, and 5 fmol lower limits of quantification and linear ranges to 1 pmol. Application of the method to mouse serum and tissues reveals ranges of DHEA, E2, and T and their sulfates, and tissue-specific differences in steroid profile, especially white versus brown adipose. In addition, marginal decreases of T in all tissues and considerable increases in DHEA in male iWAT and eWAT in response to a high-fat diet further strengthen the inference regarding the role of steroid metabolism in adipogenesis. This assay permits detailed studies of interactions between adiposity and sex steroids in serum and tissues, including adipose.
Collapse
Affiliation(s)
- Hong Sik Yoo
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology , University of California-Berkeley , Berkeley , California 94720 , United States
| | - Joseph L Napoli
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology , University of California-Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
12
|
An Y, Wang P, Xu P, Tung HC, Xie Y, Kirisci L, Xu M, Ren S, Tian X, Ma X, Xie W. An Unexpected Role of Cholesterol Sulfotransferase and its Regulation in Sensitizing Mice to Acetaminophen-Induced Liver Injury. Mol Pharmacol 2019; 95:597-605. [PMID: 30944208 DOI: 10.1124/mol.118.114819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/17/2019] [Indexed: 12/13/2022] Open
Abstract
Overdose of acetaminophen (APAP) is the leading cause of acute liver failure (ALF) in the United States. The sulfotransferase-mediated sulfation of APAP is widely believed to be a protective mechanism to attenuate the hepatotoxicity of APAP. The cholesterol sulfotransferase SULT2B1b is best known for its activity in catalyzing the sulfoconjugation of cholesterol to synthesize cholesterol sulfate. SULT2B1b can be transcriptionally and positively regulated by the hepatic nuclear factor 4α (HNF4α). In this study, we uncovered an unexpected role for SULT2B1b in APAP toxicity. Hepatic overexpression of SULT2B1b sensitized mice to APAP-induced liver injury, whereas ablation of the Sult2B1b gene in mice conferred resistance to the APAP hepatotoxicity. Consistent with the notion that Sult2B1b is a transcriptional target of HNF4α, overexpression of HNF4α sensitized mice or primary hepatocytes to APAP-induced hepatotoxicity in a Sult2B1b-dependent manner. We conclude that the HNF4α-SULT2B1b axis has a unique role in APAP-induced acute liver injury, and SULT2B1b induction might be a risk factor for APAP hepatotoxicity.
Collapse
Affiliation(s)
- Yunqi An
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Pengcheng Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Hung-Chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Yang Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Levent Kirisci
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Xin Tian
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| |
Collapse
|
13
|
Barbosa ACS, Feng Y, Yu C, Huang M, Xie W. Estrogen sulfotransferase in the metabolism of estrogenic drugs and in the pathogenesis of diseases. Expert Opin Drug Metab Toxicol 2019; 15:329-339. [PMID: 30822161 DOI: 10.1080/17425255.2019.1588884] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Biotransformation is important in the metabolism of endobiotics and xenobiotics. This process comprises the activity of phase I and phase II enzymes. Estrogen sulfotransferase (SULT1E1 or EST) is a phase II conjugating enzyme that belongs to the family of cytosolic sulfotransferases. The expression of SULT1E1 can be detected in many tissues, including the liver. SULT1E1 catalyzes the transfer of a sulfate group from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) to any available hydroxyl group in estrogenic molecules. The substrates of SULT1E1 include the endogenous and synthetic estrogens. Upon SULT1E1-mediated sulfation, the hydrosolubility of estrogens increases, preventing the binding between the sulfated estrogens and the estrogen receptor (ER). This sulfated state of the estrogens is not irreversible, as the steroid sulfatase (STS) can convert sulfoconjugated estrogens to free estrogens. The expression of SULT1E1 is inducible by several diseases that involve tissue inflammation, such as type 2 diabetes, sepsis, and ischemia-reperfusion injury. Areas covered: This systematic literature review aims to summarize the role of SULT1E1 in the metabolism of estrogenic drugs and xenobiotics, and the role of SULT1E1 in the pathogenesis of several diseases, including cancer, metabolic disease, sepsis, liver injury, and cystic fibrosis. Meanwhile, ablation or pharmacological inhibition of SULT1E1 can affect the outcomes of the aforementioned diseases. Expert opinion: In addition to its role in metabolizing estrogenic drugs, SULT1E1 is unexpectedly being unveiled as a mediator for the disease effect on estrogen metabolism and homeostasis. Meanwhile, because the expression and activity of SULT1E1 can affect the outcome of diseases, the same sulfotransferase and the reversing enzymes STS can be potential therapeutic targets to prevent or manage diseases. Accumulating evidence suggest that the physiological and pathophysiological effects of SULT1E1 can be estrogen-independent and it is necessary to elucidate what other possible substrates may be recognized by the enzyme. Moreover, human studies are paramount to confirm the human relevance of the animal studies.
Collapse
Affiliation(s)
- Anne Caroline S Barbosa
- a Center for Pharmacogenetics and Department of Pharmaceutical Sciences , University of Pittsburgh , Pittsburgh , PA , USA
| | - Ye Feng
- a Center for Pharmacogenetics and Department of Pharmaceutical Sciences , University of Pittsburgh , Pittsburgh , PA , USA.,b Department of Endocrinology and Metabolic Disease , The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Chaohui Yu
- c Department of Gastroenterology , The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Min Huang
- d Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , China
| | - Wen Xie
- a Center for Pharmacogenetics and Department of Pharmaceutical Sciences , University of Pittsburgh , Pittsburgh , PA , USA.,e Department of Pharmacology and Chemical Biology , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
14
|
Bi Y, Jiang M, Guo W, Guan X, Xu M, Ren S, Yang D, Gaikwad NW, Selcer KW, Xie W. Sex-Dimorphic and Sex Hormone-Dependent Role of Steroid Sulfatase in Adipose Inflammation and Energy Homeostasis. Endocrinology 2018; 159:3365-3377. [PMID: 30060148 PMCID: PMC6112598 DOI: 10.1210/en.2018-00531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/19/2018] [Indexed: 01/23/2023]
Abstract
Steroid sulfatase (STS), a desulfating enzyme that converts steroid sulfates to hormonally active steroids, plays an important role in the homeostasis of sex hormones. STS is expressed in the adipose tissue of both male and female mice, but the role of STS in the development and function of adipose tissue remains largely unknown. In this report, we show that the adipose expression of Sts was induced in the high-fat diet (HFD) and ob/ob models of obesity and type 2 diabetes. Transgenic overexpression of the human STS in the adipose tissue of male mice exacerbated the HFD-induced metabolic phenotypes, including increased body weight gain and fat mass, and worsened insulin sensitivity, glucose tolerance, and energy expenditure, which were accounted for by adipocyte hypertrophy, increased adipose inflammation, and dysregulation of adipogenesis. The metabolic harm of the STS transgene appeared to have resulted from increased androgen activity in the adipose tissue, and castration abolished most of the phenotypes. Interestingly, the transgenic effects were sex specific, because the HFD-fed female STS transgenic mice exhibited improved metabolic functions, which were associated with attenuated adipose inflammation. The metabolic benefit of the STS transgene in female mice was accounted for by increased estrogenic activity in the adipose tissue, whereas such benefit was abolished upon ovariectomy. Our results revealed an essential role of the adipose STS in energy homeostasis in sex- and sex hormone-dependent manner. The adipose STS may represent a therapeutic target for the management of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Yuhan Bi
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mengxi Jiang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Weiwei Guo
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meishu Xu
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Songrong Ren
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Da Yang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kyle W Selcer
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Wen Xie
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Bi Y, Shi X, Zhu J, Guan X, Garbacz WG, Huang Y, Gao L, Yan J, Xu M, Ren S, Ren S, Liu Y, Ma X, Li S, Xie W. Regulation of Cholesterol Sulfotransferase SULT2B1b by Hepatocyte Nuclear Factor 4α Constitutes a Negative Feedback Control of Hepatic Gluconeogenesis. Mol Cell Biol 2018; 38:e00654-17. [PMID: 29378829 PMCID: PMC5854833 DOI: 10.1128/mcb.00654-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/04/2018] [Accepted: 01/18/2018] [Indexed: 01/10/2023] Open
Abstract
The cholesterol sulfotransferase SULT2B1b converts cholesterol to cholesterol sulfate (CS). We previously reported that SULT2B1b inhibits hepatic gluconeogenesis by antagonizing the gluconeogenic activity of hepatocyte nuclear factor 4α (HNF4α). In this study, we showed that the SULT2B1b gene is a transcriptional target of HNF4α, which led to our hypothesis that the induction of SULT2B1b by HNF4α represents a negative feedback to limit the gluconeogenic activity of HNF4α. Indeed, downregulation of Sult2B1b enhanced the gluconeogenic activity of HNF4α, which may have been accounted for by the increased acetylation of HNF4α as a result of decreased expression of the HNF4α deacetylase sirtuin 1 (Sirt1). The expression of Sult2B1b was also induced by HNF4α upon fasting, and the Sult2B1b null (Sult2B1b-/-) mice showed increased gluconeogenic gene expression and an elevated fasting glucose level, suggesting that SULT2B1b also plays a restrictive role in HNF4α-mediated fasting-responsive gluconeogenesis. We also developed thiocholesterol, a hydrolysis-resistant derivative of CS, which showed superior activity to that of the native CS in inhibiting gluconeogenesis and improving insulin sensitivity in high-fat-diet-induced diabetic mice. We conclude that the HNF4α-SULT2B1b-CS axis represents a key endogenous mechanism to prevent uncontrolled gluconeogenesis. Thiocholesterol may be used as a therapeutic agent to manage hyperglycemia.
Collapse
Affiliation(s)
- Yuhan Bi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiongjie Shi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Junjie Zhu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wojciech G Garbacz
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yixian Huang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Gao
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Jiong Yan
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shunlin Ren
- Department of Medicine, Virginia Commonwealth University, Veterans Affairs McGuire Medical Center, Richmond, Virginia, USA
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Song Li
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Nuttall JR, Kucera HR, Supasai S, Gaikwad NW, Oteiza PI. Combined Effects of Gestational Phthalate Exposure and Zinc Deficiency on Steroid Metabolism and Growth. Toxicol Sci 2018; 156:469-479. [PMID: 28115639 DOI: 10.1093/toxsci/kfx008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Disruption of steroid hormone signaling has been implicated independently in the developmental abnormalities resulting from maternal phthalate plasticizer exposure and developmental zinc deficiency. This study investigated if secondary zinc deficiency may result from dietary exposure to a low level of di-2-ethylhexyl phthalate (DEHP) through gestation and if this could be associated with altered steroid metabolism. The interaction between marginal zinc nutrition and DEHP exposure to affect pregnancy outcome, zinc status, and steroid metabolism was also assessed. For this purpose, rats were fed a diet containing an adequate (25 mg/kg) or marginal (10 mg/kg) level of zinc without or with DEHP (300 mg/kg) from gestation day (GD) 0 until GD 19. Steroid profiles were measured in dam liver, plasma, adrenal glands, and in fetal liver by UPLC/MS-MS. In dams fed the adequate zinc diet, DEHP exposure decreased maternal weight gain and led to hepatic acute-phase response and zinc accumulation. The latter could compromise zinc availability to the fetus. DEHP and marginal zinc deficiency caused several adverse effects on the maternal and fetal steroid profiles. Interactions between DEHP exposure and marginal zinc deficient nutrition affected 17OH pregnenolone and corticosterone, while pregnenolone levels were specifically affected by DEHP exposure. Maternal marginal zinc deficiency specifically affected maternal progesterone and aldosterone, and presented evidence of increased androgen aromatization activity in maternal and fetal tissues. Results stress the potential major impact of mild DEHP exposure on maternal/fetal steroid metabolism that can be potentiated by nutritional and chronic disease states leading to zinc deficiency.
Collapse
Affiliation(s)
- Johnathan R Nuttall
- Departments of Nutrition and of Environmental Toxicology, University of California, Davis, California 95616
| | - Heidi R Kucera
- Departments of Nutrition and of Environmental Toxicology, University of California, Davis, California 95616
| | - Suangsuda Supasai
- Departments of Nutrition and of Environmental Toxicology, University of California, Davis, California 95616
| | - Nilesh W Gaikwad
- Departments of Nutrition and of Environmental Toxicology, University of California, Davis, California 95616
| | - Patricia I Oteiza
- Departments of Nutrition and of Environmental Toxicology, University of California, Davis, California 95616
| |
Collapse
|
17
|
Zhang YY, Li C, Yao GF, Du LJ, Liu Y, Zheng XJ, Yan S, Sun JY, Liu Y, Liu MZ, Zhang X, Wei G, Tong W, Chen X, Wu Y, Sun S, Liu S, Ding Q, Yu Y, Yin H, Duan SZ. Deletion of Macrophage Mineralocorticoid Receptor Protects Hepatic Steatosis and Insulin Resistance Through ERα/HGF/Met Pathway. Diabetes 2017; 66:1535-1547. [PMID: 28325853 PMCID: PMC5860190 DOI: 10.2337/db16-1354] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
Although the importance of macrophages in nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) has been recognized, how macrophages affect hepatocytes remains elusive. Mineralocorticoid receptor (MR) has been implicated to play important roles in NAFLD and T2DM. However, cellular and molecular mechanisms are largely unknown. We report that myeloid MR knockout (MRKO) improves glucose intolerance, insulin resistance, and hepatic steatosis in obese mice. Estrogen signaling is sufficient and necessary for such improvements. Hepatic gene and protein expression suggests that MRKO reduces hepatic lipogenesis and lipid storage. In the presence of estrogen, MRKO in macrophages decreases lipid accumulation and increases insulin sensitivity of hepatocytes through hepatocyte growth factor (HGF)/Met signaling. MR directly regulates estrogen receptor 1 (Esr1 [encoding ERα]) in macrophages. Knockdown of hepatic Met eliminates the beneficial effects of MRKO in female obese mice. These findings identify a novel MR/ERα/HGF/Met pathway that conveys metabolic signaling from macrophages to hepatocytes in hepatic steatosis and insulin resistance and provide potential new therapeutic strategies for NAFLD and T2DM.
Collapse
Affiliation(s)
- Yu-Yao Zhang
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Chao Li
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Gao-Feng Yao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Yuan Liu
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Jun Zheng
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Shuai Yan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Jian-Yong Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Zhu Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Xiaoran Zhang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenxin Tong
- Department of Infectious Diseases, Ren-Min Hospital of Wuhan University, Wuhan, China
| | - Xiaobei Chen
- Department of Infectious Diseases, Ren-Min Hospital of Wuhan University, Wuhan, China
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Shuyang Sun
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suling Liu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University, Shanghai, China
| | - Qiurong Ding
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huiyong Yin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Abstract
BACKGROUND AND AIM Sulfotransferase (SULT)-mediated sulfation and steroid sulfatase (STS)-mediated desulfation represent two critical mechanisms that regulate the chemical and functional homeostasis of endogenous and exogenous molecules. STS catalyzes the hydrolysis of steroid sulfates to form hydroxysteroids. Oxygenated cholesterol derivative oxysterols are known to be endogenous ligands of the liver X receptor (LXR), a nuclear receptor with anti-cholestasis activity, whereas the sulfated oxysterols antagonize LXR signaling. The conversion of sulfated oxysterols to their non-sulfated counterparts is catalyzed by STS. The aim of this study is to determine whether STS can alleviate cholestasis by increasing the activity of LXR. METHODS Liver-specific STS transgenic mice were created and subject to the lithocholic acid (LCA)-induced model of cholestasis. RESULTS Transgenic overexpression of STS in the liver promoted bile acid elimination and alleviated LCA-induced cholestasis. The protective effect of the STS transgene was associated with the activation of LXR and induction of LXR target genes, likely because of the increased conversion of the antagonistic oxysterol sulfates to the agonistic oxysterols. CONCLUSIONS STS has a novel function in controlling the homeostasis of bile acids by regulating endogenous LXR ligands.
Collapse
|
19
|
Upadhyaya B, Larsen T, Barwari S, Louwagie EJ, Baack ML, Dey M. Prenatal Exposure to a Maternal High-Fat Diet Affects Histone Modification of Cardiometabolic Genes in Newborn Rats. Nutrients 2017; 9:E407. [PMID: 28425976 PMCID: PMC5409746 DOI: 10.3390/nu9040407] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/15/2022] Open
Abstract
Infants born to women with diabetes or obesity are exposed to excess circulating fuels during fetal heart development and are at higher risk of cardiac diseases. We have previously shown that late-gestation diabetes, especially in conjunction with a maternal high-fat (HF) diet, impairs cardiac functions in rat-offspring. This study investigated changes in genome-wide histone modifications in newborn hearts from rat-pups exposed to maternal diabetes and HF-diet. Chromatin-immunoprecipitation-sequencing revealed a differential peak distribution on gene promoters in exposed pups with respect to acetylation of lysines 9 and 14 and to trimethylation of lysines 4 and 27 in histone H3 (all, false discovery rate, FDR < 0.1). In the HF-diet exposed offspring, 54% of the annotated genes showed the gene-activating mark trimethylated lysine 4. Many of these genes (1) are associated with the "metabolic process" in general and particularly with "positive regulation of cholesterol biosynthesis" (FDR = 0.03); (2) overlap with 455 quantitative trait loci for blood pressure, body weight, serum cholesterol (all, FDR < 0.1); and (3) are linked to cardiac disease susceptibility/progression, based on disease ontology analyses and scientific literature. These results indicate that maternal HF-diet changes the cardiac histone signature in offspring suggesting a fuel-mediated epigenetic reprogramming of cardiac tissue in utero.
Collapse
Affiliation(s)
- Bijaya Upadhyaya
- Department of Health and Nutritional Sciences, Box 2203, South Dakota State University, Brookings, SD 57007, USA.
| | - Tricia Larsen
- Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA.
| | - Shivon Barwari
- Department of Health and Nutritional Sciences, Box 2203, South Dakota State University, Brookings, SD 57007, USA.
| | - Eli J Louwagie
- Sanford School of Medicine-University of South Dakota, Sioux Falls, SD 57105, USA.
| | - Michelle L Baack
- Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA.
- Sanford School of Medicine-University of South Dakota, Sioux Falls, SD 57105, USA.
- Children's Health Specialty Clinic, Sanford Children's Hospital, Sioux Falls, SD 57117, USA.
| | - Moul Dey
- Department of Health and Nutritional Sciences, Box 2203, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
20
|
Garbacz WG, Jiang M, Xie W. Sex-Dependent Role of Estrogen Sulfotransferase and Steroid Sulfatase in Metabolic Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:455-469. [PMID: 29224107 DOI: 10.1007/978-3-319-70178-3_21] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sulfonation and desulfation are two opposing processes that represent an important layer of regulation of estrogenic activity via ligand supplies. Enzymatic activities of families of enzymes, known as sulfotransferases and sulfatases, lead to structural and functional changes of the steroids, thyroids, xenobiotics, and neurotransmitters. Estrogen sulfotransferase (EST) and steroid sulfatase (STS) represent negative and positive regulation of the estrogen activity, respectively. This is because EST-mediated sulfation deactivates estrogens, whereas STS-mediated desulfation converts the inactive estrogen sulfates to active estrogens. In addition to the known functions of estrogens, EST and STS in reproductive processes, regulation of estrogens and other signal molecules especially at the local tissue levels has gained increased attention in the context of metabolic disease in recent years. EST expression is detectable in the subcutaneous adipose tissue in both obese women and men, and the expression of EST is markedly induced in the livers of rodent models of obesity and type 2 diabetes. STS was found to be upregulated in patients with chronic inflammatory liver diseases. Interestingly, the tissue distribution and the transcriptional regulation of EST and STS exhibit obvious sex and species specificity. EST ablation produces completely opposite metabolic phenotype in female and male obese mice. Adipogenesis is also differentially regulated by EST in murine and human adipocytes. This chapter focuses on the recent progress in our understanding of the expression and regulation EST and STS in the context of metabolic homeostasis.
Collapse
Affiliation(s)
- Wojciech G Garbacz
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mengxi Jiang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Hepatic Overexpression of CD36 Improves Glycogen Homeostasis and Attenuates High-Fat Diet-Induced Hepatic Steatosis and Insulin Resistance. Mol Cell Biol 2016; 36:2715-2727. [PMID: 27528620 DOI: 10.1128/mcb.00138-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/10/2016] [Indexed: 11/20/2022] Open
Abstract
The common complications in obesity and type 2 diabetes include hepatic steatosis and disruption of glucose-glycogen homeostasis, leading to hyperglycemia. Fatty acid translocase (FAT/CD36), whose expression is inducible in obesity, is known for its function in fatty acid uptake. Previous work by us and others suggested that CD36 plays an important role in hepatic lipid homeostasis, but the results have been conflicting and the mechanisms were not well understood. In this study, by using CD36-overexpressing transgenic (CD36Tg) mice, we uncovered a surprising function of CD36 in regulating glycogen homeostasis. Overexpression of CD36 promoted glycogen synthesis, and as a result, CD36Tg mice were protected from fasting hypoglycemia. When challenged with a high-fat diet (HFD), CD36Tg mice showed unexpected attenuation of hepatic steatosis, increased very low-density lipoprotein (VLDL) secretion, and improved glucose tolerance and insulin sensitivity. The HFD-fed CD36Tg mice also showed decreased levels of proinflammatory hepatic prostaglandins and 20-hydroxyeicosatetraenoic acid (20-HETE), a potent vasoconstrictive and proinflammatory arachidonic acid metabolite. We propose that CD36 functions as a protective metabolic sensor in the liver under lipid overload and metabolic stress. CD36 may be explored as a valuable therapeutic target for the management of metabolic syndrome.
Collapse
|
22
|
Dias NJ, Selcer KW. Steroid sulfatase in the human MG-63 preosteoblastic cell line: Antagonistic regulation by glucocorticoids and NFκB. Mol Cell Endocrinol 2016; 420:85-96. [PMID: 26631368 DOI: 10.1016/j.mce.2015.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Steroid sulfatase (STS) converts sulfated steroids into active forms in cells. Preosteoblastic cells possess STS, but its role and regulation in bone are unclear. We examined STS activity and gene expression during differentiation of human MG-63 preosteoblasts. STS activity and gene expression were decreased during differentiation in cells treated with osteogenic supplement containing dexamethasone (DEX). DEX also inhibited STS activity and expression in undifferentiated cells, and the glucocorticoid antagonist RU486 reversed DEX inhibition of STS. These data may have implications for glucocorticoid-induced osteoporosis. The NFκB activators lipopolysaccharide and phorbol myristate acetate increased STS expression in undifferentiated and differentiated MG-63 cells, while the NFκB inhibitor BAY-11-7082 partially blocked these responses. The antagonistic actions of glucocorticoids and NFkB on STS expression are similar to the regulation of inflammatory response proteins. We propose a model of STS regulation whereby inflammation leads to increased STS, resulting in increased estrogen, which modulates the inflammatory response.
Collapse
Affiliation(s)
- Natasha J Dias
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Kyle W Selcer
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
24
|
Oestrogen sulfotransferase ablation sensitizes mice to sepsis. Nat Commun 2015; 6:7979. [PMID: 26259151 PMCID: PMC4532951 DOI: 10.1038/ncomms8979] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/02/2015] [Indexed: 02/08/2023] Open
Abstract
Sepsis is the host's deleterious systemic inflammatory response to microbial infections. Here we report an essential role for the oestrogen sulfotransferase (EST or SULT1E1), a conjugating enzyme that sulfonates and deactivates estrogens, in sepsis response. Both the caecal ligation and puncture (CLP) and lipopolysaccharide models of sepsis induce the expression of EST and compromise the activity of oestrogen, an anti-inflammatory hormone. Surprisingly, EST ablation sensitizes mice to sepsis-induced death. Mechanistically, EST ablation attenuates sepsis-induced inflammatory responses due to compromised oestrogen deactivation, leading to increased sepsis lethality. In contrast, transgenic overexpression of EST promotes oestrogen deactivation and sensitizes mice to CLP-induced inflammatory response. The induction of EST by sepsis is NF-κB dependent and EST is a NF-κB-target gene. The reciprocal regulation of inflammation and EST may represent a yet-to-be-explored mechanism of endocrine regulation of inflammation, which has an impact on the clinical outcome of sepsis.
Collapse
|
25
|
Abstract
The purpose of this paper is to review male-female differences in the incidence and prevalence of diabetes and diabetic retinopathy. These differences will be established primarily through results from our present research and a review of related literature. Previously, we have demonstrated that neuroretinal dysfunction can be used to predict the location of future retinopathy up to three years before it is manifest. Our current research suggests that, for type 2 diabetes, the normal differences in neuroretinal function between nondiabetic males and females under 50 years of age are altered in patients with type 2 diabetes. Furthermore, local neuroretinal function in type 2 diabetes is more abnormal in adult males compared with adult females. The literature also suggests that there are male-female differences in the occurrence of diabetes. In adolescence, the incidence of type 1 diabetes is greater in males, whereas in type 2 diabetes, the incidence is greater in females. This excess of females in type 2 diabetes shifts to a more equal incidence between the two sexes in adults. In addition, advanced retinopathy in type 1 diabetes appears to be more common in males, and the presence and severity of diabetic retinopathy at the time of diagnosis in type 2 diabetes appears to be more associated with male sex. Although the reasons for male-female differences identified in this review are unknown, sex appears to be a significant factor in certain aspects of diabetes incidence and diabetic retinopathy.
Collapse
Affiliation(s)
- Glen Y Ozawa
- Berkeley School of Optometry, University of California , Berkeley, CA , USA
| | | | | |
Collapse
|
26
|
Fernández AI, Muñoz M, Alves E, Folch JM, Noguera JL, Enciso MP, Rodríguez MDC, Silió L. Recombination of the porcine X chromosome: a high density linkage map. BMC Genet 2014; 15:148. [PMID: 25526890 PMCID: PMC4293812 DOI: 10.1186/s12863-014-0148-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/08/2014] [Indexed: 01/22/2023] Open
Abstract
Background Linkage maps are essential tools for the study of several topics in genome biology. High density linkage maps for the porcine autosomes have been constructed exploiting the high density data provided by the PorcineSNP60 BeadChip. However, a high density SSCX linkage map has not been reported up to date. The aim of the current study was to build an accurate linkage map of SSCX to provide precise estimates of recombination rates along this chromosome and creating a new tool for QTL fine mapping. Results A female-specific high density linkage map was built for SSCX using Sscrofa10.2 annotation. The total length of this chromosome was 84.61 cM; although the average recombination rate was 0.60 cM/Mb, both cold and hot recombination regions were identified. A Bayesian probabilistic to genetic groups and revealed that the animals used in the current study for linkage map construction were likely to be carriers of X chromosomes of European origin. Finally, the newly generated linkage map was used to fine-map a QTL at 16 cM for intramuscular fat content (IMF) measured on longissimus dorsi. The sulfatase isozyme S gene constitutes a functional and positional candidate gene underlying the QTL effect. Conclusions The current study presents for the first time a high density linkage map for SSCX and supports the presence of cold and hot recombination intervals along this chromosome. The large cold recombination region in the central segment of the chromosome is not likely to be due to structural differences between X chromosomes of European and Asian origin. In addition, the newly generated linkage map has allowed us to fine-map a QTL on SSCX for fat deposition. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0148-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana I Fernández
- Departamento de Mejora Genética Animal, INIA, Ctra. De la Coruña km. 7, Madrid, 28040, Spain.
| | - María Muñoz
- Departamento de Mejora Genética Animal, INIA, Ctra. De la Coruña km. 7, Madrid, 28040, Spain. .,The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, EH25 9RG, UK.
| | - Estefânia Alves
- Departamento de Mejora Genética Animal, INIA, Ctra. De la Coruña km. 7, Madrid, 28040, Spain.
| | - Josep María Folch
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, UAB, Bellaterra, 08193, Spain. .,Present Address: Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Edifici CRAG, Campus Universitat Autonoma Barcelona, Bellaterra, 08193, Spain.
| | - Jose Luis Noguera
- Genètica i Millora Animal, IRTA, Av. Alcalde Rovira Roure, 191, Lleida, 25198, Spain.
| | - Miguel Pérez Enciso
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, UAB, Bellaterra, 08193, Spain. .,Present Address: Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Edifici CRAG, Campus Universitat Autonoma Barcelona, Bellaterra, 08193, Spain. .,Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain.
| | | | - Luis Silió
- Departamento de Mejora Genética Animal, INIA, Ctra. De la Coruña km. 7, Madrid, 28040, Spain.
| |
Collapse
|
27
|
Estrogen signaling in metabolic inflammation. Mediators Inflamm 2014; 2014:615917. [PMID: 25400333 PMCID: PMC4226184 DOI: 10.1155/2014/615917] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023] Open
Abstract
There is extensive evidence supporting the interference of inflammatory activation with metabolism. Obesity, mainly visceral obesity, is associated with a low-grade inflammatory state, triggered by metabolic surplus where specialized metabolic cells such as adipocytes activate cellular stress initiating and sustaining the inflammatory program. The increasing prevalence of obesity, resulting in increased cardiometabolic risk and precipitating illness such as cardiovascular disease, type 2 diabetes, fatty liver, cirrhosis, and certain types of cancer, constitutes a good example of this association. The metabolic actions of estrogens have been studied extensively and there is also accumulating evidence that estrogens influence immune processes. However, the connection between these two fields of estrogen actions has been underacknowledged since little attention has been drawn towards the possible action of estrogens on the modulation of metabolism through their anti-inflammatory properties. In the present paper, we summarize knowledge on the modification inflammatory processes by estrogens with impact on metabolism and highlight major research questions on the field. Understanding the regulation of metabolic inflammation by estrogens may provide the basis for the development of therapeutic strategies to the management of metabolic dysfunctions.
Collapse
|