1
|
Gao X, Feng X, Hou T, Huang W, Ma Z, Zhang D. The roles of flavonoids in the treatment of inflammatory bowel disease and extraintestinal manifestations: A review. FOOD BIOSCI 2024; 62:105431. [DOI: 10.1016/j.fbio.2024.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Veselá K, Kejík Z, Abramenko N, Kaplánek R, Jakubek M, Petrlova J. Investigating antibacterial and anti-inflammatory properties of synthetic curcuminoids. Front Med (Lausanne) 2024; 11:1478122. [PMID: 39534226 PMCID: PMC11554473 DOI: 10.3389/fmed.2024.1478122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The concept of intratumoral microbiota is gaining attention in current research. Tumor-associated microbiota can activate oncogenic signaling pathways such as NF-κB, thereby promoting tumor development and progression. Numerous studies have demonstrated that curcumin and its analogs possess strong antitumor effects by targeting the NF-κB signaling pathway, along with potent antibacterial properties. In this study, we tested the antibacterial activity of two curcuminoids, Py-cPen and V-cPen, against the Gram-negative bacterial strains Pseudomonas aeruginosa and Escherichia coli and the Gram-positive bacterial strain Streptococcus aureus using in vitro assays and fluorescent microscopy. We observed that both Py-cPen and V-cPen reduced NF-κB activation upon lipopolysacharide (LPS) challenge in cell assays. In addition, our findings indicate that Py-cPen and V-cPen interact with LPS, as demonstrated by transmission electron microscopy and confirmed using in silico analyses, thereby modulating LPS activity. Overall, our data indicate that Py-cPen and V-cPen exhibit strong antibacterial and antiinflammatory properties, suggesting their potential as candidates for new multitarget therapeutic strategies.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Zdeněk Kejík
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Nikita Abramenko
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Vestec, Czechia
| | - Robert Kaplánek
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Vestec, Czechia
| | - Milan Jakubek
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jitka Petrlova
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| |
Collapse
|
3
|
Wu J, Liu N, Chen J, Tao Q, Li Q, Li J, Chen X, Peng C. The Tricarboxylic Acid Cycle Metabolites for Cancer: Friend or Enemy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0351. [PMID: 38867720 PMCID: PMC11168306 DOI: 10.34133/research.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/18/2024] [Indexed: 06/14/2024]
Abstract
The tricarboxylic acid (TCA) cycle is capable of providing sufficient energy for the physiological activities under aerobic conditions. Although tumor metabolic reprogramming places aerobic glycolysis in a dominant position, the TCA cycle remains indispensable for tumor cells as a hub for the metabolic linkage and interconversion of glucose, lipids, and certain amino acids. TCA intermediates such as citrate, α-ketoglutarate, succinate, and fumarate are altered in tumors, and they regulate the tumor metabolism, signal transduction, and immune environment to affect tumorigenesis and tumor progression. This article provides a comprehensive review of the modifications occurring in tumor cells in relation to the intermediates of the TCA cycle, which affects tumor pathogenesis and current therapeutic strategy for therapy through targeting TCA cycle in cancer cells.
Collapse
Affiliation(s)
- Jie Wu
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jing Chen
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Qian Tao
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Qiuqiu Li
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jie Li
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Taunk K, Jajula S, Bhavsar PP, Choudhari M, Bhanuse S, Tamhankar A, Naiya T, Kalita B, Rapole S. The prowess of metabolomics in cancer research: current trends, challenges and future perspectives. Mol Cell Biochem 2024:10.1007/s11010-024-05041-w. [PMID: 38814423 DOI: 10.1007/s11010-024-05041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Cancer due to its heterogeneous nature and large prevalence has tremendous socioeconomic impacts on populations across the world. Therefore, it is crucial to discover effective panels of biomarkers for diagnosing cancer at an early stage. Cancer leads to alterations in cell growth and differentiation at the molecular level, some of which are very unique. Therefore, comprehending these alterations can aid in a better understanding of the disease pathology and identification of the biomolecules that can serve as effective biomarkers for cancer diagnosis. Metabolites, among other biomolecules of interest, play a key role in the pathophysiology of cancer whose levels are significantly altered while 'reprogramming the energy metabolism', a cellular condition favored in cancer cells which is one of the hallmarks of cancer. Metabolomics, an emerging omics technology has tremendous potential to contribute towards the goal of investigating cancer metabolites or the metabolic alterations during the development of cancer. Diverse metabolites can be screened in a variety of biofluids, and tumor tissues sampled from cancer patients against healthy controls to capture the altered metabolism. In this review, we provide an overview of different metabolomics approaches employed in cancer research and the potential of metabolites as biomarkers for cancer diagnosis. In addition, we discuss the challenges associated with metabolomics-driven cancer research and gaze upon the prospects of this emerging field.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH12 Simhat, Haringhata, Nadia, West Bengal, 741249, India
| | - Saikiran Jajula
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Praneeta Pradip Bhavsar
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Mahima Choudhari
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Sadanand Bhanuse
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Anup Tamhankar
- Department of Surgical Oncology, Deenanath Mangeshkar Hospital and Research Centre, Erandawne, Pune, Maharashtra, 411004, India
| | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH12 Simhat, Haringhata, Nadia, West Bengal, 741249, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India.
- Amrita School of Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala, 682041, India.
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
5
|
Li ZL, Huang MM, Yu MY, Nie DF, Fu SL, Di JJ, Lan T, Liu BC, Wu QL. Mitochondrial fumarate promotes ischemia/reperfusion-induced tubular injury. Acta Physiol (Oxf) 2024; 240:e14121. [PMID: 38409944 DOI: 10.1111/apha.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
AIM Mitochondrial dysfunction, a characteristic pathological feature of renal Ischemic/reperfusion injury (I/RI), predisposes tubular epithelial cells to maintain an inflammatory microenvironment, however, the exact mechanisms through which mitochondrial dysfunction modulates the induction of tubular injury remains incompletely understood. METHODS ESI-QTRAP-MS/MS approach was used to characterize the targeted metabolic profiling of kidney with I/RI. Tubule injury, mitochondrial dysfunction, and fumarate level were evaluated using qPCR, transmission electron microscopy, ELISA, and immunohistochemistry. RESULTS We demonstrated that tubule injury occurred at the phase of reperfusion in murine model of I/RI. Meanwhile, enhanced glycolysis and mitochondrial dysfunction were found to be associated with tubule injury. Further, we found that tubular fumarate, which resulted from fumarate hydratase deficiency and released from dysfunctional mitochondria, promoted tubular injury. Mechanistically, fumarate induced tubular injury by causing disturbance of glutathione (GSH) hemostasis. Suppression of GSH with buthionine sulphoximine administration could deteriorate the fumarate inhibition-mediated tubule injury recovery. Reactive oxygen species/NF-κB signaling activation played a vital role in fumarate-mediated tubule injury. CONCLUSION Our studies demonstrated that the mitochondrial-derived fumarate promotes tubular epithelial cell injury in renal I/RI. Blockade of fumarate-mediated ROS/NF-κB signaling activation may serve as a novel therapeutic approach to ameliorate hypoxic tubule injury.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Ming-Min Huang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Meng-Yao Yu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Di-Fei Nie
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Sha-Li Fu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Jing-Jing Di
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Ting Lan
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Qiu-Li Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Bhalla M, Mittal R, Kumar M, Bhatia R, Kushwah AS. Metabolomics: A Tool to Envisage Biomarkers in Clinical Interpretation of Cancer. Curr Drug Res Rev 2024; 16:333-348. [PMID: 37702236 DOI: 10.2174/2589977516666230912120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 07/20/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Cancer is amongst the most dreadful ailments of modern times, and its impact continuously worsens global health systems. Early diagnosis and suitable therapeutic agents are the prime keys to managing this disease. Metabolomics deals with the complete profiling of cells and physiological phenomena in their organelles, thus helping in keen knowledge of the pathological status of the disease. It has been proven to be one of the best strategies in the early screening of cancer. OBJECTIVE This review has covered the recent updates on the promising role of metabolomics in the identification of significant biochemical markers in cancer-prone individuals that could lead to the identification of cancer in the early stages. METHODS The literature was collected through various databases, like Scopus, PubMed, and Google Scholar, with stress laid on the last ten years' publications. CONCLUSION It was assessed in this review that early recognition of cancerous growth could be achieved via complete metabolic profiling in association with transcriptomics and proteomics. The outcomes are rooted in various clinical studies that anticipated various biomarkers like tryptophan, phenylalanine, lactates, and different metabolic pathways associated with the Warburg effect. This metabolite imaging has been a fundamental step for the target acquisition, evaluation of predictive cancer biomarkers for early detection, and outlooks into cancer therapy along with critical evaluation. Significant efforts should be made to make this technique most reliable and easy.
Collapse
Affiliation(s)
- Medha Bhalla
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Ropar, 140111, India
| | - Roopal Mittal
- Department of Pharmacology, IKG Punjab Technical University, Jalandhar, 144601, India
- Department of Pharmacology, R.K.S.D. College of Pharmacy, Kaithal, 136027, India
| | - Manish Kumar
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, Indo Soviet Friendship College of Pharmacy, Moga, 142001, India
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Ropar, 140111, India
| |
Collapse
|
7
|
Murali R, Gopalakrishnan AV. Molecular insight into renal cancer and latest therapeutic approaches to tackle it: an updated review. Med Oncol 2023; 40:355. [PMID: 37955787 DOI: 10.1007/s12032-023-02225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most lethal genitourinary cancers, with the highest mortality rate, and may remain undetected throughout its development. RCC can be sporadic or hereditary. Exploring the underlying genetic abnormalities in RCC will have important implications for understanding the origins of nonhereditary renal cancers. The treatment of RCC has evolved over centuries from the era of cytokines to targeted therapy to immunotherapy. A surgical cure is the primary treatment modality, especially for organ-confined diseases. Furthermore, the urologic oncology community focuses on nephron-sparing surgical approaches and ablative procedures when small renal masses are detected incidentally in conjunction with interventional radiologists. In addition to new combination therapies approved for RCC treatment, several trials have been conducted to investigate the potential benefits of certain drugs. This may lead to durable responses and more extended survival benefits for patients with metastatic RCC (mRCC). Several approved drugs have reduced the mortality rate of patients with RCC by targeting VEGF signaling and mTOR. This review better explains the signaling pathways involved in the RCC progression, oncometabolites, and essential biomarkers in RCC that can be used for its diagnosis. Further, it provides an overview of the characteristics of RCC carcinogenesis to assist in combating treatment resistance, as well as details about the current management and future therapeutic options. In the future, multimodal and integrated care will be available, with new treatment options emerging as we learn more about the disease.
Collapse
Affiliation(s)
- Reshma Murali
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology VIT, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology VIT, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Wilde BR, Chakraborty N, Matulionis N, Hernandez S, Ueno D, Gee ME, Esplin ED, Ouyang K, Nykamp K, Shuch B, Christofk HR. FH Variant Pathogenicity Promotes Purine Salvage Pathway Dependence in Kidney Cancer. Cancer Discov 2023; 13:2072-2089. [PMID: 37255402 PMCID: PMC10527600 DOI: 10.1158/2159-8290.cd-22-0874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/27/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
Fumarate accumulation due to loss of fumarate hydratase (FH) drives cellular transformation. Germline FH alterations lead to hereditary leiomyomatosis and renal cell cancer (HLRCC) where patients are predisposed to an aggressive form of kidney cancer. There is an unmet need to classify FH variants by cancer-associated risk. We quantified catalytic efficiencies of 74 variants of uncertain significance. Over half were enzymatically inactive, which is strong evidence of pathogenicity. We next generated a panel of HLRCC cell lines expressing FH variants with a range of catalytic activities, then correlated fumarate levels with metabolic features. We found that fumarate accumulation blocks de novo purine biosynthesis, rendering FH-deficient cells reliant on purine salvage for proliferation. Genetic or pharmacologic inhibition of the purine salvage pathway reduced HLRCC tumor growth in vivo. These findings suggest the pathogenicity of patient-associated FH variants and reveal purine salvage as a targetable vulnerability in FH-deficient tumors. SIGNIFICANCE This study functionally characterizes patient-associated FH variants with unknown significance for pathogenicity. This study also reveals nucleotide salvage pathways as a targetable feature of FH-deficient cancers, which are shown to be sensitive to the purine salvage pathway inhibitor 6-mercaptopurine. This presents a new rapidly translatable treatment strategy for FH-deficient cancers. This article is featured in Selected Articles from This Issue, p. 1949.
Collapse
Affiliation(s)
- Blake R. Wilde
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
| | - Nishma Chakraborty
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
- Equal contribution
| | - Nedas Matulionis
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
- Equal contribution
| | - Stephanie Hernandez
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
- Equal contribution
| | - Daiki Ueno
- Institute of Urologic Oncology, University of California Los Angeles, Los Angeles, California
- Currently: Department of Urology, Yokosuka Kyosai Hospital
| | - Michayla E. Gee
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
| | | | | | | | - Brian Shuch
- Institute of Urologic Oncology, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Heather R. Christofk
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
9
|
Youssef WA, Feil R, Saint-Sorny M, Johnson X, Lunn JE, Grimm B, Brzezowski P. Singlet oxygen-induced signalling depends on the metabolic status of the Chlamydomonas reinhardtii cell. Commun Biol 2023; 6:529. [PMID: 37193883 DOI: 10.1038/s42003-023-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Using a mutant screen, we identified trehalose 6-phosphate phosphatase 1 (TSPP1) as a functional enzyme dephosphorylating trehalose 6-phosphate (Tre6P) to trehalose in Chlamydomonas reinhardtii. The tspp1 knock-out results in reprogramming of the cell metabolism via altered transcriptome. As a secondary effect, tspp1 also shows impairment in 1O2-induced chloroplast retrograde signalling. From transcriptomic analysis and metabolite profiling, we conclude that accumulation or deficiency of certain metabolites directly affect 1O2-signalling. 1O2-inducible GLUTATHIONE PEROXIDASE 5 (GPX5) gene expression is suppressed by increased content of fumarate and 2-oxoglutarate, intermediates in the tricarboxylic acid cycle (TCA cycle) in mitochondria and dicarboxylate metabolism in the cytosol, but also myo-inositol, involved in inositol phosphate metabolism and phosphatidylinositol signalling system. Application of another TCA cycle intermediate, aconitate, recovers 1O2-signalling and GPX5 expression in otherwise aconitate-deficient tspp1. Genes encoding known essential components of chloroplast-to-nucleus 1O2-signalling, PSBP2, MBS, and SAK1, show decreased transcript levels in tspp1, which also can be rescued by exogenous application of aconitate. We demonstrate that chloroplast retrograde signalling involving 1O2 depends on mitochondrial and cytosolic processes and that the metabolic status of the cell determines the response to 1O2.
Collapse
Affiliation(s)
- Waeil Al Youssef
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Maureen Saint-Sorny
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Xenie Johnson
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Bernhard Grimm
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Pawel Brzezowski
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
10
|
Malayil R, Chhichholiya Y, Vasudeva K, Singh HV, Singh T, Singh S, Munshi A. Oncogenic metabolic reprogramming in breast cancer: focus on signaling pathways and mitochondrial genes. Med Oncol 2023; 40:174. [PMID: 37170010 DOI: 10.1007/s12032-023-02037-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
Oncogenic metabolic reprogramming impacts the abundance of key metabolites that regulate signaling and epigenetics. Metabolic vulnerability in the cancer cell is evident from the Warburg effect. The research on metabolism in the progression and survival of breast cancer (BC) is under focus. Oncogenic signal activation and loss of tumor suppressor are important regulators of tumor cell metabolism. Several intrinsic and extrinsic factors contribute to metabolic reprogramming. The molecular mechanisms underpinning metabolic reprogramming in BC are extensive and only partially defined. Various signaling pathways involved in the metabolism play a significant role in the modulation of BC. Notably, PI3K/AKT/mTOR pathway, lactate-ERK/STAT3 signaling, loss of the tumor suppressor Ras, Myc, oxidative stress, activation of the cellular hypoxic response and acidosis contribute to different metabolic reprogramming phenotypes linked to enhanced glycolysis. The alterations in mitochondrial genes have also been elaborated upon along with their functional implications. The outcome of these active research areas might contribute to the development of novel therapeutic interventions and the remodeling of known drugs.
Collapse
Affiliation(s)
- Rhuthuparna Malayil
- Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda, Punjab, India
| | - Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda, Punjab, India
| | | | - Harsh Vikram Singh
- Department of Orthopedics, All India Institute of Medical Sciences, Bathinda, India
| | - Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda, Punjab, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda, Punjab, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda, Punjab, India.
| |
Collapse
|
11
|
Hooftman A, Peace CG, Ryan DG, Day EA, Yang M, McGettrick AF, Yin M, Montano EN, Huo L, Toller-Kawahisa JE, Zecchini V, Ryan TAJ, Bolado-Carrancio A, Casey AM, Prag HA, Costa ASH, De Los Santos G, Ishimori M, Wallace DJ, Venuturupalli S, Nikitopoulou E, Frizzell N, Johansson C, Von Kriegsheim A, Murphy MP, Jefferies C, Frezza C, O'Neill LAJ. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production. Nature 2023; 615:490-498. [PMID: 36890227 PMCID: PMC10411300 DOI: 10.1038/s41586-023-05720-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/10/2023] [Indexed: 03/10/2023]
Abstract
Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-β production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.
Collapse
Affiliation(s)
- Alexander Hooftman
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Christian G Peace
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Dylan G Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- MRC Cancer Unit, University of Cambridge, Cambridge, UK.
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Emily A Day
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ming Yang
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- CECAD Research Centre, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Anne F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Maureen Yin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Erica N Montano
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lihong Huo
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Juliana E Toller-Kawahisa
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Tristram A J Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Alva M Casey
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- Matterworks, Somerville, MA, USA
| | - Gabriela De Los Santos
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mariko Ishimori
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel J Wallace
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Swamy Venuturupalli
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Norma Frizzell
- School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Caroline Jefferies
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- CECAD Research Centre, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Hooftman A, Peace CG, Ryan DG, Day EA, Yang M, McGettrick AF, Yin M, Montano EN, Huo L, Toller-Kawahisa JE, Zecchini V, Ryan TAJ, Bolado-Carrancio A, Casey AM, Prag HA, Costa ASH, De Los Santos G, Ishimori M, Wallace DJ, Venuturupalli S, Nikitopoulou E, Frizzell N, Johansson C, Von Kriegsheim A, Murphy MP, Jefferies C, Frezza C, O'Neill LAJ. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production. Nature 2023; 615:490-498. [PMID: 36890227 PMCID: PMC10411300 DOI: 10.1038/s41586-019-0000-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/10/2023] [Indexed: 12/28/2024]
Abstract
Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-β production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.
Collapse
Affiliation(s)
- Alexander Hooftman
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Christian G Peace
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Dylan G Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- MRC Cancer Unit, University of Cambridge, Cambridge, UK.
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Emily A Day
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ming Yang
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- CECAD Research Centre, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Anne F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Maureen Yin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Erica N Montano
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lihong Huo
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Juliana E Toller-Kawahisa
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Tristram A J Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Alva M Casey
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- Matterworks, Somerville, MA, USA
| | - Gabriela De Los Santos
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mariko Ishimori
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel J Wallace
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Swamy Venuturupalli
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Norma Frizzell
- School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Caroline Jefferies
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- CECAD Research Centre, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
13
|
Ni R, Li Z, Li L, Peng D, Ming Y, Li L, Liu Y. Rethinking glutamine metabolism and the regulation of glutamine addiction by oncogenes in cancer. Front Oncol 2023; 13:1143798. [PMID: 36959802 PMCID: PMC10029103 DOI: 10.3389/fonc.2023.1143798] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Glutamine, the most abundant non-essential amino acid in human blood, is crucial for cancer cell growth and cancer progression. Glutamine mainly functions as a carbon and nitrogen source for biosynthesis, energy metabolism, and redox homeostasis maintenance in cancer cells. Dysregulated glutamine metabolism is a notable metabolic characteristic of cancer cells. Some carcinogen-driven cancers exhibit a marked dependence on glutamine, also known as glutamine addiction, which has rendered the glutamine metabolic pathway a breakpoint in cancer therapeutics. However, some cancer cells can adapt to the glutamine unavailability by reprogramming metabolism, thus limiting the success of this therapeutic approach. Given the complexity of metabolic networks and the limited impact of inhibiting glutamine metabolism alone, the combination of glutamine metabolism inhibition and other therapeutic methods may outperform corresponding monotherapies in the treatment of cancers. This review summarizes the uptake, transport, and metabolic characteristics of glutamine, as well as the regulation of glutamine dependence by some important oncogenes in various cancers to emphasize the therapeutic potential of targeting glutamine metabolism. Furthermore, we discuss a glutamine metabolic pathway, the glutaminase II pathway, that has been substantially overlooked. Finally, we discuss the applicability of polytherapeutic strategies targeting glutamine metabolism to provide a new perspective on cancer therapeutics.
Collapse
Affiliation(s)
- Rui Ni
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziwei Li
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Li
- Department of pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Lin Li, ; Yao Liu,
| | - Yao Liu
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Lin Li, ; Yao Liu,
| |
Collapse
|
14
|
Zheng J, Kim SJ, Saeidi S, Kim SH, Fang X, Lee YH, Guillen-Quispe YN, Ngo HKC, Kim DH, Kim D, Surh YJ. Overactivated NRF2 induces pseudohypoxia in hepatocellular carcinoma by stabilizing HIF-1α. Free Radic Biol Med 2023; 194:347-356. [PMID: 36460215 DOI: 10.1016/j.freeradbiomed.2022.11.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is highly expressed/activated in most hypoxic tumors including hepatocellular carcinoma (HCC). Another key transcription factor, nuclear factor erythroid 2-related factor 2 (NRF2), is also constitutively overactivated in HCC. In an attempt to determine whether HIF-1α and NRF2 could play complementary roles in HCC growth and progression, we investigated the crosstalk between these two transcription factors and underlying molecular mechanisms in cultured HCC cells and experimentally induced hepatocarcinogenesis as well as clinical settings. While silencing of HIF-1α in HepG2 human hepatoma cells did not alter the protein expression of NRF2, NRF2 knockdown markedly reduced the nuclear accumulation of HIF-1α without influencing its mRNA expression. In diethylnitrosamine-induced hepatocarcinogenesis in wild type mice, there was elevated NRF2 expression with concomitant upregulation of HIF-1α. However, this was abolished in Nrf2 knockout mice. NRF2 and HIF-1α co-localized and physically interacted with each other as assessed by in situ proximity ligation and immunoprecipitation assays. In addition, the interaction between NRF2 and HIF-1α as well as their overexpression was found in tumor specimens obtained from HCC patients. In normoxia, HIF-1α undergoes hydroxylation by a specific HIF-prolyl hydroxylase domain protein (PHD), which facilitates ubiquitination and proteasomal degradation of HIF-1α. NRF2 contributes to pseudohypoxia, by directly binding to the oxygen-dependent degradation (ODD) domain of HIF-1α, which hampers the PHD2-mediated hydroxylation, concomitant recruitment of von-Hippel-Lindau and ubiquitination of HIF-1α.
Collapse
Affiliation(s)
- Jie Zheng
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Su-Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, South Korea
| | - Soma Saeidi
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, South Korea
| | - Seong Hoon Kim
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Xizhu Fang
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Yeon-Hwa Lee
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Yanymee N Guillen-Quispe
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, South Korea
| | - Hoang Kieu Chi Ngo
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon 16627, South Korea
| | - Doojin Kim
- Department of Surgery, Gachon University Gil Medical Center, Gachon University School of Medicine, Incheon 21565, South Korea
| | - Young-Joon Surh
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul 03080, South Korea.
| |
Collapse
|
15
|
Mitochondrial Regulation of the Hypoxia-Inducible Factor in the Development of Pulmonary Hypertension. J Clin Med 2022; 11:jcm11175219. [PMID: 36079149 PMCID: PMC9457092 DOI: 10.3390/jcm11175219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary hypertension (PH) is a severe progressive lung disorder characterized by pulmonary vasoconstriction and vascular remodeling, culminating in right-sided heart failure and increased mortality. Data from animal models and human subjects demonstrated that hypoxia-inducible factor (HIF)-related signaling is essential in the progression of PH. This review summarizes the regulatory pathways and mechanisms of HIF-mediated signaling, emphasizing the role of mitochondria in HIF regulation and PH pathogenesis. We also try to determine the potential to therapeutically target the components of the HIF system for the management of PH.
Collapse
|
16
|
Chen C, Wang Z, Qin Y. Connections between metabolism and epigenetics: mechanisms and novel anti-cancer strategy. Front Pharmacol 2022; 13:935536. [PMID: 35935878 PMCID: PMC9354823 DOI: 10.3389/fphar.2022.935536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 12/26/2022] Open
Abstract
Cancer cells undergo metabolic adaptations to sustain their growth and proliferation under several stress conditions thereby displaying metabolic plasticity. Epigenetic modification is known to occur at the DNA, histone, and RNA level, which can alter chromatin state. For almost a century, our focus in cancer biology is dominated by oncogenic mutations. Until recently, the connection between metabolism and epigenetics in a reciprocal manner was spotlighted. Explicitly, several metabolites serve as substrates and co-factors of epigenetic enzymes to carry out post-translational modifications of DNA and histone. Genetic mutations in metabolic enzymes facilitate the production of oncometabolites that ultimately impact epigenetics. Numerous evidences also indicate epigenome is sensitive to cancer metabolism. Conversely, epigenetic dysfunction is certified to alter metabolic enzymes leading to tumorigenesis. Further, the bidirectional relationship between epigenetics and metabolism can impact directly and indirectly on immune microenvironment, which might create a new avenue for drug discovery. Here we summarize the effects of metabolism reprogramming on epigenetic modification, and vice versa; and the latest advances in targeting metabolism-epigenetic crosstalk. We also discuss the principles linking cancer metabolism, epigenetics and immunity, and seek optimal immunotherapy-based combinations.
Collapse
|
17
|
Urbanczyk S, Baris OR, Hofmann J, Taudte RV, Guegen N, Golombek F, Castiglione K, Meng X, Bozec A, Thomas J, Weckwerth L, Mougiakakos D, Schulz SR, Schuh W, Schlötzer-Schrehardt U, Steinmetz TD, Brodesser S, Wiesner RJ, Mielenz D. Mitochondrial respiration in B lymphocytes is essential for humoral immunity by controlling the flux of the TCA cycle. Cell Rep 2022; 39:110912. [PMID: 35675769 DOI: 10.1016/j.celrep.2022.110912] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/28/2021] [Accepted: 05/12/2022] [Indexed: 11/03/2022] Open
Abstract
To elucidate the function of oxidative phosphorylation (OxPhos) during B cell differentiation, we employ CD23Cre-driven expression of the dominant-negative K320E mutant of the mitochondrial helicase Twinkle (DNT). DNT-expression depletes mitochondrial DNA during B cell maturation, reduces the abundance of respiratory chain protein subunits encoded by mitochondrial DNA, and, consequently, respiratory chain super-complexes in activated B cells. Whereas B cell development in DNT mice is normal, B cell proliferation, germinal centers, class switch to IgG, plasma cell maturation, and T cell-dependent as well as T cell-independent humoral immunity are diminished. DNT expression dampens OxPhos but increases glycolysis in lipopolysaccharide and B cell receptor-activated cells. Lipopolysaccharide-activated DNT-B cells exhibit altered metabolites of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle and a lower amount of phosphatidic acid. Consequently, mTORC1 activity and BLIMP1 induction are curtailed, whereas HIF1α is stabilized. Hence, mitochondrial DNA controls the metabolism of activated B cells via OxPhos to foster humoral immunity.
Collapse
Affiliation(s)
- Sophia Urbanczyk
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Olivier R Baris
- MitoVasc, University of Angers, UMR CNRS 6015/INSERM U1083, Angers, France
| | - Jörg Hofmann
- Chair of Biochemistry, Department Biology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - R Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Naïg Guegen
- MitoVasc, University of Angers, UMR CNRS 6015/INSERM U1083, Angers, France; Department of Biochemistry and Genetics, University Hospital, Angers, France
| | - Florian Golombek
- Chair of Bioprocess Engineering, Technical Faculty, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Castiglione
- Chair of Bioprocess Engineering, Technical Faculty, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Xianyi Meng
- Deparment of Internal Medicine III, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Aline Bozec
- Deparment of Internal Medicine III, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Weckwerth
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Deparment of Internal Medicine V, Universitätsklinikum Erlangen, Translational Research Center, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | | | - Tobit D Steinmetz
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Rudolf J Wiesner
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany; Center for Physiology and Pathophysiology, Institute of Vegetative Physiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
18
|
Baryła M, Semeniuk-Wojtaś A, Róg L, Kraj L, Małyszko M, Stec R. Oncometabolites-A Link between Cancer Cells and Tumor Microenvironment. BIOLOGY 2022; 11:biology11020270. [PMID: 35205136 PMCID: PMC8869548 DOI: 10.3390/biology11020270] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment is the space between healthy tissues and cancer cells, created by the extracellular matrix, blood vessels, infiltrating cells such as immune cells, and cancer-associated fibroblasts. These components constantly interact and influence each other, enabling cancer cells to survive and develop in the host organism. Accumulated intermediate metabolites favoring dysregulation and compensatory responses in the cell, called oncometabolites, provide a method of communication between cells and might also play a role in cancer growth. Here, we describe the changes in metabolic pathways that lead to accumulation of intermediate metabolites: lactate, glutamate, fumarate, and succinate in the tumor and their impact on the tumor microenvironment. These oncometabolites are not only waste products, but also link all types of cells involved in tumor survival and progression. Oncometabolites play a particularly important role in neoangiogenesis and in the infiltration of immune cells in cancer. Oncometabolites are also associated with a disrupted DNA damage response and make the tumor microenvironment more favorable for cell migration. The knowledge summarized in this article will allow for a better understanding of associations between therapeutic targets and oncometabolites, as well as the direct effects of these particles on the formation of the tumor microenvironment. In the future, targeting oncometabolites could improve treatment standards or represent a novel method for fighting cancer.
Collapse
Affiliation(s)
- Maksymilian Baryła
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.B.); (L.R.); (L.K.); (M.M.); (R.S.)
| | - Aleksandra Semeniuk-Wojtaś
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.B.); (L.R.); (L.K.); (M.M.); (R.S.)
- Correspondence:
| | - Letycja Róg
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.B.); (L.R.); (L.K.); (M.M.); (R.S.)
| | - Leszek Kraj
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.B.); (L.R.); (L.K.); (M.M.); (R.S.)
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Maciej Małyszko
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.B.); (L.R.); (L.K.); (M.M.); (R.S.)
| | - Rafał Stec
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.B.); (L.R.); (L.K.); (M.M.); (R.S.)
| |
Collapse
|
19
|
Li T, Copeland C, Le A. Glutamine Metabolism in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:17-38. [PMID: 34014532 DOI: 10.1007/978-3-030-65768-0_2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolism is a fundamental process for all cellular functions. For decades, there has been growing evidence of a relationship between metabolism and malignant cell proliferation. Unlike normal differentiated cells, cancer cells have reprogrammed metabolism in order to fulfill their energy requirements. These cells display crucial modifications in many metabolic pathways, such as glycolysis and glutaminolysis, which include the tricarboxylic acid (TCA) cycle, the electron transport chain (ETC), and the pentose phosphate pathway (PPP) [1]. Since the discovery of the Warburg effect, it has been shown that the metabolism of cancer cells plays a critical role in cancer survival and growth. More recent research suggests that the involvement of glutamine in cancer metabolism is more significant than previously thought. Glutamine, a nonessential amino acid with both amine and amide functional groups, is the most abundant amino acid circulating in the bloodstream [2]. This chapter discusses the characteristic features of glutamine metabolism in cancers and the therapeutic options to target glutamine metabolism for cancer treatment.
Collapse
Affiliation(s)
- Ting Li
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
20
|
Abad E, Samino S, Grodzicki RL, Pagano G, Trifuoggi M, Graifer D, Potesil D, Zdrahal Z, Yanes O, Lyakhovich A. Identification of metabolic changes leading to cancer susceptibility in Fanconi anemia cells. Cancer Lett 2020; 503:185-196. [PMID: 33316348 DOI: 10.1016/j.canlet.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder of bone marrow associated with aplastic anemia, congenital abnormalities and a high risk of malignancies. The identification of more than two dozen FA genes has revealed a plethora of interacting proteins that are mainly involved in repair of DNA interstrand crosslinks (ICLs). Other important findings associated with FA are inflammation, oxidative stress response, mitochondrial dysfunction and mitophagy. In this work, we performed quantitative proteomic and metabolomic analyses on defective FA cells and identified a number of metabolic abnormalities associated with cancer. In particular, an increased de novo purine biosynthesis, a high concentration of fumarate, and an accumulation of purinosomal clusters were found. This was in parallel with decreased OXPHOS and altered glycolysis. On the whole, our results indicate an association between the need for nitrogenous bases upon impaired DDR in FA cells with a subsequent increase in purine metabolism and a potential role in oncogenesis.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | | | - David Potesil
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona 43007, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|
21
|
Jo HA, Hyeon JS, Yang SH, Jung Y, Ha H, Jeong CW, Kwak C, Kim Y, Lee H, Lee JP, Joo KW, Lim CS, Kim YS, Hwang GS, Kim DK. Fumarate modulates phospholipase A2 receptor autoimmunity-induced podocyte injury in membranous nephropathy. Kidney Int 2020; 99:443-455. [PMID: 32712166 DOI: 10.1016/j.kint.2020.06.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 10/23/2022]
Abstract
Downstream mechanisms that lead to podocyte injury following phospholipase A2 receptor (PLA2R) autoimmunity remain elusive. To help define this we compared urinary metabolomic profiles of patients with PLA2R-associated membranous nephropathy (MN) at the time of kidney biopsy with those of patients with minimal change disease (MCD) and to healthy individuals. Among the metabolites differentially expressed in patients with PLA2R-associated MN compared to healthy individuals, fumarate was the only significant differentially expressed metabolite in PLA2R-associated MN compared to MCD [fold-difference vs. healthy controls and vs. MCD: 1.76 and 1.60, respectively]. High urinary fumarate levels could predict the composite outcome of PLA2R-associated MN. Fumarate hydratase, which hydrolyzes fumarate, colocalized with podocalyxin, and its expression was lower in glomerular sections from patients with PLA2R-associated MN than in those from healthy individuals, patients with non-PLA2R-associated MN or MCD. Podocytes stimulated with IgG purified from serum with a high anti-PLA2R titer (MN-IgG) decreased expression of fumarate hydratase and increased fumarate levels. These changes were coupled to alterations in the expression of molecules involved in the phenotypic profile of podocytes (WT1, ZO-1, Snail, and fibronectin), an increase in albumin flux across the podocyte layer and the production of reactive oxygen species in podocytes. However, overexpression of fumarate hydratase ameliorated these alterations. Furthermore, knockdown of fumarate hydratase exhibited synergistic effects with MN-IgG treatment. Thus, fumarate may promote changes in the phenotypic profiles of podocytes after the development of PLA2R autoimmunity. These findings suggest that fumarate could serve as a potential target for the treatment of PLA2R-associated MN.
Collapse
Affiliation(s)
- Hyung Ah Jo
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea; Department of Internal Medicine, Inje University Ilsan Paik Hospital, Ilsan, Korea
| | - Jin Seong Hyeon
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Yaerim Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Hajeong Lee
- Kidney Research Institute, Seoul National University, Seoul, Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea; Kidney Research Institute, Seoul National University, Seoul, Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea; Kidney Research Institute, Seoul National University, Seoul, Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chun Soo Lim
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea; Kidney Research Institute, Seoul National University, Seoul, Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Yon Su Kim
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea; Kidney Research Institute, Seoul National University, Seoul, Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea; Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Korea.
| | - Dong Ki Kim
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea; Kidney Research Institute, Seoul National University, Seoul, Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
22
|
Franko A, Shao Y, Heni M, Hennenlotter J, Hoene M, Hu C, Liu X, Zhao X, Wang Q, Birkenfeld AL, Todenhöfer T, Stenzl A, Peter A, Häring HU, Lehmann R, Xu G, Lutz SZ. Human Prostate Cancer is Characterized by an Increase in Urea Cycle Metabolites. Cancers (Basel) 2020; 12:E1814. [PMID: 32640711 PMCID: PMC7408908 DOI: 10.3390/cancers12071814] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Despite it being the most common incident of cancer among men, the pathophysiological mechanisms contributing to prostate cancer (PCa) are still poorly understood. Altered mitochondrial metabolism is postulated to play a role in the development of PCa. To determine the key metabolites (which included mitochondrial oncometabolites), benign prostatic and cancer tissues of patients with PCa were analyzed using capillary electrophoresis and liquid chromatography coupled with mass spectrometry. Gene expression was studied using real-time PCR. In PCa tissues, we found reduced levels of early tricarboxylic acid cycle metabolites, whereas the contents of urea cycle metabolites including aspartate, argininosuccinate, arginine, proline, and the oncometabolite fumarate were higher than that in benign controls. Fumarate content correlated positively with the gene expression of oncogenic HIF1α and NFκB pathways, which were significantly higher in the PCa samples than in the benign controls. Furthermore, data from the TCGA database demonstrated that prostate cancer patients with activated NFκB pathway had a lower survival rate. In summary, our data showed that fumarate content was positively associated with carcinogenic genes.
Collapse
Affiliation(s)
- Andras Franko
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Yaping Shao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Martin Heni
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (T.T.); (A.S.)
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (M.H.); (A.P.)
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Qingqing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Andreas L. Birkenfeld
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Tilman Todenhöfer
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (T.T.); (A.S.)
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (T.T.); (A.S.)
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (M.H.); (A.P.)
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Rainer Lehmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (M.H.); (A.P.)
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Stefan Z. Lutz
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Clinic for Geriatric and Orthopedic Rehabilitation Bad Sebastiansweiler, 72116 Mössingen, Germany
| |
Collapse
|
23
|
Feocromocitoma asociado a leiomiomatosis cutánea y uterina y cáncer renal en un paciente con una mutación germinal en el gen de la fumarato hidratasa. ENDOCRINOL DIAB NUTR 2020; 67:291-293. [DOI: 10.1016/j.endinu.2019.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022]
|
24
|
Kreuzaler P, Panina Y, Segal J, Yuneva M. Adapt and conquer: Metabolic flexibility in cancer growth, invasion and evasion. Mol Metab 2020; 33:83-101. [PMID: 31668988 PMCID: PMC7056924 DOI: 10.1016/j.molmet.2019.08.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It has been known for close to a century that, on average, tumors have a metabolism that is different from those found in healthy tissues. Typically, tumors show a biosynthetic metabolism that distinguishes itself by engaging in large scale aerobic glycolysis, heightened flux through the pentose phosphate pathway, and increased glutaminolysis among other means. However, it is becoming equally clear that non tumorous tissues at times can engage in similar metabolism, while tumors show a high degree of metabolic flexibility reacting to cues, and stresses in their local environment. SCOPE OF THE REVIEW In this review, we want to scrutinize historic and recent research on metabolism, comparing and contrasting oncogenic and physiological metabolic states. This will allow us to better define states of bona fide tumor metabolism. We will further contextualize the stress response and the metabolic evolutionary trajectory seen in tumors, and how these contribute to tumor progression. Lastly, we will analyze the implications of these characteristics with respect to therapy response. MAJOR CONCLUSIONS In our review, we argue that there is not one single oncogenic state, but rather a diverse set of oncogenic states. These are grounded on a physiological proliferative/wound healing program but distinguish themselves due to their large scale of proliferation, mutations, and transcriptional changes in key metabolic pathways, and the adaptations to widespread stress signals within tumors. We find evidence for the necessity of metabolic flexibility and stress responses in tumor progression and how these responses in turn shape oncogenic progression. Lastly, we find evidence for the notion that the metabolic adaptability of tumors frequently frustrates therapeutic interventions.
Collapse
|
25
|
Abstract
The study of cancer metabolism has evolved vastly beyond the remit of tumour proliferation and survival with the identification of the role of 'oncometabolites' in tumorigenesis. Simply defined, oncometabolites are conventional metabolites that, when aberrantly accumulated, have pro-oncogenic functions. Their discovery has led researchers to revisit the Warburg hypothesis, first postulated in the 1950s, of aberrant metabolism as an aetiological determinant of cancer. As such, the identification of oncometabolites and their utilization in diagnostics and prognostics, as novel therapeutic targets and as biomarkers of disease, are areas of considerable interest in oncology. To date, fumarate, succinate, L-2-hydroxyglutarate (L-2-HG) and D-2-hydroxyglutarate (D-2-HG) have been characterized as bona fide oncometabolites. Extensive metabolic reprogramming occurs during tumour initiation and progression in renal cell carcinoma (RCC) and three oncometabolites - fumarate, succinate and L-2-HG - have been implicated in this disease process. All of these oncometabolites inhibit a superfamily of enzymes known as α-ketoglutarate-dependent dioxygenases, leading to epigenetic dysregulation and induction of pseudohypoxic phenotypes, and also have specific pro-oncogenic capabilities. Oncometabolites could potentially be exploited for the development of novel targeted therapies and as biomarkers of disease.
Collapse
Affiliation(s)
- Cissy Yong
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Grant D Stewart
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
26
|
Sourbier C, Ricketts CJ, Liao PJ, Matsumoto S, Wei D, Lang M, Railkar R, Yang Y, Wei MH, Agarwal P, Krishna M, Mitchell JB, Trepel JB, Neckers L, Linehan WM. Proteasome inhibition disrupts the metabolism of fumarate hydratase- deficient tumors by downregulating p62 and c-Myc. Sci Rep 2019; 9:18409. [PMID: 31804603 PMCID: PMC6895110 DOI: 10.1038/s41598-019-55003-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022] Open
Abstract
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is characterized by germline mutations of the FH gene that encodes for the TCA cycle enzyme, fumarate hydratase. HLRCC patients are at risk for the development of an aggressive form of type 2 papillary renal cell carcinoma. By studying the mechanism of action of marizomib, a proteasome inhibitor able to cross the blood-brain barrier, we found that it modulates the metabolism of HLRCC cells. Marizomib decreased glycolysis in vitro and in vivo by downregulating p62 and c-Myc. C-Myc downregulation decreased the expression of lactate dehydrogenase A, the enzyme catalyzing the conversion of pyruvate to lactate. In addition, proteasomal inhibition lowered the expression of the glutaminases GLS and GLS2, which support glutamine metabolism and the maintenance of the redox balance. Thus, in HLRCC cells, proteasome inhibition disrupts glucose and glutamine metabolism, restricting nutrients and lowering the cells’ anti-oxidant response capacity. Although the cytotoxicity induced by proteasome inhibitors is complex, the understanding of their metabolic effects in HLRCC may lead to the development of effective therapeutic strategies or to the development of markers of efficacy.
Collapse
Affiliation(s)
- Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America. .,Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food & Drug Administration, Silver Spring, Maryland, United States of America.
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Pei-Jyun Liao
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America.,Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food & Drug Administration, Silver Spring, Maryland, United States of America
| | - Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America.,Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.,JST, PREST, Saitama, Japan
| | - Darmood Wei
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Reema Railkar
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Youfeng Yang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Ming-Hui Wei
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Piyush Agarwal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Murali Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland, United States of America
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America.
| |
Collapse
|
27
|
Lai Y, Zeng T, Liang X, Wu W, Zhong F, Wu W. Cell death-related molecules and biomarkers for renal cell carcinoma targeted therapy. Cancer Cell Int 2019; 19:221. [PMID: 31462894 PMCID: PMC6708252 DOI: 10.1186/s12935-019-0939-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023] Open
Abstract
Renal cell carcinoma (RCC) is not sensitive to conventional radio- and chemotherapies and is at least partially resistant to impairments in cell death-related signaling pathways. The hallmarks of RCC formation include diverse signaling pathways, such as maintenance of proliferation, cell death resistance, angiogenesis induction, immune destruction avoidance, and DNA repair. RCC diagnosed during the early stage has the possibility of cure with surgery. For metastatic RCC (mRCC), molecular targeted therapy, especially antiangiogenic therapy (e.g., tyrosine kinase inhibitors, TKIs, such as sunitinib), is one of the main partially effective therapeutics. Various forms of cell death that may be associated with the resistance to targeted therapy because of the crosstalk between targeted therapy and cell death resistance pathways were originally defined and differentiated into apoptosis, necroptosis, pyroptosis, ferroptosis and autophagic cell death based on cellular morphology. Particularly, as a new form of cell death, T cell-induced cell death by immune checkpoint inhibitors expands the treatment options beyond the current targeted therapy. Here, we provide an overview of cell death-related molecules and biomarkers for the progression, prognosis and treatment of mRCC by targeted therapy, with a focus on apoptosis and T cell-induced cell death, as well as other forms of cell death.
Collapse
Affiliation(s)
- Yongchang Lai
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Tao Zeng
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Xiongfa Liang
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Weizou Wu
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Fangling Zhong
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Wenqi Wu
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| |
Collapse
|
28
|
Dando I, Pozza ED, Ambrosini G, Torrens-Mas M, Butera G, Mullappilly N, Pacchiana R, Palmieri M, Donadelli M. Oncometabolites in cancer aggressiveness and tumour repopulation. Biol Rev Camb Philos Soc 2019; 94:1530-1546. [PMID: 30972955 DOI: 10.1111/brv.12513] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Tumour repopulation is recognized as a crucial event in tumour relapse where therapy-sensitive dying cancer cells influence the tumour microenvironment to sustain therapy-resistant cancer cell growth. Recent studies highlight the role of the oncometabolites succinate, fumarate, and 2-hydroxyglutarate in the aggressiveness of cancer cells and in the worsening of the patient's clinical outcome. These oncometabolites can be produced and secreted by cancer and/or surrounding cells, modifying the tumour microenvironment and sustaining an invasive neoplastic phenotype. In this review, we report recent findings concerning the role in cancer development of succinate, fumarate, and 2-hydroxyglutarate and the regulation of their related enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase. We propose that oncometabolites are crucially involved in tumour repopulation. The study of the mechanisms underlying the relationship between oncometabolites and tumour repopulation is fundamental for identifying efficient anti-cancer therapeutic strategies and novel serum biomarkers in order to overcome cancer relapse.
Collapse
Affiliation(s)
- Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, E-07122, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Spain
| | - Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Nidula Mullappilly
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| |
Collapse
|
29
|
de la Cruz López KG, Toledo Guzmán ME, Sánchez EO, García Carrancá A. mTORC1 as a Regulator of Mitochondrial Functions and a Therapeutic Target in Cancer. Front Oncol 2019; 9:1373. [PMID: 31921637 PMCID: PMC6923780 DOI: 10.3389/fonc.2019.01373] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023] Open
Abstract
Continuous proliferation of tumor cells requires constant adaptations of energy metabolism to rapidly fuel cell growth and division. This energetic adaptation often comprises deregulated glucose uptake and lactate production in the presence of oxygen, a process known as the "Warburg effect." For many years it was thought that the Warburg effect was a result of mitochondrial damage, however, unlike this proposal tumor cell mitochondria maintain their functionality, and is essential for integrating a variety of signals and adapting the metabolic activity of the tumor cell. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of numerous cellular processes implicated in proliferation, metabolism, and cell growth. mTORC1 controls cellular metabolism mainly by regulating the translation and transcription of metabolic genes, such as peroxisome proliferator activated receptor γ coactivator-1 α (PGC-1α), sterol regulatory element-binding protein 1/2 (SREBP1/2), and hypoxia inducible factor-1 α (HIF-1α). Interestingly it has been shown that mTORC1 regulates mitochondrial metabolism, thus representing an important regulator in mitochondrial function. Here we present an overview on the role of mTORC1 in the regulation of mitochondrial functions in cancer, considering new evidences showing that mTORC1 regulates the translation of nucleus-encoded mitochondrial mRNAs that result in an increased ATP mitochondrial production. Moreover, we discuss the relationship between mTORC1 and glutaminolysis, as well as mitochondrial metabolites. In addition, mitochondrial fission processes regulated by mTORC1 and its impact on cancer are discussed. Finally, we also review the therapeutic efficacy of mTORC1 inhibitors in cancer treatments, considering its use in combination with other drugs, with particular focus on cellular metabolism inhibitors, that could help improve their anti neoplastic effect and eliminate cancer cells in patients.
Collapse
Affiliation(s)
- Karen Griselda de la Cruz López
- Posgrado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Alejandro García Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México & Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- *Correspondence: Alejandro García Carrancá
| |
Collapse
|
30
|
Liu JJ, Liu S, Gurung RL, Ching J, Kovalik JP, Tan TY, Lim SC. Urine Tricarboxylic Acid Cycle Metabolites Predict Progressive Chronic Kidney Disease in Type 2 Diabetes. J Clin Endocrinol Metab 2018; 103:4357-4364. [PMID: 30060124 DOI: 10.1210/jc.2018-00947] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
CONTEXT Metabolites in the tricarboxylic acid (TCA) cycle are not only involved in energy metabolism but also play important roles in non-energy production activities. OBJECTIVE To study whether baseline urine key TCA cycle metabolites (lactate, pyruvate, citrate, α-ketoglutaric acid, succinate, fumarate, and malate) independently predict risk of chronic kidney disease (CKD) progression [fast estimated glomerular filtration rate (eGFR) decline] in individuals with type 2 diabetes mellitus (T2DM). DESIGN One discovery and one validation nested case-control studies in two independent T2DM cohorts. SETTING AND PARTICIPANTS Subjects with T2DM were recruited and followed in a regional hospital and at a primary care facility. MAIN OUTCOME MEASURES eGFR trajectory (slope) was estimated by linear regression. Progressive CKD was defined as eGFR decline of ≥5 mL/min/1.73 m2 per year. RESULTS As compared with those with stable renal function (n = 271), participants who experienced progressive CKD (n = 116) had a lower level of urine citrate but significantly higher levels of lactate, fumarate, and malate levels at baseline. Both fumarate and malate predicted progressive CKD independent of traditional cardio-renal risk factors, including eGFR and albuminuria. Fumarate interacted with sex (P for interaction = 0.03) and independently predicted progressive CKD in male but not female participants. All these findings were reproducible in a validation study (case n = 96, control n = 402). Exploratory analysis suggested that fumarate might partially mediate the effect of oxidative stress on CKD progression. CONCLUSIONS Key TCA cycle metabolites, especially fumarate, may be involved in the pathophysiologic pathway independent of traditional cardio-renal risk factors, leading to CKD progression in patients with T2DM.
Collapse
Affiliation(s)
- Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | | | | | | | - Su Chi Lim
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
31
|
Abstract
The transcription factor NF-κB is a critical regulator of immune and inflammatory responses. In mammals, the NF-κB/Rel family comprises five members: p50, p52, p65 (Rel-A), c-Rel, and Rel-B proteins, which form homo- or heterodimers and remain as an inactive complex with the inhibitory molecules called IκB proteins in resting cells. Two distinct NF-κB signaling pathways have been described: 1) the canonical pathway primarily activated by pathogens and inflammatory mediators, and 2) the noncanonical pathway mostly activated by developmental cues. The most abundant form of NF-κB activated by pathologic stimuli via the canonical pathway is the p65:p50 heterodimer. Disproportionate increase in activated p65 and subsequent transactivation of effector molecules is integral to the pathogenesis of many chronic diseases such as the rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, and even neurodegenerative pathologies. Hence, the NF-κB p65 signaling pathway has been a pivotal point for intense drug discovery and development. This review begins with an overview of p65-mediated signaling followed by discussion of strategies that directly target NF-κB p65 in the context of chronic inflammation.
Collapse
Affiliation(s)
- Sivagami Giridharan
- Department of Oral Medicine, Madha Dental College, Kundrathur, Chennai, TN, India
| | - Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA,
- Provaidya LLC, Indianapolis, IN, USA,
| |
Collapse
|
32
|
Cui K, Zhang S, Liu X, Yan Z, Huang L, Yang X, Zhu R, Sang A. Inhibition of TBK1 reduces choroidal neovascularization in vitro and in vivo. Biochem Biophys Res Commun 2018; 503:202-208. [PMID: 29864423 DOI: 10.1016/j.bbrc.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023]
Abstract
choroidal neovascularization (CNV), a characteristic of wet age-related macular degeneration (AMD), causes severe vision loss among elderly patients. TANK-binding kinase 1 (TBK1) is a ubiquitously expressed serine-threonine kinase and is found to induce endothelial cells proliferation, represent a novel mediator of tumor angiogenesis and exert pro-inflammatory effect. However, the role of TBK1 in choroidal neovascularization has not been investigated so far. In this study, we found that the expression of TBK1 and VEGF was up-regulated in RF/6 A cells chemical hypoxia model and laser-induced mouse CNV model. Silencing of TBK1 suppressed the proliferation and tube formation activity of RF/6 A cells. Intravitreal injection of anti-TBK1 monoclonal antibody ameliorates CNV formation. Taken together, these findings exhibit a proangiogenic role for TBK1 via upregulating the expression of VEGF, and may suggest that TBK1 inhibition offers a unique and alternative method for prevention and treatment of AMD.
Collapse
Affiliation(s)
- Kaixuan Cui
- School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | | | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, Jiangsu, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhenzhen Yan
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lili Huang
- Department of Ophthalmology, The First People's Hospital of Nantong, 226001, Jiangsu Province, China
| | - Xiaowei Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongrong Zhu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
33
|
Kluckova K, Tennant DA. Metabolic implications of hypoxia and pseudohypoxia in pheochromocytoma and paraganglioma. Cell Tissue Res 2018; 372:367-378. [PMID: 29450727 PMCID: PMC5915505 DOI: 10.1007/s00441-018-2801-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
Hypoxia is a critical driver of cancer pathogenesis, directly inducing malignant phenotypes such as epithelial-mesenchymal transition, stem cell-like characteristics and metabolic transformation. However, hypoxia-associated phenotypes are often observed in cancer in the absence of hypoxia, a phenotype known as pseudohypoxia, which is very well documented in specific tumour types, including in paraganglioma/pheochromocytoma (PPGL). Approximately 40% of the PPGL tumours carry a germ line mutation in one of a number of susceptibility genes of which those that are found in succinate dehydrogenase (SDH) or in von Hippel-Lindau (VHL) genes manifest a strong pseudohypoxic phenotype. Mutations in SDH are oncogenic, forming tumours in a select subset of tissues, but the cause for this remains elusive. Although elevated succinate levels lead to increase in hypoxia-like signalling, there are other phenotypes that are being increasingly recognised in SDH-mutated PPGL, such as DNA hypermethylation. Further, recently unveiled changes in metabolic re-wiring of SDH-deficient cells might help to decipher cancer related roles of SDH in the future. In this review, we will discuss the various implications that the malfunctioning SDH can have and its impact on cancer development.
Collapse
Affiliation(s)
- Katarina Kluckova
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
34
|
The metabolic role of LncZBTB39-1:2 in the trophoblast mobility of preeclampsia. Genes Dis 2018; 5:235-244. [PMID: 30320188 PMCID: PMC6176159 DOI: 10.1016/j.gendis.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
Preeclampsia is characterized by new onset of hypertension and proteinuria after 20 weeks' gestation and is a leading cause of maternal and neonatal morbidity and mortality. The pathogenesis of preeclampsia is often associated with aberrant trophoblast function that leads to shallow placental implantation. However, the exact underlying mechanisms remain unclear. Placental LncZBTB39-1:2 expression level was investigated in 20 healthy placentae and 20 placentae with preeclampsia using qRT-PCR, and the metabolic profile of trophoblasts overexpressing LncZBTB39-1:2 in vitro was analysed using gas chromatography-mass spectrometry (GC-MS). In this study, we found that the expression of LncZBTB39-1:2 was significantly higher in preeclamptic placentae than in healthy placentae. Our metabolomics results have shown that tricarboxylic acid cycle intermediates and metabolites related to carbohydrate metabolism were decreased with the overexpression of LncZBTB39-1:2 in HTR8/SVneo cells. These findings were validated by detecting a lower level of intracellular ATP in HTR8/Vneo cells. Furthermore, the migration of HTR8/SVneo cells was compromised when cells were transfected with a plasmid encompassing LncZBTB39-1:2 overexpression. From these results, we conclude that abnormal levels of LncZBTB39-1:2 expression might lead to aberrant conditions in HTR-8/SVneo trophoblast cells. Aberrant conditions might be associated with dysregulated trophoblast migration and subsequent failure of uterine spiral artery remodelling, a pathogenesis recognised as a contributing factor in the aetiology of preeclampsia.
Collapse
|
35
|
Metabolic Alterations in Cancer Cells and the Emerging Role of Oncometabolites as Drivers of Neoplastic Change. Antioxidants (Basel) 2018; 7:antiox7010016. [PMID: 29342092 PMCID: PMC5789326 DOI: 10.3390/antiox7010016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/02/2018] [Accepted: 01/14/2018] [Indexed: 12/12/2022] Open
Abstract
The mitochondrion is an important organelle and provides energy for a plethora of intracellular reactions. Metabolic dysregulation has dire consequences for the cell, and alteration in metabolism has been identified in multiple disease states—cancer being one. Otto Warburg demonstrated that cancer cells, in the presence of oxygen, undergo glycolysis by reprogramming their metabolism—termed “aerobic glycolysis”. Alterations in metabolism enable cancer cells to gain a growth advantage by obtaining precursors for macromolecule biosynthesis, such as nucleic acids and lipids. To date, several molecules, termed “oncometabolites”, have been identified to be elevated in cancer cells and arise from mutations in nuclear encoded mitochondrial enzymes. Furthermore, there is evidence that oncometabolites can affect mitochondrial dynamics. It is believed that oncometabolites can assist in reprogramming enzymatic pathways and providing cancer cells with selective advantages. In this review, we will touch upon the effects of normal and aberrant mitochondrial metabolism in normal and cancer cells, the advantages of metabolic reprogramming, effects of oncometabolites on metabolism and mitochondrial dynamics and therapies aimed at targeting oncometabolites and metabolic aberrations.
Collapse
|
36
|
|
37
|
Collins RRJ, Patel K, Putnam WC, Kapur P, Rakheja D. Oncometabolites: A New Paradigm for Oncology, Metabolism, and the Clinical Laboratory. Clin Chem 2017; 63:1812-1820. [PMID: 29038145 DOI: 10.1373/clinchem.2016.267666] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pediatric clinical laboratories commonly measure tricarboxylic acid cycle intermediates for screening, diagnosis, and monitoring of specific inborn errors of metabolism, such as organic acidurias. In the past decade, the same tricarboxylic acid cycle metabolites have been implicated and studied in cancer. The accumulation of these metabolites in certain cancers not only serves as a biomarker but also directly contributes to cellular transformation, therefore earning them the designation of oncometabolites. CONTENT D-2-hydroxyglutarate, L-2-hydroxyglutarate, succinate, and fumarate are the currently recognized oncometabolites. They are structurally similar and share metabolic proximity in the tricarboxylic acid cycle. As a result, they promote tumorigenesis in cancer cells through similar mechanisms. This review summarizes the currently understood common and distinct biological features of these compounds. In addition, we will review the current laboratory methodologies that can be used to quantify these metabolites and their downstream targets. SUMMARY Oncometabolites play an important role in cancer biology. The metabolic pathways that lead to the production of oncometabolites and the downstream signaling pathways that are activated by oncometabolites represent potential therapeutic targets. Clinical laboratories have a critical role to play in the management of oncometabolite-associated cancers through development and validation of sensitive and specific assays that measure oncometabolites and their downstream effectors. These assays can be used as screening tools and for follow-up to measure response to treatment, as well as to detect minimal residual disease and recurrence.
Collapse
Affiliation(s)
- Rebecca R J Collins
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX
| | - Khushbu Patel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX
| | - William C Putnam
- Office of Clinical and Translational Research, Texas Tech University Health Sciences Center, Dallas, TX
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX; .,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
38
|
Abstract
Mitochondria are one of most characterized metabolic hubs of the cell. Here, crucial biochemical reactions occur and most of the cellular adenosine triphosphate (ATP) is produced. In addition, mitochondria act as signalling platforms and communicate with the rest of the cell by modulating calcium fluxes, by producing free radicals, and by releasing bioactive proteins. It is emerging that mitochondrial metabolites can also act as second messengers and can elicit profound (epi)genetic changes. This review describes the many signalling functions of mitochondrial metabolites under normal and stress conditions, focusing on metabolites of the tricarboxylic acid cycle. We provide a new framework for understanding the role of mitochondrial metabolism in cellular pathophysiology.
Collapse
|
39
|
McElroy GS, Chandel NS. Mitochondria control acute and chronic responses to hypoxia. Exp Cell Res 2017; 356:217-222. [PMID: 28327410 DOI: 10.1016/j.yexcr.2017.03.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/16/2017] [Indexed: 12/30/2022]
Abstract
There are numerous mechanisms by which mammals respond to hypoxia. These include acute changes in pulmonary arterial tone due to smooth muscle cell contraction, acute increases in respiration triggered by the carotid body chemosensory cells, and chronic changes such as induction of red blood cell proliferation and angiogenesis by hypoxia inducible factor targets erythropoietin and vascular endothelial growth factor, respectively. Mitochondria account for the majority of oxygen consumption in the cell and have recently been appreciated to serve as signaling organelles required for the initiation or propagation of numerous homeostatic mechanisms. Mitochondria can influence cell signaling by production of reactive oxygen species and metabolites. Here we review recent evidence that mitochondrial signals can imitate acute and chronic hypoxia responses.
Collapse
Affiliation(s)
- G S McElroy
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - N S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|
40
|
Sajnani K, Islam F, Smith RA, Gopalan V, Lam AKY. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis. Biochimie 2017; 135:164-172. [PMID: 28219702 DOI: 10.1016/j.biochi.2017.02.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 01/26/2023]
Abstract
Cancer cells exhibit alterations in many cellular processes, including oxygen sensing and energy metabolism. Glycolysis in non-oxygen condition is the main energy production process in cancer rather than mitochondrial respiration as in benign cells. Genetic and epigenetic alterations of Krebs cycle enzymes favour the shift of cancer cells from oxidative phosphorylation to anaerobic glycolysis. Mutations in genes encoding aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarate hydratase, and citrate synthase are noted in many cancers. Abnormalities of Krebs cycle enzymes cause ectopic production of Krebs cycle intermediates (oncometabolites) such as 2-hydroxyglutarate, and citrate. These oncometabolites stabilize hypoxia inducible factor 1 (HIF1), nuclear factor like 2 (Nrf2), inhibit p53 and prolyl hydroxylase 3 (PDH3) activities as well as regulate DNA/histone methylation, which in turn activate cell growth signalling. They also stimulate increased glutaminolysis, glycolysis and production of reactive oxygen species (ROS). Additionally, genetic alterations in Krebs cycle enzymes are involved with increased fatty acid β-oxidations and epithelial mesenchymal transition (EMT) induction. These altered phenomena in cancer could in turn promote carcinogenesis by stimulating cell proliferation and survival. Overall, epigenetic and genetic changes of Krebs cycle enzymes lead to the production of oncometabolite intermediates, which are important driving forces of cancer pathogenesis and progression. Understanding and applying the knowledge of these mechanisms opens new therapeutic options for patients with cancer.
Collapse
Affiliation(s)
- Karishma Sajnani
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Farhadul Islam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Genomics Research Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
41
|
Sciacovelli M, Frezza C. Oncometabolites: Unconventional triggers of oncogenic signalling cascades. Free Radic Biol Med 2016; 100:175-181. [PMID: 27117029 PMCID: PMC5145802 DOI: 10.1016/j.freeradbiomed.2016.04.025] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 01/27/2023]
Abstract
Cancer is a complex and heterogeneous disease thought to be caused by multiple genetic lesions. The recent finding that enzymes of the tricarboxylic acid (TCA) cycle are mutated in cancer rekindled the hypothesis that altered metabolism might also have a role in cellular transformation. Attempts to link mitochondrial dysfunction to cancer uncovered the unexpected role of small molecule metabolites, now known as oncometabolites, in tumorigenesis. In this review, we describe how oncometabolites can contribute to tumorigenesis. We propose that lesions of oncogenes and tumour suppressors are only one of the possible routes to tumorigenesis, which include accumulation of oncometabolites triggered by environmental cues.
Collapse
Affiliation(s)
- Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom.
| |
Collapse
|
42
|
He X, Yan B, Liu S, Jia J, Lai W, Xin X, Tang CE, Luo D, Tan T, Jiang Y, Shi Y, Liu Y, Xiao D, Chen L, Liu S, Mao C, Yin G, Cheng Y, Fan J, Cao Y, Muegge K, Tao Y. Chromatin Remodeling Factor LSH Drives Cancer Progression by Suppressing the Activity of Fumarate Hydratase. Cancer Res 2016; 76:5743-5755. [PMID: 27302170 PMCID: PMC7821962 DOI: 10.1158/0008-5472.can-16-0268] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/26/2016] [Indexed: 12/26/2022]
Abstract
Chromatin modification is pivotal to the epithelial-mesenchymal transition (EMT), which confers potent metastatic potential to cancer cells. Here, we report a role for the chromatin remodeling factor lymphoid-specific helicase (LSH) in nasopharyngeal carcinoma (NPC), a prevalent cancer in China. LSH expression was increased in NPC, where it was controlled by the Epstein-Barr virus-encoded protein LMP1. In NPC cells in vitro and in vivo, LSH promoted cancer progression in part by regulating expression of fumarate hydratase (FH), a core component of the tricarboxylic acid cycle. LSH bound to the FH promoter, recruiting the epigenetic silencer factor G9a to repress FH transcription. Clinically, we found that the concentration of TCA intermediates in NPC patient sera was deregulated in the presence of LSH. RNAi-mediated silencing of FH mimicked LSH overexpression, establishing FH as downstream mediator of LSH effects. The TCA intermediates α-KG and citrate potentiated the malignant character of NPC cells, in part by altering IKKα-dependent EMT gene expression. In this manner, LSH furthered malignant progression of NPC by modifying cancer cell metabolism to support EMT. Cancer Res; 76(19); 5743-55. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaozhen He
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China. Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China. Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, China. Key Laboratory of Carcinogenesis (Central South University), Ministry of Health, Hunan, China
| | - Bin Yan
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China. Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China. Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, China. Key Laboratory of Carcinogenesis (Central South University), Ministry of Health, Hunan, China
| | - Shuang Liu
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiantao Jia
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China. Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China. Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, China
| | - Weiwei Lai
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China. Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China. Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, China
| | - Xing Xin
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China. Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China. Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, China. Key Laboratory of Carcinogenesis (Central South University), Ministry of Health, Hunan, China
| | - Can-E Tang
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dixian Luo
- National and Local Joint Engineering Laboratory of High-throughput Molecular Diagnosis Technology, Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Tan Tan
- National and Local Joint Engineering Laboratory of High-throughput Molecular Diagnosis Technology, Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Yiqun Jiang
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China. Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China. Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, China
| | - Ying Shi
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China. Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China. Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, China. Key Laboratory of Carcinogenesis (Central South University), Ministry of Health, Hunan, China
| | - Yating Liu
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China. Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China. Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, China. Key Laboratory of Carcinogenesis (Central South University), Ministry of Health, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Chen
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China. Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China. Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, China. Key Laboratory of Carcinogenesis (Central South University), Ministry of Health, Hunan, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Mao
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China. Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China. Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, China
| | - Gang Yin
- Department of Pathology, School of Basic Medicine, Central South University, Hunan, China
| | - Yan Cheng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Jia Fan
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Fudan University, Shanghai, China. Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ya Cao
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China. Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China. Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, China. Key Laboratory of Carcinogenesis (Central South University), Ministry of Health, Hunan, China
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, National Cancer Institute, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Yongguang Tao
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China. Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China. Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, China. Key Laboratory of Carcinogenesis (Central South University), Ministry of Health, Hunan, China.
| |
Collapse
|
43
|
Liu S, Tao YG. Chromatin remodeling factor LSH affects fumarate hydratase as a cancer driver. CHINESE JOURNAL OF CANCER 2016; 35:72. [PMID: 27473869 PMCID: PMC4967323 DOI: 10.1186/s40880-016-0138-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022]
Abstract
Cancer metabolism and epigenetic alteration are two critical mechanisms for tumorigenesis and cancer progression; however, the dynamic interplay between them remains poorly understood. As reported in the article entitled "Chromatin remodeling factor LSH drives cancer progression by suppressing the activity of fumarate hydratase," which was recently published in Cancer Research, our group examined the physiological role of lymphocyte-specific helicase (LSH) in nasopharyngeal carcinoma (NPC) by focusing on cancer progression and the tricarboxylic acid cycle. We found that LSH was overexpressed in NPC, and its expression associated with Epstein-Barr virus infection. We also found that LSH directly suppressed fumarate hydratase (FH), a key component of the tricarboxylic acid cycle, in combination with euchromatic histone-lysine N-methyltransferase 2 (EHMT2), also known as G9a. Depletion of FH promoted epithelial-mesenchymal transition (EMT). Moreover, LSH controlled expression of tricarboxylic acid cycle intermediates that promote cancer progression, including EMT, through activation by inhibitor of nuclear factor kappa-B kinase alpha (IKKα), a chromatin modifier and transcriptional activator. Our study showed that LSH plays a critical role in cancer progression, which has important implications for the development of novel strategies to treat NPC.
Collapse
Affiliation(s)
- Shuang Liu
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China
| | - Yong-Guang Tao
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China. .,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, P. R. China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Changsha, 410078, Hunan, P. R. China.
| |
Collapse
|
44
|
Cuyàs E, Fernández-Arroyo S, Corominas-Faja B, Rodríguez-Gallego E, Bosch-Barrera J, Martin-Castillo B, De Llorens R, Joven J, Menendez JA. Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype. Oncotarget 2016; 6:12279-96. [PMID: 25980580 PMCID: PMC4494938 DOI: 10.18632/oncotarget.3733] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/11/2015] [Indexed: 02/07/2023] Open
Abstract
Metabolic flexibility might be particularly constrained in tumors bearing mutations in isocitrate dehydrogenase 1 (IDH1) leading to the production of the oncometabolite 2-hydroxygluratate (2HG). To test the hypothesis that IDH1 mutations could generate metabolic vulnerabilities for therapeutic intervention, we utilized an MCF10A cell line engineered with an arginine-to-histidine conversion at position 132 (R132H) in the catalytic site of IDH1, which equips the enzyme with a neomorphic α-ketoglutarate to 2HG reducing activity in an otherwise isogenic background. IDH1 R132H/+ and isogenic IDH1 +/+ parental cells were screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput Phenotype MicroArrayplatform comprising >300 nutrients. A radical remodeling of the metabotype occurred in cells carrying the R132H mutation since they presented a markedly altered ability to utilize numerous carbon catabolic fuels. A mitochondria toxicity-screening modality confirmed a severe inability of IDH1-mutated cells to use various carbon substrates that are fed into the electron transport chain at different points. The mitochondrial biguanide poisons, metformin and phenformin, further impaired the intrinsic weakness of IDH1-mutant cells to use certain carbon-energy sources. Additionally, metabolic reprogramming of IDH1-mutant cells increased their sensitivity to metformin in assays of cell proliferation, clonogenic potential, and mammosphere formation. Targeted metabolomics studies revealed that the ability of metformin to interfere with the anaplerotic entry of glutamine into the tricarboxylic acid cycle could explain the hypersensitivity of IDH1-mutant cells to biguanides. Moreover, synergistic interactions occurred when metformin treatment was combined with the selective R132H-IDH1 inhibitor AGI-5198. Together, these results suggest that therapy involving the simultaneous targeting of metabolic vulnerabilities with metformin, and 2HG overproduction with mutant-selective inhibitors (AGI-5198-related AG-120 [Agios]), might represent a worthwhile avenue of exploration in the treatment of IDH1-mutated tumors.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Catalonia. Spain
| | - Bruna Corominas-Faja
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Esther Rodríguez-Gallego
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Catalonia. Spain
| | - Joaquim Bosch-Barrera
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain
| | - Begoña Martin-Castillo
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Clinical Research Unit, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain
| | - Rafael De Llorens
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Catalonia, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Catalonia. Spain
| | - Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| |
Collapse
|
45
|
Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 2016; 15:473-84. [PMID: 26965202 DOI: 10.1038/nrd.2016.32] [Citation(s) in RCA: 921] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolomics is an emerging 'omics' science involving the comprehensive characterization of metabolites and metabolism in biological systems. Recent advances in metabolomics technologies are leading to a growing number of mainstream biomedical applications. In particular, metabolomics is increasingly being used to diagnose disease, understand disease mechanisms, identify novel drug targets, customize drug treatments and monitor therapeutic outcomes. This Review discusses some of the latest technological advances in metabolomics, focusing on the application of metabolomics towards uncovering the underlying causes of complex diseases (such as atherosclerosis, cancer and diabetes), the growing role of metabolomics in drug discovery and its potential effect on precision medicine.
Collapse
Affiliation(s)
- David S Wishart
- Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.,Department of Computing Science, 2-21 Athabasca Hall University of Alberta, Edmonton, Alberta, Canada T6G 2E8.,National Institute of Nanotechnology, National Research Council, Edmonton, Alberta, Canada T6G 2M9
| |
Collapse
|