1
|
Pondelick AM, Moncayo LV, Donvito G, McLane VD, Gillespie JC, Hauser KF, Spiegel S, Lichtman AH, Sim-Selley LJ, Selley DE. Dissociation between the anti-allodynic effects of fingolimod (FTY720) and desensitization of S1P 1 receptor-mediated G-protein activation in a mouse model of sciatic nerve injury. Neuropharmacology 2024; 261:110165. [PMID: 39303855 DOI: 10.1016/j.neuropharm.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Sphingosine-1-phosphate (S1P) receptor (S1PR) agonists, such as fingolimod (FTY720), alleviate nociception in preclinical pain models by either activation (agonism) or inhibition (functional antagonism) of S1PR type-1 (S1PR1). However, the dose-dependence and temporal relationship between reversal of nociception and modulation of S1PR1 signaling has not been systematically investigated. This study examined the relationship between FTY720-induced antinociception and S1PR1 adaptation using a sciatic nerve chronic constriction injury (CCI) model of neuropathic pain in male and female C57Bl/6J mice. Daily injections of FTY720 for 14 days dose-dependently reversed CCI-induced mechanical allodynia without tolerance development, and concomitantly resulted in a dose-dependent reduction of G-protein activation by the S1PR1-selective agonist SEW2871 in the lumbar spinal cord and brain. These findings indicate FTY720-induced desensitization of S1PR1 signaling coincides with its anti-allodynic effects. Consistent with this finding, a single injection of FTY720 reversed mechanical allodynia while concomitantly producing partial desensitization of S1PR1-stimulated G-protein activation in the CNS. However, mechanical allodynia returned 24-hr post injection, despite S1PR1 desensitization at that time, demonstrating a dissociation between these measures. Furthermore, CCI surgery led to elevations of sphingolipid metabolites, including S1P, which were unaffected by daily FTY720 administration, suggesting FTY720 reversed mechanical allodynia by targeting S1PR1 rather than sphingolipid metabolism. Supporting this hypothesis, acute administration of the S1PR1-selective agonist CYM-5442 mimicked the anti-allodynic effect of FTY720. In contrast, the S1PR1-selective antagonist NIBR-0213 prevented the anti-allodynic effect of FTY720, but NIBR-0213 given alone did not affect nociception. These results indicate that FTY720 alleviates CCI-induced allodynia through a mechanism distinct from functional antagonism.
Collapse
Affiliation(s)
- Abby M Pondelick
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lauren V Moncayo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Virginia D McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
2
|
Zamani A, EmamiAref P, Kubíčková L, Hašanová K, Šandor O, Dubový P, Joukal M. Paclitaxel triggers molecular and cellular changes in the choroid plexus. FRONTIERS IN PAIN RESEARCH 2024; 5:1488369. [PMID: 39654799 PMCID: PMC11625821 DOI: 10.3389/fpain.2024.1488369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Paclitaxel is a widely used chemotherapeutic agent for treating various solid tumors. However, resulting neuropathic pain, often a lifelong side effect of paclitaxel, can limit dosing and compromise optimal treatment. The choroid plexus, located in the brain ventricles, spreads peripheral inflammatory reactions into the brain. Our study is the first to analyze the effects of paclitaxel on inflammatory alterations in the choroid plexus. We hypothesized that the choroid plexus could respond directly to paclitaxel and simultaneously be indirectly altered via circulating damage-associated molecular patterns (DAMPs) produced by paclitaxel application. Using immunohistochemical and Western blot analysis, we examined the levels of toll-like receptor 9 (TLR9) and formyl peptide receptor 2 (FPR2), along with the pro-inflammatory cytokines interleukin 6 (IL6) and tumor necrosis factor α (TNFα) in choroid plexus epithelial cells of male Wistar rats following paclitaxel treatment. Moreover, we utilized an in vitro model of choroid plexus epithelial cells, the Z310 cells, to investigate the changes in these cells in response to paclitaxel and DAMPs (CpG ODN). Our results demonstrate that paclitaxel increases TLR9 and FPR2 levels in the choroid plexus while inducing IL6 and TNFα upregulation in both acute and chronic manners. In vitro experiments further revealed that paclitaxel directly interacts with epithelial cells of the choroid plexus, leading to increased levels of TLR9, FPR2, IL6, and TNFα. Additionally, treatment of cells with CpG ODN, an agonist of TLR9, elicited upregulation of IL6 and TNFα. Our findings determined that paclitaxel influences the choroid plexus through both direct and indirect mechanisms, resulting in inflammatory profile alterations. Given the pivotal role of the choroid plexus in brain homeostasis, a compromised choroid plexus following chemotherapy may facilitate the spread of peripheral inflammation into the brain, consequently exacerbating the development of neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marek Joukal
- Department of Anatomy, Alemeh Zamani Research Group, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
3
|
Fan L, Li Q, Shi Y, Li X, Liu Y, Chen J, Sun Y, Chen A, Yang Y, Zhang X, Wang J, Wu L. Involvement of sphingosine-1-phosphate receptor 1 in pain insensitivity in a BTBR mouse model of autism spectrum disorder. BMC Med 2024; 22:504. [PMID: 39497100 PMCID: PMC11533282 DOI: 10.1186/s12916-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Abnormal sensory perception, particularly pain insensitivity (PAI), is a typical symptom of autism spectrum disorder (ASD). Despite the role of myelin metabolism in the regulation of pain perception, the mechanisms underlying ASD-related PAI remain unclear. METHODS The pain-associated gene sphingosine-1-phosphate receptor 1 (S1PR1) was identified in ASD samples through bioinformatics analysis. Its expression in the dorsal root ganglion (DRG) tissues of BTBR ASD model mice was validated using RNA-seq, western blot, RT-qPCR, and immunofluorescence. Pain thresholds were assessed using the von Frey and Hargreaves tests. Patch-clamp techniques measured KCNQ/M channel activity and neuronal action potentials. The expression of S1PR1, KCNQ/M, mitogen-activated protein kinase (MAPK), and cyclic AMP/protein kinase A (cAMP/PKA) signaling proteins was analyzed before and after inhibiting the S1P-S1PR1-KCNQ/M pathway via western blot and RT-qPCR. RESULTS Through integrated transcriptomic analysis of ASD samples, we identified the upregulated gene S1PR1, which is associated with sphingolipid metabolism and linked to pain perception, and confirmed its role in the BTBR mouse model of ASD. This mechanism involves the regulation of KCNQ/M channels in DRG neurons. The enhanced activity of KCNQ/M channels and the decreased action potentials in small and medium DRG neurons were correlated with PAI in a BTBR mouse model of ASD. Inhibition of the S1P/S1PR1 pathway rescued baseline insensitivity to pain by suppressing KCNQ/M channels in DRG neurons, mediated through the MAPK and cAMP/PKA pathways. Investigating the modulation and underlying mechanisms of the non-opioid pathway involving S1PR1 will provide new insights into clinical targeted interventions for PAI in ASD. CONCLUSIONS S1PR1 may contribute to PAI in the PNS in ASD. The mechanism involves KCNQ/M channels and the MAPK and cAMP/PKA signaling pathways. Targeting S1PR1 in the PNS could offer novel therapeutic strategies for the intervention of pain dysesthesias in individuals with ASD.
Collapse
Affiliation(s)
- Lili Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Qi Li
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaxin Shi
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xiang Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jiaqi Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yaqi Sun
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Anjie Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yuan Yang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xirui Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
- Department of Developmental Behavioral Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150023, China.
| |
Collapse
|
4
|
Lötsch J, Gasimli K, Malkusch S, Hahnefeld L, Angioni C, Schreiber Y, Trautmann S, Wedel S, Thomas D, Ferreiros Bouzas N, Brandts CH, Schnappauf B, Solbach C, Geisslinger G, Sisignano M. Machine learning and biological validation identify sphingolipids as potential mediators of paclitaxel-induced neuropathy in cancer patients. eLife 2024; 13:RP91941. [PMID: 39347767 PMCID: PMC11444680 DOI: 10.7554/elife.91941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Background Chemotherapy-induced peripheral neuropathy (CIPN) is a serious therapy-limiting side effect of commonly used anticancer drugs. Previous studies suggest that lipids may play a role in CIPN. Therefore, the present study aimed to identify the particular types of lipids that are regulated as a consequence of paclitaxel administration and may be associated with the occurrence of post-therapeutic neuropathy. Methods High-resolution mass spectrometry lipidomics was applied to quantify d=255 different lipid mediators in the blood of n=31 patients drawn before and after paclitaxel therapy for breast cancer treatment. A variety of supervised statistical and machine-learning methods was applied to identify lipids that were regulated during paclitaxel therapy or differed among patients with and without post-therapeutic neuropathy. Results Twenty-seven lipids were identified that carried relevant information to train machine learning algorithms to identify, in new cases, whether a blood sample was drawn before or after paclitaxel therapy with a median balanced accuracy of up to 90%. One of the top hits, sphinganine-1-phosphate (SA1P), was found to induce calcium transients in sensory neurons via the transient receptor potential vanilloid 1 (TRPV1) channel and sphingosine-1-phosphate receptors.SA1P also showed different blood concentrations between patients with and without neuropathy. Conclusions Present findings suggest a role for sphinganine-1-phosphate in paclitaxel-induced biological changes associated with neuropathic side effects. The identified SA1P, through its receptors, may provide a potential drug target for co-therapy with paclitaxel to reduce one of its major and therapy-limiting side effects. Funding This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG, Grants SFB1039 A09 and Z01) and by the Fraunhofer Foundation Project: Neuropathic Pain as well as the Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD). This work was also supported by the Leistungszentrum Innovative Therapeutics (TheraNova) funded by the Fraunhofer Society and the Hessian Ministry of Science and Arts. Jörn Lötsch was supported by the Deutsche Forschungsgemeinschaft (DFG LO 612/16-1).
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Khayal Gasimli
- Goethe University, Department of Gynecology and Obstetrics, Frankfurt, Germany
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Saskia Wedel
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Nerea Ferreiros Bouzas
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Christian H Brandts
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University, University Cancer Center Frankfurt (UCT), Goethe University Hospital, Frankfurt, Germany
| | | | - Christine Solbach
- Goethe University, Department of Gynecology and Obstetrics, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| |
Collapse
|
5
|
Zhang J, Zhang X, Wu J. The correlation between vitamin D and the occurrence of peripheral neuropathy induced by paclitaxel chemotherapy. Front Med (Lausanne) 2024; 11:1466049. [PMID: 39380731 PMCID: PMC11458533 DOI: 10.3389/fmed.2024.1466049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Paclitaxel, a widely used chemotherapeutic agent for various cancers, induces peripheral neuropathy (PIPN) in approximately 80% of patients, severely affecting their quality of life. The role of vitamin D in pain perception has gained attention, but its correlation with PIPN remains unclear. Methods This study included 129 cancer patients who received adjuvant paclitaxel chemotherapy from January to June 2023. Neuropathic pain was assessed using the Douleur Neuropathique 4 Questions (DN4) questionnaire, and serum levels of vitamin D and glutathione (GSH) were measured to explore the correlation between vitamin D levels and neuropathic pain induced by paclitaxel chemotherapy. Results The results showed a negative correlation between vitamin D deficiency and the occurrence of neuropathic pain (Spearman correlation coefficient of -0.324, P < 0.001). The receiver operating characteristic (ROC) curve analysis revealed that the area under the vitamin D curve for neuropathic pain was 0.681. Furthermore, after paclitaxel chemotherapy, there was a significant decrease in GSH levels in the serum of patients, with a more pronounced decline in the vitamin D-deficient group. Discussion The findings of this study indicate that higher levels of vitamin D are negatively associated with the occurrence of paclitaxel-induced neuropathic pain, suggesting that vitamin D might protect against oxidative stress. This discovery is significant for clinical treatment as it may help physicians better understand the mechanisms of pain during paclitaxel therapy and provide new strategies for the prevention and treatment of such pain. It also suggests that modulating vitamin D levels could reduce the neurotoxicity of paclitaxel, thereby improving patients' quality of life and treatment compliance.
Collapse
Affiliation(s)
- Jialei Zhang
- Department of Pain Treatment, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xiaoling Zhang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
- Department of Oncology, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jie Wu
- Department of Pain Treatment, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
6
|
Das V, Miller JH, Alladi CG, Annadurai N, De Sanctis JB, Hrubá L, Hajdúch M. Antineoplastics for treating Alzheimer's disease and dementia: Evidence from preclinical and observational studies. Med Res Rev 2024; 44:2078-2111. [PMID: 38530106 DOI: 10.1002/med.22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
As the world population ages, there will be an increasing need for effective therapies for aging-associated neurodegenerative disorders, which remain untreatable. Dementia due to Alzheimer's disease (AD) is one of the leading neurological diseases in the aging population. Current therapeutic approaches to treat this disorder are solely symptomatic, making the need for new molecular entities acting on the causes of the disease extremely urgent. One of the potential solutions is to use compounds that are already in the market. The structures have known pharmacokinetics, pharmacodynamics, toxicity profiles, and patient data available in several countries. Several drugs have been used successfully to treat diseases different from their original purposes, such as autoimmunity and peripheral inflammation. Herein, we divulge the repurposing of drugs in the area of neurodegenerative diseases, focusing on the therapeutic potential of antineoplastics to treat dementia due to AD and dementia. We briefly touch upon the shared pathological mechanism between AD and cancer and drug repurposing strategies, with a focus on artificial intelligence. Next, we bring out the current status of research on the development of drugs, provide supporting evidence from retrospective, clinical, and preclinical studies on antineoplastic use, and bring in new areas, such as repurposing drugs for the prion-like spreading of pathologies in treating AD.
Collapse
Affiliation(s)
- Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - John H Miller
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Charanraj Goud Alladi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lenka Hrubá
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
7
|
Singh SK, Weigel C, Brown RDR, Green CD, Tuck C, Salvemini D, Spiegel S. FTY720/Fingolimod mitigates paclitaxel-induced Sparcl1-driven neuropathic pain and breast cancer progression. FASEB J 2024; 38:e23872. [PMID: 39126272 DOI: 10.1096/fj.202401277r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Paclitaxel is among the most active chemotherapy drugs for the aggressive triple negative breast cancer (TNBC). Unfortunately, it often induces painful peripheral neuropathy (CIPN), a major debilitating side effect. Here we demonstrate that in naive and breast tumor-bearing immunocompetent mice, a clinically relevant dose of FTY720/Fingolimod that targets sphingosine-1-phosphate receptor 1 (S1PR1), alleviated paclitaxel-induced neuropathic pain. FTY720 also significantly attenuated paclitaxel-stimulated glial fibrillary acidic protein (GFAP), a marker for activated astrocytes, and expression of the astrocyte-secreted synaptogenic protein Sparcl1/Hevin, a key regulator of synapse formation. Notably, the formation of excitatory synapses containing VGluT2 in the spinal cord dorsal horn induced by paclitaxel was also inhibited by FTY720 treatment, supporting the involvement of astrocytes and Sparcl1 in CIPN. Furthermore, in this TNBC mouse model that mimics human breast cancer, FTY720 administration also enhanced the anti-tumor effects of paclitaxel, leading to reduced tumor progression and lung metastasis. Taken together, our findings suggest that targeting the S1P/S1PR1 axis with FTY720 is a multipronged approach that holds promise as a therapeutic strategy for alleviating both CIPN and enhancing the efficacy of chemotherapy in TNBC treatment.
Collapse
Affiliation(s)
- Sandeep K Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Christopher D Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Connor Tuck
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University, St. Louis, Missouri, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
8
|
Manengu C, Zhu CH, Zhang GD, Tian MM, Lan XB, Tao LJ, Ma L, Liu Y, Yu JQ, Liu N. HDAC inhibitors as a potential therapy for chemotherapy-induced neuropathic pain. Inflammopharmacology 2024; 32:2153-2175. [PMID: 38761314 DOI: 10.1007/s10787-024-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/22/2024] [Indexed: 05/20/2024]
Abstract
Cancer, a chronic disease characterized by uncontrolled cell development, kills millions of people globally. The WHO reported over 10 million cancer deaths in 2020. Anticancer medications destroy healthy and malignant cells. Cancer treatment induces neuropathy. Anticancer drugs cause harm to spinal cord, brain, and peripheral nerve somatosensory neurons, causing chemotherapy-induced neuropathic pain. The chemotherapy-induced mechanisms underlying neuropathic pain are not fully understood. However, neuroinflammation has been identified as one of the various pathways associated with the onset of chemotherapy-induced neuropathic pain. The neuroinflammatory processes may exhibit varying characteristics based on the specific type of anticancer treatment delivered. Neuroinflammatory characteristics have been observed in the spinal cord, where microglia and astrocytes have a significant impact on the development of chemotherapy-induced peripheral neuropathy. The patient's quality of life might be affected by sensory deprivation, loss of consciousness, paralysis, and severe disability. High cancer rates and ineffective treatments are associated with this disease. Recently, histone deacetylases have become a novel treatment target for chemotherapy-induced neuropathic pain. Chemotherapy-induced neuropathic pain may be treated with histone deacetylase inhibitors. Histone deacetylase inhibitors may be a promising therapeutic treatment for chemotherapy-induced neuropathic pain. Common chemotherapeutic drugs, mechanisms, therapeutic treatments for neuropathic pain, and histone deacetylase and its inhibitors in chemotherapy-induced neuropathic pain are covered in this paper. We propose that histone deacetylase inhibitors may treat several aspects of chemotherapy-induced neuropathic pain, and identifying these inhibitors as potentially unique treatments is crucial to the development of various chemotherapeutic combination treatments.
Collapse
Affiliation(s)
- Chalton Manengu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- School of International Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Chun-Hao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Dong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Miao-Miao Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
9
|
Yang Y, Zhao B, Lan H, Sun J, Wei G. Bortezomib-induced peripheral neuropathy: Clinical features, molecular basis, and therapeutic approach. Crit Rev Oncol Hematol 2024; 197:104353. [PMID: 38615869 DOI: 10.1016/j.critrevonc.2024.104353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Bortezomib is the first-line standard and most effective chemotherapeutic for multiple myeloma; however, bortezomib-induced peripheral neuropathy (BIPN) severely affects the chemotherapy regimen and has long-term impact on patients under maintenance therapy. The pathogenesis of BIPN is poorly understood, and basic research and development of BIPN management drugs are in early stages. Besides chemotherapy dose reduction and regimen modification, no recommended prevention and treatment approaches are available for BIPN apart from the International Myeloma Working Group guidelines for peripheral neuropathy in myeloma. An in-depth exploration of the pathogenesis of BIPN, development of additional therapeutic approaches, and identification of risk factors are needed. Optimizing effective and standardized BIPN treatment plans and providing more decision-making evidence for clinical diagnosis and treatment of BIPN are necessary. This article reviews the recent advances in BIPN research; provides an overview of clinical features, underlying molecular mechanisms, and therapeutic approaches; and highlights areas for future studies.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oncology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of General Surgery, Changshu No. 1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Changshu, China; Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinbing Sun
- Department of General Surgery, Changshu No. 1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Changshu, China.
| | - Guoli Wei
- Department of Oncology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
Wang J, Zheng G, Wang L, Meng L, Ren J, Shang L, Li D, Bao Y. Dysregulation of sphingolipid metabolism in pain. Front Pharmacol 2024; 15:1337150. [PMID: 38523645 PMCID: PMC10957601 DOI: 10.3389/fphar.2024.1337150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Pain is a clinical condition that is currently of great concern and is often caused by tissue or nerve damage or occurs as a concomitant symptom of a variety of diseases such as cancer. Severe pain seriously affects the functional status of the body. However, existing pain management programs are not fully satisfactory. Therefore, there is a need to delve deeper into the pathological mechanisms underlying pain generation and to find new targets for drug therapy. Sphingolipids (SLs), as a major component of the bilayer structure of eukaryotic cell membranes, also have powerful signal transduction functions. Sphingolipids are abundant, and their intracellular metabolism constitutes a huge network. Sphingolipids and their various metabolites play significant roles in cell proliferation, differentiation, apoptosis, etc., and have powerful biological activities. The molecules related to sphingolipid metabolism, mainly the core molecule ceramide and the downstream metabolism molecule sphingosine-1-phosphate (S1P), are involved in the specific mechanisms of neurological disorders as well as the onset and progression of various types of pain, and are closely related to a variety of pain-related diseases. Therefore, sphingolipid metabolism can be the focus of research on pain regulation and provide new drug targets and ideas for pain.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangda Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linghan Meng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Dongtao Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | |
Collapse
|
11
|
Bonomo R, Canta A, Chiorazzi A, Carozzi VA, Meregalli C, Pozzi E, Alberti P, Frampas CF, Van der Veen DR, Marmiroli P, Skene DJ, Cavaletti G. Effect of age on metabolomic changes in a model of paclitaxel-induced peripheral neurotoxicity. J Peripher Nerv Syst 2024; 29:58-71. [PMID: 38126610 DOI: 10.1111/jns.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND AND AIMS Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of the most common dose-limiting side effects of paclitaxel (PTX) treatment. Many age-related changes have been hypothesized to underlie susceptibility to damage or impaired regeneration/repair after nerve injury. The results of these studies, however, are inconclusive and other potential biomarkers of nerve impairment need to be investigated. METHODS Twenty-four young (2 months) and 24 adult (9 months) Wistar male rats were randomized to either PTX treatment (10 mg/kg i.v. once/week for 4 weeks) or vehicle administration. Neurophysiological and behavioral tests were performed at baseline, after 4 weeks of treatment and 2-week follow-up. Skin biopsies and nerve specimens collected from sacrificed animals were examined for intraepidermal nerve fiber (IENF) density assessment and nerve morphology/morphometry. Blood and liver samples were collected for targeted metabolomics analysis. RESULTS At the end of treatment, the neurophysiological studies revealed a reduction in sensory nerve action potential amplitude (p < .05) in the caudal nerve of young PTX-animals, and in both the digital and caudal nerve of adult PTX-animals (p < .05). A significant decrease in the mechanical threshold was observed only in young PTX-animals (p < .001), but not in adult PTX-ones. Nevertheless, both young and adult PTX-rats had reduced IENF density (p < .0001), which persisted at the end of follow-up period. Targeted metabolomics analysis showed significant differences in the plasma metabolite profiles between PTX-animals developing peripheral neuropathy and age-matched controls, with triglycerides, diglycerides, acylcarnitines, carnosine, long chain ceramides, sphingolipids, and bile acids playing a major role in the response to PTX administration. INTERPRETATION Our study identifies for the first time multiple related metabolic axes involved in PTX-induced peripheral neurotoxicity, and suggests age-related differences in CIPN manifestations and in the metabolic profile.
Collapse
Affiliation(s)
- Roberta Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- School of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Cecile F Frampas
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Daan R Van der Veen
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
12
|
Yun HD, Goel Y, Gupta K. Crosstalk of Mast Cells and Natural Killer Cells with Neurons in Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2023; 24:12543. [PMID: 37628724 PMCID: PMC10454469 DOI: 10.3390/ijms241612543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major comorbidity of cancer. Multiple clinical interventions have been studied to effectively treat CIPN, but the results have been disappointing, with no or little efficacy. Hence, understanding the pathophysiology of CIPN is critical to improving the quality of life and clinical outcomes of cancer patients. Although various mechanisms of CIPN have been described in neuropathic anti-cancer agents, the neuroinflammatory process involving cytotoxic/proinflammatory immune cells remains underexamined. While mast cells (MCs) and natural killer (NK) cells are the key innate immune compartments implicated in the pathogenesis of peripheral neuropathy, their role in CIPN has remained under-appreciated. Moreover, the biology of proinflammatory cytokines associated with MCs and NK cells in CIPN is particularly under-evaluated. In this review, we will focus on the interactions between MCs, NK cells, and neuronal structure and their communications via proinflammatory cytokines, including TNFα, IL-1β, and IL-6, in peripheral neuropathy in association with tumor immunology. This review will help lay the foundation to investigate MCs, NK cells, and cytokines to advance future therapeutic strategies for CIPN.
Collapse
Affiliation(s)
- Hyun Don Yun
- Hematology, Oncology, Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
- Division of Hematology, Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA 92617, USA; (Y.G.); (K.G.)
| | - Yugal Goel
- Division of Hematology, Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA 92617, USA; (Y.G.); (K.G.)
| | - Kalpna Gupta
- Division of Hematology, Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA 92617, USA; (Y.G.); (K.G.)
| |
Collapse
|
13
|
Arangia A, Ragno A, Cordaro M, D’Amico R, Siracusa R, Fusco R, Marino Merlo F, Smeriglio A, Impellizzeri D, Cuzzocrea S, Mandalari G, Di Paola R. Antioxidant Activity of a Sicilian Almond Skin Extract Using In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12115. [PMID: 37569490 PMCID: PMC10418603 DOI: 10.3390/ijms241512115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Almond skins are known for their antioxidative and anti-inflammatory properties, which are mainly due to the presence of polyphenols. The aim of the present study was to evaluate the antioxidant and anti-inflammatory effects of almond skin extract (ASE) obtained from the Sicilian cultivar "Fascionello" and to evaluate the possible mechanisms of action using an in vitro model of human monocytic U937 cells as well as an in vivo model of carrageenan (CAR)-induced paw edema. The in vitro studies demonstrated that pretreatment with ASE inhibited the formation of ROS and apoptosis. The in vivo studies showed that ASE restored the CAR-induced tissue changes; restored the activity of endogenous antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione; and decreased neutrophil infiltration, lipid peroxidation, and the release of proinflammatory mediators. The anti-inflammatory and antioxidant effects of ASE could be associated with the inhibition of the pro-inflammatory nuclear NF-κB and the activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2) antioxidant pathways. In conclusion, almond skin could reduce the levels of inflammation and oxidative stress and could be beneficial in the treatment of several disorders.
Collapse
Affiliation(s)
- Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.)
| | - Agnese Ragno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.)
| | - Marika Cordaro
- Department of Biomedical, Dental, Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.)
| | - Francesca Marino Merlo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.)
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
14
|
Interdonato L, Ferrario G, Cordaro M, D'Amico R, Siracusa R, Fusco R, Impellizzeri D, Cuzzocrea S, Aldini G, Di Paola R. Targeting Nrf2 and NF-κB Signaling Pathways in Inflammatory Pain: The Role of Polyphenols from Thinned Apples. Molecules 2023; 28:5376. [PMID: 37513248 PMCID: PMC10385557 DOI: 10.3390/molecules28145376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Diet can modulate the different stages of inflammation due to the presence of bioactive compounds such as polyphenols. Apples are a great source of phenolic compounds that show anti-inflammatory and antioxidant properties, and these might be used as a dietary supplement and/or functional element in the treatment of chronic inflammatory illnesses. The aim of our study was to evaluate the anti-inflammatory and antioxidant actions of thinned apple polyphenol (TAP) extracts in a model of paw edema. The experimental model was induced in rats via subplantar injections of 1% λ-Carrageenan (CAR) in the right hind leg, and TAP extract was administered via oral gavage 30 min before and 1 h after the CAR injection at doses of 5 mg/kg and 10 mg/kg, respectively. The inflammatory response is usually quantified by the increase in the size of the paw (edema), which is maximal about 5 h after the injection of CAR. CAR-induced inflammation generates the release of pro-inflammatory mediators and reactive oxygen species (ROS). Furthermore, the inflammatory state induces the pain that involves the peripheral nociceptors, but above all it acts centrally at the level of the spinal cord. Our results showed that the TAP extracts reduced paw histological changes, neutrophil infiltration, mast cell degranulation, and oxidative stress. Additionally, the oral administration of TAP extracts decreased thermal and mechanical hyperalgesia, along with a reduction in spinal microglia and the markers of nociception. In conclusion, we demonstrate that TAP extract is able to modulate inflammatory, oxidative, and painful processes, and is also useful in the treatment of the symptoms associated with paw edema.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Giulio Ferrario
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
15
|
Impellizzeri D, Cordaro M, Siracusa R, Fusco R, Peritore AF, Gugliandolo E, Genovese T, Crupi R, Interdonato L, Evangelista M, Di Paola R, Cuzzocrea S, D'Amico R. Molecular targets for anti-oxidative protection of açaí berry against diabetes myocardial ischemia/reperfusion injury. Free Radic Res 2023; 57:339-352. [PMID: 37609799 DOI: 10.1080/10715762.2023.2243032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is the principal cause of death and occurs after prolonged blockage of the coronary arteries. Diabetes represents one of the main factors aggravating myocardial injury. Restoring blood flow is the first intervention against a heart attack, although reperfusion process could cause additional damage, such as the overproduction of reacting oxygen species (ROS). In recent years, açaí berry has gained international attention as a functional food due to its antioxidant and anti-inflammatory properties; not only that but this fruit has shown glucose-lowering effects. Therefore, this study was designed to evaluate the cardioprotective effects of açaí berry on the inflammatory and oxidative responses associated with diabetic MIRI. Diabetes was induced in rats by a single intravenous inoculation of streptozotocin (60 mg/kg) and allowed to develop for 60 days. MIRI was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 2 h of reperfusion. Açaí (200 mg/kg) was administered 5 min before the end of ischemia and 1 h after reperfusion. In this study, we clearly demonstrated that açaí treatment was able to reduce biomarkers of myocardial damage, infarct size, and apoptotic process. Moreover, açaí administrations reduced inflammatory and oxidative response, modulating Nf-kB and Nrf2 pathways. These results suggest that açai berry supplementation could represent a useful strategy for pathological events associated to MIRI.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | | | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maurizio Evangelista
- Institute of Anaesthesiology and Reanimation, Catholic University of the Sacred Heart, Rome, Italy
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
16
|
Blocking SphK/S1P/S1PR1 axis signaling pathway alleviates remifentanil-induced hyperalgesia in rats. Neurosci Lett 2023; 801:137131. [PMID: 36801239 DOI: 10.1016/j.neulet.2023.137131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Recent research shows a correlation between altered sphingolipid metabolism and nociceptive processing. Activation of the sphingosine-1-phosphate receptor 1 subtype (S1PR1) by its ligand, sphingosine-1-phosphate (S1P), causes neuropathic pain. However, its role in remifentanil-induced hyperalgesia (RIH) has not been investigated. The purpose of this research was to establish if the SphK/S1P/S1PR1 axis mediated remifentanil-induced hyperalgesia and identify its potential targets. This study examined the protein expression of ceramide, sphingosine kinases (SphK), S1P, and S1PR1 in the spinal cord of rats treated with remifentanil (1.0 μg/kg/min for 60 min). Prior to receiving remifentanil, rats were injected with SK-1 (a SphK inhibitor); LT1002 (a S1P monoclonal antibody); CYM-5442, FTY720, and TASP0277308(the S1PR1 antagonists); CYM-5478 (a S1PR2 agonist); CAY10444 (a S1PR3 antagonist); Ac-YVAD-CMK (a caspase-1 antagonist); MCC950 (the NOD-like receptor protein 3 (NLRP3) inflammasome antagonist); and N-tert-Butyl-α-phenylnitrone (PBN, a reactive oxygen species (ROS) scavenger). Mechanical and thermal hyperalgesia were evaluated at baseline (24 h prior to remifentanil infusion) and 2, 6, 12, and 24 h following remifentanil administration. The expression of the NLRP3-related protein (NLRP3, caspase-1), pro-inflammatory cytokines (interleukin-1β(IL-1β), IL-18), and ROS was found in the spinal dorsal horns. In the meantime, immunofluorescence was used to ascertain if S1PR1 co-localizes with astrocytes. Remifentanil infusion induced considerable hyperalgesia in addition to increased ceramide, SphK, S1P, and S1PR1, NLRP3-related protein (NLRP3, Caspase-1, IL-1β, IL-18) and ROS expression, and S1PR1 localized astrocytes. By blocking the SphK/S1P/S1PR1 axis, remifentanil-induced hyperalgesia was reduced, as was the expression of NLRP3, caspase-1, pro-inflammatory cytokines (IL-1β, IL-18) and ROS in the spinal cord. In addition, we observed that suppressing NLRP3 or ROS signal attenuated the mechanical and thermal hyperalgesia induced by remifentanil. Our findings indicate that the SphK/SIP/S1PR1 axis regulates the expression of NLRP3, Caspase-1, IL-1β, IL-18 and ROS in the spinal dorsal horn to mediate remifentanil-induced hyperalgesia. These findings may contribute to pain and SphK/S1P/S1PR1 axis research positively, and inform the future study of this commonly used analgesic.
Collapse
|
17
|
Chemotherapy-Induced Peripheral Neuropathy. Handb Exp Pharmacol 2023; 277:299-337. [PMID: 36253554 DOI: 10.1007/164_2022_609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of many common anti-cancer agents that can lead to dose reduction or treatment discontinuation, which decrease chemotherapy efficacy. Long-term CIPN can interfere with activities of daily living and diminish the quality of life. The mechanism of CIPN is not yet fully understood, and biomarkers are needed to identify patients at high risk and potential treatment targets. Metabolomics can capture the complex behavioral and pathophysiological processes involved in CIPN. This chapter is to review the CIPN metabolomics studies to find metabolic pathways potentially involved in CIPN. These potential CIPN metabolites are then investigated to determine whether there is evidence from studies of other neuropathy etiologies such as diabetic neuropathy and Leber hereditary optic neuropathy to support the importance of these pathways in peripheral neuropathy. Six potential biomarkers and their putative mechanisms in peripheral neuropathy were reviewed. Among these biomarkers, histidine and phenylalanine have clear roles in neurotransmission or neuroinflammation in peripheral neuropathy. Further research is needed to discover and validate CIPN metabolomics biomarkers in large clinical studies.
Collapse
|
18
|
Lauro F, Giancotti LA, Kolar G, Harada CM, Harmon TA, Garrett TJ, Salvemini D. Role of Adenosine Kinase in Sphingosine-1-Phosphate Receptor 1-Induced Mechano-Hypersensitivities. Cell Mol Neurobiol 2022; 42:2909-2918. [PMID: 34773542 PMCID: PMC9098694 DOI: 10.1007/s10571-021-01162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Emerging evidence implicates the sphingosine-1-phosphate receptor subtype 1 (S1PR1) in the development of neuropathic pain. Continued investigation of the signaling pathways downstream of S1PR1 are needed to support development of S1PR1 antagonists. In rodents, intrathecal (i.th.) injection of SEW2871, a selective S1PR1 agonist, activates the nod-like receptor family, pyrin domain containing 3 inflammasome, increases interleukin-1β (IL-1β) and causes behavioral hypersensitivity. I.th. injection of a IL-1β receptor antagonist blocks SEW2871-induced hypersensitivity, suggesting that IL-1β contributes to S1PR1's actions. Interestingly, previous studies have suggested that IL-1β increases the expression/activity of adenosine kinase (ADK), a key regulator of adenosine signaling at its receptors (ARs). Increased ADK expression reduces adenosine signaling whereas inhibiting ADK restores the action of adenosine. Here, we show that SEW287-induced behavioral hypersensitivity is associated with increased expression of ADK in astrocytes of the dorsal horn of the spinal cord. Moreover, the ADK inhibitor, ABT702, blocks SEW2871-induced hypersensitivity. These findings link ADK activation to S1PR1. If SEW2871-induced pain is mediated by IL-1β, which in turn activates ADK and leads to mechano-allodynia, then blocking ADK should attenuate IL-1β effects. In support of this idea, recombinant rat (rrIL-1β)-induced allodynia was blocked by at least 90% with ABT702, functionally linking ADK to IL-1β. Moreover, the selective A3AR antagonist, MRS1523, prevents the ability of ABT702 to block SEW2871 and IL-1β-induced allodynia, implicating A3AR signaling in the beneficial effects exerted by ABT702. Our findings provide novel mechanistic insight into how S1PR1 signaling in the spinal cord produces hypersensitivity through IL1-β and ADK activation.
Collapse
Affiliation(s)
- Filomena Lauro
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Luigino Antonio Giancotti
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Grant Kolar
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
- Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Caron Mitsue Harada
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Taylor A Harmon
- Department of Chemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA.
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA.
| |
Collapse
|
19
|
Squillace S, Niehoff ML, Doyle TM, Green M, Esposito E, Cuzzocrea S, Arnatt CK, Spiegel S, Farr SA, Salvemini D. Sphingosine-1-phosphate receptor 1 activation in the central nervous system drives cisplatin-induced cognitive impairment. J Clin Invest 2022; 132:157738. [PMID: 36047496 PMCID: PMC9433103 DOI: 10.1172/jci157738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a major neurotoxicity affecting more than 50% of cancer survivors. The underpinning mechanisms are mostly unknown, and there are no FDA-approved interventions. Sphingolipidomic analysis of mouse prefrontal cortex and hippocampus, key sites of cognitive function, revealed that cisplatin increased levels of the potent signaling molecule sphingosine-1-phosphate (S1P) and led to cognitive impairment. At the biochemical level, S1P induced mitochondrial dysfunction, activation of NOD-, LRR-, and pyrin domain–containing protein 3 inflammasomes, and increased IL-1β formation. These events were attenuated by systemic administration of the functional S1P receptor 1 (S1PR1) antagonist FTY720, which also attenuated cognitive impairment without adversely affecting locomotor activity. Similar attenuation was observed with ozanimod, another FDA-approved functional S1PR1 antagonist. Mice with astrocyte-specific deletion of S1pr1 lost their ability to respond to FTY720, implicating involvement of astrocytic S1PR1. Remarkably, our pharmacological and genetic approaches, coupled with computational modeling studies, revealed that cisplatin increased S1P production by activating TLR4. Collectively, our results identify the molecular mechanisms engaged by the S1P/S1PR1 axis in CRCI and establish S1PR1 antagonism as an approach to target CRCI with therapeutics that have fast-track clinical application.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, and.,The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Michael L Niehoff
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine-Geriatrics, Saint Louis School of Medicine, St. Louis, Missouri, USA
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, and.,The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Michael Green
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | - Christopher K Arnatt
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, Richmond, Virginia, USA
| | - Susan A Farr
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine-Geriatrics, Saint Louis School of Medicine, St. Louis, Missouri, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, and.,The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Pak VM, Russell K, Shi Z, Zhang Q, Cox J, Uppal K, Yu T, Hertzberg V, Liu K, Ioachimescu OC, Collop N, Bliwise DL, Kutner NG, Rogers A, Dunbar SB. Sphinganine is associated with 24-h MAP in the non-sleepy with OSA. Metabolomics 2022; 18:23. [PMID: 35391564 DOI: 10.1007/s11306-021-01860-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/07/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Excessive daytime sleepiness is a debilitating symptom of obstructive sleep apnea (OSA) linked to cardiovascular disease, and metabolomic mechanisms underlying this relationship remain unknown. We examine whether metabolites from inflammatory and oxidative stress-related pathways that were identified in our prior work could be involved in connecting the two phenomena. METHODS This study included 57 sleepy (Epworth Sleepiness Scale (ESS) ≥ 10) and 37 non-sleepy (ESS < 10) participants newly diagnosed and untreated for OSA that completed an overnight in-lab or at home sleep study who were recruited from the Emory Mechanisms of Sleepiness Symptoms Study (EMOSS). Differences in fasting blood samples of metabolites were explored in participants with sleepiness versus those without and multiple linear regression models were utilized to examine the association between metabolites and mean arterial pressure (MAP). RESULTS The 24-h MAP was higher in sleepy 92.8 mmHg (8.4) as compared to non-sleepy 88.8 mmHg (8.1) individuals (P = 0.03). Although targeted metabolites were not significantly associated with MAP, when we stratified by sleepiness group, we found that sphinganine is significantly associated with MAP (Estimate = 8.7, SE = 3.7, P = 0.045) in non-sleepy patients when controlling for age, BMI, smoking status, and apnea-hypopnea index (AHI). CONCLUSION This is the first study to evaluate the relationship of inflammation and oxidative stress related metabolites in sleepy versus non-sleepy participants with newly diagnosed OSA and their association with 24-h MAP. Our study suggests that Sphinganine is associated with 24 hour MAP in the non-sleepy participants with OSA.
Collapse
Affiliation(s)
- Victoria M Pak
- School of Nursing, Emory University, 1520 Clifton Road, 243, Atlanta, GA, 30322, USA.
- Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Katherine Russell
- School of Nursing, Emory University, 1520 Clifton Road, 243, Atlanta, GA, 30322, USA
| | - Zhenzhen Shi
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Atlanta, GA, 30322, USA
| | - Qiang Zhang
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Atlanta, GA, 30322, USA
| | - John Cox
- School of Nursing, Emory University, 1520 Clifton Road, 243, Atlanta, GA, 30322, USA
| | - Karan Uppal
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Tianwei Yu
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Shenzhen Research Institute of Big Data, and School of Data Science, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Vicki Hertzberg
- School of Nursing, Emory University, 1520 Clifton Road, 243, Atlanta, GA, 30322, USA
| | - Ken Liu
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Octavian C Ioachimescu
- School of Medicine, Emory University, Atlanta, GA, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University - School of Medicine, Atlanta, GA, 30322, USA
- Sleep Medicine Section, Atlanta VA Healthcare System, Atlanta, GA, 30322, USA
| | - Nancy Collop
- School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Nancy G Kutner
- Gangarosa Department of Environmental Health, Atlanta, GA, 30322, USA
| | - Ann Rogers
- School of Nursing, Emory University, 1520 Clifton Road, 243, Atlanta, GA, 30322, USA
| | - Sandra B Dunbar
- School of Nursing, Emory University, 1520 Clifton Road, 243, Atlanta, GA, 30322, USA
| |
Collapse
|
21
|
Liu Q, Feng L, Han X, Zhang W, Zhang H, Xu L. The TRPA1 Channel Mediates Mechanical Allodynia and Thermal Hyperalgesia in a Rat Bone Cancer Pain Model. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 2:638620. [PMID: 35295475 PMCID: PMC8915568 DOI: 10.3389/fpain.2021.638620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/22/2021] [Indexed: 11/24/2022]
Abstract
Background: Bone cancer pain (BCP) significantly affects patient quality of life, results in great bodily and emotional pain, and creates difficulties in follow-up treatment and normal life. Transient receptor potential ankyrin 1 (TRPA1) is an essential transduction ion channel related to neuropathic and inflammatory pain. However, the role of TRPA1 in BCP remains poorly understood. This study aimed to explore the relationship between TRPA1 and BCP. Methods: A BCP model was induced by Walker256 cells to the left tibia. The sham group was induced by normal saline to the left tibia. Thereafter, pain behaviors and TRPA1 expression between the BCP group and the sham group were observed on the 14th day of modeling. The TRPA1 antagonist A967079 (10 mg/kg) was injected via tail vein. TRPA1 antisense oligodeoxynucleotide (AS-ODN, 5 nmol/10 μl) and missense oligodeoxynucleotide (MS-ODN, 5 nmol/10 μl) were intrathecally delivered via a mini-osmotic pump for 5 consecutive days to assess the effect of TRPA1 on BCP. Behavioral tests were assessed preoperatively and postoperatively. Real-time quantitative PCR and western blot analyses were used to measure TRPA1 levels among the different groups. Results: The BCP model was successfully established via X-ray and pathological sections at 14 days. Compared to the sham group, the BCP group was more sensitive to mechanical stimuli, cool stimuli and hot stimuli. Intravenously injected A967079 can relieve paw mechanical withdrawal threshold and paw withdrawal thermal latency in rats with BCP. Moreover, AS-ODN can relieve paw mechanical withdrawal threshold and paw withdrawal thermal latency in rats with BCP. Additionally, relative mRNA and protein expression of TRPA1 in the BCP group were much higher than those in the sham group (14.55 ± 1.97 vs. 1 ± 0.04, P < 0.01). Compared to the BCP group, the relative mRNA and protein expression of TRPA1 in the BCP+AS-ODN group was reduced (14.55 ± 1.97 vs. 2.59 ± 0.34, P < 0.01). Conclusions: The TRPA1 channel mediates mechanical allodynia and thermal hyperalgesia in a rat BCP model.
Collapse
Affiliation(s)
- Qiangwei Liu
- Department of Anesthesiology and Operation, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Long Feng
- Department of Anesthesiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Xiujing Han
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weidong Zhang
- Department of Anesthesiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hong Zhang
- Department of Anesthesiology and Operation, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Longhe Xu
- Department of Anesthesiology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Pan Q, Wang Y, Tian R, Wen Q, Qin G, Zhang D, Chen L, Zhang Y, Zhou J. Sphingosine-1 phosphate receptor 1 contributes to central sensitization in recurrent nitroglycerin-induced chronic migraine model. J Headache Pain 2022; 23:25. [PMID: 35144528 PMCID: PMC8903593 DOI: 10.1186/s10194-022-01397-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Central sensitization is an important pathophysiological mechanism of chronic migraine (CM), and microglia activation in trigeminocervical complex (TCC) contributes to the development of central sensitization. Emerging evidence implicates that blocking sphingosine-1-phosphate receptor 1 (S1PR1) can relieve the development of chronic pain and inhibit the activation of microglia. However, it is unclear whether S1PR1 is involved in the central sensitization of CM. Therefore, the purpose of this study is to explore the role of S1PR1 and its downstream signal transducers and activators of transcription 3 (STAT3) signaling pathway in the CM, mainly in inflammation. METHODS Chronic intermittent intraperitoneal injection of nitroglycerin (NTG) established a mouse model of CM. First, we observed the changes and subcellular localization of S1PR1 in the trigeminocervical complex (TCC). Then, W146, a S1PR1 antagonist; SEW2871, a S1PR1 agonist; AG490, a STAT3 inhibitor were applied by intraperitoneal injection to investigate the related molecular mechanism. The changes in the number of microglia and the expression of calcitonin gene-related peptide (CGRP) and c-fos in the TCC site were explored by immunofluorescence. In addition, we studied the effect of S1PR1 inhibitors on STAT3 in lipopolysaccharide-treated BV-2 microglia. RESULTS Our results showed that the expression of S1PR1 was increased after NTG injection and S1PR1 was colocalized with in neurons and glial cells in the TCC. The S1PR1 antagonist W146 alleviated NTG-induced hyperalgesia and suppressed the upregulation of CGRP, c-fos and pSTAT3 in the TCC. Importantly, blocking S1PR1 reduced activation of microglia. In addition, we found that inhibiting STAT3 signal also attenuated NTG-induced basal mechanical and thermal hyperalgesia. CONCLUSIONS Our results indicate that inhibiting S1PR1 signal could alleviate central sensitization and inhibit microglia activity caused by chronic NTG administration via STAT3 signal pathway, which provide a new clue for the clinical treatment of CM.
Collapse
Affiliation(s)
- Qi Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Yunfeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.,Department of Neurology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Ruimin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Qianwen Wen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
23
|
|
24
|
Gadepalli A, Akhilesh, Uniyal A, Modi A, Chouhan D, Ummadisetty O, Khanna S, Solanki S, Allani M, Tiwari V. Multifarious Targets and Recent Developments in the Therapeutics for the Management of Bone Cancer Pain. ACS Chem Neurosci 2021; 12:4195-4208. [PMID: 34723483 DOI: 10.1021/acschemneuro.1c00414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bone cancer pain (BCP) is a distinct pain state showing characteristics of both neuropathic and inflammatory pain. On average, almost 46% of cancer patients exhibit BCP with numbers flaring up to as high as 76% for terminally ill patients. Patients suffering from BCP experience a compromised quality of life, and the unavailability of effective therapeutics makes this a more devastating condition. In every individual cancer patient, the pain is driven by different mechanisms at different sites. The mechanisms behind the manifestation of BCP are very complex and poorly understood, which creates a substantial barrier to drug development. Nevertheless, some of the key mechanisms involved have been identified and are being explored further to develop targeted molecules. Developing a multitarget approach might be beneficial in this case as the underlying mechanism is not fixed and usually a number of these pathways are simultaneously dysregulated. In this review, we have discussed the role of recently identified novel modulators and mechanisms involved in the development of BCP. They include ion channels and receptors involved in sensing alteration of temperature and acidic microenvironment, immune system activation, sodium channels, endothelins, protease-activated receptors, neurotrophins, motor proteins mediated trafficking of glutamate receptor, and some bone-specific mechanisms. Apart from this, we have also discussed some of the novel approaches under preclinical and clinical development for the treatment of bone cancer pain.
Collapse
Affiliation(s)
- Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Ajay Modi
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Shreya Khanna
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Shreya Solanki
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| |
Collapse
|
25
|
Zhang X, Wang J, Ran R, Peng Y, Xiao Y. FSC231 alleviates paclitaxel-induced neuralgia by inhibiting the interactions between PICK1 and GluA2 and activates GSK-3β and ERK1/2. Brain Behav 2021; 11:e2380. [PMID: 34582111 PMCID: PMC8613442 DOI: 10.1002/brb3.2380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND FSC231, a PSD-95/DLG/ZO-1 (PDZ) domain inhibitor of protein kinase Cα interacting protein 1 (PICK1), has analgesic effects, but the mechanism remains unclear. METHODS The expression level of PICK1 in dorsal root ganglion (DRG) of rats was changed by vector plasmid, and the effect of PICK1 on paclitaxel (PTL)-induced neuralgia of rats was observed in collaboration with FSC231 treatment. The possible molecular mechanisms were explored by quantitative real-time polymerase chain reaction (qRT-PCR), Western Blot and co-immunoprecipitation (Co-IP) techniques. RESULTS PTL treatment can significantly reduce mechanical withdrawal threshold (MWT), shorten thermal withdrawal latency (TWL), promote DRG inflammation and release of substance P (SP), stimulate PICK1 expression, decrease α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor 2 (AMPAR, GluA2) level and increase glycogen synthase kinase-3β (GSK-3β) and extracellular regulated protein kinases1/2 (ERK1/2) phosphorylation in rats, while FSC231 treatment can alleviate the above effects induced by PTL. Overexpression of PICK1 can counteract reduced PICK1 level, increased GluA2 level and decreased GSK-3β and ERK1/2 phosphorylation levels caused by FSC231 treatment. The results of Co-IP confirmed the interactions between PICK1 and GluA2. Both FSC231 treatment and silent PICK1 improved PTL-induced MWT reduction, TWL shortening, inflammation, SP release and related gene expression changes, with cumulative effect. CONCLUSION FSC231 activates GSK-3β/ERK1/2 by inhibiting the interaction between PICK1 and GluA2 and alleviates PTL-induced DRG neuralgia in rats.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Jiagao Wang
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Ran Ran
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Yuchuan Peng
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Yun Xiao
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, P. R. China
| |
Collapse
|
26
|
Yang Y, Zhao B, Gao X, Sun J, Ye J, Li J, Cao P. Targeting strategies for oxaliplatin-induced peripheral neuropathy: clinical syndrome, molecular basis, and drug development. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:331. [PMID: 34686205 PMCID: PMC8532307 DOI: 10.1186/s13046-021-02141-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022]
Abstract
Oxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN) is a severe clinical problem and potentially permanent side effect of cancer treatment. For the management of OIPN, accurate diagnosis and understanding of significant risk factors including genetic vulnerability are essential to improve knowledge regarding the prevalence and incidence of OIPN as well as enhance strategies for the prevention and treatment of OIPN. The molecular mechanisms underlying OIPN are complex, with multi-targets and various cells causing neuropathy. Furthermore, mechanisms of OIPN can reinforce each other, and combination therapies may be required for effective management. However, despite intense investigation in preclinical and clinical studies, no preventive therapies have shown significant clinical efficacy, and the established treatment for painful OIPN is limited. Duloxetine is the only agent currently recommended by the American Society of Clinical Oncology. The present article summarizes the most recent advances in the field of studies on OIPN, the overview of the clinical syndrome, molecular basis, therapy development, and outlook of future drug candidates. Importantly, closer links between clinical pain management teams and oncology will advance the effectiveness of OIPN treatment, and the continued close collaboration between preclinical and clinical research will facilitate the development of novel prevention and treatments for OIPN.
Collapse
Affiliation(s)
- Yang Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China. .,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Yangtze River Pharmaceutical Group, Taizhou, 225321, China.
| | - Bing Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuejiao Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinbing Sun
- Changshu No.1 People's Hospital Affiliated to Soochow University, Changshu, 215500, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P.R. China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China. .,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212002, Jiangsu, China.
| |
Collapse
|
27
|
Micheli L, Durante M, Lucarini E, Sgambellone S, Lucarini L, Di Cesare Mannelli L, Ghelardini C, Masini E. The Histamine H 4 Receptor Participates in the Anti-Neuropathic Effect of the Adenosine A 3 Receptor Agonist IB-MECA: Role of CD4 + T Cells. Biomolecules 2021; 11:biom11101447. [PMID: 34680083 PMCID: PMC8533073 DOI: 10.3390/biom11101447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
A3 adenosine receptor (A3AR) agonists have emerged as potent relievers of neuropathic pain by a T cell-mediated production of IL-10. The H4 histamine receptor (H4R), also implicated in pain modulation, is expressed on T cells playing a preeminent role in its activation and release of IL-10. To improve the therapeutic opportunities, this study aimed to verify the hypothesis of a possible cross-talk between A3AR and H4R in the resolution of neuropathic pain. In the mouse model of Chronic Constriction Injury (CCI), the acute intraperitoneal co-administration of the A3AR agonist IB-MECA (0.5 mg/kg) and the H4R agonist VUF 8430 (10 mg/kg), were additive in counteracting mechano-allodynia increasing IL-10 plasma levels. In H4R−/− mice, IB-MECA activity was reduced, lower pain relief and lower modulation of plasma IL-1β, TNF-α, IL-6 and IL-10 were shown. The complete anti-allodynia effect of IB-MECA in H4R−/− mice was restored after intravenous administration of CD4+ T cells obtained from naïve wild type mice. In conclusion, a role of the histaminergic system in the mechanism of A3AR-mediated neuropathic pain relief was suggested highlighting the driving force evoked by CD4+ T cells throughout IL-10 up-regulation.
Collapse
|
28
|
Vermeer CJC, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N. Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncol 2021; 60:1369-1382. [PMID: 34313190 DOI: 10.1080/0284186x.2021.1954241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Paclitaxel is a taxane-based chemotherapeutic agent used as a treatment in breast cancer. There is no effective prevention or treatment strategy for the most common side effect of peripheral neuropathy. In this manuscript, we reviewed the molecular mechanisms that contribute to paclitaxel-induced peripheral neuropathy (PIPN) with an emphasis on immune-related processes. METHODS A systematic search of the literature was conducted in PubMed, EMBASE and Cochrane Library. The SYRCLE's risk of bias tool was used to assess internal validity. RESULTS 156 studies conducted with rodent models were included. The risk of bias was high due to unclear methodology. Paclitaxel induces changes in myelinated axons, mitochondrial dysfunction, and mechanical hypersensitivity by affecting ion channels expression and function and facilitating spinal transmission. Paclitaxel-induced inflammatory responses are important contributors to PIPN. CONCLUSION Immune-related processes are an important mechanism contributing to PIPN. Studies in humans that validate these mechanistic data are highly needed to facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Cornelia J. C. Vermeer
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anouk E. Hiensch
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laurence Cleenewerk
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne M. May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
29
|
Škubník J, Pavlíčková VS, Ruml T, Rimpelová S. Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics. BIOLOGY 2021; 10:849. [PMID: 34571726 PMCID: PMC8468923 DOI: 10.3390/biology10090849] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Treatment of blood malignancies and other cancer diseases has been mostly unfeasible, so far. Therefore, novel treatment regimens should be developed and the currently used ones should be further elaborated. A stable component in various cancer treatment regimens consists of vincristine, an antimitotic compound of natural origin. Despite its strong anticancer activity, mostly, it cannot be administered as monotherapy due to its unspecific action and severe side effects. However, vincristine is suitable for combination therapy. Multidrug treatment regimens including vincristine are standardly applied in the therapy of non-Hodgkin lymphoma and other malignancies, in which it is combined with drugs of different mechanisms of action, mainly with DNA-interacting compounds (for example cyclophosphamide), or drugs interfering with DNA synthesis (for example methotrexate). Besides, co-administration of vincristine with monoclonal antibodies has also emerged, the typical example of which is the anti-CD20 antibody rituximab. Although in some combination anticancer therapies, vincristine has been replaced with other drugs exhibiting lesser side effects, though, in most cases, it is still irreplaceable. This is strongly evidenced by the number of active clinical trials evaluating vincristine in combination cancer therapy. Therefore, in this article, we have reviewed the most common cancer treatment regimens employing vincristine and bring an overview of current trends in the clinical development of this compound.
Collapse
Affiliation(s)
| | | | | | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (J.Š.); (V.S.P.); (T.R.)
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The treatment of cancer-induced bone pain (CIBP) has been proven ineffective and relies heavily on opioids, the target of highly visible criticism for their negative side effects. Alternative therapeutic agents are needed and the last few years have brought promising results, detailed in this review. RECENT FINDINGS Cysteine/glutamate antiporter system, xc, cannabinoids, kappa opioids, and a ceramide axis have all been shown to have potential as novel therapeutic targets without the negative effects of opioids. SUMMARY Review of the most recent and promising studies involving CIBP, specifically within murine models. Cancer pain has been reported by 30-50% of all cancer patients and even more in late stages, however the standard of care is not effective to treat CIBP. The complicated and chronic nature of this type of pain response renders over the counter analgesics and opioids largely ineffective as well as difficult to use due to unwanted side effects. Preclinical studies have been standardized and replicated while novel treatments have been explored utilizing various alternative receptor pathways: cysteine/glutamate antiporter system, xc, cannabinoid type 1 receptor, kappa opioids, and a ceramide axis sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1.
Collapse
|
31
|
Bourque J, Hawiger D. Current and Future Immunotherapies for Multiple Sclerosis. MISSOURI MEDICINE 2021; 118:334-339. [PMID: 34373668 PMCID: PMC8343631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite substantial progress in developing new immunotherapies against multiple sclerosis (MS), currently available immunotherapies are only partially effective for this debilitating neurological disease, thus necessitating new therapeutic approaches. Here, we review the immunotherapies already approved for MS as well as relevant clinical trials. Further, we present some experimental approaches that are currently being developed and are focused on modulating the functions of dendritic cells and regulatory T cells.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, at the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, at the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
32
|
Doyle TM, Braden K, Harada CM, Mufti F, Schafer RM, Salvemini D. Novel Non-Opioid Based Therapeutics for Chronic Neuropathic Pain. MISSOURI MEDICINE 2021; 118:327-333. [PMID: 34373667 PMCID: PMC8343628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chronic neuropathic pain is currently a major health issue in U.S. complicated by the lack of non-opioid analgesic alternatives. Our investigations led to the discovery of major signaling pathways involved in the transition of acute to chronic neuropathic pain and the identification of several targets for therapeutic intervention. Our translational approach has facilitated the advancement of novel medicines for chronic neuropathic pain that are in advanced clinical development and clinical trials.
Collapse
Affiliation(s)
- Timothy M Doyle
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kathryn Braden
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Caron M Harada
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Fatma Mufti
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Rachel M Schafer
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
33
|
Al-Mahayri ZN, AlAhmad MM, Ali BR. Current opinion on the pharmacogenomics of paclitaxel-induced toxicity. Expert Opin Drug Metab Toxicol 2021; 17:785-801. [PMID: 34128748 DOI: 10.1080/17425255.2021.1943358] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Paclitaxel is a microtubule stabilizer that is currently one of the most utilized chemotherapeutic agents. Its efficacy in breast, uterine, lung and other neoplasms made its safety profile enhancement a subject of great interest. Neurotoxicity is the most common paclitaxel-associated toxicities. In addition, hypersensitivity reactions, hematological, gastrointestinal, and cardiac toxicities are all encountered.Areas covered: The current review explores paclitaxel-induced toxicities mechanisms and risk factors. Studies investigating these toxicities pharmacogenomic biomarkers are reviewed and summarized. There is a limited margin of consistency between the retrieved associations. Variants in genes related to neuro-sensitivity are the most promising candidates for future studies.Expert opinion: Genome-wide association studies highlighted multiple-candidate biomarkers relevant to neuro-sensitivity. Most of the identified paclitaxel-neurotoxicity candidate genes are derived from congenital neuropathy and diabetic-induced neurotoxicity pathways. Future studies should explore these sets of genes while considering the multifactorial nature of paclitaxel-induced neurotoxicity. In the absence of certain paclitaxel-toxicity biomarkers, future research should avoid earlier studies' caveats. Genes in paclitaxel's pharmacokinetic pathways could not provide consistent results in any of its associated toxicities. There is a need to dig deeper into toxicity-development mechanisms and personal vulnerability factors, rather than targeting only the genes suspected to affect drug exposure.
Collapse
Affiliation(s)
- Zeina N Al-Mahayri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohammad M AlAhmad
- Department of Clinical Pharmacy, College of Pharmacy, Al-Ain University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
34
|
Activation of sphingosine-1-phosphate receptor subtype 1 in the central nervous system contributes to morphine-induced hyperalgesia and antinociceptive tolerance in rodents. Pain 2021; 161:2107-2118. [PMID: 32301840 DOI: 10.1097/j.pain.0000000000001888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022]
Abstract
ABSTRACT Morphine-induced alterations in sphingolipid metabolism in the spinal cord and increased formation of the bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) have been implicated in the development of morphine-induced hyperalgesia (OIH; increased pain sensitivity) and antinociceptive tolerance. These adverse effects hamper opioid use for treating chronic pain and contribute to dependence and abuse. S1P produces distinct effects through 5 G-protein-coupled receptors (S1PR1-5) and several intracellular targets. How S1P exerts its effects in response to morphine remains unknown. Here, we report that S1P contributes to the development of morphine-induced hyperalgesia and tolerance through S1P receptor subtype 1 (S1PR1) signaling in uninjured male and female rodents, which can be blocked by targeting S1PR1 with S1PR1 antagonists or RNA silencing. In mouse neuropathic pain models, S1PR1 antagonists blocked the development of tolerance to the antiallodynic effects of morphine without altering morphine pharmacokinetics and prevented prolonged morphine-induced neuropathic pain. Targeting S1PR1 reduced morphine-induced neuroinflammatory events in the dorsal horn of the spinal cord: increased glial marker expression, mitogen-activated protein kinase p38 and nuclear factor κB activation, and increased inflammatory cytokine expression, such as interleukin-1β, a cytokine central in the modulation of opioid-induced neural plasticity. Our results identify S1PR1 as a critical path for S1P signaling in response to sustained morphine and reveal downstream neuroinflammatory pathways impacted by S1PR1 activation. Our data support investigating S1PR1 antagonists as a clinical approach to mitigate opioid-induced adverse effects and repurposing the functional S1PR1 antagonist FTY720, which is FDA-approved for multiple sclerosis, as an opioid adjunct.
Collapse
|
35
|
Campolo M, Lanza M, Paterniti I, Filippone A, Ardizzone A, Casili G, Scuderi SA, Puglisi C, Mare M, Memeo L, Cuzzocrea S, Esposito E. PEA-OXA Mitigates Oxaliplatin-Induced Painful Neuropathy through NF-κB/Nrf-2 Axis. Int J Mol Sci 2021; 22:ijms22083927. [PMID: 33920318 PMCID: PMC8069952 DOI: 10.3390/ijms22083927] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/20/2023] Open
Abstract
Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics, such as oxaliplatin (L-OHP). The aim of the present work was to evaluate the potential beneficial effects of 2-pentadecyl-2-oxazoline (PEA-OXA) in a murine model of oxaliplatin-induced peripheral neuropathy (OIPN). OIPN was induced by an intraperitoneally injection of L-OHP in rats on five consecutive days (D0-4) for a final cumulative dose of 10 mg/kg. PEA-OXA and ultramicronized palmitoylethanolamide (PEAum), both 10 mg/kg, were given orally 15-20 min prior (L-OHP) and sacrifice was made on day 25. Our results demonstrated that PEA-OXA, more than PEAum, reduced the development of hypersensitivity in rats; this was associated with the reduction in hyperactivation of glia cells and the increased production of proinflammatory cytokines in the dorsal horn of the spinal cord, accompanied by an upregulation of neurotrophic factors in the dorsal root ganglia (DRG). Moreover, we showed that PEA-OXA reduced L-OHP damage via a reduction in NF-κB pathway activation and a modulation of Nrf-2 pathways. Our findings identify PEA-OXA as a therapeutic target in chemotherapy-induced painful neuropathy, through the biomolecular signaling NF-κB/Nrf-2 axis, thanks to its abilities to counteract L-OHP damage. Therefore, we can consider PEA-OXA as a promising adjunct to chemotherapy to reduce chronic pain in patients.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Sarah A. Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | | | - Marzia Mare
- Istituto Oncologico Del Mediterraneo Spa, Via Penninazzo 7, 95029 Viagrande, Italy; (M.M.); (L.M.)
| | - Lorenzo Memeo
- Istituto Oncologico Del Mediterraneo Spa, Via Penninazzo 7, 95029 Viagrande, Italy; (M.M.); (L.M.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
- Correspondence: ; Tel.: +39-090-6765208
| |
Collapse
|
36
|
Anu B, Namitha NN, Harikumar KB. S1PR1 signaling in cancer: A current perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:259-274. [PMID: 33931142 DOI: 10.1016/bs.apcsb.2020.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) is a G-protein coupled receptor for the bioactive lysosphingolipid sphingosine 1-phosphate (S1P). S1PR1 belongs to the sphingosine-1-phosphate receptor subfamily comprising five members (S1PR1-5). It has prominent roles in regulating endothelial cell cytoskeletal structure, cell migration, immunomodulation, vasculogenesis during embryogenesis, T cell egress and Multiple sclerosis. This review is addressing the role of S1PR1 in tumorigenesis and therapeutic opportunities to target S1PR1 in cancer.
Collapse
Affiliation(s)
- B Anu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, KL, India
| | - N N Namitha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, KL, India
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, KL, India.
| |
Collapse
|
37
|
Benarroch EE. What Is the Role of Sphingosine-1-Phosphate Receptors in Pain? Neurology 2021; 96:525-528. [PMID: 33723022 DOI: 10.1212/wnl.0000000000011605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
|
38
|
Bonomo R, Cavaletti G. Clinical and biochemical markers in CIPN: A reappraisal. Rev Neurol (Paris) 2021; 177:890-907. [PMID: 33648782 DOI: 10.1016/j.neurol.2020.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/11/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
The increased survival of cancer patients has raised growing public health concern on associated long-term consequences of antineoplastic treatment. Chemotherapy-induced peripheral neuropathy (CIPN) is a primarily sensory polyneuropathy, which may be accompanied by pain, autonomic disturbances, and motor deficit. About 70% of treated cancer patients might develop CIPN during or after the completion of chemotherapy, and in most of them such complication persists after six months from the treatment. The definition of the potential risk of development and resolution of CIPN according to a clinical and biochemical profile would be certainly fundamental to tailor chemotherapy regimen and dosage on individual susceptibility. In recent years, patient-reported and clinician-related tools along with quality of life instruments have been featured as primary outcomes in clinical setting and randomized trials. New studies on metabolomics markers are further pursuing accurate and easily accessible indicators of peripheral nerve damage. The aim of this review is to outline the strengths and pitfalls of current knowledge on CIPN, and to provide a framework for future potential developments of standardized protocols involving clinical and biochemical markers for CIPN assessment and monitoring.
Collapse
Affiliation(s)
- R Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - G Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
39
|
Meregalli C, Bonomo R, Cavaletti G, Carozzi VA. Blood molecular biomarkers for chemotherapy-induced peripheral neuropathy: From preclinical models to clinical practice. Neurosci Lett 2021; 749:135739. [PMID: 33600907 DOI: 10.1016/j.neulet.2021.135739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) has long been recognized as a clinically significant issue in patients treated with antineoplastic drugs. This common long-term toxic side-effect which negatively impacts the outcome of the disease can lead to disability and have detrimental effects on patients' quality of life. Since axonal injury is a prominent feature of CIPN, responsible for several sensory symptoms, including pain, sensory loss and hypersensitivity to mechanical and/or cold stimuli in the hands and feet, neurophysiological assessments remain the gold standard for clinical diagnosis of CIPN. Given the large impact of CIPN on cancer patients, there is increasing emphasis on biomarkers of adverse outcomes in safety assessment and translational research, to prevent permanent neuroaxonal damage. Since the results on reliable blood molecular markers for axonal degeneration are still controversial, here we provide a brief overview of blood molecular biomarkers used for assessing and/or predicting CIPN in preclinical and clinical settings.
Collapse
Affiliation(s)
- C Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, NeuroMI (Milan Center for Neuroscience), University of Milan Bicocca, Monza, Italy
| | - R Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, NeuroMI (Milan Center for Neuroscience), University of Milan Bicocca, Monza, Italy; PhD Program in Neuroscience, University of Milan Bicocca, Monza, Italy
| | - G Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, NeuroMI (Milan Center for Neuroscience), University of Milan Bicocca, Monza, Italy
| | - V A Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, NeuroMI (Milan Center for Neuroscience), University of Milan Bicocca, Monza, Italy; Young Against Pain Group, Italy.
| |
Collapse
|
40
|
Midavaine É, Côté J, Marchand S, Sarret P. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling. Neurosci Biobehav Rev 2021; 125:168-192. [PMID: 33582232 DOI: 10.1016/j.neubiorev.2021.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Serge Marchand
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| |
Collapse
|
41
|
Pitman M, Oehler MK, Pitson SM. Sphingolipids as multifaceted mediators in ovarian cancer. Cell Signal 2021; 81:109949. [PMID: 33571664 DOI: 10.1016/j.cellsig.2021.109949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is the most lethal gynaecological malignancy. It is commonly diagnosed at advanced stage when it has metastasised to the abdominal cavity and treatment becomes very challenging. While current standard therapy involving debulking surgery and platinum + taxane-based chemotherapy is associated with high response rates initially, the large majority of patients relapse and ultimately succumb to chemotherapy-resistant disease. In order to improve survival novel strategies for early detection and therapeutics against treatment-refractory disease are urgently needed. A promising new target against ovarian cancer is the sphingolipid pathway which is commonly hijacked in cancer to support cell proliferation and survival and has been shown to promote chemoresistance and metastasis in a wide range of malignant neoplasms. In particular, the sphingosine kinase 1-sphingosine 1-phosphate receptor 1 axis has been shown to be altered in ovarian cancer in multiple ways and therefore represents an attractive therapeutic target. Here we review the roles of sphingolipids in ovarian cancer progression, metastasis and chemoresistance, highlighting novel strategies to target this pathway that represent potential avenues to improve patient survival.
Collapse
Affiliation(s)
- MelissaR Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5000, Australia.
| | - Martin K Oehler
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia; Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
42
|
Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 11:626687. [PMID: 33613570 PMCID: PMC7890072 DOI: 10.3389/fimmu.2020.626687] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.
Collapse
Affiliation(s)
- Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Roberta Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
43
|
Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021; 22:1393. [PMID: 33573316 PMCID: PMC7866815 DOI: 10.3390/ijms22031393&set/a 813269399+839900579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
|
44
|
Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021. [DOI: 10.3390/ijms22031393
expr 945913974 + 948698388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
|
45
|
Kawashiri T, Mine K, Kobayashi D, Inoue M, Ushio S, Uchida M, Egashira N, Shimazoe T. Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021; 22:ijms22031393. [PMID: 33573316 PMCID: PMC7866815 DOI: 10.3390/ijms22031393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
Affiliation(s)
- Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
- Correspondence: ; Tel.: +81-92-642-6573
| | - Keisuke Mine
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Mizuki Inoue
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Soichiro Ushio
- Department of Pharmacy, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Mayako Uchida
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan;
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan;
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| |
Collapse
|
46
|
Yamamoto S, Egashira N. Pathological Mechanisms of Bortezomib-Induced Peripheral Neuropathy. Int J Mol Sci 2021; 22:ijms22020888. [PMID: 33477371 PMCID: PMC7830235 DOI: 10.3390/ijms22020888] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Bortezomib, a first-generation proteasome inhibitor widely used in chemotherapy for hematologic malignancy, has effective anti-cancer activity but often causes severe peripheral neuropathy. Although bortezomib-induced peripheral neuropathy (BIPN) is a dose-limiting toxicity, there are no recommended therapeutics for its prevention or treatment. One of the most critical problems is a lack of knowledge about pathological mechanisms of BIPN. Here, we summarize the known mechanisms of BIPN based on preclinical evidence, including morphological abnormalities, involvement of non-neuronal cells, oxidative stress, and alterations of transcriptional programs in both the peripheral and central nervous systems. Moreover, we describe the necessity of advancing studies that identify the potential efficacy of approved drugs on the basis of pathological mechanisms, as this is a convincing strategy for rapid translation to patients with cancer and BIPN.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-92-642-5920
| |
Collapse
|
47
|
Yamamoto S, Egashira N. Drug Repositioning for the Prevention and Treatment of Chemotherapy-Induced Peripheral Neuropathy: A Mechanism- and Screening-Based Strategy. Front Pharmacol 2021; 11:607780. [PMID: 33519471 PMCID: PMC7840493 DOI: 10.3389/fphar.2020.607780] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse effect observed in most patients treated with neurotoxic anti-cancer drugs. Currently, there are no therapeutic options available for the prevention of CIPN. Furthermore, few drugs are recommended for the treatment of existing neuropathies because the mechanisms of CIPN remain unclear. Each chemotherapeutic drug induces neuropathy by distinct mechanisms, and thus we need to understand the characteristics of CIPN specific to individual drugs. Here, we review the known pathogenic mechanisms of oxaliplatin- and paclitaxel-induced CIPN, highlighting recent findings. Cancer chemotherapy is performed in a planned manner; therefore, preventive strategies can be planned for CIPN. Drug repositioning studies, which identify the unexpected actions of already approved drugs, have increased in recent years. We have also focused on drug repositioning studies, especially for prevention, because they should be rapidly translated to patients suffering from CIPN.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
48
|
Lam BWS, Yam TYA, Chen CP, Lai MKP, Ong WY, Herr DR. The noncanonical chronicles: Emerging roles of sphingolipid structural variants. Cell Signal 2020; 79:109890. [PMID: 33359087 DOI: 10.1016/j.cellsig.2020.109890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Sphingolipids (SPs) are structurally diverse and represent one of the most quantitatively abundant classes of lipids in mammalian cells. In addition to their structural roles, many SP species are known to be bioactive mediators of essential cellular processes. Historically, studies have focused on SP species that contain the canonical 18‑carbon, mono-unsaturated sphingoid backbone. However, increasingly sensitive analytical technologies, driven by advances in mass spectrometry, have facilitated the identification of previously under-appreciated, molecularly distinct SP species. Many of these less abundant species contain noncanonical backbones. Interestingly, a growing number of studies have identified clinical associations between these noncanonical SPs and disease, suggesting that there is functional significance to the alteration of SP backbone structure. For example, associations have been found between SP chain length and cardiovascular disease, pain, diabetes, and dementia. This review will provide an overview of the processes that are known to regulate noncanonical SP accumulation, describe the clinical correlations reported for these molecules, and review the experimental evidence for the potential functional implications of their dysregulation. It is likely that further scrutiny of noncanonical SPs may provide new insight into pathophysiological processes, serve as useful biomarkers for disease, and lead to the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ting Yu Amelia Yam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA; American University of Health Sciences, Long Beach, CA, USA.
| |
Collapse
|
49
|
Bouchenaki H, Danigo A, Sturtz F, Hajj R, Magy L, Demiot C. An overview of ongoing clinical trials assessing pharmacological therapeutic strategies to manage chemotherapy-induced peripheral neuropathy, based on preclinical studies in rodent models. Fundam Clin Pharmacol 2020; 35:506-523. [PMID: 33107619 DOI: 10.1111/fcp.12617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting side effect induced by a variety of chemotherapeutic agents. Symptoms are mainly sensory: pain, tingling, numbness, and temperature sensitivity. They may require the tapering of chemotherapy regimens or even their cessation; thus, the prevention/treatment of CIPN is critical to increase effectiveness of cancer treatment. However, CIPN management is mainly based on conventional neuropathic pain treatments, with poor clinical efficacy. Therefore, significant effort is made to identify new pharmacological targets to prevent/treat CIPN. Animal modeling is a key component in predicting human response to drugs and in understanding the pathophysiological mechanisms underlying CIPN. In fact, studies performed in rodents highlighted several pharmacological targets to treat/prevent CIPN. This review provides updated information about ongoing clinical trials testing drugs for the management of CIPN and presents some of their proof-of-concept studies conducted in rodent models. The presented drugs target oxidative stress, renin-angiotensin system, glutamatergic neurotransmission, sphingolipid metabolism, neuronal uptake transporters, nicotinamide adenine dinucleotide metabolism, endocannabinoid system, transient receptor potential channels, and serotoninergic receptors. As some clinical trials focus on the effect of the drugs on pain, others evaluate their efficacy by assessing general neuropathy. Moreover, based on studies conducted in rodent models, it remains unclear if some of the tested drugs act in an antinociceptive fashion or have neuroprotective properties. Thus, further investigations are needed to understand their mechanism of action, as well as a global standardization of the methods used to assess efficacy of new therapeutic strategies in the treatment of CIPN.
Collapse
Affiliation(s)
- Hichem Bouchenaki
- EA 6309 - Myelin Maintenance & Peripheral Neuropathy, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France.,Pharnext SA, Issy-les-Moulineaux, France
| | - Aurore Danigo
- EA 6309 - Myelin Maintenance & Peripheral Neuropathy, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | - Franck Sturtz
- EA 6309 - Myelin Maintenance & Peripheral Neuropathy, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | | | - Laurent Magy
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges, France
| | - Claire Demiot
- EA 6309 - Myelin Maintenance & Peripheral Neuropathy, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| |
Collapse
|
50
|
Doyle TM, Hutchinson MR, Braden K, Janes K, Staikopoulos V, Chen Z, Neumann WL, Spiegel S, Salvemini D. Sphingosine-1-phosphate receptor subtype 1 activation in the central nervous system contributes to morphine withdrawal in rodents. J Neuroinflammation 2020; 17:314. [PMID: 33092620 PMCID: PMC7584082 DOI: 10.1186/s12974-020-01975-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/30/2020] [Indexed: 01/08/2023] Open
Abstract
Opioid therapies for chronic pain are undermined by many adverse side effects that reduce their efficacy and lead to dependence, abuse, reduced quality of life, and even death. We have recently reported that sphingosine-1-phosphate (S1P) 1 receptor (S1PR1) antagonists block the development of morphine-induced hyperalgesia and analgesic tolerance. However, the impact of S1PR1 antagonists on other undesirable side effects of opioids, such as opioid-induced dependence, remains unknown. Here, we demonstrate that naloxone-precipitated morphine withdrawal in mice altered de novo sphingolipid metabolism in the dorsal horn of the spinal cord and increased S1P that accompanied the manifestation of several withdrawal behaviors. Blocking de novo sphingolipid metabolism with intrathecal administration of myriocin, an inhibitor of serine palmitoyltransferase, blocked naloxone-precipitated withdrawal. Noteworthy, we found that competitive (NIBR-15) and functional (FTY720) S1PR1 antagonists attenuated withdrawal behaviors in mice. Mechanistically, at the level of the spinal cord, naloxone-precipitated withdrawal was associated with increased glial activity and formation of the potent inflammatory/neuroexcitatory cytokine interleukin-1β (IL-1β); these events were attenuated by S1PR1 antagonists. These results provide the first molecular insight for the role of the S1P/S1PR1 axis during opioid withdrawal. Our data identify S1PR1 antagonists as potential therapeutics to mitigate opioid-induced dependence and support repurposing the S1PR1 functional antagonist FTY720, which is FDA-approved for multiple sclerosis, as an opioid adjunct.
Collapse
Affiliation(s)
- Timothy M Doyle
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Mark R Hutchinson
- Discipline of Physiology, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Kathryn Braden
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Kali Janes
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Vicky Staikopoulos
- Discipline of Physiology, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zhoumou Chen
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA
| | - William L Neumann
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park, Edwardsville, IL, 62026, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, 1101 E Marshall St, Richmond, VA, 23298, USA
| | - Daniela Salvemini
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA. .,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA.
| |
Collapse
|