1
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Rahmberg AR, Markowitz TE, Mudd JC, Ortiz AM, Brenchley JM. SIV infection and ARV treatment reshape the transcriptional and epigenetic profile of naïve and memory T cells in vivo. J Virol 2024; 98:e0028324. [PMID: 38780248 PMCID: PMC11237756 DOI: 10.1128/jvi.00283-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Human and simian immunodeficiency viruses (HIV and SIV) are lentiviruses that reverse transcribe their RNA genome with subsequent integration into the genome of the target cell. How progressive infection and administration of antiretrovirals (ARVs) longitudinally influence the transcriptomic and epigenetic landscape of particular T cell subsets, and how these may influence the genetic location of integration are unclear. Here, we use RNAseq and ATACseq to study the transcriptomics and epigenetic landscape of longitudinally sampled naïve and memory CD4+ and CD8+ T cells in two species of non-human primates prior to SIV infection, during chronic SIV infection, and after administration of ARVs. We find that SIV infection leads to significant alteration to the transcriptomic profile of all T cell subsets that are only partially reversed by administration of ARVs. Epigenetic changes were more apparent in animals with longer periods of untreated SIV infection and correlated well with changes in corresponding gene expression. Known SIV integration sites did not vary due to SIV status but did contain more open chromatin in rhesus macaque memory T cells, and the expression of proteasome-related genes at the pre-SIV timepoint correlated with subsequent viremia.IMPORTANCEChronic inflammation during progressive human and simian immunodeficiency virus (HIV and SIV) infections leads to significant co-morbidities in infected individuals with significant consequences. Antiretroviral (ARV)-treated individuals also manifest increased levels of inflammation which are associated with increased mortalities. These data will help guide rational development of modalities to reduce inflammation observed in people living with HIV and suggest mechanisms underlying lentiviral integration site preferences.
Collapse
Affiliation(s)
- Andrew R. Rahmberg
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, USA
| | - Joseph C. Mudd
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Alexandra M. Ortiz
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Chen MJ, Gatignol A, Scarborough RJ. The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opin Drug Discov 2023; 18:163-179. [PMID: 36004505 DOI: 10.1080/17460441.2022.2117296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Long-term control of HIV-1 infection can potentially be achieved using autologous stem cell transplants with gene-modified cells. Non-coding RNAs represent a diverse class of therapeutic agents including ribozymes, RNA aptamers and decoys, small interfering RNAs, short hairpin RNAs, and U1 interference RNAs that can be designed to inhibit HIV-1 replication. They have been engineered for delivery as drugs to complement current HIV-1 therapies and as gene therapies for a potential HIV-1 functional cure. AREAS COVERED This review surveys the past three decades of development of these RNA technologies with a focus on their efficacy and safety for treating HIV-1 infections. We describe the mechanisms of each RNA-based agent, targets they have been developed against, efforts to enhance their stability and efficacy, and we evaluate their performance in past and ongoing preclinical and clinical trials. EXPERT OPINION RNA-based technologies are among the top candidates for gene therapies where they can be stably expressed for long-term suppression of HIV-1. Advances in both gene and drug delivery strategies and improvements to non-coding RNA stability and antiviral properties will cooperatively drive forward progress in improving drug therapy and engineering HIV-1 resistant cells.
Collapse
Affiliation(s)
- Michelle J Chen
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Chan K, Farias AG, Lee H, Guvenc F, Mero P, Brown KR, Ward H, Billmann M, Aulakh K, Astori A, Haider S, Marcon E, Braunschweig U, Pu S, Habsid A, Yan Tong AH, Christie-Holmes N, Budylowski P, Ghalami A, Mubareka S, Maguire F, Banerjee A, Mossman KL, Greenblatt J, Gray-Owen SD, Raught B, Blencowe BJ, Taipale M, Myers C, Moffat J. Survival-based CRISPR genetic screens across a panel of permissive cell lines identify common and cell-specific SARS-CoV-2 host factors. Heliyon 2023; 9:e12744. [PMID: 36597481 PMCID: PMC9800021 DOI: 10.1016/j.heliyon.2022.e12744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
SARS-CoV-2 depends on host cell components for infection and replication. Identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection and replication. If druggable, host factor dependencies may present an attractive strategy for anti-viral therapy. In this study, we performed genome wide CRISPR knockout screens in Vero E6 cells and four human cell lines including Calu-3, UM-UC-4, HEK-293 and HuH-7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while other host genes identified were largely cell line specific, including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, immune-related pathways, and chromatin modification. Notably, the chromatin modifier gene KMT2C in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed.
Collapse
Affiliation(s)
- Katherine Chan
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Corresponding author
| | - Adrian Granda Farias
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Hunsang Lee
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Furkan Guvenc
- Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Patricia Mero
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Kevin R. Brown
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Henry Ward
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Kamaldeep Aulakh
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Audrey Astori
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Shahan Haider
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Edyta Marcon
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Ulrich Braunschweig
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Shuye Pu
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Andrea Habsid
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Amy Hin Yan Tong
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Natasha Christie-Holmes
- Combined Containment Level 3 Unit, Temerty Faculty of Medicine, University of Toronto Toronto, Ontario, Canada, M5S3E1
| | - Patrick Budylowski
- Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Ayoob Ghalami
- Office of Environmental Health & Safety, University of Toronto, Toronto, Ontario, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, Ontario, Canada, M5S3E1,Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Finlay Maguire
- Department of Community Health and Epidemiology, Faculty of Medicine Dalhousie University, Halifax, Nova Scotia, Canada,Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Karen L. Mossman
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jack Greenblatt
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Brian Raught
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Benjamin J. Blencowe
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Mikko Taipale
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Chad Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Jason Moffat
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8,Institute for Biomedical Engineering, Rosebrugh Building, 164 College Street, Room 407, University of Toronto, Toronto, Ontario, Canada, M5S3G9,Corresponding author. Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| |
Collapse
|
5
|
Richter WF, Nayak S, Iwasa J, Taatjes DJ. The Mediator complex as a master regulator of transcription by RNA polymerase II. Nat Rev Mol Cell Biol 2022; 23:732-749. [PMID: 35725906 PMCID: PMC9207880 DOI: 10.1038/s41580-022-00498-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 02/08/2023]
Abstract
The Mediator complex, which in humans is 1.4 MDa in size and includes 26 subunits, controls many aspects of RNA polymerase II (Pol II) function. Apart from its size, a defining feature of Mediator is its intrinsic disorder and conformational flexibility, which contributes to its ability to undergo phase separation and to interact with a myriad of regulatory factors. In this Review, we discuss Mediator structure and function, with emphasis on recent cryogenic electron microscopy data of the 4.0-MDa transcription preinitiation complex. We further discuss how Mediator and sequence-specific DNA-binding transcription factors enable enhancer-dependent regulation of Pol II function at distal gene promoters, through the formation of molecular condensates (or transcription hubs) and chromatin loops. Mediator regulation of Pol II reinitiation is also discussed, in the context of transcription bursting. We propose a working model for Mediator function that combines experimental results and theoretical considerations related to enhancer-promoter interactions, which reconciles contradictory data regarding whether enhancer-promoter communication is direct or indirect. We conclude with a discussion of Mediator's potential as a therapeutic target and of future research directions.
Collapse
Affiliation(s)
- William F Richter
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Shraddha Nayak
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
6
|
Dai W, Wu F, McMyn N, Song B, Walker-Sperling VE, Varriale J, Zhang H, Barouch DH, Siliciano JD, Li W, Siliciano RF. Genome-wide CRISPR screens identify combinations of candidate latency reversing agents for targeting the latent HIV-1 reservoir. Sci Transl Med 2022; 14:eabh3351. [PMID: 36260688 PMCID: PMC9705157 DOI: 10.1126/scitranslmed.abh3351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reversing HIV-1 latency promotes killing of infected cells and is essential for cure strategies; however, no single latency reversing agent (LRA) or LRA combination have been shown to reduce HIV-1 latent reservoir size in persons living with HIV-1 (PLWH). Here, we describe an approach to systematically identify LRA combinations to reactivate latent HIV-1 using genome-wide CRISPR screens. Screens on cells treated with suboptimal concentrations of an LRA can identify host genes whose knockout enhances viral gene expression. Therefore, inhibitors of these genes should synergize with the LRA. We tested this approach using AZD5582, an activator of the noncanonical nuclear factor κB (ncNF-κB) pathway, as an LRA and identified histone deacetylase 2 (HDAC2) and bromodomain-containing protein 2 (BRD2), part of the bromodomain and extra-terminal motif (BET) protein family targeted by BET inhibitors, as potential targets. Using CD4+ T cells from PLWH, we confirmed synergy between AZD5582 and several HDAC inhibitors and between AZD5582 and the BET inhibitor, JQ1. A reciprocal screen using suboptimal concentrations of an HDAC inhibitor as an LRA identified BRD2 and ncNF-κB regulators, especially BIRC2, as synergistic candidates for use in combination with HDAC inhibition. Moreover, we identified and validated additional synergistic drug candidates in latency cell line cells and primary lymphocytes isolated from PLWH. Specifically, the knockout of genes encoding CYLD or YPEL5 displayed synergy with existing LRAs in inducing HIV mRNAs. Our study provides insights into the roles of host factors in HIV-1 reactivation and validates a system for identifying drug combinations for HIV-1 latency reversal.
Collapse
Affiliation(s)
- Weiwei Dai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Natalie McMyn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bicna Song
- Center for Genetic Medicine Research, Children’s National Hospital. 111 Michigan Ave NW, Washington, DC 20010,Department of Genomics and Precision Medicine, George Washington University. 111 Michigan Ave NW, Washington, DC 20010
| | - Victoria E. Walker-Sperling
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Joseph Varriale
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hao Zhang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, Massachusetts 02114, USA
| | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Wei Li
- Center for Genetic Medicine Research, Children’s National Hospital. 111 Michigan Ave NW, Washington, DC 20010,Department of Genomics and Precision Medicine, George Washington University. 111 Michigan Ave NW, Washington, DC 20010,To whom correspondence should be addressed; ;
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205,To whom correspondence should be addressed; ;
| |
Collapse
|
7
|
Ezeonwumelu IJ, García-Vidal E, Felip E, Puertas MC, Oriol-Tordera B, Gutiérrez-Chamorro L, Gohr A, Ruiz-Riol M, Massanella M, Clotet B, Martinez-Picado J, Badia R, Riveira-Muñoz E, Ballana E. IRF7 expression correlates with HIV latency reversal upon specific blockade of immune activation. Front Immunol 2022; 13:1001068. [PMID: 36131914 PMCID: PMC9484258 DOI: 10.3389/fimmu.2022.1001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The persistence of latent HIV reservoirs allows for viral rebound upon antiretroviral therapy interruption, hindering effective HIV-1 cure. Emerging evidence suggests that modulation of innate immune stimulation could impact viral latency and contribute to the clearing of HIV reservoir. Here, the latency reactivation capacity of a subclass of selective JAK2 inhibitors was characterized as a potential novel therapeutic strategy for HIV-1 cure. Notably, JAK2 inhibitors reversed HIV-1 latency in non-clonal lymphoid and myeloid in vitro models of HIV-1 latency and also ex vivo in CD4+ T cells from ART+ PWH, albeit its function was not dependent on JAK2 expression. Immunophenotypic characterization and whole transcriptomic profiling supported reactivation data, showing common gene expression signatures between latency reactivating agents (LRA; JAK2i fedratinib and PMA) in contrast to other JAK inhibitors, but with significantly fewer affected gene sets in the pathway analysis. In depth evaluation of differentially expressed genes, identified a significant upregulation of IRF7 expression despite the blockade of the JAK-STAT pathway and downregulation of proinflammatory cytokines and chemokines. Moreover, IRF7 expression levels positively correlated with HIV latency reactivation capacity of JAK2 inhibitors and also other common LRAs. Collectively, these results represent a promising step towards HIV eradication by demonstrating the potential of innate immune modulation for reducing the viral reservoir through a novel pathway driven by IRF7.
Collapse
Affiliation(s)
- Ifeanyi Jude Ezeonwumelu
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Edurne García-Vidal
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eudald Felip
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Medical Oncology Department, Catalan Institute of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria C. Puertas
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Bruna Oriol-Tordera
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Lucía Gutiérrez-Chamorro
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - André Gohr
- Scientific Computing Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Massanella
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Roger Badia
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Riveira-Muñoz
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
8
|
Liao Y, Hua Y, Li Y, Zhang C, Yu W, Guo P, Zou K, Li W, Sun Y, Wang R, Zuo Y, Sui S, Tian C, Hao J, Chen M, Hu S, Chen M, Long Q, Wang X, Zou L, Xie F, Guo W, Deng W. CRSP8 promotes thyroid cancer progression by antagonizing IKKα-induced cell differentiation. Cell Death Differ 2021; 28:1347-1363. [PMID: 33162555 PMCID: PMC8027816 DOI: 10.1038/s41418-020-00656-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
CRSP8 plays an important role in recruiting mediators to genes through direct interaction with various DNA-bound transactivators. In this study, we uncovered the unique function of CRSP8 in suppressing thyroid cancer differentiation and promoting thyroid cancer progression via targeting IKKα signaling. CRSP8 was highly expressed in human thyroid cancer cells and tissues, especially in anaplastic thyroid cancer (ATC). Knockdown of CRSP8 suppressed cell growth, migration, invasion, stemness, and induced apoptosis and differentiation in ATC cells, while its overexpression displayed opposite effects in differentiated thyroid cancer (DTC) cells. Mechanistically, CRSP8 downregulated IKKα expression by binding to the IKKα promoter region (-257 to -143) to negatively regulate its transcription. Knockdown or overexpression of IKKα significantly reversed the expression changes of the differentiation and EMT-related markers and cell growth changes mediated by CRSP8 knockdown or overexpression in ATC or DTC cells. The in vivo study also validated that CRSP8 knockdown inhibited the growth of thyroid cancer by upregulating IKKα signaling in a mouse model of human ATC. Furthermore, we found that CRSP8 regulated the sensitivity of thyroid cancer cells to chemotherapeutics, including cisplatin and epirubicin. Collectively, our results demonstrated that CRSP8 functioned as a modulator of IKKα signaling and a suppressor of thyroid cancer differentiation, suggesting a potential therapeutic strategy for ATC by targeting CRSP8/IKKα pathway.
Collapse
Affiliation(s)
- Yina Liao
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Shanghai Center for Thyroid Disease, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yijun Hua
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yizhuo Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Changlin Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wendan Yu
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kun Zou
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wenyang Li
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yao Sun
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ruozhu Wang
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yan Zuo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Silei Sui
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunfang Tian
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Manyu Chen
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Qian Long
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaonan Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Lijuan Zou
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Fangyun Xie
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wei Guo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Cyclin-dependent Kinases as Emerging Targets for Developing Novel Antiviral Therapeutics. Trends Microbiol 2021; 29:836-848. [PMID: 33618979 DOI: 10.1016/j.tim.2021.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Besides its prominent role in cell proliferation, cyclin-dependent kinases (CDKs) are key players in viral infections as both DNA and RNA viruses modify CDK function to favor viral replication. Recently, a number of specific pharmacological CDK inhibitors have been developed and approved for cancer treatment. The repurposing of these specific CDK inhibitors for the treatment of viral infections may represent a novel effective therapeutic strategy to combat old and emergent viruses. In this review, we describe the role, mechanisms of action, and potential of CDKs as antiviral drug targets. We also discuss the current clinical state of novel specific CDK inhibitors, focusing on their putative use as antivirals, especially against new emerging viruses.
Collapse
|
10
|
Schneider WM, Luna JM, Hoffmann HH, Sánchez-Rivera FJ, Leal AA, Ashbrook AW, Le Pen J, Ricardo-Lax I, Michailidis E, Peace A, Stenzel AF, Lowe SW, MacDonald MR, Rice CM, Poirier JT. Genome-Scale Identification of SARS-CoV-2 and Pan-coronavirus Host Factor Networks. Cell 2020; 184:120-132.e14. [PMID: 33382968 PMCID: PMC7796900 DOI: 10.1016/j.cell.2020.12.006] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of over one million people worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a member of the Coronaviridae family of viruses that can cause respiratory infections of varying severity. The cellular host factors and pathways co-opted during SARS-CoV-2 and related coronavirus life cycles remain ill defined. To address this gap, we performed genome-scale CRISPR knockout screens during infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E). These screens uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, sterol regulatory element-binding protein (SREBP) signaling, bone morphogenetic protein (BMP) signaling, and glycosylphosphatidylinositol biosynthesis, as well as a requirement for several poorly characterized proteins. We identified an absolute requirement for the VMP1, TMEM41, and TMEM64 (VTT) domain-containing protein transmembrane protein 41B (TMEM41B) for infection by SARS-CoV-2 and three seasonal coronaviruses. This human coronavirus host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus pandemics.
Collapse
Affiliation(s)
- William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Andrew A Leal
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Ansgar F Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Scott W Lowe
- Cancer Biology and Genetics, MSKCC, New York, NY 10065, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| | - John T Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
11
|
Schneider WM, Luna JM, Hoffmann HH, Sánchez-Rivera FJ, Leal AA, Ashbrook AW, Le Pen J, Michailidis E, Ricardo-Lax I, Peace A, Stenzel AF, Lowe SW, MacDonald MR, Rice CM, Poirier JT. Genome-scale identification of SARS-CoV-2 and pan-coronavirus host factor networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33052332 DOI: 10.1101/2020.10.07.326462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The COVID-19 pandemic has claimed the lives of more than one million people worldwide. The causative agent, SARS-CoV-2, is a member of the Coronaviridae family, which are viruses that cause respiratory infections of varying severity. The cellular host factors and pathways co-opted by SARS-CoV-2 and other coronaviruses in the execution of their life cycles remain ill-defined. To develop an extensive compendium of host factors required for infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E), we performed parallel genome-scale CRISPR knockout screens. These screens uncovered multiple host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis, as well as an unexpected requirement for several poorly characterized proteins. We identified an absolute requirement for the VTT-domain containing protein TMEM41B for infection by SARS-CoV-2 and all other coronaviruses. This human Coronaviridae host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus spillover events. HIGHLIGHTS Genome-wide CRISPR screens for SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E coronavirus host factors.Parallel genome-wide CRISPR screening uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles.Coronaviruses co-opt multiple biological pathways, including glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis and anchoring, among others.TMEM41B - a poorly understood factor with roles in autophagy and lipid mobilization - is a critical pan-coronavirus host factor.
Collapse
|
12
|
Mori L, Valente ST. Key Players in HIV-1 Transcriptional Regulation: Targets for a Functional Cure. Viruses 2020; 12:E529. [PMID: 32403278 PMCID: PMC7291152 DOI: 10.3390/v12050529] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-1 establishes a life-long infection when proviral DNA integrates into the host genome. The provirus can then either actively transcribe RNA or enter a latent state, without viral production. The switch between these two states is governed in great part by the viral protein, Tat, which promotes RNA transcript elongation. Latency is also influenced by the availability of host transcription factors, integration site, and the surrounding chromatin environment. The latent reservoir is established in the first few days of infection and serves as the source of viral rebound upon treatment interruption. Despite effective suppression of HIV-1 replication by antiretroviral therapy (ART), to below the detection limit, ART is ineffective at reducing the latent reservoir size. Elimination of this reservoir has become a major goal of the HIV-1 cure field. However, aside from the ideal total HIV-1 eradication from the host genome, an HIV-1 remission or functional cure is probably more realistic. The "block-and-lock" approach aims at the transcriptional silencing of the viral reservoir, to render suppressed HIV-1 promoters extremely difficult to reactivate from latency. There are unfortunately no clinically available HIV-1 specific transcriptional inhibitors. Understanding the mechanisms that regulate latency is expected to provide novel targets to be explored in cure approaches.
Collapse
Affiliation(s)
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA;
| |
Collapse
|
13
|
Comparative transcriptome analysis of the human endocervix and ectocervix during the proliferative and secretory phases of the menstrual cycle. Sci Rep 2019; 9:13494. [PMID: 31530865 PMCID: PMC6749057 DOI: 10.1038/s41598-019-49647-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 08/24/2019] [Indexed: 12/18/2022] Open
Abstract
Despite extensive studies suggesting increased susceptibility to HIV during the secretory phase of the menstrual cycle, the molecular mechanisms involved remain unclear. Our goal was to analyze transcriptomes of the endocervix and ectocervix during the proliferative and secretory phases using RNA sequencing to explore potential molecular signatures of susceptibility to HIV. We identified 202 differentially expressed genes (DEGs) between the proliferative and secretory phases of the cycle in the endocervix (adjusted p < 0.05). The biofunctions and pathways analysis of DEGs revealed that cellular assembly and epithelial barrier function in the proliferative phase and inflammatory response/cellular movement in the secretory phase were among the top biofunctions and pathways. The gene set enrichment analysis of ranked DEGs (score = log fold change/p value) in the endocervix and ectocervix revealed that (i) unstimulated/not activated immune cells gene sets positively correlated with the proliferative phase and negatively correlated with the secretory phase in both tissues, (ii) IFNγ and IFNα response gene sets positively correlated with the proliferative phase in the ectocervix, (iii) HIV restrictive Wnt/β-catenin signaling pathway negatively correlated with the secretory phase in the endocervix. Our data show menstrual cycle phase-associated changes in both endocervix and ectocervix, which may modulate susceptibility to HIV.
Collapse
|
14
|
Cary DC, Rheinberger M, Rojc A, Peterlin BM. HIV Transcription Is Independent of Mediator Kinases. AIDS Res Hum Retroviruses 2019; 35:710-717. [PMID: 31044597 DOI: 10.1089/aid.2019.0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While the roles in HIV transcription of many cyclin-dependent kinases (CDKs) have been well defined, little is known about the impact of mediator kinases (MDKs), CDK8 and CDK19, in this process. Mediator complexes containing CDK8 or CDK19 repress or activate the expression of selected genes. The aim of this study was to investigate the role of MDKs in HIV transcription. siRNA knockdown of both MDKs had no effect on HIV transcription. This result was confirmed using two MDK inhibitors, Cortistatin A (CA) and Senexin A (SnxA). Furthermore, neither CA nor SnxA inhibited viral reactivation in Jurkat cell models of HIV latency. Taken together, these results indicate that MDKs are not required for HIV transcription.
Collapse
Affiliation(s)
- Daniele C. Cary
- Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Mona Rheinberger
- Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Ajda Rojc
- Department of Medicine, University of California at San Francisco, San Francisco, California
| | - B. Matija Peterlin
- Department of Medicine, University of California at San Francisco, San Francisco, California
| |
Collapse
|
15
|
Beliakova-Bethell N, Mukim A, White CH, Deshmukh S, Abewe H, Richman DD, Spina CA. Histone deacetylase inhibitors induce complex host responses that contribute to differential potencies of these compounds in HIV reactivation. J Biol Chem 2019; 294:5576-5589. [PMID: 30745362 PMCID: PMC6462528 DOI: 10.1074/jbc.ra118.005185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors (HDACis) have been widely tested in clinical trials for their ability to reverse HIV latency but have yielded only limited success. One HDACi, suberoylanilide hydroxamic acid (SAHA), exhibits off-target effects on host gene expression predicted to interfere with induction of HIV transcription. Romidepsin (RMD) has higher potency and specificity for class I HDACs implicated in maintaining HIV provirus in the latent state. More robust HIV reactivation has indeed been achieved with RMD use ex vivo than with SAHA; however, reduction of viral reservoir size has not been observed in clinical trials. Therefore, using RNA-Seq, we sought to compare the effects of SAHA and RMD on gene expression in primary CD4+ T cells. Among the genes whose expression was modulated by both HDACi agents, we identified genes previously implicated in HIV latency. Two genes, SMARCB1 and PARP1, whose modulation by SAHA and RMD is predicted to inhibit HIV reactivation, were evaluated in the major maturation subsets of CD4+ T cells and were consistently either up- or down-regulated by both HDACi compounds. Our results indicate that despite having different potencies and HDAC specificities, SAHA and RMD modulate an overlapping set of genes, implicated in HIV latency regulation. Some of these genes merit exploration as additional targets to improve the therapeutic outcomes of "shock and kill" strategies. The overall complexity of HDACi-induced responses among host genes with predicted stimulatory or inhibitory effects on HIV expression likely contributes to differential HDACi potencies and dictates the outcome of HIV reactivation.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
- the University of California San Diego, La Jolla, California 92093
| | - Amey Mukim
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
| | - Cory H White
- the University of California San Diego, La Jolla, California 92093
| | - Savitha Deshmukh
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
| | - Hosiana Abewe
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
- the University of California San Diego, La Jolla, California 92093
| | - Douglas D Richman
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
- the University of California San Diego, La Jolla, California 92093
| | - Celsa A Spina
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
- the University of California San Diego, La Jolla, California 92093
| |
Collapse
|
16
|
Didehydro-Cortistatin A Inhibits HIV-1 by Specifically Binding to the Unstructured Basic Region of Tat. mBio 2019; 10:mBio.02662-18. [PMID: 30723126 PMCID: PMC6368365 DOI: 10.1128/mbio.02662-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intrinsically disordered HIV-1 Tat protein binds the viral RNA transactivation response structure (TAR), which recruits transcriptional cofactors, amplifying viral mRNA expression. Limited Tat transactivation correlates with HIV-1 latency. Unfortunately, Tat inhibitors are not clinically available. The small molecule didehydro-cortistatin A (dCA) inhibits Tat, locking HIV-1 in persistent latency, blocking viral rebound. We generated chemical derivatives of dCA that rationalized molecular docking of dCA to an active and specific Tat conformer. These revealed the importance of the cycloheptene ring and the isoquinoline nitrogen's positioning in the interaction with specific residues of Tat's basic domain. These features are distinct from the ones required for inhibition of cyclin-dependent kinase 8 (CDK8), the only other known ligand of dCA. Besides, we demonstrated that dCA activity on HIV-1 transcription is independent of CDK8. The binding of dCA to Tat with nanomolar affinity alters the local protein environment, rendering Tat more resistant to proteolytic digestion. dCA thus locks a transient conformer of Tat, specifically blocking functions dependent of its basic domain, namely the Tat-TAR interaction; while proteins with similar basic patches are unaffected by dCA. Our results improve our knowledge of the mode of action of dCA and support structure-based design strategies targeting Tat, to help advance development of dCA, as well as novel Tat inhibitors.IMPORTANCE Tat activates virus production, and limited Tat transactivation correlates with HIV-1 latency. The Tat inhibitor dCA locks HIV in persistent latency. This drug class enables block-and-lock functional cure approaches, aimed at reducing residual viremia during therapy and limiting viral rebound. dCA may also have additional therapeutic benefits since Tat is also neurotoxic. Unfortunately, Tat inhibitors are not clinically available. We generated chemical derivatives and rationalized binding to an active and specific Tat conformer. dCA features required for Tat inhibition are distinct from features needed for inhibition of cyclin-dependent kinase 8 (CDK8), the only other known target of dCA. Furthermore, knockdown of CDK8 did not impact dCA's activity on HIV-1 transcription. Binding of dCA to Tat's basic domain altered the local protein environment and rendered Tat more resistant to proteolytic digestion. dCA locks a transient conformer of Tat, blocking functions dependent on its basic domain, namely its ability to amplify viral transcription. Our results define dCA's mode of action, support structure-based-design strategies targeting Tat, and provide valuable information for drug development around the dCA pharmacophore.
Collapse
|
17
|
Whole Exome Sequencing of HIV-1 long-term non-progressors identifies rare variants in genes encoding innate immune sensors and signaling molecules. Sci Rep 2018; 8:15253. [PMID: 30323326 PMCID: PMC6189090 DOI: 10.1038/s41598-018-33481-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 08/17/2018] [Indexed: 01/25/2023] Open
Abstract
Common CCR5-∆32 and HLA alleles only explain a minority of the HIV long-term non-progressor (LTNP) and elite controller (EC) phenotypes. To identify rare genetic variants contributing to the slow disease progression phenotypes, we performed whole exome sequencing (WES) on seven LTNPs and four ECs. HLA and CCR5 allele status, total HIV DNA reservoir size, as well as variant-related functional differences between the ECs, LTNPs, and eleven age- and gender-matched HIV-infected non-controllers on antiretroviral therapy (NCARTs) were investigated. Several rare variants were identified in genes involved in innate immune sensing, CD4-dependent infectivity, HIV trafficking, and HIV transcription mainly within the LTNP group. ECs and LTNPs had a significantly lower HIV reservoir compared to NCARTs. Furthermore, three LTNPs with variants affecting HIV nuclear import showed integrated HIV DNA levels below detection limit after in vitro infection. HIV slow progressors with variants in the TLR and NOD2 pathways showed reduced pro-inflammatory responses compared to matched controls. Low-range plasma levels of fibronectin was observed in a LTNP harboring two FN1 variants. Taken together, this study identified rare variants in LTNPs as well as in one EC, which may contribute to understanding of HIV pathogenesis and these slow progressor phenotypes, especially in individuals without protecting CCR5-∆32 and HLA alleles.
Collapse
|
18
|
Rujescu D, Hartmann AM, Giegling I, Konte B, Herrling M, Himmelein S, Strupp M. Genome-Wide Association Study in Vestibular Neuritis: Involvement of the Host Factor for HSV-1 Replication. Front Neurol 2018; 9:591. [PMID: 30079052 PMCID: PMC6062961 DOI: 10.3389/fneur.2018.00591] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Objective: In order to identify genetic variants associated with vestibular neuritis, a common cause of peripheral vertigo with a potential causative link to the reactivation of herpes simplex type 1 (HSV-1), we conducted a genome-wide association study. Methods: Association was assessed using approximately 8 million variants. 131 patients with vestibular neuritis and 2,609 controls of European ancestry were included. Results: Genome-wide associations with vestibular neuritis were detected in 4 regions containing protein coding genes assignable to two functional groups: virus hypothesis and insulin metabolism. Genes of set 1 are related to viral processes: nuclear receptor subfamily 3 group C member 2 (NR3C2) is a receptor for mineralocorticoids and glucocorticoids and was shown to be a host factor for HSV-1 replication. Ankyrin repeat domain 30A (ANKRD30A) encodes a host factor for human immunodeficiency virus-1 (HIV-1) infection. It shows rapid evolution and is induced by interferon stimulation. Mediator complex 30 (MED30), an important member of the mediator complex, has been shown to be involved in replication of HIV-1, a knockdown leading to impaired viral replication. The second set of genes LIM homeobox transcription factor 1 alpha (LMX1A), solute carrier family 30 member 8 (SLC30A8) is associated with insulin metabolism and resistance, a feature of some patients in whom type 2 diabetes is an accompanying comorbidity of vestibular neuritis. Conclusions: Using a GWAS approach to evaluate the etiology of vestibular neuritis these findings provide another piece of evidence that it may be caused by a viral inflammation.
Collapse
Affiliation(s)
- Dan Rujescu
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Munich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Annette M Hartmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ina Giegling
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Munich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Bettina Konte
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Marko Herrling
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Munich, Germany
| | - Susanne Himmelein
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Munich, Germany.,Department of Neurology, University Hospital Munich, Munich, Germany
| | - Michael Strupp
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Munich, Germany.,Department of Neurology, University Hospital Munich, Munich, Germany
| |
Collapse
|
19
|
Abstract
BACKGROUND The viral transactivator Tat protein is a key modulator of HIV-1 replication, as it regulates transcriptional elongation from the integrated proviral genome. Tat recruits the human transcription elongation factor b, and other host proteins, such as the super elongation complex, to activate the cellular RNA polymerase II, normally stalled shortly after transcription initiation at the HIV promoter. By means of a complex set of interactions with host cellular factors, Tat determines the fate of viral activity within the infected cell. The virus will either actively replicate to promote dissemination in blood and tissues, or become dormant mostly in memory CD4+ T cells, as part of a small but long-living latent reservoir, the main obstacle for HIV eradication. OBJECTIVE In this review, we summarize recent advances in the understanding of the multi-step mechanism that regulates Tat-mediated HIV-1 transcription and RNA polymerase II release, to promote viral transcription elongation. Early events of the human transcription elongation factor b release from the inhibitory 7SK small nuclear ribonucleoprotein complex and its recruitment to the HIV promoter will be discussed. Specific roles of the super elongation complex subunits during transcription elongation, and insight on recently identified cellular factors and mechanisms regulating HIV latency will be detailed. CONCLUSION Understanding the complexity of HIV transcriptional regulation by host factors may open the door for development of novel strategies to eradicate the resilient latent reservoir.
Collapse
Affiliation(s)
- Guillaume Mousseau
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| | - Susana T Valente
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| |
Collapse
|
20
|
He H, Dai J, Yang X, Wang X, Sun F, Zhu Y. Silencing of MED27 inhibits adrenal cortical carcinogenesis by targeting the Wnt/β-catenin signaling pathway and the epithelial-mesenchymal transition process. Biol Chem 2018; 399:593-602. [PMID: 29730647 DOI: 10.1515/hsz-2017-0304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/25/2018] [Indexed: 11/15/2022]
Abstract
Abstract
This study aimed to explore the effect of MED27 on the expression of epithelial-mesenchymal transition (EMT)-related proteins and β-catenin in adrenal cortical carcinoma (ACC). The functional mechanism of MED27 on ACC processes was also explored. The expression of MED27 was assessed by quantitative real-time polymerase chain reaction (qRT-PCR). siRNA was utilized to knockdown the expression of MED27. CCK8 assays were performed to evaluate SW-13 cell proliferation. Transwell assays were performed to assess the invasion ability, and wound healing assays were utilized to detect migration. A tumor xenograft mouse model was established to investigate the impact of silencing MED27 on tumor growth and metastasis. MED27 was highly expressed in ACC tissues and cells. Down-regulation of MED27 induced ACC cell apoptosis, and significantly attenuated ACC cell proliferation, invasion and metastasis in vivo and in vitro. MED27 knockdown regulated the expression of EMT-related proteins and Wnt/β-catenin signaling pathway-related proteins. Our study investigated the function and mechanism of MED27 and validated that MED27 plays a negative role in ACC occurrence and progression and could be utilized as a new therapeutic target in ACC prevention and treatment.
Collapse
Affiliation(s)
- Hongchao He
- Department of Urology , Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine , No. 197, Ruijin Er Road , Shanghai 200025 , China
| | - Jun Dai
- Department of Urology , Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine , No. 197, Ruijin Er Road , Shanghai 200025 , China
| | - Xiaoqun Yang
- Department of Pathology , Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine , Shanghai 200025 , China
| | - Xiaojing Wang
- Department of Urology , Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine , No. 197, Ruijin Er Road , Shanghai 200025 , China
| | - Fukang Sun
- Department of Urology , Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine , No. 197, Ruijin Er Road , Shanghai 200025 , China
| | - Yu Zhu
- Department of Urology , Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine , No. 197, Ruijin Er Road , Shanghai 200025 , China
| |
Collapse
|
21
|
Shendre A, Wiener HW, Irvin MR, Aouizerat BE, Overton ET, Lazar J, Liu C, Hodis HN, Limdi NA, Weber KM, Gange SJ, Zhi D, Floris-Moore MA, Ofotokun I, Qi Q, Hanna DB, Kaplan RC, Shrestha S. Genome-wide admixture and association study of subclinical atherosclerosis in the Women's Interagency HIV Study (WIHS). PLoS One 2017; 12:e0188725. [PMID: 29206233 PMCID: PMC5714351 DOI: 10.1371/journal.pone.0188725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/12/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease (CVD) is a major comorbidity among HIV-infected individuals. Common carotid artery intima-media thickness (cCIMT) is a valid and reliable subclinical measure of atherosclerosis and is known to predict CVD. We performed genome-wide association (GWA) and admixture analysis among 682 HIV-positive and 288 HIV-negative Black, non-Hispanic women from the Women's Interagency HIV study (WIHS) cohort using a combined and stratified analysis approach. We found some suggestive associations but none of the SNPs reached genome-wide statistical significance in our GWAS analysis. The top GWAS SNPs were rs2280828 in the region intergenic to mediator complex subunit 30 and exostosin glycosyltransferase 1 (MED30 | EXT1) among all women, rs2907092 in the catenin delta 2 (CTNND2) gene among HIV-positive women, and rs7529733 in the region intergenic to family with sequence similarity 5, member C and regulator of G-protein signaling 18 (FAM5C | RGS18) genes among HIV-negative women. The most significant local European ancestry associations were in the region intergenic to the zinc finger and SCAN domain containing 5D gene and NADH: ubiquinone oxidoreductase complex assembly factor 1 (ZSCAN5D | NDUF1) pseudogene on chromosome 19 among all women, in the region intergenic to vomeronasal 1 receptor 6 pseudogene and zinc finger protein 845 (VN1R6P | ZNF845) gene on chromosome 19 among HIV-positive women, and in the region intergenic to the SEC23-interacting protein and phosphatidic acid phosphatase type 2 domain containing 1A (SEC23IP | PPAPDC1A) genes located on chromosome 10 among HIV-negative women. A number of previously identified SNP associations with cCIMT were also observed and included rs2572204 in the ryanodine receptor 3 (RYR3) and an admixture region in the secretion-regulating guanine nucleotide exchange factor (SERGEF) gene. We report several SNPs and gene regions in the GWAS and admixture analysis, some of which are common across HIV-positive and HIV-negative women as demonstrated using meta-analysis, and also across the two analytic approaches (i.e., GWA and admixture). These findings suggest that local European ancestry plays an important role in genetic associations of cCIMT among black women from WIHS along with other environmental factors that are related to CVD and may also be triggered by HIV. These findings warrant confirmation in independent samples.
Collapse
Affiliation(s)
- Aditi Shendre
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Howard W. Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bradley E. Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, New York, United States of America
- Department of Oral and Maxillofacial Surgery, New York University, New York, New York, United States of America
| | - Edgar T. Overton
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jason Lazar
- Department of Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Chenglong Liu
- Department of Medicine, Georgetown University Medical Center, Washington, DC, United States of America
| | - Howard N. Hodis
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, California, United States of America
| | - Nita A. Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kathleen M. Weber
- Cook County Health and Hospital System/Hektoen Institute of Medicine, Chicago, Illnois, United States of America
| | - Stephen J. Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michelle A. Floris-Moore
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ighovwerha Ofotokun
- Department of Medicine/Infectious Diseases, Emory University, and Grady Healthcare System, Atlanta, Georgia, United States of America
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David B. Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
22
|
RNA editing by ADAR1 regulates innate and antiviral immune functions in primary macrophages. Sci Rep 2017; 7:13339. [PMID: 29042669 PMCID: PMC5645456 DOI: 10.1038/s41598-017-13580-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
ADAR1-dependent A-to-I editing has recently been recognized as a key process for marking dsRNA as self, therefore, preventing innate immune activation and affecting the development and resolution of immune-mediated diseases and infections. Here, we have determined the role of ADAR1 as a regulator of innate immune activation and modifier of viral susceptibility in primary myeloid and lymphoid cells. We show that ADAR1 knockdown significantly enhanced interferon, cytokine and chemokine production in primary macrophages that function as antiviral paracrine factors, rendering them resistant to HIV-1 infection. ADAR1 knockdown induced deregulation of the RLRs-MAVS signaling pathway, by increasing MDA5, RIG-I, IRF7 and phospho-STAT1 expression, an effect that was partially rescued by pharmacological blockade of the pathway. In summary, our results demonstrate a role of ADAR1 in regulating innate immune function in primary macrophages, suggesting that macrophages may play an essential role in disease associated to ADAR1 dysfunction. We also show that viral inhibition is exclusively dependent on innate immune activation consequence of ADAR1 knockdown, pointing towards ADAR1 as a potential target to boost antiviral immune response.
Collapse
|
23
|
Sharma S, Patnaik SK, Taggart RT, Baysal BE. The double-domain cytidine deaminase APOBEC3G is a cellular site-specific RNA editing enzyme. Sci Rep 2016; 6:39100. [PMID: 27974822 PMCID: PMC5156925 DOI: 10.1038/srep39100] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/16/2016] [Indexed: 11/10/2022] Open
Abstract
APOBEC3G is a cytidine deaminase with two homologous domains and restricts retroelements and HIV-1. APOBEC3G deaminates single-stranded DNAs via its C-terminal domain, whereas the N-terminal domain is considered non-catalytic. Although APOBEC3G is known to bind RNAs, APOBEC3G-mediated RNA editing has not been observed. We recently discovered RNA editing by the single-domain enzyme APOBEC3A in innate immune cells. To determine if APOBEC3G is capable of RNA editing, we transiently expressed APOBEC3G in the HEK293T cell line and performed transcriptome-wide RNA sequencing. We show that APOBEC3G causes site-specific C-to-U editing of mRNAs from over 600 genes. The edited cytidines are often flanked by inverted repeats, but are largely distinct from those deaminated by APOBEC3A. We verified protein-recoding RNA editing of selected genes including several that are known to be involved in HIV-1 infectivity. APOBEC3G co-purifies with highly edited mRNA substrates. We find that conserved catalytic residues in both cytidine deaminase domains are required for RNA editing. Our findings demonstrate the novel RNA editing function of APOBEC3G and suggest a role for the N-terminal domain in RNA editing.
Collapse
Affiliation(s)
- Shraddha Sharma
- Departments of Pathology and Thoracic Surgery, Roswell Park Cancer Institute, Elm and Carlton Streets Buffalo, NY, 14263, USA
| | - Santosh K. Patnaik
- Departments of Pathology and Thoracic Surgery, Roswell Park Cancer Institute, Elm and Carlton Streets Buffalo, NY, 14263, USA
| | - Robert T. Taggart
- Departments of Pathology and Thoracic Surgery, Roswell Park Cancer Institute, Elm and Carlton Streets Buffalo, NY, 14263, USA
| | - Bora E. Baysal
- Departments of Pathology and Thoracic Surgery, Roswell Park Cancer Institute, Elm and Carlton Streets Buffalo, NY, 14263, USA
| |
Collapse
|
24
|
A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat Commun 2016; 7:12248. [PMID: 27461529 PMCID: PMC4974459 DOI: 10.1038/ncomms12248] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/15/2016] [Indexed: 12/15/2022] Open
Abstract
Live-cell imaging has revealed unexpected features of gene expression. Here using improved single-molecule RNA microscopy, we show that synthesis of HIV-1 RNA is achieved by groups of closely spaced polymerases, termed convoys, as opposed to single isolated enzymes. Convoys arise by a Mediator-dependent reinitiation mechanism, which generates a transient but rapid succession of polymerases initiating and escaping the promoter. During elongation, polymerases are spaced by few hundred nucleotides, and physical modelling suggests that DNA torsional stress may maintain polymerase spacing. We additionally observe that the HIV-1 promoter displays stochastic fluctuations on two time scales, which we refer to as multi-scale bursting. Each time scale is regulated independently: Mediator controls minute-scale fluctuation (convoys), while TBP-TATA-box interaction controls sub-hour fluctuations (long permissive/non-permissive periods). A cellular promoter also produces polymerase convoys and displays multi-scale bursting. We propose that slow, TBP-dependent fluctuations are important for phenotypic variability of single cells. HIV-1 viral gene expression stochastically switches between active and inactive states. Here, using improved single molecule RNA microscopy, the authors show that HIV-1 RNA stochastic transcription is achieved by groups of closely spaced polymerases, and is regulated by Mediator and TBP at different time scales.
Collapse
|
25
|
Druce M, Hulo C, Masson P, Sommer P, Xenarios I, Le Mercier P, De Oliveira T. Improving HIV proteome annotation: new features of BioAfrica HIV Proteomics Resource. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw045. [PMID: 27087306 PMCID: PMC4834208 DOI: 10.1093/database/baw045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/11/2016] [Indexed: 02/06/2023]
Abstract
The Human Immunodeficiency Virus (HIV) is one of the pathogens that cause the greatest global concern, with approximately 35 million people currently infected with HIV. Extensive HIV research has been performed, generating a large amount of HIV and host genomic data. However, no effective vaccine that protects the host from HIV infection is available and HIV is still spreading at an alarming rate, despite effective antiretroviral (ARV) treatment. In order to develop effective therapies, we need to expand our knowledge of the interaction between HIV and host proteins. In contrast to virus proteins, which often rapidly evolve drug resistance mutations, the host proteins are essentially invariant within all humans. Thus, if we can identify the host proteins needed for virus replication, such as those involved in transporting viral proteins to the cell surface, we have a chance of interrupting viral replication. There is no proteome resource that summarizes this interaction, making research on this subject a difficult enterprise. In order to fill this gap in knowledge, we curated a resource presents detailed annotation on the interaction between the HIV proteome and host proteins. Our resource was produced in collaboration with ViralZone and used manual curation techniques developed by UniProtKB/Swiss-Prot. Our new website also used previous annotations of the BioAfrica HIV-1 Proteome Resource, which has been accessed by approximately 10 000 unique users a year since its inception in 2005. The novel features include a dedicated new page for each HIV protein, a graphic display of its function and a section on its interaction with host proteins. Our new webpages also add information on the genomic location of each HIV protein and the position of ARV drug resistance mutations. Our improved BioAfrica HIV-1 Proteome Resource fills a gap in the current knowledge of biocuration. Database URL: http://www.bioafrica.net/proteomics/HIVproteome.html
Collapse
Affiliation(s)
- Megan Druce
- Africa Centre for Population Health, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa Division of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chantal Hulo
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Patrick Masson
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Paula Sommer
- Division of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ioannis Xenarios
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Philippe Le Mercier
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Tulio De Oliveira
- Africa Centre for Population Health, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
26
|
Ruiz A, Pauls E, Badia R, Torres-Torronteras J, Riveira-Muñoz E, Clotet B, Martí R, Ballana E, Esté JA. Cyclin D3-dependent control of the dNTP pool and HIV-1 replication in human macrophages. Cell Cycle 2016; 14:1657-65. [PMID: 25927932 DOI: 10.1080/15384101.2015.1030558] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Cyclins control the activation of cyclin-dependent kinases (CDK), which in turn, control the cell cycle and cell division. Intracellular availability of deoxynucleotides (dNTP) plays a fundamental role in cell cycle progression. SAM domain and HD domain-containing protein 1 (SAMHD1) degrades nucleotide triphosphates and controls the size of the dNTP pool. SAMHD1 activity appears to be controlled by CDK. Here, we show that knockdown of cyclin D3 a partner of CDK6 and E2 a partner of CDK2 had a major impact in SAMHD1 phosphorylation and inactivation and led to decreased dNTP levels and inhibition of HIV-1 at the reverse transcription step in primary human macrophages. The effect of cyclin D3 RNA interference was lost after degradation of SAMHD1 by HIV-2 Vpx, demonstrating the specificity of the mechanism. Cyclin D3 inhibition correlated with decreased activation of CDK2. Our results confirm the fundamental role of the CDK6-cyclin D3 pair in controlling CDK2-dependent SAMHD1 phosphorylation and dNTP pool in primary macrophages.
Collapse
Affiliation(s)
- Alba Ruiz
- a AIDS Research Institute-IrsiCaixa and AIDS Unit; Hospital Germans Trias i Pujol; Universitat Autonoma de Barcelona ; Badalona , Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tang R, Xu X, Yang W, Yu W, Hou S, Xuan Y, Tang Z, Zhao S, Chen Y, Xiao X, Huang W, Guo W, Li M, Deng W. MED27 promotes melanoma growth by targeting AKT/MAPK and NF-κB/iNOS signaling pathways. Cancer Lett 2016; 373:77-87. [PMID: 26797421 DOI: 10.1016/j.canlet.2016.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 01/07/2023]
Abstract
The inhibitors of BRAF and MEK targeting MAPK signaling pathway provide a comparatively effective therapeutic strategy for melanoma caused by BRAF mutation. However, melanoma, especially metastatic melanoma, has become one of the most threatening malignancies. Thus, the identification of exact molecular mechanisms and the key components involved in such mechanisms is urgently needed in order to provide new therapeutic options for patients with melanoma. Here, we identified MED27 as a potential melanoma target and explored its role and the associated molecular mechanism involved in melanoma progression. MED27 was found to be highly expressed in melanoma cells and tumor tissues. Its silencing led to melanoma cell proliferation inhibition, cell cycle arrest and apoptosis induction accompanied by the inactivation of PI3K/AKT and MAPK/ERK signaling and the activation of Bax/Cyto-C/Caspase-dependent apoptotic pathway. In addition, silencing of MED27 led to the decrease of iNOS expression through inhibiting the activation of a serial of upstream key proteins of NF-κB signaling pathway and the translocation of p50/p65 from cytoplasm to nucleus. MED27 was also found to be able to interact with NF-κB and p300 and to be acetylated by p300. Furthermore, the results in a xenograft tumor model indicated that melanoma progression was effectively suppressed by MED27 knockdown accompanied by the down-regulation of p-AKT, p-ERK, p-MEK1/2, MMP-9, Bcl-2 and iNOS expressions in the tumor tissues. Taken together, our study not only demonstrated the new function of MED27 as an oncogenic protein and the associated molecular mechanisms involved in melanoma progression, but also provided a possibility for the development of MED27 as a new anticancer target in melanoma therapy.
Collapse
Affiliation(s)
- Ranran Tang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiangdong Xu
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Yang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shuai Hou
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yang Xuan
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhipeng Tang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shilei Zhao
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yiming Chen
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiangsheng Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| | - Wei Guo
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Man Li
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China.
| |
Collapse
|