1
|
Al-Aqtash R, Collier DM. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism. Channels (Austin) 2024; 18:2355150. [PMID: 38762911 PMCID: PMC11110710 DOI: 10.1080/19336950.2024.2355150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.
Collapse
Affiliation(s)
- Rua’a Al-Aqtash
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
2
|
Sfogliarini C, Tran LH, Cesta CM, Allegretti M, Locati M, Vegeto E. AEBS inhibition in macrophages: Augmenting reality for SERMs repurposing against infections. Biochem Pharmacol 2024; 229:116544. [PMID: 39293500 DOI: 10.1016/j.bcp.2024.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Beyond their clinical use as selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen have attracted recent attention for their favorable activity against a broad range of dangerous human pathogens. While consistently demonstrated to occur independently on classic estrogen receptors, the mechanisms underlying SERMs antimicrobial efficacy remain still poorly elucidated, but fundamental to benefit from repurposing strategies of these drugs. Macrophages are innate immune cells that protect from infections by rapidly reprogramming their metabolic state, particularly cholesterol disposal, which is at the center of an appropriate macrophage immune response as well as of the anabolic requirements of both the pathogen and the host cells. The microsomal antiestrogen binding site (AEBS) comprises enzymes involved in the last stages of cholesterol biosynthesis and is a high affinity off-target site for SERMs. We review here recent findings from our laboratory and other research groups in support of the hypothesis that AEBS multiprotein complex represents the candidate pre-genomic target of SERMs immunomodulatory activity. The cholesterol restriction resulting from SERMs-mediated AEBS inhibition may be responsible for boosting inflammatory and antimicrobial pathways that include inflammasome activation, modulation of Toll-like receptors (TLRs) responses, induction of interferon regulatory factor (IRF3) and nuclear factor erythroid 2-related factor 2 (NRF2)-mediated transcriptional programs and, noteworthy, the mitigation of excessive inflammatory and proliferative responses, leading to the overall potentiation of the macrophage response to infections.
Collapse
Affiliation(s)
- Chiara Sfogliarini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Lien Hong Tran
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | - Massimo Locati
- IRCCS Humanitas Research Hospital, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Johns AE, Taga A, Charalampopoulou A, Gross SK, Rust K, McCray BA, Sullivan JM, Maragakis NJ. Exploring P2X7 receptor antagonism as a therapeutic target for neuroprotection in an hiPSC motor neuron model. Stem Cells Transl Med 2024:szae074. [PMID: 39419765 DOI: 10.1093/stcltm/szae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/01/2024] [Indexed: 10/19/2024] Open
Abstract
ATP is present in negligible concentrations in the interstitium of healthy tissues but accumulates to significantly higher concentrations in an inflammatory microenvironment. ATP binds to 2 categories of purine receptors on the surface of cells, the ionotropic P2X receptors and metabotropic P2Y receptors. Included in the family of ionotropic purine receptors is P2X7 (P2X7R), a non-specific cation channel with unique functional and structural properties that suggest it has distinct roles in pathological conditions marked by increased extracellular ATP. The role of P2X7R has previously been explored in microglia and astrocytes within the context of neuroinflammation, however the presence of P2X7R on human motor neurons and its potential role in neurodegenerative diseases has not been the focus of the current literature. We leveraged the use of human iPSC-derived spinal motor neurons (hiPSC-MN) as well as human and rodent tissue to demonstrate the expression of P2X7R on motor neurons. We extend this observation to demonstrate that these receptors are functionally active on hiPSC-MN and that ATP can directly induce death via P2X7R activation in a dose dependent manner. Finally, using a highly specific P2X7R blocker, we demonstrate how modulation of P2X7R activation on motor neurons is neuroprotective and could provide a unique pharmacologic target for ATP-induced MN death that is distinct from the role of ATP as a modulator of neuroinflammation.
Collapse
Affiliation(s)
- Alexandra E Johns
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Arens Taga
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Andriana Charalampopoulou
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Sarah K Gross
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Khalil Rust
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Brett A McCray
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jeremy M Sullivan
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Nicholas J Maragakis
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| |
Collapse
|
4
|
Oken AC, Lisi NE, Ditter IA, Shi H, Nechiporuk NA, Mansoor SE. Cryo-EM structures of the human P2X1 receptor reveal subtype-specific architecture and antagonism by supramolecular ligand-binding. Nat Commun 2024; 15:8490. [PMID: 39353889 PMCID: PMC11448502 DOI: 10.1038/s41467-024-52636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Abstract
P2X receptors are a family of seven trimeric non-selective cation channels that are activated by extracellular ATP to play roles in the cardiovascular, neuronal, and immune systems. Although it is known that the P2X1 receptor subtype has increased sensitivity to ATP and fast desensitization kinetics, an underlying molecular explanation for these subtype-selective features is lacking. Here we report high-resolution cryo-EM structures of the human P2X1 receptor in the apo closed, ATP-bound desensitized, and the high-affinity antagonist NF449-bound inhibited states. The apo closed and ATP-bound desensitized state structures of human P2X1 define subtype-specific properties such as distinct pore architecture and ATP-interacting residues. The NF449-bound inhibited state structure of human P2X1 reveals that NF449 has a unique dual-ligand supramolecular binding mode at the interface of neighboring protomers, inhibiting channel activation by overlapping with the canonical P2X receptor ATP-binding site. Altogether, these data define the molecular pharmacology of the human P2X1 receptor laying the foundation for structure-based drug design.
Collapse
Affiliation(s)
- Adam C Oken
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nicolas E Lisi
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Ismayn A Ditter
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Haoyuan Shi
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nadia A Nechiporuk
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Steven E Mansoor
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
- Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Xu X, Jin W, Chang R, Ding X. Research progress of SREBP and its role in the pathogenesis of autoimmune rheumatic diseases. Front Immunol 2024; 15:1398921. [PMID: 39224584 PMCID: PMC11366632 DOI: 10.3389/fimmu.2024.1398921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune rheumatic diseases comprise a group of immune-related disorders characterized by non-organ-specific inflammation. These diseases include systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), ankylosing spondylitis (AS), gout, among others. Typically involving the hematologic system, these diseases may also affect multiple organs and systems. The pathogenesis of autoimmune rheumatic immune diseases is complex, with diverse etiologies, all associated with immune dysfunction. The current treatment options for this type of disease are relatively limited and come with certain side effects. Therefore, the urgent challenge remains to identify novel therapeutic targets for these diseases. Sterol regulatory element-binding proteins (SREBPs) are basic helix-loop-helix-leucine zipper transcription factors that regulate the expression of genes involved in lipid and cholesterol biosynthesis. The expression and transcriptional activity of SREBPs can be modulated by extracellular stimuli such as polyunsaturated fatty acids, amino acids, glucose, and energy pathways including AKT-mTORC and AMP-activated protein kinase (AMPK). Studies have shown that SREBPs play roles in regulating lipid metabolism, cytokine production, inflammation, and the proliferation of germinal center B (GCB) cells. These functions are significant in the pathogenesis of rheumatic and immune diseases (Graphical abstract). Therefore, this paper reviews the potential mechanisms of SREBPs in the development of SLE, RA, and gout, based on an exploration of their functions.
Collapse
Affiliation(s)
| | | | | | - Xinghong Ding
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
De Salis SKF, Chen JZ, Skarratt KK, Fuller SJ, Balle T. Deep learning structural insights into heterotrimeric alternatively spliced P2X7 receptors. Purinergic Signal 2024; 20:431-447. [PMID: 38032425 DOI: 10.1007/s11302-023-09978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
P2X7 receptors (P2X7Rs) are membrane-bound ATP-gated ion channels that are composed of three subunits. Different subunit structures may be expressed due to alternative splicing of the P2RX7 gene, altering the receptor's function when combined with the wild-type P2X7A subunits. In this study, the application of the deep-learning method, AlphaFold2-Multimer (AF2M), for the generation of trimeric P2X7Rs was validated by comparing an AF2M-generated rat wild-type P2X7A receptor with a structure determined by cryogenic electron microscopy (cryo-EM) (Protein Data Bank Identification: 6U9V). The results suggested AF2M could firstly, accurately predict the structures of P2X7Rs and secondly, accurately identify the highest quality model through the ranking system. Subsequently, AF2M was used to generate models of heterotrimeric alternatively spliced P2X7Rs consisting of one or two wild-type P2X7A subunits in combination with one or two P2X7B, P2X7E, P2X7J, and P2X7L splice variant subunits. The top-ranking models were deemed valid based on AF2M's confidence measures, stability in molecular dynamics simulations, and consistent flexibility of the conserved regions between the models. The structure of the heterotrimeric receptors, which were missing key residues in the ATP binding sites and carboxyl terminal domains (CTDs) compared to the wild-type receptor, help to explain their observed functions. Overall, the models produced in this study (available as supplementary material) unlock the possibility of structure-based studies into the heterotrimeric P2X7Rs.
Collapse
Affiliation(s)
- Sophie K F De Salis
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
- Sydney Pharmacy School, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Jake Zheng Chen
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
- Sydney Pharmacy School, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Kristen K Skarratt
- The University of Sydney, Nepean Clinical School, Kingswood, NSW, 2747, Australia
| | - Stephen J Fuller
- The University of Sydney, Nepean Clinical School, Kingswood, NSW, 2747, Australia
| | - Thomas Balle
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.
- Sydney Pharmacy School, The University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
7
|
Guggemos J, Fuller SJ, Skarratt KK, Mayer B, Schneider EM. Loss-of-function/gain-of-function polymorphisms of the ATP sensitive P2X7R influence sepsis, septic shock, pneumonia, and survival outcomes. Front Immunol 2024; 15:1352789. [PMID: 38966639 PMCID: PMC11222724 DOI: 10.3389/fimmu.2024.1352789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/07/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Extracellular ATP (eATP) released from damaged cells activates the P2X7 receptor (P2X7R) ion channel on the surface of surrounding cells, resulting in calcium influx, potassium efflux and inflammasome activation. Inherited changes in the P2X7R gene (P2RX7) influence eATP induced responses. Single nucleotide polymorphisms (SNPs) of P2RX7 influence both function and signaling of the receptor, that in addition to ion flux includes pathogen control and immunity. Methods Subjects (n = 105) were admitted to the ICU at the University Hospital Ulm, Germany between June 2018 and August 2019. Of these, subjects with a diagnosis of sepsis (n = 75), were also diagnosed with septic shock (n = 24), and/or pneumonia (n = 42). Subjects with pneumonia (n = 43) included those without sepsis (n = 1), sepsis without shock (n = 29) and pneumonia with septic shock (n = 13). Out of the 75 sepsis/septic shock patients, 33 patients were not diagnosed with pneumonia. Controls (n = 30) were recruited to the study from trauma patients and surgical patients without sepsis, septic shock, or pneumonia. SNP frequencies were determined for 16 P2RX7 SNPs known to affect P2X7R function, and association studies were performed between frequencies of these SNPs in sepsis, septic shock, and pneumonia compared to controls. Results The loss-of-function (LOF) SNP rs17525809 (T253C) was found more frequently in patients with septic shock, and non-septic trauma patients when compared to sepsis. The LOF SNP rs2230911 (C1096G) was found to be more frequent in patients with sepsis and septic shock than in non-septic trauma patients. The frequencies of these SNPs were even higher in sepsis and septic patients with pneumonia. The current study also confirmed a previous study by our group that showed a five SNP combination that included the GOF SNPs rs208294 (C489T) and rs2230912 (Q460R) that was designated #21211 was associated with increased odds of survival in severe sepsis. Discussion The results found an association between expression of LOF P2RX7 SNPs and presentation to the ICU with sepsis, and septic shock compared to control ICU patients. Furthermore, frequencies of LOF SNPs were found to be higher in sepsis patients with pneumonia compared to those without pneumonia. In addition, a five SNP GOF combination was associated with increased odds of survival in severe sepsis. These results suggest that P2RX7 is required to control infection in pneumonia and that inheritance of LOF variants increases the risk of sepsis when associated with pneumonia. This study confirms that P2RX7 genotyping in pneumonia may identify patients at risk of developing sepsis. The study also identifies P2X7R as a target in sepsis associated with an excessive immune response in subjects with GOF SNP combinations.
Collapse
Affiliation(s)
- Johanna Guggemos
- Clinic for Anesthesiology and Intensive Care Medicine, Ulm University Hospital, Ulm, Germany
| | - Stephen J. Fuller
- Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
- Department of Haematology, Nepean Hospital, Penrith, NSW, Australia
| | - Kristen K. Skarratt
- Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
- Department of Haematology, Nepean Hospital, Penrith, NSW, Australia
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - E. Marion Schneider
- Clinic for Anesthesiology and Intensive Care Medicine, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
8
|
Sawai Y, Suzuki Y, Asagiri M, Hida S, Kondo R, Zamponi GW, Giles WR, Imaizumi Y, Yamamura H. Caveolin-1 forms a complex with P2X7 receptor and tunes P2X7-mediated ATP signaling in mouse bone marrow-derived macrophages. Am J Physiol Cell Physiol 2024; 326:C125-C142. [PMID: 37955123 DOI: 10.1152/ajpcell.00303.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The ionotropic purinergic P2X7 receptor responds to extracellular ATP and can trigger proinflammatory immune signaling in macrophages. Caveolin-1 (Cav-1) is known to modulate functions of macrophages and innate immunity. However, it is unknown how Cav-1 modulates P2X7 receptor activity in macrophages. We herein examined P2X7 receptor activity and macrophage functions using bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Cav-1 knockout (KO) mice. ATP (1 mM) application caused biphasic increase in cytosolic [Ca2+] and sustained decrease in cytosolic [K+]. A specific P2X7 receptor blocker, A-740003, inhibited the maintained cytosolic [Ca2+] increase and cytosolic [K+] decrease. Total internal reflection fluorescent imaging and proximity ligation assays revealed a novel molecular complex formation between P2X7 receptors and Cav-1 in WT BMDMs that were stimulated with lipopolysaccharides. This molecular coupling was increased by ATP application. Specifically, the ATP-induced Ca2+ influx and K+ efflux through P2X7 receptors were increased in Cav-1 KO BMDMs, even though the total and surface protein levels of P2X7 receptors in WT and Cav-1 KO BMDMs were unchanged. Cell-impermeable dye (TO-PRO3) uptake analysis revealed that macropore formation of P2X7 receptors was enhanced in Cav-1 KO BMDMs. Cav-1 KO BMDMs increased ATP-induced IL-1β secretion, reactive oxygen species production, Gasdermin D (GSDMD) cleavage, and lactate dehydrogenase release indicating pyroptosis. A-740003 completely prevented ATP-induced pyroptosis. In combination, these datasets show that Cav-1 has a negative effect on P2X7 receptor activity in BMDMs and that Cav-1 in macrophages may contribute to finely tuned immune responses by preventing excessive IL-1β secretion and pyroptosis.NEW & NOTEWORTHY In bone marrow-derived macrophages, Cav-1 suppresses the macropore formation of P2X7 receptors through their direct or indirect interactions, resulting in reduced membrane permeability of cations (Ca2+ and K+) and large cell-impermeable dye (TO-PRO3) induced by ATP. Cav-1 also inhibits ATP-induced IL-1β secretion, ROS production, GSDMD cleavage, and pyroptosis. Cav-1 contributes to the maintenance of proper immune responses by finely tuning IL-1β secretion and cell death in macrophages.
Collapse
Affiliation(s)
- Yuuki Sawai
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masataka Asagiri
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wayne R Giles
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
9
|
Olivier E, Rat P. Role of Oxysterols in Ocular Degeneration Mechanisms and Involvement of P2X7 Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:277-292. [PMID: 38036885 DOI: 10.1007/978-3-031-43883-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Ocular degeneration, including cataracts, glaucoma, macular degeneration, and diabetic retinopathy, is a major public health challenge, as it affects the quality of life of millions of people worldwide and, in its advanced stages, leads to blindness. Ocular degeneration, although it can affect different parts of the eye, shares common characteristics such as oxysterols and the P2X7 receptor. Indeed, oxysterols, which are cholesterol derivatives, are associated with ocular degeneration pathogenesis and trigger inflammation and cell death pathways. Activation of the P2X7 receptor is also linked to ocular degeneration and triggers the same pathways. In age-related macular degeneration, these two key players have been associated, but further studies are needed to extrapolate this interrelationship to other ocular degenerations.
Collapse
Affiliation(s)
| | - Patrice Rat
- Université Paris Cité, CNRS, CiTCoM, Paris, France
| |
Collapse
|
10
|
Cevoli F, Arnould B, Peralta FA, Grutter T. Untangling Macropore Formation and Current Facilitation in P2X7. Int J Mol Sci 2023; 24:10896. [PMID: 37446075 DOI: 10.3390/ijms241310896] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Macropore formation and current facilitation are intriguing phenomena associated with ATP-gated P2X7 receptors (P2X7). Macropores are large pores formed in the cell membrane that allow the passage of large molecules. The precise mechanisms underlying macropore formation remain poorly understood, but recent evidence suggests two alternative pathways: a direct entry through the P2X7 pore itself, and an indirect pathway triggered by P2X7 activation involving additional proteins, such as TMEM16F channel/scramblase. On the other hand, current facilitation refers to the progressive increase in current amplitude and activation kinetics observed with prolonged or repetitive exposure to ATP. Various mechanisms, including the activation of chloride channels and intrinsic properties of P2X7, have been proposed to explain this phenomenon. In this comprehensive review, we present an in-depth overview of P2X7 current facilitation and macropore formation, highlighting new findings and proposing mechanistic models that may offer fresh insights into these untangled processes.
Collapse
Affiliation(s)
- Federico Cevoli
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Benoit Arnould
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Francisco Andrés Peralta
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- Instituto de Neurociencias, CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Thomas Grutter
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- University of Strasbourg Institute for Advanced Studies (USIAS), 67000 Strasbourg, France
| |
Collapse
|
11
|
Lalo U, Pankratov Y. ATP-mediated signalling in the central synapses. Neuropharmacology 2023; 229:109477. [PMID: 36841527 DOI: 10.1016/j.neuropharm.2023.109477] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
ATP released from the synaptic terminals and astrocytes can activate neuronal P2 receptors at a variety of locations across the CNS. Although the postsynaptic ATP-mediated signalling does not bring a major contribution into the excitatory transmission, it is instrumental for slow and diffuse modulation of synaptic dynamics and neuronal firing in many CNS areas. Neuronal P2X and P2Y receptors can be activated by ATP released from the synaptic terminals, astrocytes and microglia and thereby can participate in the regulation of synaptic homeostasis and plasticity. There is growing evidence of importance of purinergic regulation of synaptic transmission in different physiological and pathological contexts. Here, we review the main mechanisms underlying the complexity and diversity of purinergic signalling and purinergic modulation in central neurons.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, University of Warwick, United Kingdom
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
12
|
Sivcev S, Kudova E, Zemkova H. Neurosteroids as positive and negative allosteric modulators of ligand-gated ion channels: P2X receptor perspective. Neuropharmacology 2023; 234:109542. [PMID: 37040816 DOI: 10.1016/j.neuropharm.2023.109542] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
Neurosteroids are steroids synthesized de novo in the brain from cholesterol in an independent manner from peripheral steroid sources. The term "neuroactive steroid" includes all steroids independent of their origin, and newly synthesized analogs of neurosteroids that modify neuronal activities. In vivo application of neuroactive steroids induces potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the γ-aminobutyric acid type-A receptor (GABAAR). However, neuroactive steroids also act as positive or negative allosteric regulators on several ligand-gated channels including N-methyl-d-aspartate receptors (NMDARs), nicotinic acetylcholine receptors (nAChRs) and ATP-gated purinergic P2X receptors. Seven different P2X subunits (P2X1-7) can assemble to form homotrimeric or heterotrimeric ion channels permeable for monovalent cations and calcium. Among them, P2X2, P2X4, and P2X7 are the most abundant within the brain and can be regulated by neurosteroids. Transmembrane domains are necessary for neurosteroid binding, however, no generic motif of amino acids can accurately predict the neurosteroid binding site for any of the ligand-gated ion channels including P2X. Here, we will review what is currently known about the modulation of rat and human P2X by neuroactive steroids and the possible structural determinants underlying neurosteroid-induced potentiation and inhibition of the P2X2 and P2X4 receptors.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
13
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
14
|
Durner A, Durner E, Nicke A. Improved ANAP incorporation and VCF analysis reveal details of P2X7 current facilitation and a limited conformational interplay between ATP binding and the intracellular ballast domain. eLife 2023; 12:82479. [PMID: 36598131 PMCID: PMC9859053 DOI: 10.7554/elife.82479] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
The large intracellular C-terminus of the pro-inflammatory P2X7 ion channel receptor (P2X7R) is associated with diverse P2X7R-specific functions. Cryo-EM structures of the closed and ATP-bound open full-length P2X7R recently identified a membrane-associated anchoring domain, an open-state stabilizing "cap" domain, and a globular "ballast domain" containing GTP/GDP and dinuclear Zn2+-binding sites with unknown functions. To investigate protein dynamics during channel activation, we improved incorporation of the environment-sensitive fluorescent unnatural amino acid L-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (ANAP) into Xenopus laevis oocyte-expressed P2X7Rs and performed voltage clamp fluorometry. While we confirmed predicted conformational changes within the extracellular and the transmembrane domains, only 3 out of 41 mutants containing ANAP in the C-terminal domain resulted in ATP-induced fluorescence changes. We conclude that the ballast domain functions rather independently from the extracellular ATP binding domain and might require activation by additional ligands and/or protein interactions. Novel tools to study these are presented.
Collapse
Affiliation(s)
- Anna Durner
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU MunichMunichGermany
| | - Ellis Durner
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, LMU MunichMunichGermany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU MunichMunichGermany
| |
Collapse
|
15
|
Cibelli A, Scemes E, Spray DC. Activity and Stability of Panx1 Channels in Astrocytes and Neuroblastoma Cells Are Enhanced by Cholesterol Depletion. Cells 2022; 11:3219. [PMID: 36291086 PMCID: PMC9600160 DOI: 10.3390/cells11203219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Pannexin1 (Panx1) is expressed in both neurons and glia where it forms ATP-permeable channels that are activated under pathological conditions such as epilepsy, migraine, inflammation, and ischemia. Membrane lipid composition affects proper distribution and function of receptors and ion channels, and defects in cholesterol metabolism are associated with neurological diseases. In order to understand the impact of membrane cholesterol on the distribution and function of Panx1 in neural cells, we used fluorescence recovery after photobleaching (FRAP) to evaluate its mobility and electrophysiology and dye uptake to assess channel function. We observed that cholesterol extraction (using methyl-β-cyclodextrin) and inhibition of its synthesis (lovastatin) decreased the lateral diffusion of Panx1 in the plasma membrane. Panx1 channel activity (dye uptake, ATP release and ionic current) was enhanced in cholesterol-depleted Panx1 transfected cells and in wild-type astrocytes compared to non-depleted or Panx1 null cells. Manipulation of cholesterol levels may, therefore, offer a novel strategy by which Panx1 channel activation might modulate various pathological conditions.
Collapse
Affiliation(s)
- Antonio Cibelli
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eliana Scemes
- Department of Cell Biology and Anatomy, NY Medical College, Valhalla, NY10595, USA
| | - David C. Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
16
|
De Salis SKF, Li L, Chen Z, Lam KW, Skarratt KK, Balle T, Fuller SJ. Alternatively Spliced Isoforms of the P2X7 Receptor: Structure, Function and Disease Associations. Int J Mol Sci 2022; 23:ijms23158174. [PMID: 35897750 PMCID: PMC9329894 DOI: 10.3390/ijms23158174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated membrane ion channel that is expressed by multiple cell types. Following activation by extracellular ATP, the P2X7R mediates a broad range of cellular responses including cytokine and chemokine release, cell survival and differentiation, the activation of transcription factors, and apoptosis. The P2X7R is made up of three P2X7 subunits that contain specific domains essential for the receptor’s varied functions. Alternative splicing produces P2X7 isoforms that exclude one or more of these domains and assemble in combinations that alter P2X7R function. The modification of the structure and function of the P2X7R may adversely affect cellular responses to carcinogens and pathogens, and alternatively spliced (AS) P2X7 isoforms have been associated with several cancers. This review summarizes recent advances in understanding the structure and function of AS P2X7 isoforms and their associations with cancer and potential role in modulating the inflammatory response.
Collapse
Affiliation(s)
- Sophie K. F. De Salis
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
| | - Lanxin Li
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Zheng Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
| | - Kam Wa Lam
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Kristen K. Skarratt
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Stephen J. Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
- Correspondence: ; Tel.: +61-2-4734-3732
| |
Collapse
|
17
|
Hypercholesterolemia Negatively Regulates P2X7-Induced Cellular Function in CD4 + and CD8 + T-Cell Subsets from B6 Mice Fed a High-Fat Diet. Int J Mol Sci 2022; 23:ijms23126730. [PMID: 35743168 PMCID: PMC9223416 DOI: 10.3390/ijms23126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
We have previously showed that plasma membrane cholesterol and GM1 ganglioside content are responsible for the opposite sensitivity of mouse leukemic T cells to ATP. We also reported that the sensitivity of CD4+ and CD8+ T cells to ATP depends on their stage of differentiation. Here, we show that CD4+ and CD8+ T cells from B6 mice express different levels of membrane GM1 and P2X7 but similar levels of cholesterol. Thus, in CD4+ T cells, membrane cholesterol content negatively correlated with ATP/P2X7-induced CD62L shedding but positively correlated with pore formation, phosphatidylserine externalization, and cell death. By contrast, in CD8+ T cells, cholesterol, GM1, and P2X7 levels negatively correlated with all these ATP/P2X7-induced cellular responses. The relationship between cholesterol and P2X7-induced cellular responses was confirmed by modulating cholesterol levels either ex vivo or through a high-fat diet. Membrane cholesterol enrichment ex vivo led to a significant reduction in all P2X7-induced cellular responses in T cells. Importantly, diet-induced hypercholesterolemia in B6 mice was also associated with decreased sensitivity to ATP in CD4+ and CD8+ T cells, highlighting the relationship between cholesterol intake and the amplitudes of P2X7-induced cellular responses in T cells.
Collapse
|
18
|
Dunning K, Peverini L, Grutter T. Using Symmetrical Organic Cation Solutions to Study P2X7 Ion Permeation. Methods Mol Biol 2022; 2510:239-252. [PMID: 35776328 DOI: 10.1007/978-1-0716-2384-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
P2X7 receptors are ATP-gated ion channels permeable to metal cations, such as Na+, K+, and Ca2+. They also exhibit permeability to various large molecular weight species, reaching up to 900 Da, in a process known as macropore formation, which is a unique functional hallmark across the P2X family. While well-documented in a range of different cell types, the molecular mechanism underlying this phenomenon is poorly understood, and has been clouded through the use of electrophysiological methodology prone to artifacts as a result of significant changes in ionic concentrations in asymmetric conditions. In this chapter, we discuss the permeation properties of P2X7, the related methodological challenges and the use of symmetrical organic cation solutions as a useful technique for probing P2X7 permeation.
Collapse
Affiliation(s)
- Kate Dunning
- Centre National de la Recherche Scientifique, University of Strasbourg, CAMB UMR 7199, Strasbourg, France
| | - Laurie Peverini
- Channel-Receptors Unit, Institut Pasteur, UMR 3571, Paris, France
| | - Thomas Grutter
- Centre National de la Recherche Scientifique, University of Strasbourg, CAMB UMR 7199, Strasbourg, France.
- University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg, France.
- Equipe de Chimie et Neurobiologie Moléculaire, Faculté de Pharmacie, UMR 7199 CNRS/Université de Strasbourg, Illkirch, France.
| |
Collapse
|
19
|
Murrell-Lagnado RD, Kawate T. Methods for Studying Cholesterol-Dependent Regulation of P2X7 Receptors. Methods Mol Biol 2022; 2510:253-264. [PMID: 35776329 DOI: 10.1007/978-1-0716-2384-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cholesterol dynamically regulates P2X7 receptor function in both physiological and pathological conditions. Studies suggest that cholesterol suppresses P2X7 receptor activity through direct binding or through indirect effects on the biophysical properties of the membrane. Notably, the palmitoylated C-terminus seems to counteract the action of cholesterol to make it less inhibitory. However, the mechanism underlying cholesterol-dependent regulation of P2X7 receptor remains unclear. Here we describe detailed methods that facilitate the quantification of P2X7 channel activity while controlling the amount of cholesterol in the system. We will first describe the use of methyl-β-cyclodextrin (MCD), a cyclic oligosaccharide consisting of seven glucose monomers, to decrease or increase plasma membrane cholesterol levels. We will then describe protocols for the reconstitution of purified P2X7 in proteoliposomes of defined lipid composition. These methods can be combined with commonly used techniques such as dye-uptake assays or electrophysiology. We also describe a fluorescence assay to measure cholesterol-binding to P2X7. These approaches are complementary to cryo-EM or molecular dynamics simulations, which are also powerful tools for investigating cholesterol-P2X7 interactions. An improved understanding of the mechanisms of action of cholesterol on P2X7 may contribute to elucidate the roles of this receptor in ageing, inflammation, and cancer, whose progression correlates with the level of cholesterol.
Collapse
Affiliation(s)
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
20
|
Liang X, Janks L, Egan TM. Using Whole-Cell Electrophysiology and Patch-Clamp Photometry to Characterize P2X7 Receptor Currents. Methods Mol Biol 2022; 2510:217-237. [PMID: 35776327 DOI: 10.1007/978-1-0716-2384-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fundamental property of P2X7 receptor (P2X7R) channels is the transport of cations across the cell surface membrane. Electrophysiology and patch-clamp photometry are readily accessible methods of measuring this flux in a wide range of cell types. They are important tools used to characterize the functional properties of native cells studied in cell culture, in vitro tissue slices, and, in some cases, in situ single cells. Further, they are efficient methods of probing the relation of structure to function of recombinant receptors expressed in heterologous systems. Here, we provide step-by-step procedures for use of two standard recording protocols, broken-patch and perforated-patch voltage clamp. Further, we describe a third technique, called the dye-overload method, that uses simultaneous measurement of membrane current and fura-2 fluorescence to quantify the contribution of Ca2+ flux to the ATP-gated current.
Collapse
Affiliation(s)
- Xin Liang
- The China-America Cancer Research Institute, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, P. R. China
| | - Laura Janks
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
- Checkpoint Immunology, Immunology and Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Terrance M Egan
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA.
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
P2X4 Receptors Mediate Ca 2+ Release from Lysosomes in Response to Stimulation of P2X7 and H 1 Histamine Receptors. Int J Mol Sci 2021; 22:ijms221910492. [PMID: 34638832 PMCID: PMC8508626 DOI: 10.3390/ijms221910492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/01/2023] Open
Abstract
The P2X4 purinergic receptor is targeted to endolysosomes, where it mediates an inward current dependent on luminal ATP and pH. Activation of P2X4 receptors was previously shown to trigger lysosome fusion, but the regulation of P2X4 receptors and their role in lysosomal Ca2+ signaling are poorly understood. We show that lysosomal P2X4 receptors are activated downstream of plasma membrane P2X7 and H1 histamine receptor stimulation. When P2X4 receptors are expressed, the increase in near-lysosome cytosolic [Ca2+] is exaggerated, as detected with a low-affinity targeted Ca2+ sensor. P2X4-dependent changes in lysosome properties were triggered downstream of P2X7 receptor activation, including an enlargement of lysosomes indicative of homotypic fusion and a redistribution of lysosomes towards the periphery of the cell. Lysosomal P2X4 receptors, therefore, have a role in regulating lysosomal Ca2+ release and the regulation of lysosomal membrane trafficking.
Collapse
|
22
|
Reinmuth L, Hsiao CC, Hamann J, Rosenkilde M, Mackrill J. Multiple Targets for Oxysterols in Their Regulation of the Immune System. Cells 2021; 10:cells10082078. [PMID: 34440846 PMCID: PMC8391951 DOI: 10.3390/cells10082078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Oxysterols, or cholesterol oxidation products, are naturally occurring lipids which regulate the physiology of cells, including those of the immune system. In contrast to effects that are mediated through nuclear receptors or by epigenetic mechanism, which take tens of minutes to occur, changes in the activities of cell-surface receptors caused by oxysterols can be extremely rapid, often taking place within subsecond timescales. Such cell-surface receptor effects of oxysterols allow for the regulation of fast cellular processes, such as motility, secretion and endocytosis. These cellular processes play critical roles in both the innate and adaptive immune systems. This review will survey the two broad classes of cell-surface receptors for oxysterols (G-protein coupled receptors (GPCRs) and ion channels), the mechanisms by which cholesterol oxidation products act on them, and their presence and functions in the different cell types of the immune system. Overall, this review will highlight the potential of oxysterols, synthetic derivatives and their receptors for physiological and therapeutic modulation of the immune system.
Collapse
Affiliation(s)
- Lisa Reinmuth
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Mette Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| | - John Mackrill
- Department of Physiology, School of Medicine, BioSciences Institute, University College Cork, College Road, Cork T12 YT20, Ireland
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| |
Collapse
|
23
|
To inhibit or to boost the ATP/P2RX7 pathway to fight cancer-that is the question. Purinergic Signal 2021; 17:619-631. [PMID: 34347213 DOI: 10.1007/s11302-021-09811-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite new biological insights and recent therapeutic advances, many tumors remain at baseline during treatments. Therefore, there is an urgent need to find new therapeutic strategies to improve the care of patients with solid tumors. P2RX7 receptor (P2XR7), an ATP-gated ion channel characterized by its ability to form large pore within the cell membrane, is described by most of the investigators as a "chef d'orchestre" of the antitumor immune response. The purpose of this review is to detail the recent information concerning different cellular mechanisms linking P2RX7 to hallmarks of cancer and to discuss different progresses in elucidating how activation of the ATP/P2RX7/NLRP3/IL-18 pathway is a very promising approach to fight cancer progression by increasing antitumor immune responses.
Collapse
|
24
|
Rabelo ILA, Arnaud-Sampaio VF, Adinolfi E, Ulrich H, Lameu C. Cancer Metabostemness and Metabolic Reprogramming via P2X7 Receptor. Cells 2021; 10:1782. [PMID: 34359950 PMCID: PMC8305434 DOI: 10.3390/cells10071782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022] Open
Abstract
The heterogeneity of tumor cell mass and the plasticity of cancer cell phenotypes in solid tumors allow for the insurgence of resistant and metastatic cells, responsible for cancer patients' clinical management's main challenges. Among several factors that are responsible for increased cancer aggression, metabolic reprogramming is recently emerging as an ultimate cancer hallmark, as it is central for cancer cell survival and self-renewal, metastasis and chemoresistance. The P2X7 receptor, whose expression is upregulated in many solid and hematological malignancies, is also emerging as a good candidate in cancer metabolic reprogramming and the regulation of stem cell proliferation and differentiation. Metabostemness refers to the metabolic reprogramming of cancer cells toward less differentiated (CSCs) cellular states, and we believe that there is a strong correlation between metabostemness and P2X7 receptor functions in oncogenic processes. Here, we summarize important aspects of P2X7 receptor functions in normal and tumor tissues as well as essential aspects of its structure, regulation, pharmacology and its clinical use. Finally, we review current knowledge implicating P2X7 receptor functions in cancer-related molecular pathways, in metabolic reprogramming and in metabostemness.
Collapse
Affiliation(s)
- Izadora Lorrany Alves Rabelo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; (I.L.A.R.); (V.F.A.-S.); (H.U.)
| | - Vanessa Fernandes Arnaud-Sampaio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; (I.L.A.R.); (V.F.A.-S.); (H.U.)
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; (I.L.A.R.); (V.F.A.-S.); (H.U.)
| | - Claudiana Lameu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; (I.L.A.R.); (V.F.A.-S.); (H.U.)
| |
Collapse
|
25
|
P2X7 Receptors and TMEM16 Channels Are Functionally Coupled with Implications for Macropore Formation and Current Facilitation. Int J Mol Sci 2021; 22:ijms22126542. [PMID: 34207150 PMCID: PMC8234106 DOI: 10.3390/ijms22126542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/03/2023] Open
Abstract
P2X7 receptors (P2X7) are cationic channels involved in many diseases. Following their activation by extracellular ATP, distinct signaling pathways are triggered, which lead to various physiological responses such as the secretion of pro-inflammatory cytokines or the modulation of cell death. P2X7 also exhibit unique behaviors, such as “macropore” formation, which corresponds to enhanced large molecule cell membrane permeability and current facilitation, which is caused by prolonged activation. These two phenomena have often been confounded but, thus far, no clear mechanisms have been resolved. Here, by combining different approaches including whole-cell and single-channel recordings, pharmacological and biochemical assays, CRISPR/Cas9 technology and cell imaging, we provide evidence that current facilitation and macropore formation involve functional complexes comprised of P2X7 and TMEM16, a family of Ca2+-activated ion channel/scramblases. We found that current facilitation results in an increase of functional complex-embedded P2X7 open probability, a result that is recapitulated by plasma membrane cholesterol depletion. We further show that macropore formation entails two distinct large molecule permeation components, one of which requires functional complexes featuring TMEM16F subtype, the other likely being direct permeation through the P2X7 pore itself. Such functional complexes can be considered to represent a regulatory hub that may orchestrate distinct P2X7 functionalities.
Collapse
|
26
|
The P2X7 Receptor in the Maintenance of Cancer Stem Cells, Chemoresistance and Metastasis. Stem Cell Rev Rep 2021; 16:288-300. [PMID: 31813120 DOI: 10.1007/s12015-019-09936-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis is the worst prognosis predictor in the clinical course of cancer development. Features of metastatic cancer cells include migratory ability, low degree of differentiation, self-renewal and proliferation potentials, as well as resistance to therapies. Metastatic cells do not present all of the necessary characteristics at once. Indeed, they have a unique phenotypic plasticity, allowing the acquisition of features that make them successful in all steps of metastasis. Cancer stem cells (CSC), the most undifferentiated cells in the tumor mass, display highest metastatic potential and resistance to radio- and chemotherapy. Growing tumors exhibit marked upregulation of P2X7 receptor expression and secrete ATP. Since the P2X7 receptor plays an important role in the maintenance of undifferentiated state of pluripotent cells, its importance on cell fate regulation in the tumor mass is suggested. Considering the extensive crosstalk between CSCs, epithelial-mesenchymal transition, drug resistance and metastasis, current knowledge implicating P2X7 receptor function in these phenomena and new avenues for therapeutic strategies to control metastasis are reviewed.
Collapse
|
27
|
Extracellular ATP: A Feasible Target for Cancer Therapy. Cells 2020; 9:cells9112496. [PMID: 33212982 PMCID: PMC7698494 DOI: 10.3390/cells9112496] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
Adenosine triphosphate (ATP) is one of the main biochemical components of the tumor microenvironment (TME), where it can promote tumor progression or tumor suppression depending on its concentration and on the specific ecto-nucleotidases and receptors expressed by immune and cancer cells. ATP can be released from cells via both specific and nonspecific pathways. A non-regulated release occurs from dying and damaged cells, whereas active release involves exocytotic granules, plasma membrane-derived microvesicles, specific ATP-binding cassette (ABC) transporters and membrane channels (connexin hemichannels, pannexin 1 (PANX1), calcium homeostasis modulator 1 (CALHM1), volume-regulated anion channels (VRACs) and maxi-anion channels (MACs)). Extracellular ATP acts at P2 purinergic receptors, among which P2X7R is a key mediator of the final ATP-dependent biological effects. Over the years, P2 receptor- or ecto-nucleotidase-targeting for cancer therapy has been proposed and actively investigated, while comparatively fewer studies have explored the suitability of TME ATP as a target. In this review, we briefly summarize the available evidence suggesting that TME ATP has a central role in determining tumor fate and is, therefore, a suitable target for cancer therapy.
Collapse
|
28
|
Martínez-Cuesta MÁ, Blanch-Ruiz MA, Ortega-Luna R, Sánchez-López A, Álvarez Á. Structural and Functional Basis for Understanding the Biological Significance of P2X7 Receptor. Int J Mol Sci 2020; 21:ijms21228454. [PMID: 33182829 PMCID: PMC7696479 DOI: 10.3390/ijms21228454] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
The P2X7 receptor (P2X7R) possesses a unique structure associated to an as yet not fully understood mechanism of action that facilitates cell permeability to large ionic molecules through the receptor itself and/or nearby membrane proteins. High extracellular adenosine triphosphate (ATP) levels—inexistent in physiological conditions—are required for the receptor to be triggered and contribute to its role in cell damage signaling. The inconsistent data on its activation pathways and the few studies performed in natively expressed human P2X7R have led us to review the structure, activation pathways, and specific cellular location of P2X7R in order to analyze its biological relevance. The ATP-gated P2X7R is a homo-trimeric receptor channel that is occasionally hetero-trimeric and highly polymorphic, with at least nine human splice variants. It is localized predominantly in the cellular membrane and has a characteristic plasticity due to an extended C-termini, which confers it the capacity of interacting with membrane structural compounds and/or intracellular signaling messengers to mediate flexible transduction pathways. Diverse drugs and a few endogenous molecules have been highlighted as extracellular allosteric modulators of P2X7R. Therefore, studies in human cells that constitutively express P2X7R need to investigate the precise endogenous mediator located nearby the activation/modulation domains of the receptor. Such research could help us understand the possible physiological ATP-mediated P2X7R homeostasis signaling.
Collapse
Affiliation(s)
- María Ángeles Martínez-Cuesta
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
- CIBERehd, Valencia, Spain
- Correspondence: (M.Á.M.-C.); (Á.Á.); Tel.: +34-963983716 (M.Á.M.-C.); +34-963864898 (Á.Á.)
| | - María Amparo Blanch-Ruiz
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
| | - Ainhoa Sánchez-López
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
- CIBERehd, Valencia, Spain
- Correspondence: (M.Á.M.-C.); (Á.Á.); Tel.: +34-963983716 (M.Á.M.-C.); +34-963864898 (Á.Á.)
| |
Collapse
|
29
|
Sivcev S, Slavikova B, Ivetic M, Knezu M, Kudova E, Zemkova H. Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. J Steroid Biochem Mol Biol 2020; 202:105725. [PMID: 32652201 DOI: 10.1016/j.jsbmb.2020.105725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/02/2023]
Abstract
The family of ATP-gated purinergic P2X receptors comprises seven bunits (P2X1-7) that are unevenly distributed in the central and peripheral nervous systems as well as other organs. Endogenous modulators of P2X receptors are phospholipids, steroids and neurosteroids. Here, we analyzed whether bile acids, which are natural products derived from cholesterol, affect P2X receptor activity. We examined the effects of primary and secondary bile acids and newly synthesized derivatives of lithocholic acid on agonist-induced responses in HEK293T cells expressing rat P2X2, P2X4 and P2X7 receptors. Electrophysiology revealed that low micromolar concentrations of lithocholic acid and its structural analog 4-dafachronic acid strongly inhibit ATP-stimulated P2X2 but potentiate P2X4 responses, whereas primary bile acids and other secondary bile acids exhibit no or reduced effects only at higher concentrations. Agonist-stimulated P2X7 responses are significantly potentiated by lithocholic acid at moderate concentrations. Structural modifications of lithocholic acid at positions C-3, C-5 or C-17 abolish both inhibitory and potentiation effects to varying degrees, and the 3α-hydroxy group contributes to the ability of the molecule to switch between potentiation and inhibition. Lithocholic acid allosterically modulates P2X2 and P2X4 receptor sensitivity to ATP, reduces the rate of P2X4 receptor desensitization and antagonizes the effect of ivermectin on P2X4 receptor deactivation. Alanine-scanning mutagenesis of the upper halve of P2X4 transmembrane domain-1 revealed that residues Phe48, Val43 and Tyr42 are important for potentiating effect of lithocholic acid, indicating that modulatory sites for lithocholic acid and ivermectin partly overlap. Lithocholic acid also inhibits ATP-evoked currents in pituitary gonadotrophs expressing native P2X2, and potentiates ATP currents in nonidentified pituitary cells expressing P2X4 receptors. These results indicate that lithocholic acid is a bioactive steroid that may help to further unveil the importance of the P2X2, and P2X4 receptors in many physiological processes.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Knezu
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
30
|
Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158706. [DOI: 10.1016/j.bbalip.2020.158706] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
|
31
|
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 2020; 11:793. [PMID: 32581786 PMCID: PMC7287489 DOI: 10.3389/fphar.2020.00793] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7.
Collapse
Affiliation(s)
- Romain Lara
- Biosceptre (UK) Limited, Cambridge, United Kingdom
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart's & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
32
|
McCarthy AE, Yoshioka C, Mansoor SE. Full-Length P2X 7 Structures Reveal How Palmitoylation Prevents Channel Desensitization. Cell 2019; 179:659-670.e13. [PMID: 31587896 DOI: 10.1016/j.cell.2019.09.017] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/30/2019] [Accepted: 09/13/2019] [Indexed: 12/24/2022]
Abstract
P2X receptors are trimeric, non-selective cation channels activated by extracellular ATP. The P2X7 receptor subtype is a pharmacological target because of involvement in apoptotic, inflammatory, and tumor progression pathways. It is the most structurally and functionally distinct P2X subtype, containing a unique cytoplasmic domain critical for the receptor to initiate apoptosis and not undergo desensitization. However, lack of structural information about the cytoplasmic domain has hindered understanding of the molecular mechanisms underlying these processes. We report cryoelectron microscopy structures of full-length rat P2X7 receptor in apo and ATP-bound states. These structures reveal how one cytoplasmic element, the C-cys anchor, prevents desensitization by anchoring the pore-lining helix to the membrane with palmitoyl groups. They show a second cytoplasmic element with a unique fold, the cytoplasmic ballast, which unexpectedly contains a zinc ion complex and a guanosine nucleotide binding site. Our structures provide first insights into the architecture and function of a P2X receptor cytoplasmic domain.
Collapse
Affiliation(s)
- Alanna E McCarthy
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Craig Yoshioka
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201, USA
| | - Steven E Mansoor
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
33
|
Balboa MA, de Pablo N, Meana C, Balsinde J. The role of lipins in innate immunity and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1328-1337. [DOI: 10.1016/j.bbalip.2019.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/07/2019] [Accepted: 06/01/2019] [Indexed: 02/08/2023]
|
34
|
Kanellopoulos JM, Delarasse C. Pleiotropic Roles of P2X7 in the Central Nervous System. Front Cell Neurosci 2019; 13:401. [PMID: 31551714 PMCID: PMC6738027 DOI: 10.3389/fncel.2019.00401] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
The purinergic receptor P2X7 is expressed in neural and immune cells known to be involved in neurological diseases. Its ligand, ATP, is a signaling molecule that can act as a neurotransmitter in physiological conditions or as a danger signal when released in high amount by damaged/dying cells or activated glial cells. Thus, ATP is a danger-associated molecular pattern. Binding of ATP by P2X7 leads to the activation of different biochemical pathways, depending on the physiological or pathological environment. The aim of this review is to discuss various functions of P2X7 in the immune and central nervous systems. We present evidence that P2X7 may have a detrimental or beneficial role in the nervous system, in the context of neurological pathologies: epilepsy, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis, age-related macular degeneration and cerebral artery occlusion.
Collapse
Affiliation(s)
| | - Cécile Delarasse
- Inserm, Sorbonne Université, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
35
|
Kopp R, Krautloher A, Ramírez-Fernández A, Nicke A. P2X7 Interactions and Signaling - Making Head or Tail of It. Front Mol Neurosci 2019; 12:183. [PMID: 31440138 PMCID: PMC6693442 DOI: 10.3389/fnmol.2019.00183] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular adenine nucleotides play important roles in cell-cell communication and tissue homeostasis. High concentrations of extracellular ATP released by dying cells are sensed as a danger signal by the P2X7 receptor, a non-specific cation channel. Studies in P2X7 knockout mice and numerous disease models have demonstrated an important role of this receptor in inflammatory processes. P2X7 activation has been shown to induce a variety of cellular responses that are not usually associated with ion channel function, for example changes in the plasma membrane composition and morphology, ectodomain shedding, activation of lipases, kinases, and transcription factors, as well as cytokine release and apoptosis. In contrast to all other P2X family members, the P2X7 receptor contains a long intracellular C-terminus that constitutes 40% of the whole protein and is considered essential for most of these effects. So far, over 50 different proteins have been identified to physically interact with the P2X7 receptor. However, few of these interactions have been confirmed in independent studies and for the majority of these proteins, the interaction domains and the physiological consequences of the interactions are only poorly described. Also, while the structure of the P2X7 extracellular domain has recently been resolved, information about the organization and structure of its C-terminal tail remains elusive. After shortly describing the structure and assembly of the P2X7 receptor, this review gives an update of the identified or proposed interaction domains within the P2X7 C-terminus, describes signaling pathways in which this receptor has been involved, and provides an overlook of the identified interaction partners.
Collapse
Affiliation(s)
- Robin Kopp
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna Krautloher
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Antonio Ramírez-Fernández
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
36
|
Benzaquen J, Heeke S, Janho Dit Hreich S, Douguet L, Marquette CH, Hofman P, Vouret-Craviari V. Alternative splicing of P2RX7 pre-messenger RNA in health and diseases: Myth or reality? Biomed J 2019; 42:141-154. [PMID: 31466708 PMCID: PMC6717933 DOI: 10.1016/j.bj.2019.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) tremendously increases the use of genetic information by generating protein isoforms that differ in protein-protein interactions, catalytic activity and/or subcellular localization. This review is not dedicated to AS in general, but rather we focus our attention on AS of P2RX7 pre-mRNA. Whereas P2RX7 mRNA is expressed by virtually all eukaryotic mammalian cells, the expression of this channel receptor is restrained to certain cells. When expressed at the cell membrane, P2RX7 controls downstream events including release of inflammatory molecules, phagocytosis, cell proliferation and death and metabolic events. Therefore, P2RX7 is an important actor of health and diseases. In this review, we summarize the general mechanisms leading to AS. Further, we recapitulate our current knowledge concerning the functional regions in P2RX7, identified at the genetic or exonic levels, and how AS may affect the expression of these regions. Finally, the potential of P2RX7 splice variants to control the fate of cancer cells is discussed.
Collapse
Affiliation(s)
- Jonathan Benzaquen
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; FHU OncoAge, Nice, France
| | - Simon Heeke
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France; FHU OncoAge, Nice, France
| | | | | | - Charles Hugo Marquette
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; FHU OncoAge, Nice, France; University of Cote d'Azur, CHU de Nice, Department of Pulmonary Medicine, FHU OncoAge, Nice, France
| | - Paul Hofman
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France; Hospital-Related Biobank (BB-0033-00025), Pasteur Hospital, Nice, France; FHU OncoAge, Nice, France
| | | |
Collapse
|
37
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
38
|
Schmidt A, Alsop RJ, Rimal R, Lenzig P, Joussen S, Gervasi NN, Khondker A, Gründer S, Rheinstädter MC, Wiemuth D. Modulation of DEG/ENaCs by Amphiphiles Suggests Sensitivity to Membrane Alterations. Biophys J 2019; 114:1321-1335. [PMID: 29590590 DOI: 10.1016/j.bpj.2018.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/25/2022] Open
Abstract
The bile acid-sensitive ion channel is activated by amphiphilic substances such as bile acids or artificial detergents via membrane alterations; however, the mechanism of membrane sensitivity of the bile acid-sensitive ion channel is not known. It has also not been systematically investigated whether other members of the degenerin/epithelial Na+ channel (DEG/ENaC) gene family are affected by amphiphilic compounds. Here, we show that DEG/ENaCs ASIC1a, ASIC3, ENaC, and the purinergic receptor P2X2 are modulated by a large number of different, structurally unrelated amphiphilic substances, namely the detergents N-lauroylsarcosine, Triton X-100, and β-octylglucoside; the fenamate flufenamic acid; the antipsychotic drug chlorpromazine; the natural phenol resveratrol; the chili pepper compound capsaicin; the loop diuretic furosemide; and the antiarrythmic agent verapamil. We determined the modification of membrane properties using large-angle x-ray diffraction experiments on model lipid bilayers, revealing that the amphiphilic compounds are positioned in a characteristic fashion either in the lipid tail group region or in the lipid head group region, demonstrating that they perturbed the membrane structure. Collectively, our results show that DEG/ENaCs and structurally related P2X receptors are modulated by diverse amphiphilic molecules. Furthermore, they suggest alterations of membrane properties by amphiphilic compounds as a mechanism contributing to modulation.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Rick J Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Rahul Rimal
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Pia Lenzig
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Sylvia Joussen
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Natalie N Gervasi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | | | - Dominik Wiemuth
- Institute of Physiology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
39
|
Gordon EM, Yao X, Xu H, Karkowsky W, Kaler M, Kalchiem-Dekel O, Barochia AV, Gao M, Keeran KJ, Jeffries KR, Levine SJ. Apolipoprotein E is a concentration-dependent pulmonary danger signal that activates the NLRP3 inflammasome and IL-1β secretion by bronchoalveolar fluid macrophages from asthmatic subjects. J Allergy Clin Immunol 2019; 144:426-441.e3. [PMID: 30872118 DOI: 10.1016/j.jaci.2019.02.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND House dust mite (HDM)-challenged Apoe-/- mice display enhanced airway hyperreactivity and mucous cell metaplasia. OBJECTIVE We sought to characterize the pathways that induce apolipoprotein E (APOE) expression by bronchoalveolar lavage fluid (BALF) macrophages from asthmatic subjects and identify how APOE regulates IL-1β secretion. METHODS Macrophages were isolated from asthmatic BALF and derived from THP-1 cells and human monocytes. RESULTS HDM-derived cysteine and serine proteases induced APOE secretion from BALF macrophages through protease-activated receptor 2. APOE at concentrations of less than 2.5 nmol/L, which are similar to levels found in epithelial lining fluid from healthy adults, did not induce IL-1β release from BALF macrophages. In contrast, APOE at concentrations of 25 nmol/L or greater induced nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein (NLRP) 3 and pro-IL-1β expression by BALF macrophages, as well as the caspase-1-mediated generation of mature IL-1β secreted from cells. HDM acted synergistically with APOE to both prime and activate the NLRP3 inflammasome. In a murine model of neutrophilic airway inflammation induced by HDM and polyinosinic-polycytidylic acid, APOE reached a concentration of 32 nmol/L in epithelial lining fluid, with associated increases in BALF IL-1β levels. APOE-dependent NLRP3 inflammasome activation in macrophages was primarily mediated through a potassium efflux-dependent mechanism. CONCLUSION APOE can function as an endogenous, concentration-dependent pulmonary danger signal that primes and activates the NLPR3 inflammasome in BALF macrophages from asthmatic subjects to secrete IL-1β. This might represent a mechanism through which APOE amplifies pulmonary inflammatory responses when concentrations in the lung are increased to greater than normal levels, which can occur during viral exacerbations of HDM-induced asthma characterized by neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Elizabeth M Gordon
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Haitao Xu
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - William Karkowsky
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Maryann Kaler
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Or Kalchiem-Dekel
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Amisha V Barochia
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Meixia Gao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Karen J Keeran
- Animal Surgery and Resources Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Kenneth R Jeffries
- Animal Surgery and Resources Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
40
|
Morales-Lázaro SL, Rosenbaum T. Cholesterol as a Key Molecule That Regulates TRPV1 Channel Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:105-117. [DOI: 10.1007/978-3-030-14265-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Fantini J, Epand RM, Barrantes FJ. Cholesterol-Recognition Motifs in Membrane Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:3-25. [PMID: 31098808 DOI: 10.1007/978-3-030-14265-0_1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of cholesterol on the structure and function of membrane proteins was recognized several decades ago, but the molecular mechanisms underlying these effects have remained elusive. There appear to be multiple mechanisms by which cholesterol interacts with proteins. A complete understanding of cholesterol-sensing motifs is still undergoing refinement. Initially, cholesterol was thought to exert only non-specific effects on membrane fluidity. It was later shown that this lipid could specifically interact with membrane proteins and affect both their structure and function. In this article, we have summarized and critically analyzed our evolving understanding of the affinity, specificity and stereoselectivity of the interactions of cholesterol with membrane proteins. We review the different computational approaches that are currently used to identify cholesterol binding sites in membrane proteins and the biochemical logic that governs each type of site, including CRAC, CARC, SSD and amphipathic helix motifs. There are physiological implications of these cholesterol-recognition motifs for G-protein coupled receptors (GPCR) and ion channels, in membrane trafficking and membrane fusion (SNARE) proteins. There are also pathological implications of cholesterol binding to proteins involved in neurological disorders (Alzheimer, Parkinson, Creutzfeldt-Jakob) and HIV fusion. In each case, our discussion is focused on the key molecular aspects of the cholesterol and amino acid motifs in membrane-embedded regions of membrane proteins that define the physiologically relevant crosstalk between the two. Our understanding of the factors that determine if these motifs are functional in cholesterol binding will allow us enhanced predictive capabilities.
Collapse
Affiliation(s)
- Jacques Fantini
- INSERM UMR_S 1072, Marseille, France. .,Aix-Marseille Université, Marseille, France.
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
42
|
Shaik FA, Medapati MR, Chelikani P. Cholesterol modulates the signaling of chemosensory bitter taste receptor T2R14 in human airway cells. Am J Physiol Lung Cell Mol Physiol 2019; 316:L45-L57. [PMID: 30358435 DOI: 10.1152/ajplung.00169.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bitter taste receptors (T2Rs) are a group of 25 chemosensory receptors expressed at significant levels in the human airways. In human airways, bitter taste receptor 14 (T2R14)-mediated physiological response in ameliorating obstructive airway disorders is an active area of investigation. Therefore, understanding various factors regulating the structure and function of T2R14 will be beneficial. We hypothesize that membrane lipids like cholesterol play a regulatory role in T2R14 signaling in airway cells. We confirmed the expression and signaling of T2R14 in primary human airway smooth muscle (HASM) cells and the human airway epithelial cell line (NuLi-1) using immunoblot analysis and intracellular calcium concentration mobilization experiments, respectively. Next, T2R14 signaling was examined in membrane cholesterol-altered environments by methyl-β-cyclodextrin or cholesterol oxidase treatments. In the cells analyzed, cholesterol depletion affected the agonist-induced T2R14 signaling, and cholesterol replenishment rescued its efficacy. An alternative approach for cholesterol depletion (with cholesterol oxidase pretreatment) also negatively affected the agonist potency at T2R14 in HASM cells. To understand the molecular mechanism of interaction between cholesterol and T2R14, we used site-directed mutagenesis coupled with functional assays and examined the role of putative cholesterol-binding motifs (CRAC and CARC) in T2R14. Functional characterization of wild-type and mutant T2R14 receptors suggests that amino acid residues K110, F236, and L239 are crucial in T2R14-cholesterol functional interaction. In conclusion, our results show that cholesterol influences the T2R14 signaling efficacy by forming direct interactions with the receptor and consequently plays a regulatory role in T2R14-mediated signaling in human airway cells.
Collapse
Affiliation(s)
- Feroz Ahmed Shaik
- Manitoba Chemosensory Biology Research Group, University of Manitoba, Manitoba, Canada.,Department of Oral Biology, University of Manitoba, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba , Winnipeg, Manitoba , Canada
| | - Manoj Reddy Medapati
- Manitoba Chemosensory Biology Research Group, University of Manitoba, Manitoba, Canada.,Department of Oral Biology, University of Manitoba, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba , Winnipeg, Manitoba , Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, University of Manitoba, Manitoba, Canada.,Department of Oral Biology, University of Manitoba, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba , Winnipeg, Manitoba , Canada
| |
Collapse
|
43
|
Schmid R, Evans RJ. ATP-Gated P2X Receptor Channels: Molecular Insights into Functional Roles. Annu Rev Physiol 2018; 81:43-62. [PMID: 30354932 DOI: 10.1146/annurev-physiol-020518-114259] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the nervous system, ATP is co-stored in vesicles with classical transmitters and released in a regulated manner. ATP from the intracellular compartment can also exit the cell through hemichannels and following shear stress or membrane damage. In the past 30 years, the action of ATP as an extracellular transmitter at cell-surface receptors has evolved from somewhat of a novelty that was treated with skepticism to purinergic transmission being accepted as having widespread important functional roles mediated by ATP-gated ionotropic P2X receptors (P2XRs). This review focuses on work published in the last five years and provides an overview of ( a) structural studies, ( b) the molecular basis of channel properties and regulation of P2XRs, and ( c) the physiological and pathophysiological roles of ATP acting at defined P2XR subtypes.
Collapse
Affiliation(s)
- Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; .,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom;
| |
Collapse
|
44
|
Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 2018; 18:601-618. [PMID: 30006588 DOI: 10.1038/s41568-018-0037-0] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modulation of the biochemical composition of the tumour microenvironment is a new frontier of cancer therapy. Several immunosuppressive mechanisms operate in the milieu of most tumours, a condition that makes antitumour immunity ineffective. One of the most potent immunosuppressive factors is adenosine, which is generated in the tumour microenvironment owing to degradation of extracellular ATP. Accruing evidence over the past few years shows that ATP is one of the major biochemical constituents of the tumour microenvironment, where it acts at P2 purinergic receptors expressed on both tumour and host cells. Stimulation of P2 receptors has different effects depending on the extracellular ATP concentration, the P2 receptor subtype engaged and the target cell type. Among P2 receptors, the P2X purinergic receptor 7 (P2X7R) subtype appears to be a main player in host-tumour cell interactions. Preclinical studies in several tumour models have shown that P2X7R targeting is potentially a very effective anticancer treatment, and many pharmaceutical companies have now developed potent and selective small molecule inhibitors of P2X7R. In this Review, we report on the multiple mechanisms by which extracellular ATP shapes the tumour microenvironment and how its stimulation of host and tumour cell P2 receptors contributes to determining tumour fate.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
45
|
Tozzi M, Larsen AT, Lange SC, Giannuzzo A, Andersen MN, Novak I. The P2X7 receptor and pannexin-1 are involved in glucose-induced autocrine regulation in β-cells. Sci Rep 2018; 8:8926. [PMID: 29895988 PMCID: PMC5997690 DOI: 10.1038/s41598-018-27281-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/31/2018] [Indexed: 01/02/2023] Open
Abstract
Extracellular ATP is an important short-range signaling molecule that promotes various physiological responses virtually in all cell types, including pancreatic β-cells. It is well documented that pancreatic β-cells release ATP through exocytosis of insulin granules upon glucose stimulation. We hypothesized that glucose might stimulate ATP release through other non-vesicular mechanisms. Several purinergic receptors are found in β-cells and there is increasing evidence that purinergic signaling regulates β-cell functions and survival. One of the receptors that may be relevant is the P2X7 receptor, but its detailed role in β-cell physiology is unclear. In this study we investigated roles of the P2X7 receptor and pannexin-1 in ATP release, intracellular ATP, Ca2+ signals, insulin release and cell proliferation/survival in β-cells. Results show that glucose induces rapid release of ATP and significant fraction of release involves the P2X7 receptor and pannexin-1, both expressed in INS-1E cells, rat and mouse β-cells. Furthermore, we provide pharmacological evidence that extracellular ATP, via P2X7 receptor, stimulates Ca2+ transients and cell proliferation in INS-1E cells and insulin secretion in INS-1E cells and rat islets. These data indicate that the P2X7 receptor and pannexin-1 have important functions in β-cell physiology, and should be considered in understanding and treatment of diabetes.
Collapse
Affiliation(s)
- Marco Tozzi
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anna T Larsen
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie C Lange
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Giannuzzo
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin N Andersen
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
Delgado-Ramírez M, Sánchez-Armass S, Meza U, Rodríguez-Menchaca AA. Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1242-1251. [PMID: 29474891 DOI: 10.1016/j.bbamem.2018.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/18/2022]
Abstract
Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-β-cyclodextrin (MβCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MβCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico
| | - Sergio Sánchez-Armass
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico
| | - Ulises Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico.
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico.
| |
Collapse
|
47
|
Di Virgilio F, Schmalzing G, Markwardt F. The Elusive P2X7 Macropore. Trends Cell Biol 2018; 28:392-404. [PMID: 29439897 DOI: 10.1016/j.tcb.2018.01.005] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/27/2022]
Abstract
ATP, which is released under pathological conditions and is considered a damage-associated molecular pattern (DAMP), activates P2X7 receptors (P2X7Rs), trimeric plasma membrane ion channels selective for small cations. P2X7Rs are partners in NOD-like receptor containing a pyrin (NLRP3) inflammasome activation and promoters of tumor cell growth. P2X7R overstimulation triggers the ATP-dependent opening of a nonselective plasma membrane pore, known as a 'macropore', which allows fluxes of large hydrophilic molecules. The pathophysiological functions of P2X7R are thought to be dependent on activation of this conductance pathway, yet its molecular identity is unknown. Recent reports show that P2X7R permeability to organic solutes is an early and intrinsic property of the channel itself. A better understanding of P2X7R-dependent changes in plasma membrane permeability will allow a rationale development of novel anti-inflammatory and anticancer drugs.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Günther Schmalzing
- Department of Pharmacology and Toxicology, University of Aachen, Aachen, Germany
| | - Fritz Markwardt
- Institute for Physiology, Martin Luther University, Halle/Saale, Germany
| |
Collapse
|
48
|
Di Virgilio F, Giuliani AL, Vultaggio-Poma V, Falzoni S, Sarti AC. Non-nucleotide Agonists Triggering P2X7 Receptor Activation and Pore Formation. Front Pharmacol 2018; 9:39. [PMID: 29449813 PMCID: PMC5799242 DOI: 10.3389/fphar.2018.00039] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
The P2X7 receptor (P2X7R) is a ligand-gated plasma membrane ion channel belonging to the P2X receptor subfamily activated by extracellular nucleotides. General consensus holds that the physiological (and maybe the only) agonist is ATP. However, scattered evidence generated over the last several years suggests that ATP might not be the only agonist, especially at inflammatory sites. Solid data show that NAD+ covalently modifies the P2X7R of mouse T lymphocytes, thus lowering the ATP threshold for activation. Other structurally unrelated agents have been reported to activate the P2X7R via a poorly understood mechanism of action: (a) the antibiotic polymyxin B, possibly a positive allosteric P2X7R modulator, (b) the bactericidal peptide LL-37, (c) the amyloidogenic β peptide, and (d) serum amyloid A. Some agents, such as Alu-RNA, have been suggested to activate the P2X7R acting on the intracellular N- or C-terminal domains. Mode of P2X7R activation by these non-nucleotide ligands is as yet unknown; however, these observations raise the intriguing question of how these different non-nucleotide ligands may co-operate with ATP at inflammatory or tumor sites. New information obtained from the cloning and characterization of the P2X7R from exotic mammalian species (e.g., giant panda) and data from recent patch-clamp studies are strongly accelerating our understanding of P2X7R mode of operation, and may provide hints to the mechanism of activation of P2X7R by non-nucleotide ligands.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Anna L Giuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Valentina Vultaggio-Poma
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alba C Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
49
|
Dang EV, McDonald JG, Russell DW, Cyster JG. Oxysterol Restraint of Cholesterol Synthesis Prevents AIM2 Inflammasome Activation. Cell 2017; 171:1057-1071.e11. [PMID: 29033131 DOI: 10.1016/j.cell.2017.09.029] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/07/2017] [Accepted: 09/18/2017] [Indexed: 12/27/2022]
Abstract
Type I interferon restrains interleukin-1β (IL-1β)-driven inflammation in macrophages by upregulating cholesterol-25-hydroxylase (Ch25h) and repressing SREBP transcription factors. However, the molecular links between lipid metabolism and IL-1β production remain obscure. Here, we demonstrate that production of 25-hydroxycholesterol (25-HC) by macrophages is required to prevent inflammasome activation by the DNA sensor protein absent in melanoma 2 (AIM2). We find that in response to bacterial infection or lipopolysaccharide (LPS) stimulation, macrophages upregulate Ch25h to maintain repression of SREBP2 activation and cholesterol synthesis. Increasing macrophage cholesterol content is sufficient to trigger IL-1β release in a crystal-independent but AIM2-dependent manner. Ch25h deficiency results in cholesterol-dependent reduced mitochondrial respiratory capacity and release of mitochondrial DNA into the cytosol. AIM2 deficiency rescues the increased inflammasome activity observed in Ch25h-/-. Therefore, activated macrophages utilize 25-HC in an anti-inflammatory circuit that maintains mitochondrial integrity and prevents spurious AIM2 inflammasome activation.
Collapse
Affiliation(s)
- Eric V Dang
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David W Russell
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
| |
Collapse
|
50
|
Karasawa A, Michalski K, Mikhelzon P, Kawate T. The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition. eLife 2017; 6:31186. [PMID: 28920575 PMCID: PMC5624784 DOI: 10.7554/elife.31186] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
The P2X7 receptor mediates extracellular ATP signaling implicated in the development of devastating diseases such as chronic pain and cancer. Activation of the P2X7 receptor leads to opening of the characteristic dye-permeable membrane pore for molecules up to ~900 Da. However, it remains controversial what constitutes this peculiar pore and how it opens. Here we show that the panda receptor, when purified and reconstituted into liposomes, forms an intrinsic dye-permeable pore in the absence of other cellular components. Unexpectedly, we found that this pore opens independent of its unique C-terminal domain. We also found that P2X7 channel activity is facilitated by phosphatidylglycerol and sphingomyelin, but dominantly inhibited by cholesterol through direct interactions with the transmembrane domain. In combination with cell-based functional studies, our data suggest that the P2X7 receptor itself constitutes a lipid-composition dependent dye-permeable pore, whose opening is facilitated by palmitoylated cysteines near the pore-lining helix.
Collapse
Affiliation(s)
- Akira Karasawa
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Kevin Michalski
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Polina Mikhelzon
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| |
Collapse
|